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SUMMARY

Hepatocellular carcinoma (HCC) is one of the most frequent forms of cancer and effective
treatment methods are limited, with challenges related to its large heterogeneity. A great need
exists for comprehensive approaches to stratify HCC using methods capable of incorporating inter-
tumor variability, while providing biologic insights and ultimately identifying suitable therapeutic
targets in an individualized manner. Here, we have employed a novel metabolic network-based
stratification of HCC which uses modeling and network topology/controllability to stratify and
characterize hundreds of samples based on transcriptomic data. The comprehensive analysis
identified three distinct HCC subtypes with substantial metabolic differences, extending also to
distinct genomic, gene expression, and immunohistochemical differences. These subtypes show
large differences in clinical survival, associated with altered Kynurenine metabolism, WNT/-
catenin-associated lipid metabolism alterations, and PI3K/AKT/mTOR signaling. The gene
expression analysis show that the three groups rely on alternative enzyme-coding genes (e.g.
ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to
drive the same reactions. We have also identified 8 — 28 subtype-specific genes with pivotal roles
in controlling network and whose in silico silencing shows that these could be potential new drug
targets for one of the iIHCCs. Finally, we have experimentally observed opposite expression
patterns between genes expressed in high/moderate and low survival tumor groups in response to
hypoxia, reflecting promoted hypoxic behavior in patients with poor survival. Overall, our
analyses show that the substantial HCC heterogeneity can be stratified using a metabolic-network
driven approach and this stratification can have clinical implications as it can drive the
development of personalized medicine.

SIGNIFICANCE

Hepatocellular carcinoma (HCC) is a highly heterogeneous and deadly form of liver cancer. Here,
we characterized and stratified HCC tumors based on genome-scale metabolic network
heterogeneity. Our newly developed in silico method enabled the identification of three HCC
subgroups with distinct metabolic, signaling and survival properties, as well as hypoxic-driven
gene expression responses. We verified the results of our analysis by performing additional
experiments and associated it with patient survival. We further identified a number of subgroup-
specific genes pivotal in controlling the entire metabolism and discovered genes that can be
targeted for development of efficient treatment strategies for specific patient group. Our systems
level analyses provided a systematic way for characterization of liver cancer sub-types.

INTRODUCTION

Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer, the third leading cause of
cancer-related worldwide mortality, and its incidence is predicted to increase globally (1).
However, due to this disease’s large heterogeneity, a complete understanding of the biological
phenomena underlying HCC onset and progression remains elusive. Comprehensive approaches
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capable of incorporating inter-tumor variability, while providing biologic function insights are thus
of great need for understanding biological phenomena and identifying suitable therapeutic targets.

Systems biology approaches have been pivotal in tackling this challenge in cancer. Genomic,
transcriptomic, or metabolic characterizations of HCC consisting of large-scale data are currently
available (2-8). This enabled the identification of markers associated with recurrence and poor
prognosis (9-11). In turn, Genome-scale Metabolic Models (GEMSs), comprehensive metabolic
network descriptions incorporating reaction stoichiometry information and functional
descriptions, have been successfully used to metabolically characterize HCC, as well as identify
targets for personalized treatment (7, 12-14). For instance, HCC tumors display altered acetate
metabolism responses in patients with differential patient survival (7). Analysis of HCC
metabolism also pointed to potential anticancer metabolite analogues that would not be toxic for
noncancerous liver tissues (12), and to substantial association and antagonistic responses between
redox and central metabolisms (14). These observations indicate the clear strengths in integration
of large-scale omics data with personalized medicine approaches. However, while these methods
implicitly consider metabolic network structure, they do not permit stratifying tumors based on
network heterogeneity itself, and instead rely on identification of key genes/metabolites and tumor
stratification based on their levels. In turn, topology-driven network analyses, including protein-
protein interaction, signaling, gene regulatory and metabolic networks (15-17) provide an
alternative view over cancer networks. For instance, network analysis has identified essential
proteins from a lethality perspective, as well as those capable and indispensable for controlling
network (18-22). However, topology-driven methods do not take into account biological
functionality, one important strength in GEM-driven and similar analyses.

Here, we integrate multi-omic data with modeling and metabolic network-based analysis to
introduce a whole network-driven stratification of HCC tumors. Consistent tumor stratification
was performed across different datasets consisting of hundreds of HCC tumors. Importantly,
though this analysis considers only metabolic network information, substantial differences are
observed at the gene expression, genomic, clinical, and survival level. Additionally, we identify
novel HCC subtype-specific therapeutic targets that have important roles in controlling cancer
network not noncancerous liver samples. Finally, we have experimentally observed that expression
of genes associated with good and poor prognosis tumors shows opposite responses to hypoxia.

RESULTS
Characterizing metabolic heterogeneity and identifying controlling genes in HCC

We started by retrieving the transcriptomic and clinical data for 369 HCC individuals, along with
50 non-cancer liver samples from GDC (8). This dataset was split in 2 parts: a test set, consisting
of 186 patients with detailed clinical information for clinical and signature data analysis, and a set
consisting of 183 patients that was used later for validation. We integrated the test set with an
HCC-specific genome scale metabolic model (12) to generate patient-specific HCC and non-tumor
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GEMs (see Methods). After excluding non-functional models, we constructed personalized
directed functional gene-gene networks (fGGNs), a novel approach introduced here for clarifying
metabolic gene importance in HCC (Fig. S1) inspired by a previous approach (23). In fGGNs,
nodes represent metabolic genes (enzymes) and edges represent connections between metabolic
genes that are formed if a metabolite product of a gene’s reaction serves as substrate for the
reaction driven by the other gene (Fig. 1A).

After validation of fGGNs against randomly generated networks (Fig. S2A), we sought to compare
heterogeneity across patients by testing model similarity within and between HCC vs non-cancer
fGGNs. We investigated nodes based on their control over the network, shortest connections with
other nodes, number of neighboring nodes, and direction of interaction by computing the centrality
topology parameters betweenness, normalized closeness, eccentricity and degree (Table S1).
Comparison of these scores within HCC and non-cancer group indicates that the former group is
substantially more heterogeneous than the latter, where the median node absolute deviation for
each of the parameters tends to be larger in HCC than non-tumor samples (Fig. 1B and C). In turn,
between-group comparison shows substantial differences between HCC and non-tumor samples
expressed at the network level (Fig. S2B). Overall, all tested parameters show that non-cancer
fGGN are more similar to each other in comparison with HCC networks at the network level.

We then aimed to identify genes that are pivotal in controlling of the full networks through network
controllability approaches (i.e. minimum driver node sets, MDS). Most of the 224 MDS genes
identified are involved in transport reactions, fatty acid metabolism, oxidative phosphorylation,
nucleotide metabolism and carnitine shuttle (Table S2). Similarly to previous approach (18), we
classified nodes based on their controllability classification as indispensable, neutral and
dispensable, i.e. those whose removal from the network respectively increase, do not change, or
decrease the minimum number of MDS (Table S2). We identify 188 genes that are indispensable
in >80% of the f{GGNs. Our observations indicate that indispensable genes show very high degrees
indicative of high connectivity in both HCC and noncancerous networks (Fig. 1D). For instance,
indispensable, neutral and dispensable genes show median degrees of 32, 17 and 9 in HCC,
respectively, whereas they show median degrees of 34, 22 and 11 in noncancerous networks.
Importantly, dispensable and indispensable nodes may show similar degrees indicating that not all
highly connected genes (i.e. hubs) are controlling the network, but most indispensable genes are
hubs.

In silico gene silencing of all 2892 metabolic genes in GEMs shows that >95% of HCC samples
show no growth when MDS or indispensable genes are silenced, much higher than the observed
fractions for silencing of other genes (<50%) (Fig. 1E). Together, MDS and indispensable genes
are hereafter called “controlling genes” based on their role in network control. Based on the
controllability and MDS classifications we observe clear separation of HCC and non-cancer
fGGNSs as indicated by Principal Component Analysis (Fig. 1F), otherwise not achieved when
solely considering gene expression (Fig. S2C). These observations show that despite the high
heterogeneity expressed at the gene level in HCC, network analyses identify distinct and important
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genes that may be used to efficiently separate HCC and non-cancer samples based on network
controllability.

Network-based stratification reveals metabolic, survival and cancer hallmark differences in
HCC

Having identified important differences between HCC and noncancerous fGGNs, we then used a
novel network-based approach to stratify the patients. Here, we introduce the utilization of
functional gene-gene networks to stratify tumors based on gene expression data, using techniques
previously employed to stratify tumors based on somatic mutations (24). We combined the
personalized fGGN into a single generic fGGN representative of the features of all 186 patients,
consisting of 1972 metabolic genes (see Methods), that was used for stratification. Integrating
patient transcriptomic data with the generic fGGN, and employing network smoothing to spread
the influence of each expression profile on the neighborhood of the network, we generated
expression profiles that reflect the fGGN structure. These expression profiles were subsequently
stratified using Nonnegative Matrix Factorization (NMF). An optimum number of three HCC
groups was identified (Fig. S2D), each consisting of 85, 49 and 52 patients each (iIHCC1 — 3) with
substantial gene expression, biological process and clinical differences (Fig. 2, Table S3).

Differential expression analysis (Fig. 2A) identifies 2409 differentially expressed genes between
iIHCC2 vs iIHCC3, 2318 genes between iIHCC1 vs iHCC3, and 1115 genes between iHCCL1 vs
iIHCC2 (Q < 0.05, DESeq, Table S3). Cancer hallmark gene set enrichment analysis (25) highlights
significant differences in hallmarks of cancer (Q < 0.01, Fig. 2A). For instance, iHCC3 displays
upregulated E2F targets, mTOR, MYC, inflammatory response, mitosis, G2M checkpoint, and
DNA repair in when compared with iHCC1/iHCC2. In turn, iIHCC2 shows WNT/beta catenin
activation. Mitosis and cell cycle-associated gene expression is downregulated in iHCC2 in
comparison with iHCC1/iHCC3 and inflammation is higher in iHCC1/iHCC3.

Among the genes differentially expressed between the low and high survival iHCC3 and iHCC1
groups, we identified several prognostic markers (DESeq, Fig. 2B, Table S3). For instance, when
compared with iHCC3, tumors from iHCC1 display upregulated expression of 64 favorable
prognostic markers and downregulated expression of 45 unfavorable prognostic markers (Fig. 2B,
Q<0.05, DESeq), among the 469 metabolic genes previously identified as prognostic markers in
liver cancer (11). In turn, iIHCC2 shows mixed up- and downregulation of these prognostic
markers. iIHCC3 tumors additionally present downregulated expression of 123 (out of 157) liver-
specific genes (Q < 0.05, Table S3), upregulation of genes associated with immune signatures (26)
and genes associated with metastasization such as HIFla, IL1, TNFa, NFxB, and TGFf are
upregulated in iHCC3 (Table S3). Survival differences of the 3 groups are consistent with
expression of prognostic markers, where iHCC1 presents the highest survival rate, followed by
IHCC2, and iHCC3 (Log rank P < 0.001, Fig. 2C).
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Though differences are observed between the three groups, iIHCC3 tumors are markedly distinct
from those of iIHCC2 and iHCC1. A larger number of genes are differentially expressed between
iIHCC3 vs iIHCC1/iHCC2 when compared with iHCC1 vs iHCC2, and several cancer hallmarks
are simultaneously enriched in iIHCC3 in comparison with either iHCC1 or iHCC2 (Fig. 2A). For
instance, IHCC3 tumors present downregulated oxidative phosphorylation, fatty acid metabolism,
adipogenesis, and upregulated DNA repair, G2M checkpoint, epithelial to mesenchymal transition
and inflammation, when compared with iHCC1 or iHCC2 (Table S3).

Gene set enrichment analysis performed in PIANO (25) using biological processes retrieved from
MSigDB highlights iHCC-specific responses (Table S4). For instance, iIHCC1 displays
upregulated tryptophan and indole metabolism, but downregulated ncRNA metabolism, and
ribosome biogenesis (Q < 0.05), when compared with tumors of iHCC2 and iHCC3. Tumors in
iIHCC2 displays (Q < 0.05) upregulated heme, glutamine metabolism, drug metabolism and
transport, and oxidative demethylation, but downregulated cell development and GPCR signaling,
when compared with iIHCC3 and iHCC1. Tumors in iIHCC3 show the largest changes in biological
processes when compared with iIHCC1 or iIHCC2, with upregulation of multiple processes
associated with cell proliferation, cell cycle progression and mitosis, development, chromosome
segregation, cytoskeleton organization, immune response, DNA replication and recombination (Q
<0.05). In turn, IHCC3 displays downregulated fatty acid B oxidation, lipid oxidation, small
molecule and catabolism, and metabolism of several amino acids including glycine, glutamate,
glutamine, serine, aspartate, drug catabolism and response to xenobiotic stimulus (Table S4).
Consistent with the substantial differences between iHCC3 and the two other tumor groups, iHCC2
tumors show similar metabolic behavior to those of iIHCC1 (Table S5), and their gene expression
is more similar to those of iIHCC1 than to those of IHCC3 (Fig. 2D, mean Spearman’s p ~ 0.9
iIHCC1 vs iHCC2, <0.8 iIHCC3 vs iHCC1 or iHCC?2).

Importantly, our stratification method highlights several stratifying genes whose expression is
substantially different between the 3 iIHCC groups. This is the case of XDH, KMO, TDO2 and
SC5D in iHCC1; GLUL, AQP9, RHBG, SLC1A2, SLC13A3, ACSS3, AOX1 and CYP3A4 in
IHCC2; and PKM, G6PD, PGD, ENO1, SRM, and ALDOA in iHCC3 (Fig. 3A and B, Fig. S3).
Other genes such as MTHFD1, ALDH6AL, and ACSM2B are similar in both iHCC1 and iHCC2,
but differ significantly in comparison with iHCC3.

Revealing the association between metabolism, recurrence signatures, Wnt/p-catenin and
PI3K/Akt/mTOR signaling

The above results show that the iIHCC subgroups present specific features at the survival, gene
expression, prognostic marker, and metabolic level identified solely based on analysis of metabolic
gene networks. These tumors are also differentially associated with known HCC properties such
as HIPPO signature, hypermethylation, DNA copy number, cholangiocarcinoma-like traits (2),
RS65 gene-based risk scores (27), and HB16 signature (3) (Fig. 3A, Table S3). For instance, 84%
of IHCC2 subjects are men (vs ~50% in other iHCCs), and about half of the patients in iIHCC2 and
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iHCC3 display alcoholic liver disease, much higher than the <25% observed in iHCC1 (Q < 0.01.
Additionally, iHCC2 tumors also show lower genome doubling, higher hypermethylation and
CDKN?2 silencing (Fig. 3A, Q < 10™), and all iHCC2 tumors show AFP < 300 ng/mL. iHCC1 and
iHCC2 tumors are associated (Q < 10, Chi-square test) with markers of hepatocyte differentiation
(>54% tumors display Hoshida 3)(4), and maturity (>79% HB16 C1). In turn, no iHCC3 tumors
show differentiation markers (0% Hoshida 3) and instead are associated with known markers of
low survival (Q < 0.05, Chi-square test, Fig. 3A, Table S3) including NCIP score A (>96%), high
recurrence risk SNUR (>76%) (10), and high expression of recurrence risk marker CD24 (Log
fold change ~ 2.55 for comparison vs iIHCC1, Q < 0.00085). The lower survival and predominance
of aggressive tumors in iIHCC3 may be associated with the significantly (Q< 0.02, Chi-squared
test) larger proportion of advanced tumors in this group (>51% Grade 3, <49% Grades 1 and 2)
compared with iIHCC2 (30% G3 and <70% G1 and G2) or iHCC1 (<22% G3, >77% G1 and G2).
IHCC2 also shows altered cytochrome P450 and xenobiotic metabolism in comparison with the 2
other clusters (Fig. S9, Fig. S10).

Interestingly, several observations associate altered Wnt/B-catenin, PI3K/Akt/mTOR signaling,
with the novel iIHCC phenotypes described here. Most iIHCC3 tumors are associated with MYC
and AKT activation as indicated by the high incidence of Hoshida 2 (in 96% of tumors, Fig. 3A).
Additionally, we identified (28) the top-25 genes co-expressed with stratifying/controlling genes
in each iIHCC for 360 TCGA tumors, and observe positive co-expression of AKT1 and MTOR and
stratifying/controlling genes in iHCC3 and their co-expressed genes (Pearson’s r > 0.32, Q < 0.01,
Fig. 4). AKT1 and MTOR are negatively co-expressed with stratifying/controlling genes in iHCC1
and iIHCC2. In turn, Hoshida signatures are not substantially different between iHCC1 and iHCC2
(22% and 11% Hoshida 1 respectively, Q > 0.3, Chi-square test). However, the 5 following
observations suggest a strong association between disturbed Wnt signaling and the iHCC2
phenotype. First, 75% iHCC2 tumors show mutations in CTNNBI, a gene that codes for 3-catenin
in the Wnt pathway (Fig. 3A), substantially higher than <13% observed in iIHCC1 and iHCC3 (Q
< 107, Chi-square test). Second, iHCC2 tumors also show upregulated expression of B-catenin
target genes, for instance glutamine synthetase GLUL, glutamate transporter SLC1A2, and
ornithine aminotransferase OAT (Fig. S3). Third, co-expression analysis indicates that
stratifying/controlling genes in iHCC2 and their co-expressed genes are positively co-expressed
with CTNNB1 (Pearson’s r > 0.32, Q < 0.01, Fig. 4). This is not observed in the case of
IHCC3/iHCC1 genes, which are negatively co-expressed with AKT1 or MTOR (Pearson’s r < -
0.2, Q < 0.01). Fourth, the association between Wnt signaling in iHCC2, and AKT activation in
IHCC3 is also identified using an independent dataset of 91 HCC microarray samples and
associated immunohistochemistry (Fig. 5). Associations between different HCC tumors and
interferon, proliferation (PI3K/Akt activation), CTNNB1 phosphorylation/mutation (i.e. Wnt
signaling), or chromosome 7 polysomy were previously identified (6). Using the authors’
previously defined classes (GEO GSE9843), we observe that all tumors with CTNNB1
phosphorylating activation and mutation show high expression of iIHCC2 stratifying genes.
Additionally, tumors showing RPSA, AKT or IGFR activation show high expression of iHCC3
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stratifying genes, thus reinforcing the relationship between PI3K/Akt/mTOR signaling activation
and iIHCC3. Tumor stratification based on iHCC stratifying genes shows differential distribution
in the HCC subgroups previously identified (6) (Table S6). Lastly, a transcriptomic dataset with 4
HCC samples displaying CTNNB1 mutation (29) shows high expression of many of iHCC2
stratifying genes including GLUL, RHBG, SLC13A3 and ACSS3 (Fig. S6). These observations
thus indicate distinct genomic features for the IHCC2 and iHCC3 phenotypes, respectively
associated with aberrant Wnt signaling and PISBK/AKT/mTOR signaling activation. Interestingly,
3 stratifying genes (TDO2, KMO, XDH) and co-expressed genes (AADAT, ACMSO), are
involved with the Kynurenine pathway (Fig. 4), a metabolic pathway leading to NAD+ production,
and associated with tryptophan metabolism (30). iIHCC1 also shows upregulated tryptophan
metabolism in comparison with the 2 other iIHCC groups (Table S4).

Together with the above observations, the observations in 3 independent datasets and considering
transcriptomic, immunohistochemical, co-expression, genomic and gene-expression data (6, 9, 29,
31, 32) additionally reinforce our confidence in the newly identified stratifying genes and survival
differences in IHCC1-iHCC3. Specifically, the metabolic-network derived antagonistic expression
of stratifying genes identified in 186 HCC tumor transcriptomic data are consistently observed in
1. a validation transcriptomic dataset of 183 HCC tumors attained from TCGA (Fig. S5A); 2. a
microarray dataset consisting of 221 HCC samples (Fig. S5B); 3. co-expression analysis of 369
HCC tumors from TCGA (Fig. 4); 4. a microarray dataset comprising 91 HCC tumors (Fig. 5);
and 5. a comparison of CTNNB1-mutant vs noncancerous transcriptomic set (Fig. S6).
Additionally, survival analysis performed on the validation TCGA dataset or Lee et al. dataset
(Fig. S5) are consistent with the observed survival differences in iIHCC1 > iHCC2 > iHCC3 (Fig.
20C).

Alternative metabolic differences between HCC subtypes

We then sought to identify metabolic differences between iHCC1, iHCC2 and iHCC3 at a
pathway- and reaction-centered level using genome-scale metabolic models (GEMs). GEMs were
generated for each cluster through MADE (33) and TIGER (34), using as input the differentially
expressed genes, and considering biomass maximization as objective function. Fluxes in each of
the models (Fig. 6A) are consistent with the hallmarks of cancer identified above (Fig. 2A) and
expression data mapped into KEGG metabolic pathways (Table S3), as well as substantial
metabolic differences between iHCC3 vs iHCC1 or iHCC2. Specifically, iIHCC3 GEMs show
lower fluxes in metabolism of amino acids, cofactors and coenzymes, pyruvate, fatty acid
oxidation, carnitine shuttle, steroids, and oxidation phosphorylation compared to iIHCC1/iHCC2,
and lower in iIHCC2 than iHCC1. When compared with iHCC1/iHCC2, iHCC3 shows higher
glycolytic but lower TCA fluxes consistent with strong Warburg effect, as well as higher fluxes of
fatty acid biosynthesis. Additionally, and in agreement with our previous observations (14), we
observe that the low survival group iHCC3 relies on NADPH-dependent antioxidants (e.g.
glutathione peroxidase/glutathione reductase) for H.O> scavenging whereas the high survival
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group iHCC1 relies on the NADPH-independent catalase. iIHCC3 also displays higher fluxes in
the pentose phosphate pathway fluxes, followed by IHCC2 and iHCC1.

Additionally, gene expression differences indicate that the 3 iIHCC groups rely on alternative
enzyme-coding genes for the same reactions or pathways (Fig. 3B and Fig. 6B). For instance,
acetate is converted to acetyl CoA by acetyl CoA synthase, an enzyme coded by ACSS1-3.
Whereas iIHCC1 expresses ACSS2, which codes for the cytoplasmic form of the enzyme, iIHCC2
and iIHCC3 respectively express ACSS3 and ACSS1, genes that code for mitochondrial isoforms
(Fig. S4). Cleavage of fructose-1,6-bisphosphate is catalyzed by aldolase, coded by ALDOA-C.
While iHCC1 highly expresses the liver-specific ALDOB, iIHCC3 highly expresses the non-
specific ALDOA, whereas iHCC2 shows similar expression for both genes. Alternative utilization
of pyruvate kinase is also observed, where iIHCC1/iHCC2 show high expression of the liver-
specific PKLR, whereas iHCC3 shows high expression of PKM. Glucokinase in iHCC1 is
switched to hexokinase 2 in iHCC3 where ENO3 are substituted for ENOL1. Additionally,
PFKFB4, HSD17B6 and GLYATL2 in iHCC3 are switched to PFKFB1, HSD17B1 and GLYAT
in iIHCC1 and 2, respectively. Similar observations are identified in expression of genes that
encode for aldehyde dehydrogenases (e.g. ALDH1B1, ALDH9A1, ALDH2, ALDH3A2 and
ALDH3B1), among others (Fig. S4). A number of amino acid, sugar, cofactor, and hormone
transporters are also differentially expressed between the 3 clusters, and in particular between
iIHCC3 and iHCC1/iHCC2 (Fig. 6B). These observations translate into distinct central metabolism,
particularly between the high and low survival groups iHCC1 and iHCC3, while iHCC2 shares
many of these properties with iIHCC1. Several membrane transporters including amino acid,
glucose and monosaccharide, choline, butyrate and citrate transporters also show substantial
switching between iHCC1 and iHCC3.

Controlling genes are also differentially expressed between the 3 subtypes (Table S6), indicating
different controllability metabolic behavior between them. For instance, in fatty acid elongation
ELOVLSG is a controlling gene in iHCC2, but ELOVLS5 is a controlling gene in iHCC1 and iHCC3.
In glycerolipid metabolism, PLA2G12B is a controlling gene in iHCC1, PLA2G16 is a controlling
gene in iHCC3, and both are controlling genes in iIHCC2. In purine and pyrimidine metabolism,
NMEG6 and NT5E are controlling genes in iHCC3, but not in iHCC1/iHCC2, which show other
NME as controlling genes. In glycolysis, PKLR and BPGM are controlling genes in
iIHCCL1/iHCC2, but PKM and PGAML are controlling genes in iHCC3. In histidine metabolism,
NAA15 and SLC40AL1 are controlling genes in iIHCC1, SLC11AZ2 is a controlling gene in iHCC2,
whereas NAA30 and SLC40AL are controlling genes in iHCC3.

Above we showed the importance of controlling genes. Here, Synthetic lethality analysis
performed for those stratifying and controlling genes that were found just in HCC networks not
non-cancers. It highlights several potential therapeutic targets. Among controlling and stratifying
genes, we find 8, 9 and 28 subtype-specific genes in iIHCC1 to iHCC3, respectively, whose in
silico knock-out leads to lethality in their respective subtype, but not in the others (Fig. 6C).
Among these, we identify ALDOB, TDO2, and KMO in iHCC1, ACSS3, SQLE, and LIPT1 in
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IHCC2, and ACSS1, ALDOA and G6PD in iHCC3. Knock-out of 12 controlling/stratifying genes
simultaneously leads to lethality in iIHCC1 and iHCC2 and includes IDH1, SORD and ARG1.
These observations point towards several HCC-specific potential therapeutic targets that may be
used to target low (iIHCC3), intermediate (iIHCC2), and high (iIHCC1) survival groups.

Poor survival-associated genes show hypoxic behavior validated experimentally in human
cancer cell lines

Several stratifying genes in the 3 iHCC groups are associated with redox metabolism (Fig. 3 and
Fig. 5) such as G6PD, PKM and ALDOA in iHCC3, or ALDH2, and MTHFD1 in iHCC1 and
IHCC2. Gene expression differences translate into altered redox metabolism (Fig. 2A) and
antioxidant defenses (e.g. catalase or glutathione-based H.O> scavenging, Table S5). Additionally,
we have previously observed that stratification of HCC samples based on redox gene expression
or acetate metabolism (7, 14) is associated with differential redox metabolism. Indeed, the
expression of HIF1A is substantially higher in iHCC3 than in iIHCC1 or iHCC2 (Log> fold-change
~ 1, Q<0.05).

We performed a transcriptomic analysis of HepG2 cells grown under hypoxia and normoxia. We
observe (Fig. 7A, Q <0.01) that differentially expressed genes tend to be associated with responses
to stress and to oxygen, NADH, ADP and RNA metabolism, immune system and tissue
development, biological processes that are upregulated under hypoxia. In turn, DNA metabolism,
replication and repair, and cell cycle related processes are upregulated under normoxia. Further,
among the differentially expressed genes, the expression of stratifying genes PKM, ALDOA,
MTHFD1L, ENO1, PDE9A and controlling genes in iHCC3, is significantly higher under hypoxic
than normoxic conditions (Q < 0.01, Fig. 7B). Interestingly, stratifying and controlling genes in
IHCC2 or iHCCL1 are either unchanged or show downregulated expression under hypoxia (Fig. 7C
and D, respectively). Additionally, among the 28 controlling genes exclusive to iHCC3 (Fig. 6C),
we find that the expression of OCRL, PTPN12, HPSE, ACLY, LPCAT1, RRM2, and SPTLC2 is
upregulated under hypoxia (Fig. 7B). Among those stratifying/controlling genes upregulated under
hypoxia in iIHCC3, we find multiple upregulated biological processes that also involve these genes,
including those involved in energetic, carbohydrate, and nucleotide metabolism, and tissue
development (Fig. 7E). These observations indicate that stratifying and controlling genes in iHCC3
and iIHCC1/iHCC2 tumors respond strongly and antagonistically to hypoxia.

DISCUSSION

Given the high heterogeneity in cancer, many others have tried to stratify HCC patients through
unsupervised clustering of tumors based on genomic and transcriptomic properties (2, 3, 9). This
led to the wvaluable discovery of many patient group-specific differences such as
cholangiocarcinoma-like features traits (CCL) (2), hepatic stem-like phenotypes (3), signaling
differences (4-6), recurrence risk (10, 27), and metabolism (7, 14). However, a functional- and
network topology-based characterization and stratification of HCC has never been attempted. Here,
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we combined objective-dependent and independent approaches to perform a functional metabolic
network-based stratification of hundreds of patients. Our analyses combined transcriptomic,
immunohistochemistry, and clinical data across 4 datasets with hundreds of HCC tumors, a cell-
line experiment, and in silico approaches including genome-scale metabolic modeling, gene
silencing, co-expression and network analysis. We identified distinct metabolic, genomic,
signaling, survival and clinical properties in 3 major HCC subtypes, iIHCC1 —iHCC3. The 3iHCCs
also present 18 metabolic genes highly expressed by one group but not the others, i.e. stratifying
genes. Our analyses showed that these genes consistently stratify HCC tumors from independent
datasets. We have additionally identified 32 controlling genes, those that display pivotal roles in
controlling network, and whose targeting would lead to lethality in one of the HCC subtypes.
Tumors in the low survival and progressive (higher grade) iIHCC3 group show several signatures
of low-survival and High recurrence (9, 10), and high expression of markers of poor survival (11).
In turn, the high and moderate survival groups iIHCC1 and iHCC2 are associated with markers of
low recurrence, high survival, hepatocyte differentiation and maturity (4, 10, 27). iIHCC1, iHCC2
and IHCC3 respectively display high expression of genes involved in acetate metabolism, ACSS2,
ACSS3, and ACSS1. These observations are consistent with our previous analyses which showed
that HCC tumors stratified based on acetate metabolism display distinct survival behavior (7).
ACSS?2 is highly expressed by healthy liver tissue (7) consistent with the high expression displayed
by the high-survival iIHCC1 group. On the other hand, ACSS1 is highly expressed in iHCC3,
consistent with previous observations in a low survival group (7). Finally, we here identify for the
first time that iIHCC2 displays high expression of ACSS3, unlike other iIHCCs.

In turn, IHCC3 tumors show high expression of ACSS1 and are associated with hypoxic
environment. Experiments with HepG2 cells additionally show strong and opposing responses to
hypoxia by different iHCCs. Stratifying and controlling genes in iHCC3 are upregulated under
hypoxia when compared with normoxia. This is opposed by those in iIHCC1 and iHCC2, which
are either unchanged or show decreased expression under hypoxic conditions. These observations
indicate opposing hypoxic responses under low and high survival, consistent with our previous
observations (14).

IHCC1 is the tumor group with the highest survival, and shows high inflammation response
compared to iHCC2. Interestingly, several stratifying genes or their co-expressed genes are
involved in the Kynurenine Pathway (KP). This pathway is found upstream of NAD biosynthesis,
and is the main tryptophan sink in the cell (30). Several of its genes are upregulated in adipose
tissue in obesity (35, 36), consistent with the observation that 56% of patients in IHCC1 are obese
or overweight. Several metabolites of the KP have been associated with inflammatory and immune
responses, for instance in the induction of cytokines and macrophage-induced chemokines (37,
38). Interestingly, KP overactivation has been observed in T2D and is one of the T2D-driving
mechanisms observed in pre-diabetic patients (39). The observation that T2D is one of the risk
factors for HCC (39), raises the possibility that the iIHCC1 phenotype is associated with T2D,
unlike other iIHCCs. This is reinforced by the observation that genes TDO, KMO, AADAT and
ACMSD and IL6R, stratifying genes in iHCCL1 or their co-expressed genes, are upregulated in
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obesity or T2D (39). Finally, both T2D and obesity show promoted fatty acid oxidation, similarly
to IHCC1, which displayed the highest fatty acid oxidation of the 3 iIHCCs, and suggesting a
potential association between those diseases and iHCC1 tumors. Overall, iIHCC1 showed the
highest fluxes in metabolism of amino acids, cofactors and coenzymes, pyruvate, fatty acid
oxidation, carnitine shuttle, steroids, TCA and oxidative phosphorylation.

IHCC2 shows higher similarity to iIHCCL1 than iIHCC3, but also exhibits specific features including
lower fatty acid biosynthesis and high glutamine metabolism, and [-catenin-associated
upregulated fatty acid oxidation. One of the main features of iIHCC2 tumors is the association with
[-catenin pathway alterations. CTNNB1 encodes for -catenin, which is mutated in ~20% HCC
(40). Mutations in this gene are associated with increased concentration of nuclear 3-catenin and
its target genes (e.g. glutamine synthetase GLUL, and glutamate transporter SLC1Az2), and lower
patient survival (41-43). Glutamine synthetase is involved in ammonia detoxification, and f-
catenin-controlled induction of GLUL leads to autophagy in HCC (44, 45). B-catenin controls
mitochondrial homeostasis by regulating the citric acid cycle (TCA) and fatty acid oxidation, and
protects against alcohol-induced liver injury or ethanol-induced metabolic stress (Fig. 8) (46). It is
consistent with the overactivation of the pathways involved in detoxification i.e. drug and
xenobiotic metabolism in comparison with other subtypes. B-catenin also regulates the expression
of acetaldehyde dehydrogenases (e.g. ALDH2, ALDH3A1 and ALDH3A2) (46), thus controlling
TCA fluxes, as well as stratifying gene Acyl-CoA oxidase (AOX1) which is involved in fatty acid
B oxidation (47). Our modeling analyses additionally indicate that iHCC2 shows low fatty acid
biosynthesis fluxes, consistent with the negative regulation of this process by p-catenin. Sorafenib,
a drug that targets expression of liver-related Whnt-targets GLUL and leads to higher sensitization
in HCC tumors with high B-catenin activation (48), thus presents as a potential drug in iHCC2 but
not in the other tumor groups.

Finally, IHCC3 tumors are associated with multiple features of malignant tumors, including
hypoxic behavior, epithelial to mesenchymal transition (EMT), higher fluxes in fatty acid
biosynthesis, and strong Warburg effect. For instance, TGFp, HIFa and NF«B, genes involved in
hypoxic response, metastasis and malignancy, are upregulated in iHCC3 and iHCC3 shares several
signature activities of metastatic tissues (49). One of the main features of this tumor group is the
association with PI3BK/AKT/mTOR signaling activation. It also showed downstream activation of
Asparagine Synthetase (ASNS), Glycolysis, and pentose phosphate pathway by
PI3K/AKT/mTOR signaling (50-52), consistent with our observation in iIHCC3 (Figure 8). ASNS
upregulation, observed in iHCC3, is strongly correlated with metastatic potential and
overexpression of ASNS promotes metastatic progression (53). Drugs targeting the
PIBK/AKT/mTOR signaling or these processes, such as L-asparaginase, rapamycin, or their
analogs, thus arise as potential therapeutics for the treatment of iIHCC3 but not the other iIHCCs.
Overall, these observations highlight distinct metabolic and signaling properties in HCC tumors
that stem from the high inter-tumor heterogeneity, and are associated with patient survival. In silico
predictions identify several subgroup-specific potential therapeutic that offer full control over the
metabolic network. This prompts for utilization of the above identified mechanistic differences
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between tumors, together with the predicted targets, for developing personalized treatment
strategies for hepatocellular carcinoma.

METHODS
Gene expression data retrieval, processing, and validation datasets

RNA-seq gene expression data and associated metadata for 369 HCC and 50 adjacent non-
cancerous liver samples were retrieved from NCI’s Genome Data Commons (31) as Fragments
Per Kilobase of transcript per Million mapped reads (FPKM), and metabolic genes were selected
based on HMR 2.0 (12). This set was split into a development set consisting of 186 HCC and 50
noncancerous samples that was used to perform all gene-expression and network-associated
analyses, and a validation set consisting of 183 HCC samples that was used to verify the
predictions from the development set. One additional dataset consisting of 91 HCC microarray
samples was attained from GEO GSE9843 (6) was used to identify associations between gene
expression and immunohistochemistry properties of the samples.

Generation of personalized and subtype GEMs

Expression data were integrated into iHCC models to construct patient-specific GEMs using tINIT
(12) and RAVEN (54). The following thresholds for gene levels were considered: no expression
(FPKM<1), low expression (I<FPKM<I10), medium expression (10<FPKM<50), and high
(FPKM>50). To assess model feasibility, i.e. biological functionality, we considered maximization
of biomass production or ATP consumption as objective functions for HCC and non-cancer
models, respectively. In all subsequent analyses, 57 and 56 metabolic tasks (55)were used to test
model functionality, together with objective functions, respectively for HCC and non-cancer
models (12). This resulted in 180 HCC and 50 non-cancer functional models that were used to
construct functional gene-gene networks (fGGN).

We used MADE (33) to generate iIHCC-subtype specific GEMSs using as input the gene-specific
fold changes and FDR determined through DESeq (56) and using TIGER (34). This flux balance
approach is formulated as a single Mixed-Integer Linear Programming (MILP) problem through
the CPLEX solver. Upper and lower bounds for exchange reactions in GEMs were considered
based on experimental liver data (57).

Construction of personalized directed functional gene-gene networks (fGGN) and generic
fGGN

After removing currency metabolites (e.g. H20, CO2, H*, Pi, ATP, ADP, AMP, FADH2, NADH),
we retrieved the stoichiometric matrix (S) with size mxn with m metabolites and n reactions. The
ij" element of the sparse matrix represents the stoichiometric coefficient of the i metabolite in j
reaction in the model (Fig. S1). Positive and negative coefficients respectively represent
metabolites that are produced or consumed by the reaction. Directed fGGN were generated for
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personalized GEMs considering the S matrix and the vector showing the reversibility of the
reaction (vector model.rev in Fig. S1A, where non-null elements reflect a reversible reaction). In
directed fGGN, edge direction associates source to target genes if their respective reactions use the
same metabolite respectively as product and reactant. For instance (Fig. S1A), metabolite c is
product of reactions rs and rs (associated with genes g4 and gs), and reactant of reaction rs, thus
generating the edges g4 — gs and gs — ge. Additionally, an edge is formed between both g4 and
gs should the network structure require both genes to be present (i.e. AND reactions). In turn,
should either gene be required (i.e. OR reactions), no edge is established between genes associated
with the same reaction, such as genes gz and gz in reaction rs (Fig. S1A). To find these edges
between gene pairs, we selected all non-null row elements in the S matrix, and reaction names and
respective genes were retrieved. Directed fGGNs thus permit assessing network controllability,
take into account reaction direction, exclude currency metabolites, and distinguish between multi-
gene protein complexes (AND reactions) from alternative enzyme isoforms (OR reactions, e.g.
PKM vs PKLR).

Centrality and Controllability of personalized fGGN

To identify central genes (nodes) based on functional metabolic network analysis, we computed
betweenness centrality, normalized closeness centrality, eccentricity centrality, and degree
centrality for all nodes in directed fGGN. Each of these centrality parameters quantifies how
central a node is in the network. Betweenness centrality quantifies the number of times a node v is
found between the shortest path connecting two other nodes. Closeness and Eccentricity centrality
respectively quantify the average and maximum shortest path length between node v and all other
nodes in the network. Degree centrality of a node v accounts for the number of edges formed
between that node and other nodes in the network, and is given in here as the sum of node input
plus output (i.e. in degree plus out degree). Random networks were constructed through the Erdés—
Rényi model (Fig. S2A), and topology parameters were computed through the igraph R package
(58). All generated personalized fGGNs showed scale free (power-law) degree distribution.

We tested for the similarity between individual sample’s topology parameters in HCC and non-
cancer networks against all other HCC and non-cancer networks (Fig. S2B). For each individual i
that had both HCC and noncancerous fGGN, we retrieved the gene-wise vector of centrality
measures, and computed the Euclidean distance between this vector and those of other samples
(including HCC and noncancerous). This generates 4 different distance vectors for each individual,
representing the distances between the individual’s tumor h or noncancerous m samples against all
other tumors H and noncancerous M samples: VinH, Vihm, VimH, Vimm. We then compared these
distance vectors to test whether the topology parameters in HCC and noncancerous networks show
higher similarity to all other HCC (Rin) or noncancerous (Rim) networks

Ui nH

Rip =
Vi nm
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Vim,H

R., =
b Vi,m,m
With v,y = distance(h; vs H), v;py = distance(h; vs M), v;,,y = distance(m; vs H),
Vimm = distance(m; vs M).

Thus, if Rin || Rim < 1 indicates higher topological similarity between the sample and other HCC
networks, as opposed to Rin || Rim > 1 that show higher topological similarity between the sample
and other noncancerous networks.

We identified minimum driver set nodes (MDS) in complex networks according to the Popov—
Belevitch—Hautus (PBH) rank condition (59) similarly to previous approaches (19). Briefly, the
number of MDS is the maximum geometric multiplicity of the eigenvalue (gxL), or N — rank(LxIn
— A) for a network with size N, eigenvalue L of the adjacency matrix A, and identity matrix In.
Driver nodes are the linearly dependent rows of reduced row echelon form of the matrix A — LxIn.
Nodes are classified as Indispensable, Neutral, and Dispensable nodes by assessing the maximum
geometric multiplicity of the eigenvalue gxL upon removing nodes 1 by 1. Nodes are respectively
considered indispensable, neutral or dispensable if gxL increases, does not change, or decreases.

Identification of controlling genes through in silico gene silencing analyses

We determined network-controlling genes by performing in silico gene silencing, an adaptation of
gene essentiality and lethality analyses but where we considered previously identified (12)
metabolic tasks to assess the effect of gene silencing (through the checkTasks function in RAVEN).
The effect of silencing each of the 2892 metabolic genes was simulated using personalized GEMs
by removing each gene-associated reaction. We then repeated the in silico gene silencing technique
regarding the flux of the objective function for the above identified controlling genes and using
subtype-specific GEMs. Because we seek to identify genes whose silencing affects HCC, but not
noncancerous samples, we excluded all controlling genes simultaneously identified in HCC and
noncancerous models, as well as those associated with replication, transcription and translation.

Network-based stratification of fGGN

We developed a method for tumor stratification of fGGN inspired by network-based stratification
of tumor mutations (24). Briefly, the adjacency matrix A of a generic fGGN is converted to degree-
normalized adjacency matrix B according to the function

Bij = A;j/yD(,1)D(, j)

where D is the diagonal matrix of A. We apply network propagation (smoothing) to spread the
influence of gene expression on the entire network through the iterative function

Ft+1:aFtB+(1_a)FO
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where Fo is a matrix mxn with m genes and n patients (Fig. S1B), « is a tuning parameter that
controls the distance that expression of a gene is allowed to propagate over the network. The
function was iteratively run until Fe1 converges, i.e. matrix norm of Fi— Fr < 107°. We then used
gene expression data to build personalized smoothed networks, and applied quantile normalization
to ensure that all patients follow the same gene-expression distribution.

Following the normalization, Non-negative matrix Fi((mxn) was utilized to stratify the patients
using Nonnegative Matrix Factorization (NMF) algorithm (60, 61). To ensure robust clustering,
network-regularized NMF was performed 1,000 times on subsamples of 80% of the dataset, and
the factorization rank was determined by performing 500 runs for each k (from 2 to12). Because
the cophenetic method indicates that both rank k = 2 or 3 show similar robustness (Fig. S2D, E),
and substantially higher than k = 4, we choose the smallest rank k for which the cophenetic
correlation coefficient starts decreasing (60), i.e. k = 3. The high robustness showed both by k = 2
and 3 stems from the similarity between iHCC1 and iHCC2.

Differential expression and gene set enrichment analysis, KEGG pathway analysis

Differential expression analyses were performed based on raw counts through DESeq (56) using
default parameters.

Gene set enrichment analysis was performed in PIANO (25) either considering manually curated
gene sets for cancer hallmarks or biological processes, both retrieved from MSigDB (62).

We also performed gene expression enrichment on metabolic and signaling pathways in KEGG
through Pathwave (63), with 1000 permutations. Local pathways were selected if at least three
reactions (or genes) were enriched in a pathway (Q < 0.05).

Co-expression analysis

Co-expression analysis was performed for stratifying and controlling genes in each HCC group
through TCSBN (28), and the top 25 genes co-expressed with each of the input genes were
retrieved (Fig. 4). Q-values were computed from the retrieved P and considered significant if Q <
0.01.

Validation

To validate our observations we used the following 4 independent datasets: the RNASeq testing
set from NCI; a cohort with 4 HCC and 4 noncancerous RNASeq samples obtained from GEO
GSEbL5048 (29); the Chiang microarray dataset (6); and a 221 HCC microarray dataset with
associated survival data GEO GSE14520 (9, 32).

Hypoxia experiments in HepG2 cells

HepG2 (human liver hepatoma) cells were cultured and incubated in supplemented EMEM media
at 21% oxygen (normoxia) or 1% oxygen (hypoxia) for 24 hours. Total RNA was extracted HepG2
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cells with the RNeasy Mini Kit (Qiagen) for sequencing. Subsequently, Single-end raw sequencing
data (FASTQ files) were processed to quantify TPM and count values for transcripts by Kallisto
software, using human reference (GRCh38) from ensemble release 92 (64).

Statistics

Throughout, statistic methods are indicated and considered significant after multiple hypothesis
testing (Benjamin-Hochberg) where Q < 0.05.
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to generate personalized models integrating gene expression (circles) data. These models were
then converted to functional gene-gene networks (fGGN) that successfully passed a series of
metabolic tasks (see Methods). Then, we built a generic fGGN representative of all patients for
patient stratification. We additionally used network analyses, together with patient stratification,
to identify potential novel therapeutic targets for treatment. These observations were validated in
4 cohorts that included 183 HCC transcriptomic samples from TCGA (31), 91 HCC microarrays
and associated immunohistochemistry (6), 8 HCC and noncancerous arrays (29), and 221 HCC
tumors (9, 32). B. For HCC and noncancerous networks, 50 HCC having non-cancer expression
data along with the non-cancer samples were considered. HCC and non-cancer networks show
node betweenness variability. Node betweenness was computed in HCC and non-cancer networks,
and the median absolute deviation was then computed within the respective network (highly
varying nodes are shown as red = 1, non-varying nodes are shown as white = 0). Estimates using
degree, closeness or eccentricity show similar observations (results not shown). C. Radar plot of
the median node absolute deviation computed for betweenness, closeness, degree and eccentricity
indicate a larger variability in the HCC vs non-cancer networks. All samples where the median
absolute deviation of the four topological parameters was zero were neglected. D. the relation of
topological parameter “degree” and controllability classification in both cancer and non-cancer
samples. E. Silencing of controlling genes leads to lethality in >95% of the HCC (vs <50% for
silencing of other genes). In noncancerous samples, silencing either kills all or none of the samples,
where all controlling genes lead to lethality, versus 48% of other genes lead to lethality. E. the first
two principal components of cancer and non-cancer for controllability of fGNNSs, The ellipses
indicate 95% confidence regions for the cancer and non-cancer samples (one outlier for non-cancer
samples was observed at the 95% confidence level).
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indicate direction of change (e.g. iIHCC2 shows upregulated heme metabolism in comparison with
IHCC1). Differential expression shows significantly differentially expressed genes for each
chromosome, and horizontal lines indicate Log. fold changes between subtypes. B. Among all
prognostic genes, we identify 42 unfavorable and 63 favorable prognostic metabolic genes
differentially expressed between low and high survival groups iHCC3 and iHCC1 (Q<0.05, LFC
> 1). Prognostic markers were identified from the (11). C. Kaplan-Meyer survival analysis shows
significant differences in patient survival between the 3 HCC subtypes (iIHCC1 > iHCC2 >
IHCC3). D. Correlation plot between tumors and mean gene expression in iIHCC1 and iHCC3 (Q
< 0.01) shows that iIHCC2 tumors tend to be more similar to iIHCCL1 than iHCC3.
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Fig. 3— HCC tumors stratified based on metabolic network analysis show substantial gene

expression, clinical, and genomic differences. A. We determined 3 novel HCC groups, and

their stratifying genes are highlighted in iHCC1 (green), iHCC2 (cyan), and iHCC3 (orange). B.
Expression of stratifying genes and genes that encode for enzymes catalyzing the same reactions
in the 3 IHCC groups.

22



Bidkhori et al. Network-based stratification of HCC

PI3K/AKT/mTOR signaling iHCC1 F——
FAsQSG%% ) Kynurenlne pathway &

UBE4B = ELOA
~ = UBIAD1 /a/
NAGA |, ORAI3 DHCR7‘ 1S0C1 Y INNENNNNENNNNEED

e /I ¥oNAC 12y S
i CEP104 Keve /1 acoxt | g7 TAT

DCAFI 1

EBP

WNT B-catenin signaling

QRICH1 +  SHQ1

: o
o nCHR S
DCAF5 £ B ) N ACACB JIONS
e CYP4V2 7
. N Em Nuona ¢ o at
BTBD7 & ZBTB1 S - = LNPK
: y 2 . scpz @ PPP1R2 “RAB11FIPZ e,

ADCY9 'SOS2
\

I\ \\\

PRsls; MAFRE1‘MAPVD| @ X

DIRC2 ANXA2 7 ! ! 5 /
= @ﬁ!&, i / WIS e D o

- @@

TSPANISH ‘-' /
POGFD FAM S /
: RANBPS /

NDRG3 @ ~OLFML28) Y/ '

P 5 gmy 3> D & 77 SN et =y ¢ ’4 /i

KIF12 _RHBDF1Z CALM2 <D NUAK1 zoag 7/ 7 l'« N f i ERCC3 ’/'

R 4 25N \\ 7 MR .CASPB Bz
5. @ @@ - 2 i Tsn
@ WDR75 A
4 p F3Ll‘

e NUBPL
CRTAP (pNag .
RIPPLY1 ,DONAJC13

I Do, RAser2 5N S
EHMT2_DCTNS * RABLGE YO GoPC3 4 @ - ;

I an J £ £ 3 OXsR1

: & i T oy
pts? o BC 10103 T S : - Ao
’ CCNBI CAPZB . o —— O e T
: — v ’ V7 — : e QLD - d
P @l = = Gskes ToPARCLISET onoT10 &, °T_J A;’:{/

AGTRAP ccnc| UT'PH
MLH‘[ = INconu——- ABCG2

COPS7I§\ ANKS3 el P EcHMT VA

Anns 10 PSRCI PO csTF2 ATAD:‘B PANK4
iHCC3 o MRW*@*%W\M DI g : Q<0.01
i ‘?%m,zmﬁmm iIHCC2
= Positive co-expression
= Negative co-expressior
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were considered, and their top 25 co-expressed genes, as well as co-expression between iHCCs, were determined based on transcriptomic
data in 369 HCC samples (28). We additionally considered AKT1 and MTOR, transcription factors involved in PI3K/AKT/mTOR
signaling, and CTNNB1, which encodes for the transcription factor B-catenin in Wnt signaling pathway. Edges indicate positive (red)

or negative (blue) Pearson correlations (Q < 0.01).
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(6) (GEO GSE9843) and stratified according to stratifying genes in iHCC (Fig. 3). A. Heatmap
shows association between previously identified subclasses and iHCC subgroups identified in this
work (Interferon and iIHCC1; CTNNBI activation/mutation in Wnt/B-catenin pathway and iHCC2,;
PI3K/AKkt signaling activation and iHCC3, Table S6). B. Stratifying genes and genes that encode
for enzymes catalyzing the same reactions in the iIHCC groups show similar expression patterns to
those observed using transcriptomic datasets from TCGA (compare with Fig. 3B).
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controlling genes in iHCC3 (B), iHCC2 (C), and iHCC1 (D). Middle row shows only
controlling genes. All genes with exception to CYP3A4, GLUL, XDH, KMO, and TDO?2
are differentially expressed between hypoxia vs hormoxia (Q < 0.01).

Fatty acid 3 oxidation

iHCC1

Tryptophan metabolism

!

Kynurenine metabolism ——

Fig. 8 — Schematic representation of the main metabolic features in iIHCC1, iIHCC2
and iIHCC3. The main metabolic and signaling alterations are shown for iHCC1, iHCC2
and iIHCC3. Boxes with 2 colors are altered in iIHCC1 and iHCC2. Dotted boxes indicate
altered signaling processes, and colored arrows indicate their effect on metabolism.
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SUPPLEMENTARY TABLE CAPTIONS

Table S1 — Centrality measures in HCC and noncancerous fGGNSs.

Table S2 — Gene MDS and dispensability classification, and in silico gene silencing in HCC
and noncancerous fGGNs. Number of MDS and indispensable genes is also shown for each
subsystem.

Table S3 — HCC clusters of fGGN identified through Nonnegative Matrix Factorization.
Differentially expressed genes between iHCC1, iIHCC2, iHCC3 and noncancerous samples are
indicated. Table also shows comparison of clinical properties, immune signatures, hallmarks of
cancer, genes associated with prognostic genes and liver-specific genes, between iHCC1, iIHCC2
and iIHCC3.

Table S4 — PIANO output between clusters.

Table S5 — FBA result for comparison between iHCCL1, iHCC2 and iHCC3.
Table S6 — Comparison of HCC subtypes identified by ref. (6).

Table S7 — Subtype-specific controlling genes.
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Fig. S1 — Development of a new algorithm for studying metabolic heterogeneity in HCC, and
for patient stratification. A. In this method, we used functional gene-gene (fGGN) networks,
generated from the stoichiometric matrix (S) and reversibility vector (rev). In fGGNSs two genes
(enzymes) are connected not only if they are involved in the same reaction but also if their reactions
share a metabolite. B. Patient expression data was integrated with undirected fGGN, and using
network propagation to generate f{GGN representative of all patients’ gene expression. After
quantile normalization, we used Nonnegative Matrix Factorization (NMF) to stratify the patients.
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Fig. S2 — General properties in fGGN networks. A. Cumulative frequency distribution of degree
in HCC and non-cancer networks, and HCC and noncancerous networks randomly generated
through the Erdés—Rényi model. B. Comparison of topology parameters for HCC and
noncancerous samples. For each personalized fGGN, we computed the ratio of distances of
centrality measures against all other HCC and noncancer fGGN (see Methods). Rin and Rim
respectively represent the similarity ratios HCC/noncancer (see Methods). Here, a ratio >1 shows
topology features resembling noncancerous samples, whereas ratio < 1 show higher similarity to
HCC samples. C. Principal component analysis of gene expression data in HCC and noncancerous
samples shows large overlap between the two sample groups. D. Cophenetic correlation coefficient
between k =2 - 8 indicates that 2 or 3 clusters provide similarly robust separation between samples.
This is due to the high similarity between iHCC2 and iHCC1 (see Main Text). We choose k = 3,
the smallest rank for which the cophenetic correlation coefficient starts decreasing (60).
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Fig. S3 — Stratifying genes in iIHCC1 — iHCC3. Gene expression (FPKM) is presented for the 3

groups.
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Fig. S4 — Tumors show significant switching in the utilization of genes that encode for
enzymes involved in the same reaction/pathway. A. Diagram showing genes in glycolysis and
TCA cycle upregulated in iIHCC1 (top), iIHCC2 (middle) and iHCC3 (bottom). B. Gene expression
in the 3 IHCC groups.
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Fig. S5 — Survival differences identified in 2 independent cohorts. Using the transcriptomic
validation dataset from TCGA or microarray data (32) we stratified tumors based on stratifying
genes identified using network analysis. Survival analysis shows significant survival differences
identified in patients associated with high expression of stratifying genes in iHCC1 — iHCC3.
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Fig. S6 — A cohort with 4 HCC samples where CTNNBL1 is mutated shows high expression of
IHCC2 stratifying genes GLUL, RHBG, SLC13A3 and ACSS3 when compared with
noncancerous samples. Transcriptomic dataset was retrieved from GEO with series id GSE55048
(29).
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(hypoxia) and RNA was extracted. PCA of gene expression (A) and differential expression
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Fig. S8 — Top 20 mutated genes in HCC. Data was retrieved from COSMIC (40).
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Fig. S9 — Drug metabolism shows upregulated genes (green) in iHCC2 (compared with

IHCC3) as determined in Pathwave (63). No genes are downregulated in these pathways.
Details in Table S6.
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Fig. S10 — Xenobiotic metabolism shows upregulated genes (green) in iIHCC2 (compared
with iHCC3) as determined in Pathwave (63). No genes are downregulated in these pathways.

Details in Table S6.
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