This is the published version of a paper published in .

Citation for the original published paper (version of record):

FluidFFT: Common API (C++ and Python) for Fast Fourier Transform HPC Libraries
Journal of Open Research Software, 7(1)
https://doi.org/10.5334/jors.238

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-248292
The Python package fluidfft provides a common Python API for performing Fast Fourier Transforms (FFT) in sequential, in parallel and on GPU with different FFT libraries (FFTW, P3DFFT, PFFT, cuFFT). fluidfft is a comprehensive FFT framework which allows Python users to easily and efficiently perform FFT and the associated tasks, such as computing linear operators and energy spectra. We describe the architecture of the package composed of C++ and Cython FFT classes, Python “operator” classes and Pythran functions. The package supplies utilities to easily test itself and benchmark the different FFT solutions for a particular case and on a particular machine. We present a performance scaling analysis on three different computing clusters and a microbenchmark showing that fluidfft is an interesting solution to write efficient Python applications using FFT.

Keywords: fluid dynamics; Python; FFT; simulations

Funding statement: This project has indirectly benefited from funding from the foundation Simone et Cino Del Duca de l’Institut de France, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 647018-WATU and Euhit consortium) and the Swedish Research Council (Vetenskapsrådet): 2013–5191. We have also been able to use supercomputers of CIMENT/GRICAD, CINES/GENCI (grant 2018-A0040107567) and the Swedish National Infrastructure for Computing (SNIC).
written for GPGPU such as OpenCL and CUDA have emerged, with their own FFT implementations, namely clFFT and cuFFT respectively.

Python can easily link these libraries through compiled extensions. For a Python developer, the following packages leverage this approach to perform FFT:

- sequential FFT, using:
 - `numpy.fft` and `scipy.fftpack` which are essentially C and Fortran extensions for FFTPACK library.
 - `pyFFTW` which wraps FFTW library and provides interfaces similar to the `numpy.fft` and `scipy.fftpack` implementations.
 - `mkl_fft`, which wraps Intel’s MKL library and exposes python interfaces to act as drop-in replacements for `numpy.fft` and `scipy.fftpack`.

- FFT with MPI, using:
 - `mpiFF4py` built on top of `pyFFTW` and `numpy.fft`; and its successor `mpi4py-fft`.
 - `pfft-python` which provides extensions for PFF library.

- FFT with GPGPU, using:
 - `Reikna`, a pure python package which depends on `PyCUDA` and `PyOpenCL`.
 - `pytorch_fft`: provides C extensions for cuFFT, meant to work with PyTorch, a tensor library similar to NumPy.

Although these Python packages are under active development, they suffer from certain drawbacks:

- No effort so far to consolidate sequential, MPI and GPGPU based FFT libraries under a single package with similar syntax.
- Quite complicated even for the simplest use case scenarios. To understand how to use them, a novice user has to, at least, read the FFTW documentation.
- No benchmarks between libraries and between the Python solutions and solutions based only on a compiled language (as C, C++ or Fortran).
- Provides just the FFT and inverse FFT functions, no associated mathematical operators.

The Python package `fluidfft` fills this gap by providing C++ classes and their Python wrapper classes for performing simple and common tasks with different FFT libraries. It has been written to make things easy while being as efficient as possible. It provides:

- tests,
- documentation and tutorials,
- benchmarks,
- operators for simple tasks (for example, compute the energy or the gradient of a field).

In the present article, we shall start by describing the implementation of `fluidfft` including its design aspects and the code organization. Thereafter, we shall compare the performance of different classes in `fluidfft` in three computing clusters, and also describe, using microbenchmarks, how a Python function can be optimized to be as fast as a Fortran implementation. Finally, we show how we test and maintain the quality of the code base through continuous integration and mention some possible applications of `fluidfft`.

Implementation and architecture

The two major design goals of `fluidfft` are:

- to support multiple FFT libraries under the same umbrella and expose the interface for both C++ and Python code development.
- to keep the design of the interfaces as human-centric and easy to use as possible, without sacrificing performance.

Both C++ and Python APIs provided by `fluidfft` currently support linking with FFTW (with and without MPI and OpenMP support enabled), MKL, PFFT, P3DFFT, cuFFT libraries. The classes in `fluidfft` offers API for performing double-precision computation with real-to-complex FFT, complex-to-real inverse FFT, and additional helper functions.

C++ API

The C++ API is implemented as a hierarchy of classes as shown in Figure 1. The naming convention used for the classes `<Type of FFT>With<Name of Library>` is a cue for how these are functioning internally. By utilizing inheritance, the classes share the same function names and syntax defined in the base classes, shown in white boxes in Figure 1. Some examples of such functions are:

- `alloc_array_X`: Allocates array to store a physical array with real datatype for the current process.
- `alloc_array_K`: Allocates array to store a spectral array with complex datatype for the current process.
- `init_array_X_random`: Allocates and initializes a physical array with random values.
- `test`: Run tests for a class by comparing mean and mean energy values in an array before and after a set of `fft` and `ifft` calls.
- `bench`: Benchmark the `fft` and `ifft` methods for certain number of iterations.

Remaining methods which are specific to a library are defined in the corresponding child classes, depicted in coloured boxes in Figure 1, for example:

- `are_parameters_bad`: Verifies whether the global array shape can be decomposed with the number of MPI processes available or not. If the parameters are compatible, the method returns `false`. This method is called prior to initializing the class.
- `fft` and `ifft`: Forward and inverse FFT methods.

Let us illustrate with a trivial example, wherein we initialize the FFT with a random physical array, and perform a set of `fft` and `ifft` operations.
As suggested through comments above, in order to switch the FFT library, the user only needs to change the header file and the class name. An added advantage is that the user does not need to bother about the domain decomposition while declaring and allocating the arrays. A few more helper functions are available with the FFT classes, such as functions to compute the mean value and energies in the array. These are demonstrated with examples in the documentation.2 Detailed information regarding the C++ classes and its member functions are also included in the online documentation.3

Python API

Similar to other packages in the FluidDyn project, **fluidfft** also uses an object-oriented approach, providing FFT classes. This is in contrast with the approach adopted by *numpy.fft* and *scipy.fftpack* which provides functions instead, with which the user has to figure out the procedure to design the input values and to use the return values, from the documentation. In **fluidfft**, the Python API wraps all the functionalities of its C++ counterpart and offers a richer experience through an accompanying operator class.

As a short example, let us try to calculate the gradient of a plane sine-wave using spectral methods, mathematically described as follows:

\[
\begin{align*}
 u(x, y) &= \sin(x + y) \quad \forall x, y \in [0, L] \\
 \partial_k (k_x, k_y) &= \frac{1}{L^2} \int_0^L \int_0^L u(x, y) \exp(ik_x x + ik_y y) dx dy \\
 \nabla u(x, y) &= \sum_{k_x} \sum_{k_y} ik \partial_k (k_x, k_y) \exp(-ik_x x - ik_y y)
\end{align*}
\]

where \(k_x, k_y\) represent the wavenumber corresponding to \(x\) and \(y\) directions, and \(k\) is the wavenumber vector. The equivalent pseudo-spectral implementation in **fluidfft** is as follows:

```python
from fluidfft.fft2d.operators import OperatorsPseudoSpectral2D, pi
from numpy import sin

nx = ny = 100
lx = ly = 2 * pi
oper = OperatorsPseudoSpectral2D(nx, ny, lx, ly, fft="fft2d.with_fft2d")
u = sin(oper.X + oper.Y)
u_fft = oper.fft(u)
px_u = oper.ifft(px_u_fft)
py_u = oper.ifft(py_u_fft)
grad_u = (px_u, py_u)
```
A parallelized version of the code above will work out of the box, simply by replacing the FFT class with an MPI-based FFT class, for instance `fft2d.with_fftomp2d`. One can also let `fluidfft` automatically choose an appropriate FFT class by instantiating the operator class with `fft=None` or `fft="default"`. Even if one finds the methods in the operator class to be lacking, one can inherit the class and easily create a new method, for instance using the wavenumber arrays, `oper.KX` and `oper.KY`. Arguably, a similar implementation with other available packages would require the know-how on how FFT arrays are allocated in the memory, normalized, decomposed in parallel and so on. Moreover, the FFT and the operator classes contain objects describing the shapes of the real and complex arrays and how the data is shared between processes. A more detailed introduction on how to use `fluidfft` and available functions can be found in the tutorials.

Thus, we have demonstrated how, by using `fluidfft`, a developer can easily switch between FFT libraries. Let us now turn our attention to how the code is organized. We shall also describe how the source code is built, and linked with the supported libraries.

Code organization
The internal architecture of `fluidfft` can be visualized as layers. Through Figure 2, we can see how these layers are linked together forming the API for C++ and Python development. For simplicity, only one FFT class is depicted in the figure, namely `FFT2DMPIWithFFTWMPI2D`, which wraps FFTW’s parallelized 2D FFT implementation. The C++ API is accessed by importing the appropriate header file and building the user code with a Makefile, an example of which is available in the documentation.

The Python API is built automatically when `fluidfft` is installed. It first generates the Cython source code as a pair of `.pyx` and `.pxd` files containing a class wrapping its C++ counterpart. The Cython files are produced from template files (specialized for the 2D and 3D cases) using the template library mako. Thereafter, Cython generates C++ code with necessary Python bindings, which are then built in the form of extensions or dynamic libraries importable in Python code. All the built extensions are then installed as a Python package named `fluidfft`. A helper function `fluidfft.import_fft_class` is provided with the package to simply import the FFT class. However, it is more convenient and recommended to use an operator class, as described in the example for Python API. Although the operator classes can function as pure Python code, some of its critical methods can be compiled, if Pythran [5] is available during installation of `fluidfft`. We will show towards the end of this section that by using Pythran, we reach the performance of the equivalent Fortran code.

Figure 2: Flowchart illustrating how the C++ and Python API are built and used for one particular class, viz. `FFT2DMPIWithFFTWMPI2D`. The dotted arrows in C++ part stand for include statements, demonstrating the class hierarchy and in the Python part indicate how different codes are imported. On the bottom, a smaller flowchart demonstrates how to use the API by writing user code.
To summarize, \texttt{fluidfft} consists of the following layers:

- One C++ class per FFT library derived from a hierarchy of C++ classes as shown in Figure 1.
- Cython wrappers of the C++ classes with their unit test cases.
- Python operator classes (2D and 3D) to write code independently of the library used for the computation of the FFT and with some mathematical helper methods. These classes are accompanied by unit test cases.
- Pythran functions to speedup critical methods in the Python operator classes.

Command-line utilities (\texttt{fluidfft-bench} and \texttt{fluidfft-bench-analysis}) are also provided with the \texttt{fluidfft} installation to run benchmarks and plot the results. In the next subsection, we shall look at some results by making use of these utilities on three computing clusters.

\textbf{Performance}

\textit{Scalability tests using \texttt{fluidfft-bench}}

Scalability of \texttt{fluidfft} is measured in the form of strong scaling speedup, defined in the present context as:

$$S_p(N_p) = \frac{\text{Time elapsed for } N \text{ iterations with } n_{\text{max}} \text{ processes}}{\text{Time elapsed for } N \text{ iterations with } p \text{ processes}}$$

where \(n_{\text{max}}\) is the minimum number of processes employed for a specific array size and hardware. The subscripts, \(\alpha\) denotes the FFT class used and “fastest” corresponds to the fastest result among various FFT classes.

To compute strong scaling the utility \texttt{fluidfft-bench} is launched as scheduled jobs on HPC clusters, ensuring no interference from background processes. No hypethreading was used. We have used \(N = 20\) iterations for each run, with which we obtain sufficiently repeatable results. For a particular choice of array size, every FFT class available are benchmarked for the two tasks, forward and inverse FFT. Three different function variants are compared (see the legend in subsequent figures):

- \texttt{fft_cpp}, \texttt{ifft_cpp} (continuous lines): benchmark of the C++ function from the C++ code. An array is passed as an argument to store the result. No memory allocation is performed inside these functions.
- \texttt{fft_as_arg}, \texttt{ifft_as_arg} (dashed lines): benchmark of a Python method from Python. Similar to the C++ code, the second argument of this method is an array to contain the result of the transform, so no memory allocation is needed.
- \texttt{fft_return}, \texttt{ifft_return} (dotted lines): benchmark of a Python method from Python. No array is provided to the function to contain the result, and therefore a numpy array is created and then returned by the function.

On big HPC clusters, we have only focussed on 3D array transforms as benchmark problems, since these are notoriously expensive to compute and require massive parallelization. The physical arrays used in all four 3D MPI based FFT classes are identical in structure. However, there are subtle differences, in terms of how the domain decomposition and the allocation of the transformed array in the memory are handled.

Hereafter, for the sake of brevity, the FFT classes will be named in terms of the associated library (for example, the class \texttt{FFT3DMPIWithFFTW1D} is named \texttt{fftw1d}). Let us go through the results plotted using \texttt{fluidfft-bench-analysis}.

\textbf{Benchmarks on Occigen} Occigen is a GENCI-CINES HPC cluster which uses Intel Xeon CPU E5–2690 v3 (2.6 GHz) processors with 24 cores per node. The installation was performed using Intel C++ 17.2 compiler, Python 3.6.5, and Open-MPI 2.0.2.

Figure 3 demonstrates the strong scaling performance of a cuboid array sized \(384 \times 1152 \times 1152\). This case is particularly interesting since for FFT classes implementing 1D domain decomposition (\texttt{fftw1d} and \texttt{fftwmpi3d}), the processes are spread on the first index for the physical input array. This restriction is as a result of some FFTW library internals and design choices adopted in \texttt{fluidfft}. This limits \texttt{fftw1d} (our own MPI implementation using MPI types and 1D transforms from FFTW) to 192 cores and \texttt{fftwmpi3d} to 384 cores. The latter can utilize more cores since it is capable of working with empty arrays, while sharing some of the computational load. The fastest methods for relatively low and high number of processes are \texttt{fftw1d} and \texttt{p3dfft} respectively for the present case.

The benchmark is not sufficiently accurate to measure the cost of calling the functions from Python (difference between continuous and dashed lines, i.e. between pure C++ and the \texttt{as_arg} Python method) and even the creation of the numpy array (difference between the dashed and the dotted line, i.e. between the \texttt{as_arg} and the \texttt{return} Python methods).

\textbf{Figure 4} demonstrates the strong scaling performance of a cubical array sized \(1152 \times 1152 \times 1152\). For this resolution as well, \texttt{fftw1d} is the fastest method when using only few cores and it can not be used for more that 192 cores. The faster library when using more cores is also \texttt{p3dfft}. This also shows that \texttt{fluidfft} can effectively scale for over 10,000 cores with a significant increase in speedup.

\textbf{Benchmarks on Beskow} Beskow is a Cray machine maintained by SNIC at PDC, Stockholm. It runs on Intel Xeon CPU E5-2695 v4 (2.1 GHz) processors with 36 cores per node. The installation was done using Intel C++ 18 compiler, Python 3.6.5 and CRAY-MPICH 7.0.4.

In Figure 5, the strong scaling results of the cuboid array can be observed. In this set of results we have also included intra-node scaling, wherein there is no latency introduced due to typically slower node-to-node communication. The fastest library for very low (below 16) and very high (above 384) number of processes in this configuration is \texttt{p3dfft}. For moderately high number of processes (16 and above) the fastest library is \texttt{fftwmpi3d}. Here too, we notice that \texttt{fftw1d} is limited to 192 cores and \texttt{fftwmpi3d} to 384 cores, for reasons mentioned earlier.
Figure 3: Speedup computed from the median of the elapsed times for 3D fft \((384 \times 1152 \times 1152\), left: fft and right: ifft) on Occigen.

Figure 4: Speedup computed from the median of the elapsed times for 3D fft \((1152 \times 1152 \times 1152\), left: fft and right: ifft) on Occigen.

Figure 5: Speedup computed from the median of the elapsed times for 3D fft \((384 \times 1152 \times 1152\), left: fft and right: ifft) on Beskow.
A striking difference when compared with Figure 3 is that \texttt{fftw1d} is not the fastest of the four classes in this machine. One can only speculate that this could be a consequence of the differences in MPI library and hardware which has been employed. This also emphasises the need to perform benchmarks when using an entirely new configuration.

The strong scaling results of the cubical array on Beskow are displayed on Figure 6, wherein we restrict to inter-node computation. We observe that the fastest method for low number of processes is again, \texttt{fftwmpi3d}. When high number of processes (above 1000) are utilized, initially \texttt{p3dfint} is the faster methods as before, but with 3000 and above processes, \texttt{pfft} is comparable in speed and sometimes faster.

Benchmarks on a LEGI cluster Let us also analyse how \texttt{fluidfft} scales on a computing cluster maintained at an institutional level, named Cluster8 at LEGI, Grenoble. This cluster functions using Intel Xeon CPU E5-2650 v3 (2.3 GHz) with 20 cores per node and \texttt{fluidfft} was installed using a toolchain which comprises of gcc 4.9.2, Python 3.6.4 and OpenMPI 1.6.5 as key software components.

In Figure 7 we observe that the strong scaling for an array shape of 320 × 640 × 640 is not far from the ideal linear trend. The fastest library is \texttt{fftwmpi3d} for this case. As expected from FFT algorithms, there is a slight drop in speedup when the array size is not exactly divisible by the number of processes, i.e. with 12 processes. The speedup declines rapidly when more than one node is employed (above 20 processes). This effect can be attributed to the latency introduced by inter-node communications, a hardware limitation of this cluster (10 Gb/s).

We have also analysed the performance of 2D MPI enabled FFT classes on the same machine using an array shaped 2160 × 2160 in Figure 8. The fastest library is \texttt{fftwmpi2d}. Both \texttt{fftw1d} and \texttt{fftwmpi2d} libraries display near-linear scaling, except when more than one node is used and the performance tapers off.

Figure 6: Speedup computed from the median of the elapsed times for 3D fft (1152 × 1152 × 1152, left: fft and right: ifft) on Beskow.

Figure 7: Speedup computed from the median of the elapsed times for 3D fft (320 × 640 × 640) at LEGI on cluster8.
As a conclusive remark on scalability, a general rule of thumb should be to use 1D domain decomposition when only very few processors are employed. For massive parallelization, 2D decomposition is required to achieve good speedup without being limited by the number of processors at disposal. We have thus shown that overall performance of the libraries interfaced by fluidfft are quite good, and there is no noticeable drop in speedup when the Python API is used. This benchmark analysis also shows that the fastest FFT implementation depends on the size of the arrays and on the hardware. Therefore, an application build upon fluidfft can be efficient for different sizes and machines.

Microbenchmark of critical "operator" functions

As already mentioned, we use Pythran [5] to compile some critical "operator" functions. In this subsection, we present a microbenchmark for one simple task used in pseudo-spectral codes: projecting a velocity field on a non-divergent velocity field. It is performed in spectral space, where it can simply be written as:

```python
# pythran export proj_out_of_place(
#   complex128[][][][], complex128[][][][], complex128[][][][],
#   float64[][][], float64[][][], float64[][][], float64[][][])

def proj_out_of_place(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):
    tmp = (kx * vx + ky * vy + kz * vz) * inv_k_square_nozero
    return vx - kx * tmp, vy - ky * tmp, vz - kz * tmp
```

Figure 8: Speedup computed from the median of the elapsed times for 2D fft (2160 × 2160) at LEGI on cluster8.

Figure 9: Elapsed time (smaller is better) for the projection function for different implementations and tools. The shape of the arrays is (128, 128, 65). The dotted lines indicate the times for Fortran for better comparison.
Note that, this implementation is "out-of-place", meaning that the result is returned by the function and that the input velocity field \((vx, vy, vz)\) is unmodified. The comment above the function definition is a Pythran annotation, which serves as a type-hint for the variables used within the functions — all arguments being Numpy arrays in this case. Pythran needs such annotation to be able to compile this code into efficient machine instructions via a C++ code. Without Pythran the annotation has no effect, and of course, the function defaults to using Python with Numpy to execute.

The array notation is well adapted and less verbose to express this simple vector calculus. Since explicit loops with indexing is not required, the computation with Python and Numpy is not extremely slow.

Despite this being quite a favourable case for Numpy, the computation with Numpy is not optimized because, internally, it involves many loops (one per arithmetic operator) and creation of temporary arrays.

In the top axis of Figure 9, we compare the elapsed times for different implementations of this function. For this out-of-place version, we used three different codes:

1. a Fortran code (not shown)\(^9\) written with three nested explicit loops (one per dimension). Note that as in the Python version we also allocate the memory where the result is stored.
2. the simplest Python version shown above.
3. a Python version with three nested explicit loops:

```python
# pythran export proj_out_of_place_loop(
#    complex128[::][::][::], complex128[::][::][::], complex128[::][::][::],
#    float64[::][::][::], float64[::][::][::], float64[::][::][::])

def proj_out_of_place_loop(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):
    rx = np.empty_like(vx)
    ry = np.empty_like(vx)
    rz = np.empty_like(vx)

    n0, n1, n2 = kx.shape
    for i0 in range(n0):
        for i1 in range(n1):
            for i2 in range(n2):
                tmp = (kx[i0, i1, i2] * vx[i0, i1, i2] +
                       ky[i0, i1, i2] * vy[i0, i1, i2] +
                       kz[i0, i1, i2] * vz[i0, i1, i2]) * inv_k_square_nozero[i0, i1, i2]
                rx[i0, i1, i2] = vx[i0, i1, i2] - kx[i0, i1, i2] * tmp
                ry[i0, i1, i2] = vz[i0, i1, i2] - kx[i0, i1, i2] * tmp
                rz[i0, i1, i2] = vy[i0, i1, i2] - kx[i0, i1, i2] * tmp

    return rx, ry, rz
```

For the version without explicit loops, we present the elapsed time for two cases: (i) simply using Python (yellow bar) and (ii) using the Pythranized function (first cyan bar). For the Python version with explicit loops, we only present the results for (i) the Pythranized function (second cyan bar) and (ii) the result of Numba (blue bar). We do not show the result for Numba for the code without explicit loops because it is slower than Numpy. We have also omitted the result for Numpy for the code with explicit loops because it is very inefficient. The timing is performed upon tuning the computer using the package perf.

We see that Numpy is approximately three time slower than the Fortran implementation (which as already mentioned contains the memory allocation). Just using Pythran without changing the code (first cyan bar), we save nearly 50% of the execution time but we are still significantly slower than the Fortran implementation. We reach the Fortran performance (even slightly faster) only by using Pythran with the code with explicit loops. With this code, Numba is nearly as fast (but still slower) without requiring any type annotation.

Note that the exact performance differences depend on the hardware, the software versions,\(^9\) the compilers and the compilation options. We use gfortran -03 -march=native for Fortran and clang++ -03 -march=native for Pythran.\(^11\)

Since allocating memory is expensive and we do not need the non-projected velocity field after the call of the function, an evident optimization is to put the output in the input arrays. Such an "in-place" version can be written with Numpy as:

```python
# pythran export proj_in_place(
#    complex128[::][::][::], complex128[::][::][::], complex128[::][::][::],
#    float64[::][::][::], float64[::][::][::], float64[::][::][::])

def proj_in_place(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):
    tmp = (kx * vx + ky * vy + kz * vz) * inv_k_square_nozero
    vx -= kx * tmp
    vy -= ky * tmp
    vz -= kz * tmp
```
As in the first version, we have included the Pythran annotation. We also consider an “in-place” version with explicit loops:

```python
# pythran export proj_in_place_loop(
#    complex128[][],[], complex128[][],[], complex128[][],[],
#    float64[][],[], float64[][],[], float64[][],[],)

def proj_in_place_loop(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):
    n0, n1, n2 = kx.shape
    for i0 in range(n0):
        for i1 in range(n1):
            for i2 in range(n2):
                tmp = (kx[i0, i1, i2] * vx[i0, i1, i2]
                      + ky[i0, i1, i2] * vy[i0, i1, i2]
                      + kz[i0, i1, i2] * vz[i0, i1, i2])
                vx[i0, i1, i2] -= kx[i0, i1, i2] * tmp
                vy[i0, i1, i2] -= ky[i0, i1, i2] * tmp
                vz[i0, i1, i2] -= kz[i0, i1, i2] * tmp
```

Note that this code is much longer and clearly less readable than the version without explicit loops. This is however the version which is used in fluidfft since it leads to faster execution.

The elapsed time for these in-place versions and for an equivalent Fortran implementation are displayed in the bottom axis of Figure 9. The ranking is the same as for the out-of-place versions and Pythran is also the faster solution. However, Numpy is even more slower (7.8 times slower than Pythran with the explicit loops) than for the out-of-place versions.

From this short and simple microbenchmark, we can infer four main points:

- Memory allocation takes time! In Python, memory management is automatic and we tend to forget it. An important rule to write efficient code is to reuse the buffers already allocated as much as possible.

- Even for this very simple case quite favorable for Numpy (no indexing or slicing), Numpy is three to eight time slower than the Fortran implementations. As long as the execution time is small or that the function represents a small part of the total execution time, this is not an issue. However, in other cases, Python-Numpy users need to consider other solutions.

- Pythran is able to speedup the Numpy code without explicit loops and is as fast as Fortran (even slightly faster in our case) for the codes with explicit loops.

- Numba is unable to speedup the Numpy code. It gives very interesting performance for the version with explicit loops without any type annotation but the result is significantly slower than with Pythran and Fortran.

For the aforementioned reasons, we have preferred Pythran to compile optimized “operator” functions that complement the FFT classes. Although with this we obtain remarkable performance, there is still room for some improvement, in terms of logical implementation and allocation of arrays. For example, applications such as CFD simulations often deals with non-linear terms which require dealiasing. The FFT classes of fluidfft, currently allocates the same number of modes in the spectral array so as to transform the physical array. Thereafter, we apply dealiasing by setting zeros to wavenumbers which are larger than, say, two-thirds of the maximum wavenumber. Instead, we could take into account dealiasing in the FFT classes to save some memory and computation time.

Quality control

The package fluidfft currently supplies unit tests covering 90% of its code. These unit tests are run regularly through continuous integration on Travis CI with the most recent releases of fluidfft’s dependencies and on Bitbucket Pipelines inside a static Docker container. The tests are run using standard Python interpreter with all supported versions.

For fluidfft, the code coverage results are displayed at Codecov. Using third-party packages coverage and tox, it is straightforward to bootstrap the installation with dependencies, test with multiple Python versions and combine the code coverage report, ready for upload. It is also possible to run similar isolated tests using tox or coverage analysis using coverage in a local machine. Up-to-date build status and coverage status are displayed on the landing page of the Bitbucket repository. Instructions on how to run unit tests, coverage and lint tests are included in the documentation.

We also try to follow a consistent code style as recommended by PEP (Python enhancement proposals) 8 and 257. This is also inspected using lint checkers such as flake8 and pylint among the developers. The Python code is regularly cleaned up using the code formatter black.

(2) Availability

Operating system

Windows and any POSIX based OS, such as GNU/Linux and macOS.

Programming language

Python 2.7, 3.5 or above. For the next versions, we will drop Python 2.7 support and Python >= 3.6 will be required. Note that while Cython and Pythran both use the C API of
CPython, fluidfft has been successfully tested on PyPy 6.0. A C++11 supporting compiler, while not mandatory for the C++ API or Cython extensions of fluidfft, is recommended to be able to use Pythran extensions.

Dependencies

C++ API:
- **Optional:** OpenMFI or equivalent, FFTW, P3DFFT, PFFT and cuFFT libraries.

Python API:
- **Minimum:** fluiddyn, Numpy, Cython, and mako or Jinja2; FFTW library.
- **Optional:** mpi4py and Pythran; P3DFFT, PFFT and cuFFT libraries.

List of contributors
- Pierre Augier (LEGI): creator of the FluidDyn project [1] and of fluidfft.
- Cyrille Bonamy (LEGI): C++ code and some methods in the operator classes.
- Ashwin Vishnu Mohanan (KTH): command lines utilities, benchmarks, unit tests, continuous integration, and bug fixes.

Software location
- **Name:** PyPI
- **Persistent identifier:** https://pypi.org/project/fluidfft
- **Licence:** CeCILL, a free software license adapted to both international and French legal matters, in the spirit of and retaining compatibility with the GNU General Public License (GPL).
- **Publisher:** Pierre Augier
- **Version published:** 0.2.4
- **Date published:** 02/07/2018

Code repository
- **Name:** Bitbucket
- **Persistent identifier:** https://bitbucket.org/fluiddyn/fluidfft
- **Licence:** CeCILL-B, a BSD compatible French licence.
- **Date published:** 02/10/2017

Emulation environment
- **Name:** Docker
- **Persistent identifier:** https://hub.docker.com/r/fluiddyn/python3-stable
- **Licence:** CeCILL-B, a BSD compatible French licence.
- **Date published:** 02/10/2017

Language
- English

1. **Reuse potential**

 fluidfft is used by the Computational Fluid Mechanics framework fluidsim [6]. It could be used by any C++ or Python project where real-to-complex 2D or 3D FFTs are performed.

 There is no formal support mechanism. However, bug reports can be submitted at the Issues page on Bitbucket. Discussions and questions can be aired on instant messaging channels in Riot (or equivalent with Matrix protocol) or via IRC protocol on Freenode at #fluiddyn-users. Discussions can also be exchanged via the official mailing list.

2. **Notes**

 - Most C++ classes also support single-precision.
 - Detailed steps for installation are provided in the documentation.
 - Uses an approach similar to guidelines “Using C++ in Cython” in the Cython documentation.
 - Detailed discussion on “FFT 3D parallel (MPI): Domain decomposition” tutorial.
 - The codes and a Makefile used for this benchmark study are available in the repository of the article.
 - Here, we use Python 3.6.4 (packaged by conda-forge), Numpy 1.13.3, Pythran 0.8.5, Numba 0.38, gfortran 6.3 and clang 6.0.
 - The results with g++ -03 -march=native are very similar but tend to be slightly slower.
 - See fluidfft issue 21.
 - https://www.freelists.org/list/fluiddyn.

3. **Acknowledgements**

 Ashwin Vishnu Mohanan could not have been as involved in this project without the kindness of Erik Lindborg. We are grateful to Bitbucket for providing us with a high quality forge compatible with Mercurial, free of cost.

4. **Competing Interests**

 The authors have no competing interests to declare.

5. **References**

 4. Frigo, M and Johnson, S G 2005 ‘The design and implementation of FFTW3’. Proceedings of the IEEE,

