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Abstract

Antenatal depression affects ~9-19% of pregnant women and can exert persistent adverse effects on both mother
and child. There is a need for a deeper understanding of antenatal depression mechanisms and the development of
tools for reliable diagnosis and early identification of women at high risk. As the use of untargeted blood
metabolomics in the investigation of psychiatric and neurological diseases has increased substantially, the main
objective of this study was to investigate whether untargeted gas chromatography—-mass spectrometry (GC-MS)
plasma metabolomics in 45 women in late pregnancy, residing in Uppsala, Sweden, could indicate metabolic
differences between women with and without depressive symptoms. Furthermore, seasonal differences in the
metabolic profiles were explored. When comparing the profiles of cases with controls, independently of season, no
differences were observed. However, seasonal differences were observed in the metabolic profiles of control samples,
suggesting a favorable cardiometabolic profile in the summer vs. winter, as indicated by lower glucose and sugar acid
concentrations and lactate to pyruvate ratio, and higher abundance of arginine and phosphate. Similar differences
were identified between cases and controls among summer pregnancies, indicating an association between a
stressed metabolism and depressive symptoms. No depression-specific differences were apparent among depressed
and non-depressed women, in the winter pregnancies; this could be attributed to an already stressed metabolism due
to the winter living conditions. Our results provide new insights into the pathophysiology of antenatal depression, and
warrant further investigation of the use of metabolomics in antenatal depression in larger cohorts.

Introduction

Antenatal depression, i.e., an episode of major depres-
sion during pregnancy’, affects ~9% of pregnant women
in high income countries and more than 19% in low- and
middle-income countries®. Apart from the suffering of the
women, the condition can also have adverse consequences
such as preterm birth, low birth weight, and altered
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behavioral development of the offspring®*. Antenatal
depression is considered a complex multifactorial disease,
as a combination of biological and environmental factors
seem to contribute to its onset™®. Decreased levels of
serum allopregnanolone’, morning cortisol®, and oxyto-
cin” have been reported among depressed pregnant
women. Similarly, a disrupted immune response, with
both decreased and increased levels of inflammatory
markers has been reported among women with antenatal
depression, when compared with controls'®™'?. However,
the identified differences in the measured parameters
have not led to the development of reliable diagnostic
tests. It is, therefore, critical to further investigate the
pathophysiology of antenatal depression and its
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underlying biological mechanisms, in a holistic, discovery-
driven way. Using the omic analyses of the systems biol-
ogy era to identify biomarkers with sufficient accuracy
and sensitivity for early disease diagnosis and/or the
identification of women with higher disease susceptibility,
may facilitate the development of preventive measures
and more targeted effective treatment.

Untargeted blood plasma metabolomics, i.e., the ana-
lysis of the concentration profile of the free small
molecular-weight metabolites in the blood plasma, also
known as the blood plasma metabolic profile, has been
deployed in biomedical applications in the context of
disease diagnosis'®. Investigating the metabolic phy-
siology may provide insights to the genetic and epige-
netic fingerprints of an individual. Further, untargeted
metabolomics may aid in the investigation of molecular
disease mechanisms, as well as the design of novel drugs
and appropriate treatments'>. Metabolomics has pre-
viously been used in psychiatry research to study, e.g.,
metabolic profile in relation to major depressive dis-
order and posttraumatic stress disorder'®'°, however,
among women experiencing depression or depressive
symptoms during the peripartum period the literature is
scarcer. A study of urine metabolomics in postpartum
depression identified a panel of five biomarkers (for-
mate, succinate, 1-methylhistidin, o-glucose, and
dimethylamine), which could distinguish postpartum
depressed from postpartum non-depressed women, as
well as from healthy controls (area under curve (AUC)
in training set =0.948 and in testing set = 0.944)*°. In
addition, a recent metabolomics study identified ten
metabolites that had an altered abundance among
postpartum depressed women compared with healthy
controls®’. However, to date, there are no published
studies on untargeted blood metabolomics among
pregnant women with depressive symptoms.

Seasonal variations in the metabolism have been sug-
gested”***, In addition, the metabolism has been linked
to the immune function®?®, and previous studies in the
general population have reported a seasonal pattern in
gene expression and components of the immune sys-
tem® 3!, Dopico et al.?’ reported an increased pro-
inflammatory transcriptomic profile when analyzing
samples from European populations in the winter vs. the
summer. This rise was coupled with an increase in cir-
culating C-reactive protein (CRP) and the soluble inter-
leukin (IL)-6 receptor?’, markers that have been linked to
depression®>*>, Although results were inconclusive
regarding whether depressive symptoms vary with season
in peripartum populations®*~%’, studies have indicated
winter as the risk season. Furthermore, studies have
reported on the association between the immune system
and metabolism>>?%3%3° Thus, seasonal variation should
be investigated as a potentially differential parameter,
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when analyzing the blood metabolic profile of the preg-
nant women with and without depressive symptoms.

In this context, the aims of this study were to investi-
gate: (i) whether the plasma metabolic profile is dis-
criminatory between pregnant women with and without
depressive symptoms, and (ii) whether there are seasonal
variations in the metabolic profiles of these groups when
categorized into summer and winter childbirths.

Materials and methods
Selection of the cohort

This cross-sectional study was undertaken as part of the
BASIC (Biology, Affect, Stress, Imaging, and Cognition)
project, an on-going population-based panel study
investigating correlates of peripartum affective symptoms
among women giving birth at Uppsala University Hospi-
tal, Uppsala, Sweden®**!. Women residing in Uppsala
County, who register for the routine ultrasound exam-
ination around gestational week 17, are asked about
participation via postal mail. Exclusion criteria are age
younger than 18 years, protected identity, inability to
communicate adequately in Swedish, blood-borne infec-
tious diseases, and non-viable pregnancies. The data col-
lected were mainly derived from web surveys, which
include the Edinburgh Postnatal Depression Scale (EPDS).
The EPDS is a self-administered psychometric ques-
tionnaire used to identify depressive symptoms during
pregnancy and after childbirth*®. It consists of ten state-
ments concerning events that have occurred during the
last seven days, and each statement has four alternative
answers with a score from 0 to 3. In 2012, the Swedish
Council on Health and Technology Assessment*> pub-
lished a systematic review of diagnostics and follow-up of
affective disorders. In their report, they concluded that
there were too few studies on antenatal depression to
recommend any cut-off for the usage of the EPDS during
pregnancy. The Swedish validation recommends an EPDS
score cut-off of 213 points, with a sensitivity of 77% and a
specificity of 94%"*. Nevertheless, to avoid compromising
the sample size of the current study, an EPDS score cut-
off of =12 points was used to distinguish women with
depressive symptoms from those without. This cut-off is
supported by a study using the non-patient version of the
Structural Clinical Interview for DSM-III-R (SCID-NP) as
a reference among pregnant women™’.

Sample-size estimation

For this study, 50 samples were selected from a sub-
group of women participating in the BASIC project,
described above. The total sample size of 50 was selected
based on a number of initial investigatory metabolomics
studies, which could indicate whether there is a significant
trend in the data, in order to be then able to design larger
epidemiological studies. It needs to be noted that in the
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case of metabolomics, large epidemiological studies are
currently limited and there has been a large discussion
about all the pre-analytical steps (e.g., sample collection,
handling, aliquoting etc.), which we have investigated in
the present study and have taken into consideration.
Owing to the relatively small total number of samples, we
made efforts to have these as homogeneous as possible
with respect to parameters that may affect the metabolic
profile apart from the antenatal depressive symptoms,
such as fasting status and season. For this reason, women
that underwent cesarean section and were all after over-
night fasting were included, and grouped by season of
childbirth. Furthermore, range criteria on, e.g., age and
Body Mass Index (BMI) were applied, as described below.

Sample description

The participants included in this sub-study were women
who would undergo an elective cesarean section, as they
were fasting for at least 12 h before blood sampling, which
is very important for the planned analyses (Supplementary
Table 1). The selected samples had been collected from 26
to 39 years old participants who provided a blood sample
prior to an elective cesarean section at around gestational
week 38. For the current study, exclusion criteria were age
beyond the selected range, BMI <21 or >39 kg/m?, par-
ity 2 4, twin pregnancy, smoking, and a hypertension or
diabetes diagnosis. These criteria were selected as they
might affect the quality of the MS profiles and the bio-
logical diversity that can be observed by metabolic
profiling. They are strict in order to ensure high quality of
the data finally included in the analysis. The EPDS was
answered few days before childbirth; when that data
was not available, EPDS data from gestational week 32 was
used instead. Thirty-two participants with an EPDS score
between 1 and 8 were considered controls and 18 parti-
cipants who scored between 12 and 30 were considered
cases. Participants with an EPDS score between 9 and 11
were excluded, in order to generate two clearly separate
groups, aiming at decreasing misclassification in the out-
come. Furthermore, to allow for investigation of any sea-
sonal variation, women were divided in two seasonal
groups according to the date of childbirth. Births between
March 21 and September 20 were considered as occurring
in “summer (S)” (n = 17), and those between September 21
and March 20 as “winter (W)” births (# = 28). The dates
were chosen based on the spring and fall equinoxes.

At gestational week 17, information on educational
attainment, previous depression, smoking, weight, and
height was collected. The final variable on previous
depression included information on self-reported pre-
vious depression and/or a visit to a psychiatrist or psy-
chologist. At gestational week 32, the participants stated
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current employment status and whether they were suf-
fering from any of the following pregnancy complications:
gestational hypertension, gestational diabetes, and/or
preeclampsia. From the medical journals, data on any
pregnancy complication, the date of childbirth and any
medication used, were gathered.

Ethical considerations

The study protocol has been approved by the Regional
Ethical Review Board of Uppsala, Sweden (Dnr 2009/171).
Written informed consent was obtained from all partici-
pants when entering the BASIC study, as well as before
undergoing elective cesarean section, prior to any sam-
pling or testing.

Sample collection

Collection of fasting blood samples in EDTA-smeared
plasma collection vacutainer (Vacuette®, Hettich Labin-
strument) was carried out just before the cesarean section.
Samples were centrifuged at 1500 RCF (relative cen-
trifugal force) at room temperature for 10 min, then the
plasma was transferred to a new tube and stored at
—70°C until analysis. Aliquots of 100 uL were collected
for each sample and two aliquots per sample were sent to
the Institute of Chemical Engineering Sciences, Founda-
tion for Research and Technology-Hellas (FORTH/ICE-
HT), Patras, Greece, in dry ice for the metabolomic
analysis.

Metabolomic data acquisition and normalization

The analysis was carried out at the Metabolic Engi-
neering & Systems Biology Laboratory of FORTH/ICE-
HT, using gas chromatography—mass spectrometry
(GC-MS) for the acquisition of the polar metabolite
profiles. The laboratory personnel performing the MS
profiling was unaware of the case-control status and other
characteristics of the samples. Thus, during the analyses,
there was completely blind selection of the samples to be
quantified for their metabolic profile with respect to the
various groups. Extraction and GC-MS metabolic profile
acquisition protocols have been previously described***.
To each 100 pL sample aliquot, 0.05 pg ribitol (Alfa Aesar,
Germany) and 1 pg [U-'*C]-glucose (Cambridge Isotope
Laboratories, USA) were added as internal standards. The
dried extract of each aliquot was derivatized to its (MeOx)
TMS-derivatives through reaction with 50 pL of 20 mg/
mL methoxyamine hydrochloride (Alfa Aesar, Germany),
in pyridine (Carlo Erba Reagents, Italy) for 90 min, fol-
lowed by reaction with 100 pL N-methyl-trimethylsilyl-
trifluoroacetamide (MSTFA) (Alfa Aesar, Germany) at
40 °C for at least 6 h. The metabolic profile of each aliquot
was measured at least thrice at different derivatization
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times using a Saturn 2200 ion-trap GC-MS (formerly
Varian Inc., now Bruker (GC)/Agilent (MS)). The peak
identification and quantification was based on the com-
mercial NIST and our in-house MESBL peak library. A
total peak area for glucose was estimated as the sum of
glucose-MeOx1, glucopyranose 1, and glucopyranose 2
derivative marker ion peak areas and this was used in
further analysis. The metabolic profile data validation,
normalization, and filtering were carried out using the M-
IOLITE software suite (http://miolite2.iceht.forth.gr)**~>°,
estimating the relative peak areas (RPAs) of the marker
ions of each metabolite derivative with respect to the peak
area of the ribitol ion 217. Metabolites that had a mean
coefficient of variation (CoV) between injections/profiles
of the same sample larger than 25% were filtered out; the
same applies for the biological replicates. After filtering,
the normalized profiles comprised 38 metabolites. Para-
cetamol was detected in few samples with two samples
containing considerable concentrations (relative to the
median abundance of the other molecules); the presence
of paracetamol was considered as complementary infor-
mation and was not included in the subsequent multi-
variate analysis of the profiles. The metabolic profile of
each aliquot was estimated as the mean of the normalized
profiles of all its technical replicates. The metabolic profile
of each sample was estimated as the mean metabolic
profile of its aliquots. Three samples, one case and two
controls, did not yield sound metabolic profiles and were
excluded from further analysis (Supplementary Table 1).
The final normalized metabolic profile dataset (including
the paracetamol measurements) of the 47 samples is
shown in Supplementary Table 2.

A principal component analysis (PCA) of the metabolic
profiles indicated two women, both cases but from dif-
ferent seasonal groups, as having a substantially different
profile than all others (Supplementary Fig. 1). Owing to
the observed large differences with respect to the other
samples, which pointed to additional medical issues (e.g.,
chorioangioma), these two samples were excluded from
further analyses. This resulted in a final dataset of 37
metabolite profiles from 45 plasma samples, 15 from cases
and 30 from controls, considered in this study for the
extraction of biologically relevant conclusions.

Statistical analyses
Demographic, medical, and questionnaire data

Any differences in the demographic, medical, and
questionnaire data between the four groups were eval-
uated by non-parametric tests, as the data were not nor-
mally distributed. The Kruskal-Wallis test was applied to
examine associations between continuous variables.
Likewise, the Fisher’s exact test (two-sided) was applied to
examine associations between categorical variables. A p-
value of <0.05 was considered as statistically significant.
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Analysis was conducted using SPSS version 24 (IBM
Corp, Armonk, NY) and the STATA-9 statistical software.

Metabolomic dataset multivariate statistical analysis

Hierarchical clustering (HCL), PCA, and significance
analysis of microarrays (SAM) algorithms were applied as
implemented in version 4.8.1 of the omic data analysis
TM4 MeV software®’. The analysis was carried out with
missing values not imputed. The metabolites with con-
centration significantly higher or lower in a set of meta-
bolic profiles compared to another, were, respectively,
referred to as positively or negatively significant metabo-
lites of the particular comparison. Where standardized
RPA values are mentioned, the standardized RPA of
metabolite M in profile j,stRPAf\4 , is equal to:

RPA/ — RPAw
SDrpay,

where RPAJ;\4 , RPAwm, SDgpa,, depict, respectively, the RPA
of metabolite M in profile j, the mean RPA of metabolite
M in all profiles and its standard deviation. In SAM, the
threshold of significance is selected as the largest for the
false discovery rate (FDR)—median to be smaller than
10%. This computational analysis has previously been
described for untargeted GC-MS metabolomics in
Papadimitropoulos et al.*’.

stRPA) =
M

Results

The clinical characteristics of the study sample are
presented in Table 1. One summer case and one winter
case were on treatment with selective serotonin reuptake
inhibitors (SSRIs) in gestational week 32. According to
their medical journals, one woman was on treatment prior
to the current pregnancy, while the other one initiated
treatment around gestational week 30, both because of
depression. Around half of the winter controls reported
previous depression, while the number was 67% among
summer controls and 86% among both summer and
winter cases. The median time between the gestational
week 32 survey and date of childbirth was 6.57 weeks
(Interquartile range, IQR = 6-7).

Metabolomic data analysis

Figure 1 and Supplementary Fig. 2 show, respectively,
(a) the hierarchical trees of the plasma samples and the
metabolites resulting from the HCL and (b) the graph of
the metabolic profiles from the PCA of the metabolomic
dataset (45 samples). The hierarchical tree of the meta-
bolites revealed three main groups with respect to their
concentration profiles (Fig. 1). The first group comprised
samples with high levels of glucose, a sugar pyranose,
glycerate, lactate, aminomalonic acid, and 2-
hydroxybutanoic acid. The second group included cho-
lesterol, the polyunsaturated fatty acids (PUFAs)
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Table 1 Background characteristics of the participants (n = 45)

Summer control Summer case Winter control Winter case
Participants, n 10 7 20 8

Age in years, median (IQR) 34.0 (30.0-35.3)

Pre-pregnancy BMI, median (IQR) 23.8 (21.9-25.0)

EPDS score, median (IQR) 6.0 (4.8-8.0)
EPDS assessed prior to cesarean section, n (%) 2 (20.0)
EPDS assessed in gestational week 32, n (%) 8 (80)
Levothyroxine treatment, n (%) 1(10.0)
SSRI treatment, n (%) 0 (0.0)
Previous depression®, n (%) 6 (66.7)
Nulliparous, n (%) 2 (20.0)

Gestational age in days, median (IQR) 2735 (270.0-276.3)

34.0 (28.0-35.0)
24.3 (23.0-27.8)

345 (33.0-35.0)
245 (22.5-26.1)

30.5 (285-33.8)
23.7 (22.7-243)

14.7 (13.0-16.0) 3 (20-5.6) 15.5 (14.0-16.8)
4 (57.1) 6 (30.0) 3(375)
3 (429) 14 (70.0) 5 (62.5)
1(143) 0 (0.0) 2 (25.0)
1(143) 0 (0.0) 1(125)
6 (85.7) 9 (474) 6 (85.7)
2 (286) 5(25.0) 2 (25.0)

273.0 (272.0-275.0) 272.5 (270.3-277.0) 2720 (268.0-273.8)

Statistical differences measured by Kruskal-Wallis test and Fisher's exact test between the four groups
IQR interquartile range, BMI body mass index, EPDS Edinburgh postnatal depression scale, SSR/ selective serotonin reuptake inhibitors

#Missing values affect percentages

octadecanoic and linoleic acid, methyl-benzoate, glycerol,
threonate, gluconate, erythronate, phosphate, and ery-
thritol. The third group included all detected amino acids,
myo-inositol, urea, sorbitol, and pyruvate, with myo-ino-
sitol, urea, threonine, valine, glutamate, sorbitol, and
pyruvate forming a separate subgroup from the rest of the
molecules (all amino acids). A clustering of the metabolic
profiles based mainly on these three groups is apparent
from the respective hierarchical tree (top of the heatmap
in Fig. 1). PCA supports the observation from HCL
(Supplementary Table 3), indicating a separation of the
profiles in the principal component 1 (PC1) axis based on
the concentration of glucose and the unknown sugar
pyranose (high on the positive PC1/low on the negative)
and of lysine, arginine, phenylalanine, and serine (low on
the positive PC1/high on the negative). Moreover, profiles
with positive PC2 values are rich in metabolites associated
with the lipid-enriched second group identified from HCL
analysis, but with lower concentrations of valine and
threonine. Finally, positive PC3 values indicate mainly
profiles with high concentrations of leucine, isoleucine,
alanine, and pyruvate, and lower abundance in myo-
inositol, sorbitol, and gluconate.

Multivariate significance analysis, SAM, was applied to
identify the metabolites that are actually of statistically
differential abundance between the various groups of
interest, complementing the findings from HCL and PCA.
Comparing the cases to the controls independently of the
season of birth, no significant differences in their meta-
bolic profiles were observed. However, the summer cases
and controls presented diverse metabolic profiles. The
discriminatory metabolites, identified by SAM, are shown
in Table 2 and are supported by HCL (Fig. 1) and PCA

(Supplementary Fig. 2). The majority of the summer cases
were characterized by higher abundance of the first
(glucose-rich) and second (lipid-rich) metabolite clusters,
and a lower abundance of the third (amino acid-rich)
metabolite cluster. In the PCA graph, these profiles corre-
spond mainly to positive PC1 and PC2, and negative PC3.

Moreover, significant differences were observed
between summer and winter controls. The statistically
differential metabolites identified by SAM are shown in
Table 3. Interestingly, the summer case profile resembles
largely that of the winter control, as it is also supported by
HCL and PCA results. There was no clear discrimination
between the metabolic profiles of the cases and the con-
trols among the winter samples, nor between samples
from summer and winter cases, as evident by SAM and
also supported by the HCL and PCA analyses.

Discussion

In this study, we demonstrate the use of untargeted
metabolomics in discriminating plasma metabolite pro-
files between pregnant women with and without depres-
sive symptoms. In the overall analysis, comprising
samples of both summer and winter childbirths, no sig-
nificant differences in the metabolic profiles between
cases and controls were observed. Nevertheless, we
demonstrate that there is a discriminatory metabolic
profile between cases giving birth during the summer and
their respective controls. Furthermore, we demonstrated
that the metabolic profiles in late pregnancy differ
between controls giving birth in the summer compared
with those giving birth in the winter.

Among the summer samples, we identified a higher
abundance of glucose and lactate and a lower abundance
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Fig. 1 The hierarchical tree resulting from the hierarchical clustering analysis of the standardized GC-MS metabolic profiles (Pearson
correlation coefficient distance metric). The samples of the summer controls S(0), summer cases S(1), winter controls W(0), and winter cases W(1),
are colored orange, red, light and dark blue, respectively (see on top of the tree).
respectively, if xx =1, and controls if xx = 0. If the postpartum condition of the women is known, then those with depressive symptoms are depicted
with yy =1 and 0 otherwise. X indicates an unknown postpartum condition for these women. The number at the end of the sample name
corresponds to the sample no. in Supplementary Table 1. Three main metabolite clusters are indicated colored in dark blue, light blue, and pink (see

-0.13963175

0.43018413

1.0
glucose_total
Un_024& (RT:24.4,204,sugar pyranose)
glycerate
aminomalonic acid 3THMS
Un_0181 (P2S22)
Un 0089 (P1933 a_33)
lactate ZTHM
Un_0012 (U_DDSi
Z-hydroxybutanoic acid IZTMS
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Un_D0E3 (A_D&8,u_032,a_39,x_2)
threonate 3TMS
Un_0245 (erythronate putative)
gluconate ETMS
glycerol 3THMS
nethyl benzoate 1THMS
octadecanoic acid 1THMS
linoleic acid 1TMS
erythritol 4TMS (putative)
phosphate 4THMS
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sorbitol &THMS
glutamate effective
serine ZTMS
arginine/ornithine 4THMS
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glutamine 3TMS
lysine_effective
ethanolamine 3TMS
alanine ZTHS
leucine ZTHMS
isoLeucine ZTMS

Skxyy) and Wixxyy) depict antenatal summer or winter cases,

of pyruvate in cases than in controls. The higher abun-
dance of glucose combined with the higher lactate to
pyruvate ratio indicate alterations in both the tricarboxylic
acid (TCA) and the Cori cycles which have been asso-
ciated with metabolic stress conditions®. Lin et al.*,
reported also significant lactate abundance differences in
the urine metabolomic study among postpartum depres-
sed women, compared with both postpartum controls and
non-pregnant controls.

Plasma arginine, an amino acid, has previously been
reported lower among women with antenatal depression
in the first trimester, when compared with healthy con-
trols®>. In a recent untargeted metabolomics study, tyr-
osine was identified in lower abundance in urine among
postpartum depressed women when compared with
healthy controls*'. On the contrary, the concentration of
alanine and homocysteine were reported to be elevated
among postpartum depressed”’.

Aminomalonic acid was found in higher abundance in
both summer cases and winter controls, when compared
with summer controls. It is a metabolite possibly originating
from errors in protein synthesis, and has been associated
with oxidative stress conditions®. Summer cases, in com-
parison with summer controls, also had a statistically higher
abundance of glycerate than the other two groups. Glyce-
rate shares a pathway with oxalate, with increased con-
centration of the latter being associated with increased lipid
B-oxidation®*, Moreover, 2-hydroxybutanoic acid is an early
indicator of insulin resistance in non-diabetic subjects, and
has been suggested as a predictor of glucose intolerance
progression”

The higher abundance in stress-associated metabolites
identified in most summer cases and winter controls in
relation to the summer controls has to be considered
in combination with the observed lower concentration in
essential amino acids (e.g., threonine and the branched
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Table 2 Metabolites with differential abundance in the
summer controls compared with the summer cases

Higher abundance in Lower abundance in summer

summer controls controls

1. un_0246 (RT:24.4,204,sugar
pyranose)

2. Phosphate
3. Arginine
FDR—median = 0%
4. un_0245 (erythronate putative)
5. Urea
6. un_0012 (U_009)
7. Aminomalonic acid
8. Glycerate
9. Glucose
10. Threonine
11. Gluconate
FDR—median =4.9%
12. Lactate
13. Pyruvate
FDR—median = 832%

The metabolites are shown in decreasing order of statistical significance in SAM
for a false discovery rate (FDR)—median = 8.32% (i.e., 1 potentially false-positive
metabolite out of the 13 identified); the results at stricter FDR thresholds are also
indicated. The unknowns are shown with their number in the in-house
metabolomic peak library (in parenthesis we include labels that have been used
in previous publications for comparability purposes)

chain amino acids (BCAAs) leucine, and isoleucine) and
myo-inositol. BCAAs were recently proposed as bio-
markers of depression and their observed profile in our
study is in agreement with these reports®.

With respect to seasonal variation, the profiles of the
winter controls suggest winter as a season with a meta-
bolic risk profile, in line with other studies’***. On the
contrary, the majority of women in the summer control
group had amino acid-rich profiles with a lower abun-
dance in sugars and/or PUFAs, suggesting a healthier
cardiometabolic profile. In Sweden, the winter is char-
acterized by prolonged darkness and cold temperatures,
which could be regarded as an environmental stressor.
These observations could partially be due also to the
differences in diet between the seasons, e.g., an increased
consumption of salads and fresh vegetables during sum-
mer compared to winter. Unfortunately, no information
on the participants’ diet was collected to conclusively
interpret our observations. However, this study forms the
basis for the extension of the questionnaire to diet
information, while supporting the seasonal variation
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Table 3 Metabolites with differential abundance in the
winter controls compared with the summer control
samples

Higher abundance in winter Lower abundance in winter

controls controls

1. Arginine
2. Phosphate
3. Pyruvate

FDR—median = 0%

4. un_0246 (sugar pyranose)

5. Aminomalonic acid

6. un_0012 (U_009)

7..un_0245 (erythronate putative)

8. Gluconate

FDR—median = 9.46%

The metabolites are shown in decreasing order of statistical significance in SAM
for a false discovery rate (FDR)—median=9.46% (i.e,<1 false positive
metabolite out of the 8 identified); the results at the strictest FDR=0%
threshold are also indicated. The unknowns are shown with their number in the
in-house metabolomic peak library (in parenthesis we include labels that have
been used in previous publications for comparability purposes)

which could be an additional risk factor for antenatal
depression.

Strengths of this study include its novelty with respect
to the application of untargeted blood plasma metabo-
lomics in antenatal depression and the suggestion of
biomarker profiles for summer cases and between sea-
sons. Untargeted metabolomics is unbiased in the sense
that the metabolites have not been subjectively chosen
based on an original hypothesis, thus can provide new
insights regarding the particular pathophysiology. A
robust quality control process ensured appropriate profile
normalization and correction from any experimental
biases. The main limitation of the study was the sample
size, which preferably should be larger than 12 partici-
pants per group, and was thus planned. The number of
samples in some subgroups ended up being smaller. This
was primarily because of last minute unavailability of
subjects to be recruited in the sub-study during certain
periods, and other administrative reasons; the exact
number of subjects within each subgroup was made clear
after the categorization and technical control of all sam-
ples. The inadequate sample size might have compro-
mised a more thorough analysis of differences between
winter cases and winter controls, if these indeed exist. The
identification of participants based on a screening tool
and not a psychiatric interview has also to be considered.
The included cases would probably not all have fulfilled
diagnostic criteria for depression, due to moderately
elevated EPDS scores. The discrepancy between the
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time-point of EPDS administration and time of sampling
is another limitation that has to be acknowledged. All
women were administered the questionnaire prior to the
cesarean section, but only a minority (15/45) completed it
at that time-point, therefore their classification as case or
control was based on their score in gestational week 32,
taking place ~7 weeks earlier. This limitation may bias the
results if the women would have switched depressive
symptoms status during this time-period; nevertheless,
the strong correlation between EPDS scores at weeks 32
and 38 observed in the whole of the BASIC cohort, as well
as the exclusion of women with scores 9, 10, and 11 might
indicate that the degree of misclassification is expected to
be significant. Another limitation that has to be con-
sidered is that history of depression was higher among
cases of antenatal depressive symptoms but quite pre-
valent even among controls. If depression has long-term
effects on biological systems, this may limit the ability to
find differences between the groups, or even that differ-
ences found among mothers with summer childbirths
might be because of history of previous depression and
not just current antenatal depressive symptoms. More-
over, one woman from summer and one among winter
cases reported treatment with SSRIs at gestational week
32 due to depression, and both were on treatment at the
time of blood sampling; how this treatment may affect the
metabolic profile and thus our results in not known. With
regard to the definition of season, due to the limited
sample size, it was not possible to create more clear-cut
seasons, such as only including births in, e.g,
June—August and December—February. Finally, no infor-
mation regarding the women’s diet in general was avail-
able, and, thus, it was not possible to verify major
differences in diet between seasons. Acute dietary stan-
dardization was reported to decrease the variation of
urinary metabolic profiles, but not in plasma or saliva®”.
The finding of paracetamol in many samples is not sur-
prising as it is generally administered to women prior to
the elective cesarean section and our results indicated that
it did not have significant effect on the metabolic profile
of the women. Moreover, we consider peripartum
depression a multifactorial disease®® suggesting that not
all biochemical changes would be expected to be mani-
fested in the blood plasma metabolic profile assessed by
GC-MS metabolomics.

Despite these limitations, this study has provided valu-
able new insights about this pathophysiological condition,
indicating season as a moderating factor, and pinpointed
possible improvements in the case assessment process
that are valuable for the study of this disease. The results
obtained can thus form the basis for the design of future
studies with larger cohorts.
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