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SUMMARY  

Hepatocellular carcinoma (HCC) is one of the most frequent forms of cancer and effective 

treatment methods are limited, with challenges related to its large heterogeneity. A great need 

exists for comprehensive approaches to stratify HCC using methods capable of incorporating inter-

tumor variability, while providing biologic insights and ultimately identifying suitable therapeutic 

targets in an individualized manner. Here, we have employed a novel metabolic network-based 

stratification of HCC which uses modeling and network topology/controllability to stratify and 

characterize hundreds of samples based on transcriptomic data. The comprehensive analysis 

identified three distinct HCC subtypes with substantial metabolic differences, extending also to 

distinct genomic, gene expression, and immunohistochemical differences. These subtypes show 

large differences in clinical survival, associated with altered Kynurenine metabolism, WNT/β-

catenin-associated lipid metabolism alterations, and PI3K/AKT/mTOR signaling. The gene 

expression analysis show that the three groups rely on alternative enzyme-coding genes (e.g. 

ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to 

drive the same reactions. We have also identified 8 – 28 subtype-specific genes with pivotal roles 

in controlling network and whose in silico silencing shows that these could be potential new drug 

targets for one of the iHCCs. Finally, we have experimentally observed opposite expression 

patterns between genes expressed in high/moderate and low survival tumor groups in response to 

hypoxia, reflecting promoted hypoxic behavior in patients with poor survival. Overall, our 

analyses show that the substantial HCC heterogeneity can be stratified using a metabolic-network 

driven approach and this stratification can have clinical implications as it can drive the 

development of personalized medicine. 

SIGNIFICANCE 

Hepatocellular carcinoma (HCC) is a highly heterogeneous and deadly form of liver cancer. Here, 

we characterized and stratified HCC tumors based on genome-scale  metabolic network 

heterogeneity. Our newly developed in silico method enabled the identification of three HCC 

subgroups with distinct metabolic, signaling and survival properties, as well as hypoxic-driven 

gene expression responses. We verified the results of our analysis by performing additional 

experiments and associated it with patient survival. We further identified a number of subgroup-

specific genes pivotal in controlling the entire metabolism and discovered genes that can be 

targeted for development of efficient treatment strategies for specific patient group. Our systems 

level analyses provided a systematic way for characterization of liver cancer sub-types. 

INTRODUCTION 

Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer, the third leading cause of 

cancer-related worldwide mortality, and its incidence is predicted to increase globally (1). 

However, due to this disease’s large heterogeneity, a complete understanding of the biological 

phenomena underlying HCC onset and progression remains elusive. Comprehensive approaches 
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capable of incorporating inter-tumor variability, while providing biologic function insights are thus 

of great need for understanding biological phenomena and identifying suitable therapeutic targets. 

Systems biology approaches have been pivotal in tackling this challenge in cancer. Genomic, 

transcriptomic, or metabolic characterizations of HCC consisting of large-scale data are currently 

available (2-8). This enabled the identification of markers associated with recurrence and poor 

prognosis (9-11). In turn, Genome-scale Metabolic Models (GEMs), comprehensive metabolic 

network descriptions incorporating reaction stoichiometry information and functional 

descriptions, have been successfully used to metabolically characterize HCC, as well as identify 

targets for personalized treatment (7, 12-14). For instance, HCC tumors display altered acetate 

metabolism responses in patients with differential patient survival (7). Analysis of HCC 

metabolism also pointed to potential anticancer metabolite analogues that would not be toxic for 

noncancerous liver tissues (12), and to substantial association and antagonistic responses between 

redox and central metabolisms (14). These observations indicate the clear strengths in integration 

of large-scale omics data with personalized medicine approaches. However, while these methods 

implicitly consider metabolic network structure, they do not permit stratifying tumors based on 

network heterogeneity itself, and instead rely on identification of key genes/metabolites and tumor 

stratification based on their levels. In turn, topology-driven network analyses, including protein-

protein interaction, signaling, gene regulatory and metabolic networks (15-17) provide an 

alternative view over cancer networks. For instance, network analysis has identified essential 

proteins from a lethality perspective, as well as those capable and indispensable for controlling 

network (18-22). However, topology-driven methods do not take into account biological 

functionality, one important strength in GEM-driven and similar analyses. 

Here, we integrate multi-omic data with modeling and metabolic network-based analysis to 

introduce a whole network-driven stratification of HCC tumors. Consistent tumor stratification 

was performed across different datasets consisting of hundreds of HCC tumors. Importantly, 

though this analysis considers only metabolic network information, substantial differences are 

observed at the gene expression, genomic, clinical, and survival level. Additionally, we identify 

novel HCC subtype-specific therapeutic targets that have important roles in controlling cancer 

network not noncancerous liver samples. Finally, we have experimentally observed that expression 

of genes associated with good and poor prognosis tumors shows opposite responses to hypoxia. 

RESULTS 

Characterizing metabolic heterogeneity and identifying controlling genes in HCC 

We started by retrieving the transcriptomic and clinical data for 369 HCC individuals, along with 

50 non-cancer liver samples from GDC (8). This dataset was split in 2 parts: a test set, consisting 

of 186 patients with detailed clinical information for clinical and signature data analysis, and a set 

consisting of 183 patients that was used later for validation. We integrated the test set with an 

HCC-specific genome scale metabolic model (12) to generate patient-specific HCC and non-tumor 
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GEMs (see Methods). After excluding non-functional models, we constructed personalized 

directed functional gene-gene networks (fGGNs), a novel approach introduced here for clarifying 

metabolic gene importance in HCC (Fig. S1) inspired by a previous approach (23). In fGGNs, 

nodes represent metabolic genes (enzymes) and edges represent connections between metabolic 

genes that are formed if a metabolite product of a gene’s reaction serves as substrate for the 

reaction driven by the other gene (Fig. 1A). 

After validation of fGGNs against randomly generated networks (Fig. S2A), we sought to compare 

heterogeneity across patients by testing model similarity within and between HCC vs non-cancer 

fGGNs. We investigated nodes based on their control over the network, shortest connections with 

other nodes, number of neighboring nodes, and direction of interaction by computing the centrality 

topology parameters betweenness, normalized closeness, eccentricity and degree (Table S1). 

Comparison of these scores within HCC and non-cancer group indicates that the former group is 

substantially more heterogeneous than the latter, where the median node absolute deviation for 

each of the parameters tends to be larger in HCC than non-tumor samples (Fig. 1B and C). In turn, 

between-group comparison shows substantial differences between HCC and non-tumor samples 

expressed at the network level (Fig. S2B). Overall, all tested parameters show that non-cancer 

fGGN are more similar to each other in comparison with HCC networks at the network level. 

We then aimed to identify genes that are pivotal in controlling of the full networks through network 

controllability approaches (i.e. minimum driver node sets, MDS). Most of the 224 MDS genes 

identified are involved in transport reactions, fatty acid metabolism, oxidative phosphorylation, 

nucleotide metabolism and carnitine shuttle (Table S2). Similarly to previous approach (18), we 

classified nodes based on their controllability classification as indispensable, neutral and 

dispensable, i.e. those whose removal from the network respectively increase, do not change, or 

decrease the minimum number of MDS (Table S2). We identify 188 genes that are indispensable 

in ≥80% of the fGGNs. Our observations indicate that indispensable genes show very high degrees 

indicative of high connectivity in both HCC and noncancerous networks (Fig. 1D). For instance, 

indispensable, neutral and dispensable genes show median degrees of 32, 17 and 9 in HCC, 

respectively, whereas they show median degrees of 34, 22 and 11 in noncancerous networks. 

Importantly, dispensable and indispensable nodes may show similar degrees indicating that not all 

highly connected genes (i.e. hubs) are controlling the network, but most indispensable genes are 

hubs.  

In silico gene silencing of all 2892 metabolic genes in GEMs shows that >95% of HCC samples 

show no growth when MDS or indispensable genes are silenced, much higher than the observed 

fractions for silencing of other genes (<50%) (Fig. 1E). Together, MDS and indispensable genes 

are hereafter called “controlling genes” based on their role in network control. Based on the 

controllability and MDS classifications we observe clear separation of HCC and non-cancer 

fGGNs as indicated by Principal Component Analysis (Fig. 1F), otherwise not achieved when 

solely considering gene expression (Fig. S2C). These observations show that despite the high 

heterogeneity expressed at the gene level in HCC, network analyses identify distinct and important 
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genes that may be used to efficiently separate HCC and non-cancer samples based on network 

controllability.  

Network-based stratification reveals metabolic, survival and cancer hallmark differences in 

HCC 

Having identified important differences between HCC and noncancerous fGGNs, we then used a 

novel network-based approach to stratify the patients. Here, we introduce the utilization of 

functional gene-gene networks to stratify tumors based on gene expression data, using techniques 

previously employed to stratify tumors based on somatic mutations (24). We combined the 

personalized fGGN into a single generic fGGN representative of the features of all 186 patients, 

consisting of 1972 metabolic genes (see Methods), that was used for stratification. Integrating 

patient transcriptomic data with the generic fGGN, and employing network smoothing to spread 

the influence of each expression profile on the neighborhood of the network, we generated 

expression profiles that reflect the fGGN structure. These expression profiles were subsequently 

stratified using Nonnegative Matrix Factorization (NMF). An optimum number of three HCC 

groups was identified (Fig. S2D), each consisting of 85, 49 and 52 patients each (iHCC1 – 3) with 

substantial gene expression, biological process and clinical differences (Fig. 2, Table S3).  

Differential expression analysis (Fig. 2A) identifies 2409 differentially expressed genes between 

iHCC2 vs iHCC3, 2318 genes between iHCC1 vs iHCC3, and 1115 genes between iHCC1 vs 

iHCC2 (Q < 0.05, DESeq, Table S3). Cancer hallmark gene set enrichment analysis (25) highlights 

significant differences in hallmarks of cancer (Q < 0.01, Fig. 2A). For instance, iHCC3 displays 

upregulated E2F targets, mTOR, MYC, inflammatory response, mitosis, G2M checkpoint, and 

DNA repair in when compared with iHCC1/iHCC2. In turn, iHCC2 shows WNT/beta catenin 

activation. Mitosis and cell cycle-associated gene expression is downregulated in iHCC2 in 

comparison with iHCC1/iHCC3 and inflammation is higher in iHCC1/iHCC3. 

Among the genes differentially expressed between the low and high survival iHCC3 and iHCC1 

groups, we identified several prognostic markers (DESeq, Fig. 2B, Table S3). For instance, when 

compared with iHCC3, tumors from iHCC1 display upregulated expression of 64 favorable 

prognostic markers and downregulated expression of 45 unfavorable prognostic markers (Fig. 2B, 

Q<0.05, DESeq), among the 469 metabolic genes previously identified as prognostic markers in 

liver cancer (11). In turn, iHCC2 shows mixed up- and downregulation of these prognostic 

markers. iHCC3 tumors additionally present downregulated expression of 123 (out of 157) liver-

specific genes (Q < 0.05, Table S3), upregulation of genes associated with immune signatures (26) 

and genes associated with metastasization such as HIF1α, IL1, TNFα, NFκB, and TGFβ are 

upregulated in iHCC3 (Table S3). Survival differences of the 3 groups are consistent with 

expression of prognostic markers, where iHCC1 presents the highest survival rate, followed by 

iHCC2, and iHCC3 (Log rank P < 0.001, Fig. 2C). 
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Though differences are observed between the three groups, iHCC3 tumors are markedly distinct 

from those of iHCC2 and iHCC1. A larger number of genes are differentially expressed between 

iHCC3 vs iHCC1/iHCC2 when compared with iHCC1 vs iHCC2, and several cancer hallmarks 

are simultaneously enriched in iHCC3 in comparison with either iHCC1 or iHCC2 (Fig. 2A). For 

instance, iHCC3 tumors present downregulated oxidative phosphorylation, fatty acid metabolism, 

adipogenesis, and upregulated DNA repair, G2M checkpoint, epithelial to mesenchymal transition 

and inflammation, when compared with iHCC1 or iHCC2 (Table S3). 

Gene set enrichment analysis performed in PIANO (25) using biological processes retrieved from 

MSigDB highlights iHCC-specific responses (Table S4). For instance, iHCC1 displays 

upregulated tryptophan and indole metabolism, but downregulated ncRNA metabolism, and 

ribosome biogenesis (Q < 0.05), when compared with tumors of iHCC2 and iHCC3. Tumors in 

iHCC2 displays (Q < 0.05) upregulated heme, glutamine metabolism, drug metabolism and 

transport, and oxidative demethylation, but downregulated cell development and GPCR signaling, 

when compared with iHCC3 and iHCC1. Tumors in iHCC3 show the largest changes in biological 

processes when compared with iHCC1 or iHCC2, with upregulation of multiple processes 

associated with cell proliferation, cell cycle progression and mitosis, development, chromosome 

segregation, cytoskeleton organization, immune response, DNA replication and recombination (Q 

<0.05). In turn, iHCC3 displays downregulated fatty acid β oxidation, lipid oxidation, small 

molecule and catabolism, and metabolism of several amino acids including glycine, glutamate, 

glutamine, serine, aspartate, drug catabolism and response to xenobiotic stimulus (Table S4). 

Consistent with the substantial differences between iHCC3 and the two other tumor groups, iHCC2 

tumors show similar metabolic behavior to those of iHCC1 (Table S5), and their gene expression 

is more similar to those of iHCC1 than to those of iHCC3 (Fig. 2D, mean Spearman’s ρ ≈ 0.9 

iHCC1 vs iHCC2, <0.8 iHCC3 vs iHCC1 or iHCC2). 

Importantly, our stratification method highlights several stratifying genes whose expression is 

substantially different between the 3 iHCC groups. This is the case of XDH, KMO, TDO2 and 

SC5D in iHCC1; GLUL, AQP9, RHBG, SLC1A2, SLC13A3, ACSS3, AOX1 and CYP3A4 in 

iHCC2; and PKM, G6PD, PGD, ENO1, SRM, and ALDOA in iHCC3 (Fig. 3A and B, Fig. S3). 

Other genes such as MTHFD1, ALDH6A1, and ACSM2B are similar in both iHCC1 and iHCC2, 

but differ significantly in comparison with iHCC3.  

Revealing the association between metabolism, recurrence signatures, Wnt/β-catenin and 

PI3K/Akt/mTOR signaling 

The above results show that the iHCC subgroups present specific features at the survival, gene 

expression, prognostic marker, and metabolic level identified solely based on analysis of metabolic 

gene networks. These tumors are also differentially associated with known HCC properties such 

as HIPPO signature, hypermethylation, DNA copy number, cholangiocarcinoma-like traits (2), 

RS65 gene-based risk scores (27), and HB16 signature (3) (Fig. 3A, Table S3). For instance, 84% 

of iHCC2 subjects are men (vs ~50% in other iHCCs), and about half of the patients in iHCC2 and 
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iHCC3 display alcoholic liver disease, much higher than the <25% observed in iHCC1 (Q < 0.01. 

Additionally, iHCC2 tumors also show lower genome doubling, higher hypermethylation and 

CDKN2 silencing (Fig. 3A, Q < 10-4), and all iHCC2 tumors show AFP < 300 ng/mL. iHCC1 and 

iHCC2 tumors are associated (Q < 10-4, Chi-square test) with markers of hepatocyte differentiation 

(>54% tumors display Hoshida 3)(4), and maturity (>79% HB16 C1). In turn, no iHCC3 tumors 

show differentiation markers (0% Hoshida 3) and instead are associated with known markers of 

low survival (Q < 0.05, Chi-square test, Fig. 3A, Table S3) including NCIP score A (>96%), high 

recurrence risk SNUR (>76%) (10), and high expression of recurrence risk marker CD24 (Log 

fold change ≈ 2.55 for comparison vs iHCC1, Q < 0.00085). The lower survival and predominance 

of aggressive tumors in iHCC3 may be associated with the significantly (Q< 0.02, Chi-squared 

test) larger proportion of advanced tumors in this group (>51% Grade 3, <49% Grades 1 and 2) 

compared with iHCC2 (30% G3 and <70% G1 and G2) or iHCC1 (<22% G3, >77% G1 and G2). 

iHCC2 also shows altered cytochrome P450 and xenobiotic metabolism in comparison with the 2 

other clusters (Fig. S9, Fig. S10). 

Interestingly, several observations associate altered Wnt/β-catenin, PI3K/Akt/mTOR signaling, 

with the novel iHCC phenotypes described here. Most iHCC3 tumors are associated with MYC 

and AKT activation as indicated by the high incidence of Hoshida 2 (in 96% of tumors, Fig. 3A). 

Additionally, we identified (28) the top-25 genes co-expressed with stratifying/controlling genes 

in each iHCC for 360 TCGA tumors, and observe positive co-expression of AKT1 and MTOR and 

stratifying/controlling genes in iHCC3 and their co-expressed genes (Pearson’s r > 0.32, Q < 0.01, 

Fig. 4). AKT1 and MTOR are negatively co-expressed with stratifying/controlling genes in iHCC1 

and iHCC2. In turn, Hoshida signatures are not substantially different between iHCC1 and iHCC2 

(22% and 11% Hoshida 1 respectively, Q > 0.3, Chi-square test). However, the 5 following 

observations suggest a strong association between disturbed Wnt signaling and the iHCC2 

phenotype. First, 75% iHCC2 tumors show mutations in CTNNB1, a gene that codes for β-catenin 

in the Wnt pathway (Fig. 3A), substantially higher than <13% observed in iHCC1 and iHCC3 (Q 

< 10-5, Chi-square test). Second, iHCC2 tumors also show upregulated expression of β-catenin 

target genes, for instance glutamine synthetase GLUL, glutamate transporter SLC1A2, and 

ornithine aminotransferase OAT (Fig. S3). Third, co-expression analysis indicates that 

stratifying/controlling genes in iHCC2 and their co-expressed genes are positively co-expressed 

with CTNNB1 (Pearson’s r > 0.32, Q < 0.01, Fig. 4). This is not observed in the case of 

iHCC3/iHCC1 genes, which are negatively co-expressed with AKT1 or MTOR (Pearson’s r < -

0.2, Q < 0.01). Fourth, the association between Wnt signaling in iHCC2, and AKT activation in 

iHCC3 is also identified using an independent dataset of 91 HCC microarray samples and 

associated immunohistochemistry (Fig. 5). Associations between different HCC tumors and 

interferon, proliferation (PI3K/Akt activation), CTNNB1 phosphorylation/mutation (i.e. Wnt 

signaling), or chromosome 7 polysomy were previously identified (6). Using the authors’ 

previously defined classes (GEO GSE9843), we observe that all tumors with CTNNB1 

phosphorylating activation and mutation show high expression of iHCC2 stratifying genes. 

Additionally, tumors showing RPSA, AKT or IGFR activation show high expression of iHCC3 
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stratifying genes, thus reinforcing the relationship between PI3K/Akt/mTOR signaling activation 

and iHCC3. Tumor stratification based on iHCC stratifying genes shows differential distribution 

in the HCC subgroups previously identified (6) (Table S6). Lastly, a transcriptomic dataset with 4 

HCC samples displaying CTNNB1 mutation (29) shows high expression of many of iHCC2 

stratifying genes including GLUL, RHBG, SLC13A3 and ACSS3 (Fig. S6). These observations 

thus indicate distinct genomic features for the iHCC2 and iHCC3 phenotypes, respectively 

associated with aberrant Wnt signaling and PI3K/AKT/mTOR signaling activation. Interestingly, 

3 stratifying genes (TDO2, KMO, XDH) and co-expressed genes (AADAT, ACMSO), are 

involved with the Kynurenine pathway (Fig. 4), a metabolic pathway leading to NAD+ production, 

and associated with tryptophan metabolism (30). iHCC1 also shows upregulated tryptophan 

metabolism in comparison with the 2 other iHCC groups (Table S4). 

Together with the above observations, the observations in 3 independent datasets and considering 

transcriptomic, immunohistochemical, co-expression, genomic and gene-expression data (6, 9, 29, 

31, 32) additionally reinforce our confidence in the newly identified stratifying genes and survival 

differences in iHCC1-iHCC3. Specifically, the metabolic-network derived antagonistic expression 

of stratifying genes identified in 186 HCC tumor transcriptomic data are consistently observed in 

1. a validation transcriptomic dataset of 183 HCC tumors attained from TCGA (Fig. S5A); 2. a 

microarray dataset consisting of 221 HCC samples (Fig. S5B); 3. co-expression analysis of 369 

HCC tumors from TCGA (Fig. 4); 4. a microarray dataset comprising 91 HCC tumors (Fig. 5); 

and 5. a comparison of CTNNB1-mutant vs noncancerous transcriptomic set (Fig. S6). 

Additionally, survival analysis performed on the validation TCGA dataset or Lee et al. dataset 

(Fig. S5) are consistent with the observed survival differences in iHCC1 > iHCC2 > iHCC3 (Fig. 

2C). 

Alternative metabolic differences between HCC subtypes 

We then sought to identify metabolic differences between iHCC1, iHCC2 and iHCC3 at a 

pathway- and reaction-centered level using genome-scale metabolic models (GEMs). GEMs were 

generated for each cluster through MADE (33) and TIGER (34), using as input the differentially 

expressed genes, and considering biomass maximization as objective function. Fluxes in each of 

the models (Fig. 6A) are consistent with the hallmarks of cancer identified above (Fig. 2A) and 

expression data mapped into KEGG metabolic pathways (Table S3), as well as substantial 

metabolic differences between iHCC3 vs iHCC1 or iHCC2. Specifically, iHCC3 GEMs show 

lower fluxes in metabolism of amino acids, cofactors and coenzymes, pyruvate, fatty acid 

oxidation, carnitine shuttle, steroids, and oxidation phosphorylation compared to iHCC1/iHCC2, 

and lower in iHCC2 than iHCC1. When compared with iHCC1/iHCC2, iHCC3 shows higher 

glycolytic but lower TCA fluxes consistent with strong Warburg effect, as well as higher fluxes of 

fatty acid biosynthesis. Additionally, and in agreement with our previous observations (14), we 

observe that the low survival group iHCC3 relies on NADPH-dependent antioxidants (e.g. 

glutathione peroxidase/glutathione reductase) for H2O2 scavenging whereas the high survival 
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group iHCC1 relies on the NADPH-independent catalase. iHCC3 also displays higher fluxes in 

the pentose phosphate pathway fluxes, followed by IHCC2 and iHCC1. 

Additionally, gene expression differences indicate that the 3 iHCC groups rely on alternative 

enzyme-coding genes for the same reactions or pathways (Fig. 3B and Fig. 6B). For instance, 

acetate is converted to acetyl CoA by acetyl CoA synthase, an enzyme coded by ACSS1-3. 

Whereas iHCC1 expresses ACSS2, which codes for the cytoplasmic form of the enzyme, iHCC2 

and iHCC3 respectively express ACSS3 and ACSS1, genes that code for mitochondrial isoforms 

(Fig. S4). Cleavage of fructose-1,6-bisphosphate is catalyzed by aldolase, coded by ALDOA-C. 

While iHCC1 highly expresses the liver-specific ALDOB, iHCC3 highly expresses the non-

specific ALDOA, whereas iHCC2 shows similar expression for both genes. Alternative utilization 

of pyruvate kinase is also observed, where iHCC1/iHCC2 show high expression of the liver-

specific PKLR, whereas iHCC3 shows high expression of PKM. Glucokinase in iHCC1 is 

switched to hexokinase 2 in iHCC3 where ENO3 are substituted for ENO1. Additionally, 

PFKFB4, HSD17B6 and GLYATL2 in iHCC3 are switched to PFKFB1, HSD17B1 and GLYAT 

in iHCC1 and 2, respectively. Similar observations are identified in expression of genes that 

encode for aldehyde dehydrogenases (e.g. ALDH1B1, ALDH9A1, ALDH2, ALDH3A2 and 

ALDH3B1), among others (Fig. S4). A number of amino acid, sugar, cofactor, and hormone 

transporters are also differentially expressed between the 3 clusters, and in particular between 

iHCC3 and iHCC1/iHCC2 (Fig. 6B). These observations translate into distinct central metabolism, 

particularly between the high and low survival groups iHCC1 and iHCC3, while iHCC2 shares 

many of these properties with iHCC1. Several membrane transporters including amino acid, 

glucose and monosaccharide, choline, butyrate and citrate transporters also show substantial 

switching between iHCC1 and iHCC3.  

Controlling genes are also differentially expressed between the 3 subtypes (Table S6), indicating 

different controllability metabolic behavior between them. For instance, in fatty acid elongation 

ELOVL6 is a controlling gene in iHCC2, but ELOVL5 is a controlling gene in iHCC1 and iHCC3. 

In glycerolipid metabolism, PLA2G12B is a controlling gene in iHCC1, PLA2G16 is a controlling 

gene in iHCC3, and both are controlling genes in iHCC2. In purine and pyrimidine metabolism, 

NME6 and NT5E are controlling genes in iHCC3, but not in iHCC1/iHCC2, which show other 

NME as controlling genes. In glycolysis, PKLR and BPGM are controlling genes in 

iHCC1/iHCC2, but PKM and PGAM1 are controlling genes in iHCC3. In histidine metabolism, 

NAA15 and SLC40A1 are controlling genes in iHCC1, SLC11A2 is a controlling gene in iHCC2, 

whereas NAA30 and SLC40A1 are controlling genes in iHCC3. 

Above we showed the importance of controlling genes. Here, Synthetic lethality analysis 

performed for those stratifying and controlling genes that were found just in HCC networks not 

non-cancers. It highlights several potential therapeutic targets. Among controlling and stratifying 

genes, we find 8, 9 and 28 subtype-specific genes in iHCC1 to iHCC3, respectively, whose in 

silico knock-out leads to lethality in their respective subtype, but not in the others (Fig. 6C). 

Among these, we identify ALDOB, TDO2, and KMO in iHCC1, ACSS3, SQLE, and LIPT1 in 
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iHCC2, and ACSS1, ALDOA and G6PD in iHCC3. Knock-out of 12 controlling/stratifying genes 

simultaneously leads to lethality in iHCC1 and iHCC2 and includes IDH1, SORD and ARG1. 

These observations point towards several HCC-specific potential therapeutic targets that may be 

used to target low (iHCC3), intermediate (iHCC2), and high (iHCC1) survival groups. 

Poor survival-associated genes show hypoxic behavior validated experimentally in human 

cancer cell lines 

Several stratifying genes in the 3 iHCC groups are associated with redox metabolism (Fig. 3 and 

Fig. 5) such as G6PD, PKM and ALDOA in iHCC3, or ALDH2, and MTHFD1 in iHCC1 and 

iHCC2. Gene expression differences translate into altered redox metabolism (Fig. 2A) and 

antioxidant defenses (e.g. catalase or glutathione-based H2O2 scavenging, Table S5). Additionally, 

we have previously observed that stratification of HCC samples based on redox gene expression 

or acetate metabolism (7, 14) is associated with differential redox metabolism. Indeed, the 

expression of HIF1A is substantially higher in iHCC3 than in iHCC1 or iHCC2 (Log2 fold-change 

≈ 1, Q < 0.05). 

We performed a transcriptomic analysis of HepG2 cells grown under hypoxia and normoxia. We 

observe (Fig. 7A, Q < 0.01) that differentially expressed genes tend to be associated with responses 

to stress and to oxygen, NADH, ADP and RNA metabolism, immune system and tissue 

development, biological processes that are upregulated under hypoxia. In turn, DNA metabolism, 

replication and repair, and cell cycle related processes are upregulated under normoxia. Further, 

among the differentially expressed genes, the expression of stratifying genes PKM, ALDOA, 

MTHFD1L, ENO1, PDE9A and controlling genes in iHCC3, is significantly higher under hypoxic 

than normoxic conditions (Q < 0.01, Fig. 7B). Interestingly, stratifying and controlling genes in 

iHCC2 or iHCC1 are either unchanged or show downregulated expression under hypoxia (Fig. 7C 

and D, respectively). Additionally, among the 28 controlling genes exclusive to iHCC3 (Fig. 6C), 

we find that the expression of OCRL, PTPN12, HPSE, ACLY, LPCAT1, RRM2, and SPTLC2 is 

upregulated under hypoxia (Fig. 7B). Among those stratifying/controlling genes upregulated under 

hypoxia in iHCC3, we find multiple upregulated biological processes that also involve these genes, 

including those involved in energetic, carbohydrate, and nucleotide metabolism, and tissue 

development (Fig. 7E). These observations indicate that stratifying and controlling genes in iHCC3 

and iHCC1/iHCC2 tumors respond strongly and antagonistically to hypoxia. 

DISCUSSION 

Given the high heterogeneity in cancer, many others have tried to stratify HCC patients through 

unsupervised clustering of tumors based on genomic and transcriptomic properties (2, 3, 9). This 

led to the valuable discovery of many patient group-specific differences such as 

cholangiocarcinoma-like features traits (CCL) (2), hepatic stem-like phenotypes (3), signaling 

differences (4-6), recurrence risk (10, 27), and metabolism (7, 14). However, a functional- and 

network topology-based characterization and stratification of HCC has never been attempted. Here, 
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we combined objective-dependent and independent approaches to perform a functional metabolic 

network-based stratification of hundreds of patients. Our analyses combined transcriptomic, 

immunohistochemistry, and clinical data across 4 datasets with hundreds of HCC tumors, a cell-

line experiment, and in silico approaches including genome-scale metabolic modeling, gene 

silencing, co-expression and network analysis. We identified distinct metabolic, genomic, 

signaling, survival and clinical properties in 3 major HCC subtypes, iHCC1 – iHCC3. The 3 iHCCs 

also present 18 metabolic genes highly expressed by one group but not the others, i.e. stratifying 

genes. Our analyses showed that these genes consistently stratify HCC tumors from independent 

datasets. We have additionally identified 32 controlling genes, those that display pivotal roles in 

controlling network, and whose targeting would lead to lethality in one of the HCC subtypes. 

Tumors in the low survival and progressive (higher grade) iHCC3 group show several signatures 

of low-survival and High recurrence (9, 10), and high expression of markers of poor survival (11). 

In turn, the high and moderate survival groups iHCC1 and iHCC2 are associated with markers of 

low recurrence, high survival, hepatocyte differentiation and maturity (4, 10, 27). iHCC1, iHCC2 

and iHCC3 respectively display high expression of genes involved in acetate metabolism, ACSS2, 

ACSS3, and ACSS1. These observations are consistent with our previous analyses which showed 

that HCC tumors stratified based on acetate metabolism display distinct survival behavior (7). 

ACSS2 is highly expressed by healthy liver tissue (7) consistent with the high expression displayed 

by the high-survival iHCC1 group. On the other hand, ACSS1 is highly expressed in iHCC3, 

consistent with previous observations in a low survival group (7). Finally, we here identify for the 

first time that iHCC2 displays high expression of ACSS3, unlike other iHCCs.  

In turn, iHCC3 tumors show high expression of ACSS1 and are associated with hypoxic 

environment. Experiments with HepG2 cells additionally show strong and opposing responses to 

hypoxia by different iHCCs. Stratifying and controlling genes in iHCC3 are upregulated under 

hypoxia when compared with normoxia. This is opposed by those in iHCC1 and iHCC2, which 

are either unchanged or show decreased expression under hypoxic conditions. These observations 

indicate opposing hypoxic responses under low and high survival, consistent with our previous 

observations (14). 

iHCC1 is the tumor group with the highest survival, and shows high inflammation response 

compared to iHCC2. Interestingly, several stratifying genes or their co-expressed genes are 

involved in the Kynurenine Pathway (KP). This pathway is found upstream of NAD biosynthesis, 

and is the main tryptophan sink in the cell (30). Several of its genes are upregulated in adipose 

tissue in obesity (35, 36), consistent with the observation that 56% of patients in iHCC1 are obese 

or overweight. Several metabolites of the KP have been associated with inflammatory and immune 

responses, for instance in the induction of cytokines and macrophage-induced chemokines (37, 

38). Interestingly, KP overactivation has been observed in T2D and is one of the T2D-driving 

mechanisms observed in pre-diabetic patients (39). The observation that T2D is one of the risk 

factors for HCC (39), raises the possibility that the iHCC1 phenotype is associated with T2D, 

unlike other iHCCs. This is reinforced by the observation that genes TDO, KMO, AADAT and 

ACMSD and IL6R, stratifying genes in iHCC1 or their co-expressed genes, are upregulated in 
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obesity or T2D (39). Finally, both T2D and obesity show promoted fatty acid oxidation, similarly 

to iHCC1, which displayed the highest fatty acid oxidation of the 3 iHCCs, and suggesting a 

potential association between those diseases and iHCC1 tumors. Overall, iHCC1 showed the 

highest fluxes in metabolism of amino acids, cofactors and coenzymes, pyruvate, fatty acid 

oxidation, carnitine shuttle, steroids, TCA and oxidative phosphorylation. 

iHCC2 shows higher similarity to iHCC1 than iHCC3, but also exhibits specific features including 

lower fatty acid biosynthesis and high glutamine metabolism, and β-catenin-associated 

upregulated fatty acid oxidation. One of the main features of iHCC2 tumors is the association with 

β-catenin pathway alterations. CTNNB1 encodes for β-catenin, which is mutated in ≈20% HCC 

(40). Mutations in this gene are associated with increased concentration of nuclear β-catenin and 

its target genes (e.g. glutamine synthetase GLUL, and glutamate transporter SLC1A2), and lower 

patient survival (41-43). Glutamine synthetase is involved in ammonia detoxification, and β-

catenin-controlled induction of GLUL leads to autophagy in HCC (44, 45). β-catenin controls 

mitochondrial homeostasis by regulating the citric acid cycle (TCA) and fatty acid oxidation, and 

protects against alcohol-induced liver injury or ethanol-induced metabolic stress (Fig. 8) (46). It is 

consistent with the overactivation of the pathways involved in detoxification i.e. drug and 

xenobiotic metabolism in comparison with other subtypes. β-catenin also regulates the expression 

of acetaldehyde dehydrogenases (e.g. ALDH2, ALDH3A1 and ALDH3A2) (46), thus controlling 

TCA fluxes, as well as stratifying gene Acyl-CoA oxidase (AOX1) which is involved in fatty acid 

β oxidation (47). Our modeling analyses additionally indicate that iHCC2 shows low fatty acid 

biosynthesis fluxes, consistent with the negative regulation of this process by β-catenin. Sorafenib, 

a drug that targets expression of liver-related Wnt-targets GLUL and leads to higher sensitization 

in HCC tumors with high β-catenin activation (48), thus presents as a potential drug in iHCC2 but 

not in the other tumor groups. 

Finally, iHCC3 tumors are associated with multiple features of malignant tumors, including 

hypoxic behavior, epithelial to mesenchymal transition (EMT), higher fluxes in fatty acid 

biosynthesis, and strong Warburg effect. For instance, TGFβ, HIFα and NFκB, genes involved in 

hypoxic response, metastasis and malignancy, are upregulated in iHCC3 and iHCC3 shares several 

signature activities of metastatic tissues (49). One of the main features of this tumor group is the 

association with PI3K/AKT/mTOR signaling activation. It also showed downstream activation of 

Asparagine Synthetase (ASNS), Glycolysis, and pentose phosphate pathway by 

PI3K/AKT/mTOR signaling (50-52), consistent with our observation in iHCC3 (Figure 8). ASNS 

upregulation, observed in iHCC3, is strongly correlated with metastatic potential and 

overexpression of ASNS promotes metastatic progression (53). Drugs targeting the 

PI3K/AKT/mTOR signaling or these processes, such as L-asparaginase, rapamycin, or their 

analogs, thus arise as potential therapeutics for the treatment of iHCC3 but not the other iHCCs. 

Overall, these observations highlight distinct metabolic and signaling properties in HCC tumors 

that stem from the high inter-tumor heterogeneity, and are associated with patient survival. In silico 

predictions identify several subgroup-specific potential therapeutic that offer full control over the 

metabolic network. This prompts for utilization of the above identified mechanistic differences 
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between tumors, together with the predicted targets, for developing personalized treatment 

strategies for hepatocellular carcinoma. 

METHODS 

Gene expression data retrieval, processing, and validation datasets 

RNA-seq gene expression data and associated metadata for 369 HCC and 50 adjacent non-

cancerous liver samples were retrieved from NCI’s Genome Data Commons (31) as Fragments 

Per Kilobase of transcript per Million mapped reads (FPKM), and metabolic genes were selected 

based on HMR 2.0 (12). This set was split into a development set consisting of 186 HCC and 50 

noncancerous samples that was used to perform all gene-expression and network-associated 

analyses, and a validation set consisting of 183 HCC samples that was used to verify the 

predictions from the development set. One additional dataset consisting of 91 HCC microarray 

samples was attained from GEO GSE9843 (6) was used to identify associations between gene 

expression and immunohistochemistry properties of the samples. 

Generation of personalized and subtype GEMs 

Expression data were integrated into iHCC models to construct patient-specific GEMs using tINIT 

(12) and RAVEN (54). The following thresholds for gene levels were considered: no expression 

(FPKM<1), low expression (1≤FPKM<10), medium expression (10≤FPKM<50), and high 

(FPKM≥50). To assess model feasibility, i.e. biological functionality, we considered maximization 

of biomass production or ATP consumption as objective functions for HCC and non-cancer 

models, respectively. In all subsequent analyses, 57 and 56 metabolic tasks (55)were used to test 

model functionality, together with objective functions, respectively for HCC and non-cancer 

models (12). This resulted in 180 HCC and 50 non-cancer functional models that were used to 

construct functional gene-gene networks (fGGN). 

We used MADE (33) to generate iHCC-subtype specific GEMs using as input the gene-specific 

fold changes and FDR determined through DESeq (56) and using TIGER (34). This flux balance 

approach is formulated as a single Mixed-Integer Linear Programming (MILP) problem through 

the CPLEX solver. Upper and lower bounds for exchange reactions in GEMs were considered 

based on experimental liver data (57).  

Construction of personalized directed functional gene-gene networks (fGGN) and generic 

fGGN 

After removing currency metabolites (e.g. H2O, CO2, H
+, Pi, ATP, ADP, AMP, FADH2, NADH), 

we retrieved the stoichiometric matrix (S) with size m×n with m metabolites and n reactions. The 

ijth element of the sparse matrix represents the stoichiometric coefficient of the ith metabolite in jth 

reaction in the model (Fig. S1). Positive and negative coefficients respectively represent 

metabolites that are produced or consumed by the reaction. Directed fGGN were generated for 
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personalized GEMs considering the S matrix and the vector showing the reversibility of the 

reaction (vector model.rev in Fig. S1A, where non-null elements reflect a reversible reaction). In 

directed fGGN, edge direction associates source to target genes if their respective reactions use the 

same metabolite respectively as product and reactant. For instance (Fig. S1A), metabolite c is 

product of reactions r4 and r5 (associated with genes g4 and g5), and reactant of reaction r5, thus 

generating the edges g4 → g6 and g5 → g6. Additionally, an edge is formed between both g4 and 

g5 should the network structure require both genes to be present (i.e. AND reactions). In turn, 

should either gene be required (i.e. OR reactions), no edge is established between genes associated 

with the same reaction, such as genes g2 and g3 in reaction r3 (Fig. S1A). To find these edges 

between gene pairs, we selected all non-null row elements in the S matrix, and reaction names and 

respective genes were retrieved. Directed fGGNs thus permit assessing network controllability, 

take into account reaction direction, exclude currency metabolites, and distinguish between multi-

gene protein complexes (AND reactions) from alternative enzyme isoforms (OR reactions, e.g. 

PKM vs PKLR). 

Centrality and Controllability of personalized fGGN 

To identify central genes (nodes) based on functional metabolic network analysis, we computed 

betweenness centrality, normalized closeness centrality, eccentricity centrality, and degree 

centrality for all nodes in directed fGGN. Each of these centrality parameters quantifies how 

central a node is in the network. Betweenness centrality quantifies the number of times a node v is 

found between the shortest path connecting two other nodes. Closeness and Eccentricity centrality 

respectively quantify the average and maximum shortest path length between node v and all other 

nodes in the network. Degree centrality of a node v accounts for the number of edges formed 

between that node and other nodes in the network, and is given in here as the sum of node input 

plus output (i.e. in degree plus out degree). Random networks were constructed through the Erdős–

Rényi model (Fig. S2A), and topology parameters were computed through the igraph R package 

(58). All generated personalized fGGNs showed scale free (power-law) degree distribution. 

We tested for the similarity between individual sample’s topology parameters in HCC and non-

cancer networks against all other HCC and non-cancer networks (Fig. S2B). For each individual i 

that had both HCC and noncancerous fGGN, we retrieved the gene-wise vector of centrality 

measures, and computed the Euclidean distance between this vector and those of other samples 

(including HCC and noncancerous). This generates 4 different distance vectors for each individual, 

representing the distances between the individual’s tumor h or noncancerous m samples against all 

other tumors H and noncancerous M samples: vi,h,H, vi,h,M, vi,m,H, vi,m,M. We then compared these 

distance vectors to test whether the topology parameters in HCC and noncancerous networks show 

higher similarity to all other HCC (Ri,h) or noncancerous (Ri,m) networks 

𝑅𝑖,ℎ =
𝑣𝑖,ℎ,𝐻

𝑣𝑖,ℎ,𝑀
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𝑅𝑖,𝑚 =
𝑣𝑖,𝑚,𝐻

𝑣𝑖,𝑚,𝑀
 

With 𝑣𝑖,ℎ,𝐻 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ℎ𝑖  𝑣𝑠 𝐻), 𝑣𝑖,ℎ,𝑀 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ℎ𝑖 𝑣𝑠 𝑀), 𝑣𝑖,𝑚,𝐻 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖 𝑣𝑠 𝐻), 

𝑣𝑖,𝑚,𝑀 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖 𝑣𝑠 𝑀). 

Thus, if Ri,h || Ri,m < 1 indicates higher topological similarity between the sample and other HCC 

networks, as opposed to Ri,h || Ri,m > 1 that show higher topological similarity between the sample 

and other noncancerous networks. 

We identified minimum driver set nodes (MDS) in complex networks according to the Popov–

Belevitch–Hautus (PBH) rank condition (59) similarly to previous approaches (19). Briefly, the 

number of MDS is the maximum geometric multiplicity of the eigenvalue (g×L), or N – rank(L×IN 

– A) for a network with size N, eigenvalue L of the adjacency matrix A, and identity matrix IN. 

Driver nodes are the linearly dependent rows of reduced row echelon form of the matrix A – L×IN. 

Nodes are classified as Indispensable, Neutral, and Dispensable nodes by assessing the maximum 

geometric multiplicity of the eigenvalue g×L upon removing nodes 1 by 1. Nodes are respectively 

considered indispensable, neutral or dispensable if g×L increases, does not change, or decreases.  

Identification of controlling genes through in silico gene silencing analyses 

We determined network-controlling genes by performing in silico gene silencing, an adaptation of 

gene essentiality and lethality analyses but where we considered previously identified (12) 

metabolic tasks to assess the effect of gene silencing (through the checkTasks function in RAVEN). 

The effect of silencing each of the 2892 metabolic genes was simulated using personalized GEMs 

by removing each gene-associated reaction. We then repeated the in silico gene silencing technique 

regarding the flux of the objective function for the above identified controlling genes and using 

subtype-specific GEMs. Because we seek to identify genes whose silencing affects HCC, but not 

noncancerous samples, we excluded all controlling genes simultaneously identified in HCC and 

noncancerous models, as well as those associated with replication, transcription and translation. 

Network-based stratification of fGGN 

We developed a method for tumor stratification of fGGN inspired by network-based stratification 

of tumor mutations (24). Briefly, the adjacency matrix A of a generic fGGN is converted to degree-

normalized adjacency matrix B according to the function 

𝐵𝑖𝑗 = 𝐴𝑖𝑗/√𝐷(𝑖, 𝑖)𝐷(𝑗, 𝑗) 

where D is the diagonal matrix of A. We apply network propagation (smoothing) to spread the 

influence of gene expression on the entire network through the iterative function 

𝐹𝑡+1 = 𝛼𝐹𝑡𝐵 + (1 − 𝛼)𝐹0 
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where F0 is a matrix m×n with m genes and n patients (Fig. S1B), α is a tuning parameter that 

controls the distance that expression of a gene is allowed to propagate over the network. The 

function was iteratively run until Ft+1 converges, i.e. matrix norm of Ft+1– Ft < 10-5. We then used 

gene expression data to build personalized smoothed networks, and applied quantile normalization 

to ensure that all patients follow the same gene-expression distribution. 

Following the normalization, Non-negative matrix Ft(m×n) was utilized to stratify the patients 

using Nonnegative Matrix Factorization (NMF) algorithm (60, 61). To ensure robust clustering, 

network-regularized NMF was performed 1,000 times on subsamples of 80% of the dataset, and 

the factorization rank was determined by performing 500 runs for each k (from 2 to12). Because 

the cophenetic method indicates that both rank k = 2 or 3 show similar robustness (Fig. S2D, E), 

and substantially higher than k = 4, we choose the smallest rank k for which the cophenetic 

correlation coefficient starts decreasing (60), i.e. k = 3. The high robustness showed both by k = 2 

and 3 stems from the similarity between iHCC1 and iHCC2. 

Differential expression and gene set enrichment analysis, KEGG pathway analysis 

Differential expression analyses were performed based on raw counts through DESeq (56) using 

default parameters. 

Gene set enrichment analysis was performed in PIANO (25) either considering manually curated 

gene sets for cancer hallmarks or biological processes, both retrieved from MSigDB (62). 

We also performed gene expression enrichment on metabolic and signaling pathways in KEGG 

through Pathwave (63), with 1000 permutations. Local pathways were selected if at least three 

reactions (or genes) were enriched in a pathway (Q < 0.05).  

Co-expression analysis 

Co-expression analysis was performed for stratifying and controlling genes in each HCC group 

through TCSBN (28), and the top 25 genes co-expressed with each of the input genes were 

retrieved (Fig. 4). Q-values were computed from the retrieved P and considered significant if Q < 

0.01. 

Validation 

To validate our observations we used the following 4 independent datasets: the RNASeq testing 

set from NCI; a cohort with 4 HCC and 4 noncancerous RNASeq samples obtained from GEO 

GSE55048 (29); the Chiang microarray dataset (6); and a 221 HCC microarray dataset with 

associated survival data GEO GSE14520 (9, 32). 

Hypoxia experiments in HepG2 cells 

HepG2 (human liver hepatoma) cells were cultured and incubated in supplemented EMEM media 

at 21% oxygen (normoxia) or 1% oxygen (hypoxia) for 24 hours. Total RNA was extracted HepG2 
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cells with the RNeasy Mini Kit (Qiagen) for sequencing. Subsequently, Single-end raw sequencing 

data (FASTQ files) were processed to quantify TPM and count values for transcripts by Kallisto 

software, using human reference (GRCh38) from ensemble release 92 (64). 

Statistics 

Throughout, statistic methods are indicated and considered significant after multiple hypothesis 

testing (Benjamin-Hochberg) where Q < 0.05. 
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FIGURES 

 
Fig. 1 – Network-based approaches to identify important genes in HCC and distinct 

properties from noncancerous networks. A. In our approach we integrated 186 HCC and 50 

noncancerous transcriptomic samples from TCGA with genome-scale metabolic models (GEMs) 
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to generate personalized models integrating gene expression (circles) data. These models were 

then converted to functional gene-gene networks (fGGN) that successfully passed a series of 

metabolic tasks (see Methods). Then, we built a generic fGGN representative of all patients for 

patient stratification. We additionally used network analyses, together with patient stratification, 

to identify potential novel therapeutic targets for treatment. These observations were validated in 

4 cohorts that included 183 HCC transcriptomic samples from TCGA (31), 91 HCC microarrays 

and associated immunohistochemistry (6), 8 HCC and noncancerous arrays (29), and 221 HCC 

tumors (9, 32). B. For HCC and noncancerous networks, 50 HCC having non-cancer expression 

data along with the non-cancer samples were considered. HCC and non-cancer networks show 

node betweenness variability. Node betweenness was computed in HCC and non-cancer networks, 

and the median absolute deviation was then computed within the respective network (highly 

varying nodes are shown as red = 1, non-varying nodes are shown as white = 0). Estimates using 

degree, closeness or eccentricity show similar observations (results not shown). C. Radar plot of 

the median node absolute deviation computed for betweenness, closeness, degree and eccentricity 

indicate a larger variability in the HCC vs non-cancer networks. All samples where the median 

absolute deviation of the four topological parameters was zero were neglected. D. the relation of 

topological parameter “degree” and controllability classification in both cancer and non-cancer 

samples. E. Silencing of controlling genes leads to lethality in >95% of the HCC (vs <50% for 

silencing of other genes). In noncancerous samples, silencing either kills all or none of the samples, 

where all controlling genes lead to lethality, versus 48% of other genes lead to lethality. E. the first 

two principal components of cancer and non-cancer for controllability of fGNNs, The ellipses 

indicate 95% confidence regions for the cancer and non-cancer samples (one outlier for non-cancer 

samples was observed at the 95% confidence level). 
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Fig. 2 –Network-based approaches highlight novel HCC subtypes with substantial gene-

expression, functional, survival, and prognostic markers. A. Chromosome-wide differentially 

expressed genes (blue dots, Q<0.05) and gene set enriched biological processes (Q < 0.05). Arrows 
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indicate direction of change (e.g. iHCC2 shows upregulated heme metabolism in comparison with 

iHCC1). Differential expression shows significantly differentially expressed genes for each 

chromosome, and horizontal lines indicate Log2 fold changes between subtypes. B. Among all 

prognostic genes, we identify 42 unfavorable and 63 favorable prognostic metabolic genes 

differentially expressed between low and high survival groups iHCC3 and iHCC1 (Q<0.05, LFC 

> 1). Prognostic markers were identified from the (11). C. Kaplan-Meyer survival analysis shows 

significant differences in patient survival between the 3 HCC subtypes (iHCC1 > iHCC2 > 

iHCC3). D. Correlation plot between tumors and mean gene expression in iHCC1 and iHCC3 (Q 

< 0.01) shows that iHCC2 tumors tend to be more similar to iHCC1 than iHCC3. 



Bidkhori et al.  Network-based stratification of HCC 

22 

 

Fig. 3 – HCC tumors stratified based on metabolic network analysis show substantial gene 

expression, clinical, and genomic differences. A. We determined 3 novel HCC groups, and 

their stratifying genes are highlighted in iHCC1 (green), iHCC2 (cyan), and iHCC3 (orange). B. 

Expression of stratifying genes and genes that encode for enzymes catalyzing the same reactions 

in the 3 iHCC groups. 
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Fig. 4 – Co-expression analysis highlights association between stratifying and controlling genes in iHCC subtypes, and 

PI3K/AKT/mTOR or WNT/β-catenin signaling or KP pathway.s Stratifying or controlling genes for iHCC1, iHCC2 and iHCC3 

were considered, and their top 25 co-expressed genes, as well as co-expression between iHCCs, were determined based on transcriptomic 

data in 369 HCC samples (28). We additionally considered AKT1 and MTOR, transcription factors involved in PI3K/AKT/mTOR 

signaling, and CTNNB1, which encodes for the transcription factor β-catenin in Wnt signaling pathway. Edges indicate positive (red) 

or negative (blue) Pearson correlations (Q < 0.01). 
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Fig. 5 – iHCC subtypes are associated with Inflammation, Wnt/β-catenin and PI3K/AKT 

signaling. Gene expression data and associated immunohistochemistry were retrieved from ref. 
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(6) (GEO GSE9843) and stratified according to stratifying genes in iHCC (Fig. 3). A. Heatmap 

shows association between previously identified subclasses and iHCC subgroups identified in this 

work (Interferon and iHCC1; CTNNB1 activation/mutation in Wnt/β-catenin pathway and iHCC2; 

PI3K/Akt signaling activation and iHCC3, Table S6). B. Stratifying genes and genes that encode 

for enzymes catalyzing the same reactions in the iHCC groups show similar expression patterns to 

those observed using transcriptomic datasets from TCGA (compare with Fig. 3B). 

 

 

 



Bidkhori et al.  Network-based stratification of HCC 

26 

 
Fig. 6 – iHCC subgroups rely on alternative enzyme-coding genes for the reactions and pathways, but show specific synthetic 

lethal genes. A. Flux balance analysis performed on iHCC subgroup-specific models shows that iHCC1 or iHCC3 display the highest 

pathway reaction fluxes, followed by iHCC2. Predominant color in each box shows the iHCC subgroup that displays the highest flux. 

B. Metabolic genes involved in transport, Glycolysis and TCA are shown, colored according to expression in each of the subgroups. 

C. Number of synthetic lethal genes found in iHCC subgroups are shown. For each subgroup, 5 of those synthetic lethal genes are 

highlighted. Note that no synthetic lethal genes are simultaneously identified in iHCC1 and iHCC3, but several are found between 

iHCC2 and the two other subgroups. 
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Fig. 7 –Stratifying and controlling genes in iHCC3 show specific responses to hypoxia. 
HepG2 cell lines were grown under normoxic or hypoxic conditions (n = 6 per condition) 

and mRNA was quantified. Gene set enrichment analysis was performed for differentially 

expressed genes in hypoxia (Hyp) vs normoxia (Norm) (A). Expression of stratifying and 
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controlling genes in iHCC3 (B), iHCC2 (C), and iHCC1 (D). Middle row shows only 

controlling genes. All genes with exception to CYP3A4, GLUL, XDH, KMO, and TDO2 

are differentially expressed between hypoxia vs normoxia (Q < 0.01).  

 

 

Fig. 8 – Schematic representation of the main metabolic features in iHCC1, iHCC2 

and iHCC3. The main metabolic and signaling alterations are shown for iHCC1, iHCC2 

and iHCC3. Boxes with 2 colors are altered in iHCC1 and iHCC2. Dotted boxes indicate 

altered signaling processes, and colored arrows indicate their effect on metabolism. 

AUTHOR CONTRIBUTIONS 

Conceptualization and design, GB and AM; Algorithm and resources, GB; Formal 

analysis and curation, GB and RB; Experimental validation, MK; RNA-Seq analysis, GB; 

Initial draft, GB, RB; Revisions & editing, All authors; Supervision, AM. 

FUNDING 

This work was financially supported by the Knut and Alice Wallenberg Foundation. 

 

REFERENCES 

1. Ferlay J, et al. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J 

Cancer 127(12):2893-2917. 



Bidkhori et al.  Network-based stratification of HCC 

29 

2. Woo HG, et al. (2010) Identification of a cholangiocarcinoma-like gene expression trait in 

hepatocellular carcinoma. Cancer Res 70(8):3034-3041. 

3. Cairo S, et al. (2008) Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc 

signaling in aggressive childhood liver cancer. Cancer Cell 14(6):471-484. 

4. Hoshida Y, et al. (2009) Integrative transcriptome analysis reveals common molecular subclasses 

of human hepatocellular carcinoma. Cancer Res 69(18):7385-7392. 

5. Sohn BH, et al. (2016) Inactivation of Hippo Pathway Is Significantly Associated with Poor 

Prognosis in Hepatocellular Carcinoma. Clin Cancer Res 22(5):1256-1264. 

6. Chiang DY, et al. (2008) Focal gains of VEGFA and molecular classification of hepatocellular 

carcinoma. Cancer Res 68(16):6779-6788. 

7. Bjornson E, et al. (2015) Stratification of Hepatocellular Carcinoma Patients Based on Acetate 

Utilization. Cell Rep 13(9):2014-2026. 

8. Cancer Genome Atlas Research Network (2017) Comprehensive and Integrative Genomic 

Characterization of Hepatocellular Carcinoma. Cell 169(7):1327-1341 e1323. 

9. Lee JS, et al. (2004) Classification and prediction of survival in hepatocellular carcinoma by gene 

expression profiling. Hepatology 40(3):667-676. 

10. Woo HG, et al. (2008) Gene expression-based recurrence prediction of hepatitis B virus-related 

human hepatocellular carcinoma. Clin Cancer Res 14(7):2056-2064. 

11. Uhlen M, et al. (2017) A pathology atlas of the human cancer transcriptome. Science 

357(6352):eaan2507. 

12. Agren R, et al. (2014) Identification of anticancer drugs for hepatocellular carcinoma through 

personalized genome-scale metabolic modeling. Mol Syst Biol 10(3):721. 

13. Folger O, et al. (2011) Predicting selective drug targets in cancer through metabolic networks. Mol 

Syst Biol 7:501. 

14. Benfeitas R, et al. (submitted) Network analysis reveals heterogeneous response of redox 

metabolism in hepatocellular carcinoma patients. 

15. Lv W, et al. (2016) The drug target genes show higher evolutionary conservation than non-target 

genes. Oncotarget 7(4):4961-4971. 

16. Guney E, Menche J, Vidal M, & Barabasi AL (2016) Network-based in silico drug efficacy 

screening. Nat Commun 7:10331. 

17. Barabasi AL, Gulbahce N, & Loscalzo J (2011) Network medicine: a network-based approach to 

human disease. Nat Rev Genet 12(1):56-68. 

18. Vinayagam A, et al. (2016) Controllability analysis of the directed human protein interaction 

network identifies disease genes and drug targets. Proc Natl Acad Sci U S A 113(18):4976-4981. 

19. Yuan Z, Zhao C, Di Z, Wang WX, & Lai YC (2013) Exact controllability of complex networks. Nat 

Commun 4:2447. 

20. Jeong H, Mason SP, Barabasi AL, & Oltvai ZN (2001) Lethality and centrality in protein networks. 

Nature 411(6833):41-42. 

21. Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. 

Science 322(5898):104-110. 

22. Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, & Masoudi-Nejad A (2014) Genome scale modeling 

in systems biology: algorithms and resources. Curr Genomics 15(2):130-159. 

23. Patil KR & Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using 

metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685-2689. 

24. Hofree M, Shen JP, Carter H, Gross A, & Ideker T (2013) Network-based stratification of tumor 

mutations. Nat Methods 10(11):1108-1115. 

25. Varemo L, Nielsen J, & Nookaew I (2013) Enriching the gene set analysis of genome-wide data by 

incorporating directionality of gene expression and combining statistical hypotheses and methods. 

Nucleic Acids Res 41(8):4378-4391. 

26. Yoshihara K, et al. (2013) Inferring tumour purity and stromal and immune cell admixture from 

expression data. Nat Commun 4:2612. 

27. Kim SM, et al. (2012) Sixty-five gene-based risk score classifier predicts overall survival in 

hepatocellular carcinoma. Hepatology 55(5):1443-1452. 

28. Lee S, et al. (2018) TCSBN: a database of tissue and cancer specific biological networks. Nucleic 

Acids Res 46(D1):D595-D600. 



Bidkhori et al.  Network-based stratification of HCC 

30 

29. Ding X, et al. (2014) Transcriptomic characterization of hepatocellular carcinoma with CTNNB1 

mutation. Plos One 9(5):e95307. 

30. Badawy AA (2017) Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional 

Aspects. Int J Tryptophan Res 10:1178646917691938. 

31. Weinstein JN, et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 

45(10):1113-1120. 

32. Lee JS, et al. (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from 

hepatic progenitor cells. Nat Med 12(4):410-416. 

33. Jensen PA & Papin JA (2011) Functional integration of a metabolic network model and expression 

data without arbitrary thresholding. Bioinformatics 27(4):541-547. 

34. Jensen PA, Lutz KA, & Papin JA (2011) TIGER: Toolbox for integrating genome-scale metabolic 

models, expression data, and transcriptional regulatory networks. Bmc Syst Biol 5:147. 

35. Favennec M, et al. (2015) The kynurenine pathway is activated in human obesity and shifted toward 

kynurenine monooxygenase activation. Obesity 23(10):2066-2074. 

36. Moriya C & Satoh H (2016) Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine 

Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats. J Diabetes Res 

2016:3201534. 

37. Heng B, et al. (2016) Understanding the role of the kynurenine pathway in human breast cancer 

immunobiology. Oncotarget 7(6):6506-6520. 

38. Opitz CA, et al. (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon 

receptor. Nature 478(7368):197-203. 

39. Oxenkrug GF (2015) Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 

Diabetes. Mol Neurobiol 52(2):805-810. 

40. Forbes SA, et al. (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 

45(D1):D777-D783. 

41. Okabe H, et al. (2016) Diverse Basis of beta-Catenin Activation in Human Hepatocellular 

Carcinoma: Implications in Biology and Prognosis. Plos One 11(4):e0152695. 

42. Kim YD, et al. (2008) Genetic alterations of Wnt signaling pathway-associated genes in 

hepatocellular carcinoma. J Gastroenterol Hepatol 23(1):110-118. 

43. Zucman-Rossi J, et al. (2007) Differential effects of inactivated Axin1 and activated beta-catenin 

mutations in human hepatocellular carcinomas. Oncogene 26(5):774-780. 

44. Sohn BH, Park IY, Shin JH, Yim SY, & Lee JS (2018) Glutamine synthetase mediates sorafenib 

sensitivity in beta-catenin-active hepatocellular carcinoma cells. Exp Mol Med 50(1):e421. 

45. Takigawa Y & Brown AM (2008) Wnt signaling in liver cancer. Curr Drug Targets 9(11):1013-

1024. 

46. Liu S, et al. (2012) beta-catenin is essential for ethanol metabolism and protection against alcohol-

mediated liver steatosis in mice. Hepatology 55(3):931-940. 

47. Lehwald N, et al. (2012) beta-Catenin regulates hepatic mitochondrial function and energy balance 

in mice. Gastroenterology 143(3):754-764. 

48. Lachenmayer A, et al. (2012) Wnt-pathway activation in two molecular classes of hepatocellular 

carcinoma and experimental modulation by sorafenib. Clin Cancer Res 18(18):4997-5007. 

49. Robinson DR, et al. (2017) Integrative clinical genomics of metastatic cancer. Nature 

548(7667):297-303. 

50. Duvel K, et al. (2010) Activation of a metabolic gene regulatory network downstream of mTOR 

complex 1. Mol Cell 39(2):171-183. 

51. Jiang P, Du W, & Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein 

Cell 5(8):592-602. 

52. Toda K, et al. (2016) Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer 

Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase. 

Neoplasia 18(11):654-665. 

53. Knott SRV, et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. 

Nature 554(7692):378-381. 

54. Agren R, et al. (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic 

model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980. 

55. Agren R, et al. (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell 

types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518. 



Bidkhori et al.  Network-based stratification of HCC 

31 

56. Anders S & Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 

11(10):R106. 

57. Hyotylainen T, et al. (2016) Genome-scale study reveals reduced metabolic adaptability in patients 

with non-alcoholic fatty liver disease. Nat Commun 7:8994. 

58. Csardi G & Nepusz T (2006) The igraph software package for complex network research. 

InterJournal, Complex Systems 1695(5):1-9. 

59. Sontag ED (2013) Mathematical control theory: deterministic finite dimensional systems (Springer 

Science & Business Media). 

60. Brunet JP, Tamayo P, Golub TR, & Mesirov JP (2004) Metagenes and molecular pattern discovery 

using matrix factorization. P Natl Acad Sci USA 101(12):4164-4169. 

61. Gaujoux R & Seoighe C (2010) A flexible R package for nonnegative matrix factorization. Bmc 

Bioinformatics 11. 

62. Liberzon A, et al. (2015) The Molecular Signatures Database (MSigDB) hallmark gene set 

collection. Cell Syst 1(6):417-425. 

63. Schramm G, et al. (2010) PathWave: discovering patterns of differentially regulated enzymes in 

metabolic pathways. Bioinformatics 26(9):1225-1231. 

64. Zerbino DR, et al. (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754-D761. 

 



Bidkhori et al.  Network-based stratification of HCC 

32 

 

 

 

Supplementary Information for 

 

Stratification of hepatocellular carcinoma tumors based on metabolic network 

heterogeneity 

 

Gholamreza Bidkhori, Rui Benfeitas, Martina Klevstig, Jens Nielsen, Mathias Uhlen, Jan Boren, 

Adil Mardinoglu 

 

Adil Mardinoglu (adilm@scilifelab.se) 

 

This PDF file includes: 

Captions for Tables S1 – S7 

Figs. S1 to S10 

 

Other supplementary materials for this manuscript include the following:  

Tables S1 to S7 

  



Bidkhori et al.  Network-based stratification of HCC 

33 

SUPPLEMENTARY TABLE CAPTIONS 

 

Table S1 – Centrality measures in HCC and noncancerous fGGNs. 

Table S2 – Gene MDS and dispensability classification, and in silico gene silencing in HCC 

and noncancerous fGGNs. Number of MDS and indispensable genes is also shown for each 

subsystem. 

Table S3 – HCC clusters of fGGN identified through Nonnegative Matrix Factorization. 

Differentially expressed genes between iHCC1, iHCC2, iHCC3 and noncancerous samples are 

indicated. Table also shows comparison of clinical properties, immune signatures, hallmarks of 

cancer, genes associated with prognostic genes and liver-specific genes, between iHCC1, iHCC2 

and iHCC3. 

Table S4 – PIANO output between clusters. 

Table S5 – FBA result for comparison between iHCC1, iHCC2 and iHCC3. 

Table S6 – Comparison of HCC subtypes identified by ref. (6).  

Table S7 – Subtype-specific controlling genes. 
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SUPPLEMENTARY FIGURES 

 

Fig. S1 – Development of a new algorithm for studying metabolic heterogeneity in HCC, and 

for patient stratification. A. In this method, we used functional gene-gene (fGGN) networks, 

generated from the stoichiometric matrix (S) and reversibility vector (rev). In fGGNs two genes 

(enzymes) are connected not only if they are involved in the same reaction but also if their reactions 

share a metabolite. B. Patient expression data was integrated with undirected fGGN, and using 

network propagation to generate fGGN representative of all patients’ gene expression. After 

quantile normalization, we used Nonnegative Matrix Factorization (NMF) to stratify the patients. 
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Fig. S2 – General properties in fGGN networks. A. Cumulative frequency distribution of degree 

in HCC and non-cancer networks, and HCC and noncancerous networks randomly generated 

through the Erdős–Rényi model. B. Comparison of topology parameters for HCC and 

noncancerous samples. For each personalized fGGN, we computed the ratio of distances of 

centrality measures against all other HCC and noncancer fGGN (see Methods). Ri,h and Ri,m 

respectively represent the similarity ratios HCC/noncancer (see Methods). Here, a ratio >1 shows 

topology features resembling noncancerous samples, whereas ratio < 1 show higher similarity to 

HCC samples. C. Principal component analysis of gene expression data in HCC and noncancerous 

samples shows large overlap between the two sample groups. D. Cophenetic correlation coefficient 

between k = 2 - 8 indicates that 2 or 3 clusters provide similarly robust separation between samples. 

This is due to the high similarity between iHCC2 and iHCC1 (see Main Text). We choose k = 3, 

the smallest rank for which the cophenetic correlation coefficient starts decreasing (60). 
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Fig. S3 – Stratifying genes in iHCC1 – iHCC3. Gene expression (FPKM) is presented for the 3 

groups. 
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Fig. S4 – Tumors show significant switching in the utilization of genes that encode for 

enzymes involved in the same reaction/pathway. A. Diagram showing genes in glycolysis and 

TCA cycle upregulated in iHCC1 (top), iHCC2 (middle) and iHCC3 (bottom). B. Gene expression 

in the 3 iHCC groups. 
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Fig. S5 – Survival differences identified in 2 independent cohorts. Using the transcriptomic 

validation dataset from TCGA or microarray data (32) we stratified tumors based on stratifying 

genes identified using network analysis. Survival analysis shows significant survival differences 

identified in patients associated with high expression of stratifying genes in iHCC1 – iHCC3. 
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Fig. S6 – A cohort with 4 HCC samples where CTNNB1 is mutated shows high expression of 

iHCC2 stratifying genes GLUL, RHBG, SLC13A3 and ACSS3 when compared with 

noncancerous samples. Transcriptomic dataset was retrieved from GEO with series id GSE55048 

(29). 
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Fig. S7 – Transcriptomic data in HepG2 cell lines grown under hypoxia or normoxia are 

clearly distinct. HepG2 cells were grown under 21% oxygen (normoxia) or 1% oxygen 

(hypoxia) and RNA was extracted. PCA of gene expression (A) and differential expression 

analysis (B) shows substantial differences between both groups.  

 

 

Fig. S8 – Top 20 mutated genes in HCC. Data was retrieved from COSMIC (40). 
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Fig. S9 – Drug metabolism shows upregulated genes (green) in iHCC2 (compared with 

iHCC3) as determined in Pathwave (63). No genes are downregulated in these pathways. 

Details in Table S6. 
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Fig. S10 – Xenobiotic metabolism shows upregulated genes (green) in iHCC2 (compared 

with iHCC3) as determined in Pathwave (63). No genes are downregulated in these pathways. 

Details in Table S6. 

 


