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Abstract— In this work we propose a method for integrating
motion planning and in-hand manipulation. Commonly ad-
dressed as a separate step from the final execution, in-hand
manipulation allows the robot to reorient an object within
the end-effector for the successful outcome of the goal task.
A joint achievement of repositioning the object and moving
the manipulator towards its desired final pose saves time in
the execution and introduces more flexibility in the system. We
address this problem using a pivoting strategy (i.e. in-hand
rotation) for repositioning the object and we integrate this
strategy with a path planner for the execution of a complex
task. This method is applied on a Baxter robot and its efficacy
is shown by experimental results.

I. INTRODUCTION

Several tasks in robotics include picking up objects or

tools, followed by placing or using the grasped object. The

problem of grasping an object according to its use is still

an open challenge. Moreover, many times the desired grasp

is impossible to achieve due to environmental constraints or

robot’s limits. When the desired configuration for the grasp is

not achievable at first, the robot has to manipulate the object

or interact with the environment to achieve its final goal.

One solution for obtaining the desired grasp on an object is

in-hand manipulation.

Differently from regrasping approaches that consist of

picking up the object and placing it back multiple times

until the desired grasp can be achieved [1], [2], in-hand

manipulation keeps the object within the robot’s end-effector

while moving it towards the desired configuration. Accu-

rately moving an object within the robotic hand or gripper

falls in the category of dexterous manipulation problems [3].

Mimicking the human ability of precisely moving the

fingers to manipulate an object requires an end-effector rich

in intrinsic dexterity, i.e. a multi-fingered hand [4], [5] or a

custom-made gripper tailored for the problem [6]–[9].

However, many commonly available robots (e.g. PR2,

Baxter, Yumi) are only equipped with parallel grippers,

which are simple to control and robust in the execution,

but lack intrinsic dexterity. To enhance the poor intrinsic

dexterity of these grippers the robots take advantage of

the extrinsic dexterity [10]. The extrinsic dexterity exploits

external forces, inertial forces, and contacts. The addition of

these external supports allows the robot to perform dexterous

manipulation tasks without the need for a dexterous hand.

In this work, we focus on an in-hand repositioning task

that has to be executed together with the robot’s motion.
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Fig. 1: A generic representation of task execution with in-hand reposition-
ing. The gripper moves from the initial pose to the desired final pose, and
at the same time the object’s pose with respect to the gripper changes from
the initial one to the desired one.

Most of the previous work on in-hand repositioning assumes

a separate step for this dexterous task, before the robot starts

using the object that it is grasping. We assume instead that

after picking up an object, the robot starts moving towards

the next pose, at which it needs to have the object in a

different configuration. Fig. 1 shows a representation of this

problem.

An example of this problem consists of a robot that has to

pick up a screwdriver and use it to turn a screw. For turning

the screw, the robot must have the screwdriver at a particular

configuration inside the gripper, but this configuration is

different from the one of the initial grasp. Instead of first

performing a repositioning and then approaching the position

of the screw, the motion of the robot towards the final

configuration can be chosen so that it performs in-hand

manipulation at the same time.

This methodology saves time with respect to one that splits

the problem into two subtasks, such as first repositioning

the object inside the gripper and then moving the robot to

the desired configuration, or vice-versa. It also enhances

the efficiency of the system as a whole; in fact, instead

of imposing to the robot additional motions completely

disconnected from the task, with the purpose of generating

the dynamics necessary to the extrinsic dexterity solution,

this method exploits the dynamics that would be generated

anyway during the execution.

Among the different kinds of possible in-hand reposition-

ing, we specifically address the problem of pivoting an object

between the two fingers of a parallel gripper so that, once

the robot has approached the final pose of the overall task,

the grasped object rotates to the desired orientation within

the gripper itself.

For the pivoting action, we generalize the method that

we presented in [11] to be used on a more generic set of

problems. We show how to integrate the pivoting action

into a path-planner to obtain a trajectory that solves both

the problem of moving the robot manipulator to the desired



configuration and of pivoting the object to the desired angle.

II. RELATED WORK

To the best of our knowledge, the problem of in-hand repo-

sitioning via pivoting has always been addressed as a separate

step in the overall execution. Therefore, the execution of

a complex task requires multiple independent steps, one of

which is dedicated to in-hand repositioning. Conversely, we

propose a method to achieve this repositioning together with

the robot’s motion towards the final goal pose. This joint

execution allows the robot to save time when performing

complex tasks.

To address this problem as a whole, a first possibility is

on-line trajectory optimization, or model predictive control.

However, this method has known issues with discontinuous

dynamics and contact phenomena, in addition to the require-

ment for fast feedback and high-frequency controllability of

the system.

It is also possible to formulate our overall problem as

an instance of a kinodynamic motion planner [12]. More

specifically, the pivoting point can be considered as a passive

joint, making the overall system an underactuated system,

and it is possible to adapt kinodynamic planners designed

for underactuated robots to this problem [13]. However, these

planners are slower than purely geometric planners because

they must handle additional constraints on kinematic and

dynamic level. Moreover, accurate models of both the robot’s

dynamics and the contact dynamics are required.

Therefore, we prefer to integrate a pivoting method with a

simple geometric planner and generate the timing law of the

trajectory according to the actions required for the successful

outcome of the pivoting task.

Since pivoting is considered an extrinsic dexterity prob-

lem, previous solutions exploit external and inertial forces,

contact surfaces and friction control.

The method proposed in [14] uses an external surface to

rotate the object. This approach does not control the gripping

force, while the majority of the works on pivoting exploit the

control of the gripper’s fingers for a successful outcome of

the pivoting action.

An example in which the authors exploit the gripping force

to apply a dissipative torque at the pivoting point, hence

controlling the rotational motion of the object, is the work

described in [15] and extended in [16]. This work focuses

on swing-up motions, so the plane of rotation of the object

coincides with the vertical direction. The proposed solution

uses an energy-based controller to move the object from one

position to another with higher potential energy. Apart from

controlling the gripping force, this approach moves the arm

to provide inertial forces sufficient to counteract the gravity.

While swing-up motions imply that the object moves

against the gravity acceleration, the work described in [17]

and [18] focuses on motions that exploit the gravity to

reorient an object from a position of higher potential energy

to one with lower potential energy. The gripper does not

move, but it adjusts the distance between the fingers to

control the torsional friction and successfully reorient the

object at the desired angle.

The previous approaches using controlled friction rely

on fast feedback and high-frequency controllability of the

gripper’s fingers. However, many commercial robots are

equipped with parallel grippers that have a control frequency

of at most 10 Hz, and most of the commercial cameras

provide images at 30 fps, which also increases the challenge

of accurately tracking the object when it is rotating at a high

speed. Therefore, we use a method that does not rely on

high-performing hardware to successfully achieve in-hand

manipulation.

The method proposed in [19] addresses the possible lack

of high-performing hardware by modeling the delays in

actuation and the noise in the sensors and it exploits Deep

Reinforcement Learning to generate optimal actions. How-

ever, the pivoting action requires the robot to move multiple

times back and forth for the object to be correctly reoriented,

and this method requires tracking the object while it moves

at a fast speed.

The previous approaches on pivoting considered it a

separate action to be performed by the robot manipulator.

Conversely, our work focuses on integrating the pivoting

action with the robot’s motion to obtain the successful

reorientation of the object together with the execution of an

overall task.

Moreover, the pivoting solution that we use does not pose

constraints on the orientation of the object’s plane of rotation

nor on the direction of the rotation itself. Hence, it can be

integrated with a generic motion of the robot and it is suitable

for directly executing a task without seeing the reorientation

as a separate step.

III. PROBLEM DEFINITION

This section provides first a description of the overall

problem of pivoting an object while the robot is moving,

and then it provides a formulation of the pivoting problem,

which introduces the notation used in the following sections.

A. Integration Problem

The robot’s task consists of picking up an object and

moving it to a different place, to be used as a tool or to

be placed back in a different configuration. In both cases,

the object has to be held by the gripper in a particular pose.

However, this pose is different from the one resulting after

the initial grasp.

The overall problem consists of finding a feasible tra-

jectory to move the gripper from its initial pose P0 to the

desired final pose Pf , and at the same time move the object

inside the gripper from the initial orientation θ0 to the desired

orientation θd.

To solve this problem, we perform a geometric path plan-

ning off-line, and the constraints coming from the pivoting

action are imposed at a later stage, modifying the timing

law of the trajectory while maintaining the collision-free

geometric path.



Fig. 2: An example of grasping in which it is impossible to achieve the
desired orientation of the object of 0◦ with respect to the gripper, shown in
red, due to the contact between the robot and the table.

Fig. 3: Planar representation of an object rotating within a parallel gripper.

While moving the end-effector from the initial configura-

tion to the desired one, the robot moves along a trajectory

that takes into account obstacles in the environment and

possible additional constraints. The pivoting solution that

we choose forces the rotation of the object to happen only

when the end-effector stops. Hence, during the motion of

the robot manipulator the pose of the object within the

gripper remains constant, simplifying the problem of finding

a feasible trajectory in the presence of obstacles. In fact,

the collisions between the object and the obstacles can

be checked more easily, without a prediction of possible

configurations or an unnecessarily large bounding box that

would be required if the object were moving.

B. Pivoting Problem Formulation

We consider a system composed of a robot manipulator

with a parallel gripper at the end-effector. The robot grasps

an object with an initial angle θ0 with respect to the gripper,

which differs from the desired angle θd necessary to execute

the final task. This difference can be due to joint limits or

environmental constraints, as shown in the example in Fig. 2.

We assume that the fingers grasp the object sufficiently

distanced from the center of mass, so that the object can

rotate. The shape of the object can be irregular, as long

as it allows the rotational motion around the pivoting point

without collisions with the gripper.

The goal is to reach the desired final pose for the robot

manipulator so that the orientation of the object inside the

gripper changes into the desired one after the robot’s motion.

We assume that the dimension of the object and its mass

and inertia can be measured or inferred from the available

sensors. In case the friction coefficients between the object

and the gripper’s fingers are unknown, it is possible to

follow the approach proposed in [11] to estimate them before

performing the final task. This approach updates the model

according to the mismatch between expected and measured

final angle. It can be easily integrated with our method of

split path described later in section V-B.3.

Fig. 3 represents the object, grasped by a parallel gripper,

that has to rotate around a pivoting point. Assuming that the

robot is not moving, the dynamic model of the rotation of

the object is:

(I +mr2)θ̈ −mgpr sin(θ + α) = τf , (1)

in which I is the inertia of the object, m its mass and r the

distance between its center of mass and the pivoting point; θ
is the angle of the object with respect to the gripper and

θ̈ is its angular acceleration; gp is the component of the

gravity acceleration in the plane of rotation, which depends

on the current pose of the gripper; α is the angle between the

direction of the gravity and the gripper; τf is the torsional

friction at the pivoting point.

We assume that the contact area between the fingertips

and the object is sufficiently small in relation to the distance

to the object’s center of mass so that the contact can be

described as a single point and this pivoting point is always

well defined. With this assumption, given the model in (1),

irregular shapes of objects or different pivoting points do not

affect the pivoting action as long as the parameters I , m, r
and the friction coefficients are known.

We use the Coulomb friction model to describe the static

friction τs when the object is not moving:

|ts| ≤ γfn, (2)

where γ is the coefficient of friction and fn is the normal

force applied by the gripper’s fingers to the object.

When the object is moving, we choose to model the

torsional friction as Coulomb and viscous friction [20]:

τf = −µθ̇ − σ sgn(θ̇)fn, (3)

where µ and σ are friction coefficients, θ̇ is the angular

velocity of the object and sgn is the signum function.

When the object starts rotating, switching from the model

in (2) to the one in (3), we follow the approach proposed in

[21] of defining a neighbor of θ̇ in which the normal force

fn balances the net torque, to avoid numerical singularities.

Since many robots are not equipped with tactile sensors

at the fingertips, (3) can be reformulated by expressing fn
as a function of the distance d between the two fingers. A

possible solution, adopted in [11] and [17], assumes a linear

deformation model:

fn = k(d0 − d), (4)

in which k is a stiffness parameter and d0 is the distance of

zero deformation of the fingertips.

Assuming that the gripper is not moving, when the object

starts its motion the evolution of the angle θ depends only

on the initial angular velocity of the object θ̇0 and on the

distance between the gripper’s fingers d. This distance is kept

small enough to prevent translational slippage and allow only

rotational slippage, as in [17].

The method we use for pivoting stops the motion of the

gripper and opens its fingers only once to initiate the rotation

of the object. Therefore, the problem consists in finding the

values of θ̇0 and d that allow the system to obtain the desired

repositioning and are compatible with the desired motion

execution of the robot manipulator for the overall task.



IV. PIVOTING METHOD

The pivoting method that we follow is the three-stages

open loop pivoting described in [11], and we provide a brief

summary of it below to clarify the integration with the robot

manipulator’s motion.

A. Three-stages Open Loop Pivoting

This method is divided into three stages, shown in Fig. 4:

1) End-effector’s velocity stage: in this stage, the gripper

moves at a certain velocity while holding the object firmly.

This velocity causes the motion of the object in the third

stage and determines the initial velocity θ̇0 at which this

motion starts.

2) Finger distance stage: in this stage, the gripper stops

and opens the fingers. The distance at which it opens

influences the torsional friction at the pivoting point, which

in turn influences the motion of the object.

3) Object’s motion stage: in this stage the object rotates

around the pivoting point and it stops at a different orienta-

tion. This motion depends only on the actions taken at the

previous stages.

B. Pivoting Control Actions

For the successful outcome of the pivoting action, at the

end of the third stage the object should stop at the desired

angle. This motion is influenced by the initial velocity of

the object, by the distance between the gripper’s fingers

and by the gravity, which depends on the gripper’s pose.

Since during the third stage the gripper does not move, the

gravity acceleration remains constant. Therefore, the pivoting

problem can be defined as follows:

find the initial angular velocity θ̇0 and the distance to

open between the fingers d so that, according to the dynamic

model in (1), θf = θd, with θf being the angle at which the

object stops moving and θd being the desired angle.

To compute the optimal action pair (d∗, θ̇∗
0
), several so-

lutions can be adopted, such as Reinforcement Learning

algorithms or Dynamic Programming. Among the possible

options, we use Q-Learning with the reward function R as:

R(θ) =
{ 1 if |θ − θd| ≤ δ

0 otherwise
, (5)

Fig. 4: The three separate stages of the open loop pivoting. First, the gripper
and the object move together with the same velocity. Second, the gripper
stops and opens the fingers. Third, the object rotates around the pivoting
point and it reaches the desired angle.

in which δ is a tolerance margin for the desired angle θd.

As [11] highlights, this learning process is sufficiently fast

to be executed on-line, i.e. while the robot is manipulating

the object.

C. Coefficients Estimation

While it is simple to measure the mass and length of

the object, the friction coefficients are more challenging to

estimate. However, it is not required to have highly accurate

values as long as the behavior predicted by (1) resembles the

outcome of the real system. As described in [11], an estimate

can be obtained from consecutive trials and minimizing the

error between the predicted and the measured outcome.

V. INTEGRATION WITH THE ROBOT’S MOTION

In this section we propose a solution for the integration of

the pivoting method with the motion of the robot manipulator

in order to achieve a joint execution of both the repositioning

of the object and the reaching of the desired end-effector’s

pose.

A. Problem Analysis and Proposed Method

A detailed description of the proposed method is discussed

below, and it is summarized in Algorithms 1 and 2.

The initial angular velocity at which the object starts

rotating around the pivoting point derives from the velocity

of the end-effector in the instant before it stops. In fact, the

center of mass of the object keeps moving with the same

velocity while the gripper stops, but instead of proceeding on

the same direction, its motion turns into a rotational motion

due to the constraint posed by the gripper’s fingers.

Assuming that the end-effector’s final velocity is v and

that its projection on the plane of rotation of the object is vp,

the initial angular velocity of the object around the pivoting

point is:

θ̇0 =
vp · r̂⊥

r
, (6)

where r̂⊥ is the unitary vector orthogonal to the direction

that goes from the pivoting point to the center of mass of

the object, pointing towards the positive direction of rotation,

and · is the scalar product.

The maximum velocity transmission is when vp and r̂⊥
are parallel, but it is not always feasible to impose a certain

direction of motion to the robot’s end-effector due to possible

obstacles in the environment and joint limits. Conversely, the

minimum velocity transmission is when these two vectors are

orthogonal, resulting in a null initial angular velocity and no

rotation of the object.

Moreover, with φ being the angle between vp and r̂⊥, the

concordance between the signs of θ̇0 and θ̇∗
0

is obtained only

when −π
2
< φ < π

2
if θ̇∗

0
is positive (i.e. θ0 < θd), and when

−π < φ < −π
2

or π
2
< φ < π if it is negative. Therefore, if

the direction of motion disagrees with the desired angular

velocity of the object, it is not possible to successfully

achieve the desired pivoting action.

Given that the desired final pose Pf is known, the planar

component of the gravity gp and the angle α are computed



accordingly. The initial angle of the object θ0 depends on the

initial grasp. The optimal pivoting action (d∗, θ̇∗
0
) is obtained

with the method described in section IV given the previous

quantities and the object’s properties.

The object’s properties can be included in the scene

description S, which also includes the obstacles in the

environment, and is used as input for our method.

From an initial pose P0 of the robot’s end-effector, at

which the object is initially grasped, it is easy to compute

a collision-free geometric path to the desired final pose

Pf using standard planning algorithms. From this path, the

direction of the velocity at a given point in the path can be

derived by looking at the motion direction.

The final velocity direction v̂ is the one at which the center

of mass of the grasped object continues to move after the

gripper stops. However, the motion of the object is planar

due to the constraint on the object imposed by the parallel

gripper. Therefore, we consider only the components of the

velocity that lie on the plane of rotation, i. e. a 2D vector

v̂p. The constraint in (6) can be rewritten as:

θ̇0 =
vp cosφ

r
, (7)

in which vp is the magnitude of the velocity component

on the plane and φ is the angle between v̂p and r̂⊥.

Consequently, the desired magnitude of the velocity for

guaranteeing the successful outcome of the pivoting action

is:

v∗p =
rθ̇∗

0

cosφ
. (8)

Let v̂e = Rv̂ be the 3D unitary vector describing the

direction of the final velocity in the end-effector’s reference

frame, whose orientation is expressed by the rotation matrix

R. This frame is taken so that the xy plane coincides with

the plane of rotation of the object. With ṽe denoting the 2D

vector with the x and y components of v̂e, then:

v̂p =
ṽe

||ṽe||
. (9)

By forcing the magnitude of the planar component of the

velocity to be v∗p from (8), the desired 3D velocity vector at

the end of the computed path is:

v∗ =
v∗p

||ṽe||
v̂. (10)

Therefore, given the geometric path, the trajectory, which

comprehends the timing law, is obtained taking into account

the velocity constraint in (10).

B. Additional Constraints

While generating a trajectory along a given geometric

path, our method can face a situation in which the dynamics

generated by the robot’s motion are highly suboptimal or

insufficient for the successful outcome of the pivoting task,

or in which the robot is not able to execute the generated

trajectory. We propose the following additional solutions to

tackle the possible problems:

1) Constrain the acceptable directions: We have already

mentioned that the pivoting action becomes unfeasible in

case of a discordance between the direction of the gripper’s

velocity and the desired direction of rotation. Moreover, the

transfer of the velocity from the gripper to the rotation of the

object decreases as φ goes closer to ±π
2

, which means that

to obtain the same θ̇∗
0

the robot has to move faster. Therefore,

when planning, it is preferable to include a maximum and a

minimum tolerable angle to improve the performances and

minimize the risk of obtaining unfeasible velocities for the

robot manipulator.

2) Introduce likelihood of acceptable dynamics: An initial

generic motion direction can be derived by simply looking

at the vector from P0 to Pf . If this direction fully disagrees

with the desired direction of rotation of the object, i.e. the

estimated φ derived from this direction leads to cosφ < 0
when θ̇∗

0
≥ 0 or to cosφ ≥ 0 when θ̇∗

0
< 0, the pivoting

action becomes unfeasible. In many cases, it is possible to

solve this problem by executing a rotation of the gripper

around the final joint, but this rotation affects the final pose

of the gripper that will be different from the desired one,

which is especially important if the gripper has additional

sensors (e.g. a camera) that will end in a wrong configuration.

Therefore, we suggest to add a waypoint in the planned path

so that the direction of motion from it to the final point

satisfies the concordance constraint. More specifically, this

direction is the direction û from Pf to the waypoint Pw,

with component ûp in the plane of rotation in Pf , so that:

ûp = argmax
ûp

|(−ûp) · r̂⊥|

s.t.
−π

2
< φ′ < π

2
if θ0 < θd

−π < φ′ < −π
2
or π

2
< φ′ < π otherwise,

(11)

in which φ′ is the angle between −ûp and r̂⊥. Therefore, the

waypont is chosen by translating the final pose of a distance

h along the direction û. According to the chosen motion

planner and to the setup, this waypoint can be seen as a

soft constraint, without forcing the robot manipulator to plan

exactly through that end-effector’s position and orientation.

3) Split the path for Collision-free trajectories: Since

it is not always possible to insert waypoints that enable

the successful planning of a collision-free trajectory, we

include an additional step for successfully obtaining the

pivoting action when the added constraints are not sufficient

or infeasible.

Once a collision free path is obtained, and adding con-

straints does not introduce a final velocity direction that

guarantees a good transfer of the velocity from the gripper

to the rotation of the object, we propose to search along

the whole path for a velocity direction that instead satisfies

the concordance constraint. That is, find the path point Pi

so that the velocity direction v̂i at this point, with v̂i,p its

planar projection on the plane of rotation in Pi, is so that:

v̂i,p = argmax
v̂i,p

|v̂i,p · r̂⊥|, (12)



Algorithm 1: execute task

Input: S, P0, Pf , θd
1 grasp the object
2 observe θ0

3 d̂ ← direction from P0 to Pf

4 if (d̂ · r̂⊥ > 0 ∧ θ0 ≤ θd) ∨ (d̂ · r̂⊥ ≤ 0 ∧ θ0 > θd) then
5 w ← none
6 trajectory ← compute trajectory(S, P0, Pf , θ0, θd, w)
7 end
8 else
9 w ← Pw satisfying (11)

10 trajectory ← compute trajectory(S, P0, Pf , θ0, θd, w)
11 end
12 if trajectory is none then

13 w′ ← w ∪ P ′

w 6= Pw satisfying (11)
14 trajectory ← compute trajectory(S, P0, Pf , θ0, θd, w′)
15 end
16 execute trajectory
17 observe θf
18 return

and satisfies the same constraints of (11) given φ′ as the

angle between v̂i,p and r̂⊥. However, this solution introduces

the need for replanning the final segment because, after the

pivoting action, the configuration of the object within the

gripper is different. Moreover, it is important to plan the

pivoting action considering the pose of the gripper at this

point Pi, i.e. compute the correct values of gp and α, which

differ from the ones at the final goal pose.

As mentioned in section III-B, this method can be ex-

ploited also in case of uncertainty in the model’s coefficients:

the path is split multiple times to measure the final outcome

of the pivoting action and the friction coefficients are updated

until the model is accurate enough, while moving towards

the goal pose. As described in [11], about 8 steps would

be required to obtain a good estimate. Then, the computed

action will lead to the desired angle.

C. Hardware Limitations

Given that the planned trajectory has to be executed on

a real system, it is important that it satisfies the limitations

imposed by the chosen hardware, such as joint velocities and

acceleration limits. Therefore, the obtained trajectory must

pass a feasibility check, otherwise it is discarded and a new

path is preferred, as shown in Algorithm 2. However, the

occurrence of this situation is extremely infrequent. In fact,

it happens mostly if the final velocity v∗ exceeds the limits.

This velocity is limited by the maximum allowed initial

angular velocity of the object output by the three-stages

pivoting. By safely choosing this maximum velocity, and by

adding a requirement for the angle φ above the minimum, the

event of finding a solution that exceeds the actuation limits

is highly unlikely.

Another possible problem posed by the real system regards

the un-modeled effects that influence the initial rotation

of the object around the pivoting point. We assumed no

dispersion in the transmission of the velocity from the

robot’s end-effector to the object after the first stops and

the latter begins the rotation. However, as explained in [11],

Algorithm 2: compute trajectory

Input: S, P0, Pf , θ0, θd, waypoints
1 path ← path from P0 to Pf , with waypoints
2 compute gp, α at Pf

3 d∗, θ̇∗0 ← three-stages pivoting action from θ0, θd, gp, α
4 v̂ ← final velocity direction from path
5 ṽe ← planar projection from v̂, Pf

6 v∗ ← from (10)
7 trajectory ← impose timing law on path from v∗

8 if trajectory is feasible then
9 return trajectory

10 end
11 else
12 Pi ← from (12)
13 if Pi 6= Pf ∧ |v̂i,p · r̂⊥| > |v̂p · r̂⊥| then
14 trajectory ← compute trajectory(S, P0, Pi, θ0, θd,

none)
15 path′ ← path from Pi to Pf , with new object angle
16 trajectory′ ← trajectory ∪ timing law on path′

17 return trajectory′

18 end
19 else
20 return none
21 end
22 end

an estimate of this dispersion due to un-modeled effects is

included in the estimate of the friction coefficients and is

performed beforehand.

Additional hardware limitations include the gripper’s con-

trollability frequency and the camera’s frame rate if vision

is used to determine the object’s pose. However, these

limitation are already fully compensated by the choice of

the pivoting strategy and by the integration method used for

the execution of the overall task.

VI. EXPERIMENTS

We tested the proposed approach for integrating pivoting

and robot motion using a Baxter robot.

A. General setup

The parameters of the manipulated object are as follows:

I is 0.000057248 kg m2, m is 0.024 kg, r is 0.084 m, d0
is 0.0189 m, µ is 0.00568 kg m2 s-1, σk is 11.976 N. Since

we were using the friction model derived from (3) and (4),

we estimated a unique friction coefficient, σk, that includes

the Coulomb friction coefficient and the stiffness parameter.

We used slightly deformable fingertips for changing the

rotational friction by adjusting the distance between the

fingers; fingertips appositely designed for pivoting, such

as [9], would also integrate well with our method.

For the Q-Learning implementation used by the three-

stages pivoting we used pybrain [22]. We measured the

gripper’s accuracy to be roughly 0.0005 m when commanded

to a target distance between the fingers. We selected possible

distances for the pivoting action to be between 0.0171 m and

0.0187 m with a discretization step of 0.0004. The value of

θ̇0 ranged between 0 and 21 rad/s; the velocity direction in

the learning process is chosen to be always positive, and the

reference of the angles is modified accordingly. The learning



(a) 1st experiment: the robot holds the object
at an angle θ0 = 6

◦ and it is forced to move
along a direction that does not ensure the best
velocity transfer to the object, in order to achieve
the desired angle θd = 0

◦.

(b) 2nd experiment: the robot picks up the object
from the table at an angle θ0 = 24

◦ and it has
to move to the desired pose, at which the desired
orientation is θd = 0

◦. A waypoint is added to
improve the repositioning.

(c) 3rd experiment: the robot picks up the
object at an angle θ0 = 70

◦ and it has to
reach the desired pose, at which θd = 90

◦. A
waypoint cannot be added, and the repositioning
is performed in the middle of the planned path.

Fig. 5: A representation of the experiments. The robot’s gripper is represented in red and the object in green. The objects in grey represent the obstacles.

tolerance was set to ±0.05 radians (±2.86◦). This tolerance

allowed us to have a final angle close to the target one and

at the same time compensate for small errors in actuation

and in perception. We chose the acceptable range of | cosφ|
for a good velocity transmission to be within 0.5 and 1, with

the sign depending on the desired direction of motion, hence

constraining the range of φ as suggested in section V-B.1.

For detecting the target object and its configuration with

respect to the gripper we used April tags and a Kinect 2. The

accuracy of the detection of the angle θ was expected to be

around 2◦, due to the imprecision of the camera to robot

calibration. For path planning we used the OMPL library, in

particular the RRT connect planner.

B. Robot Experiments

We performed different experiments to test the method

under different conditions for the pivoting action.

1) First Experiment: In this experiment, shown in Fig. 5a,

to test the behavior of the pivoting action under non-

optimal conditions, the path was imposed to be a straight

line downwards in the vertical direction. This is a case in

which the direction, despite being suboptimal, is still good

for reorienting the object, so no deviation from the given

path is necessary. The initial angle at which the object was

grasped was θ0 = 6◦, and the target angle was set to

θd = 0◦. The motion of the end-effector was constrained

at a constant orientation in which the gripper’s fingers were

parallel to the ground. The influence of gravity was given

by gp = 9.8 m/s2 and α = −90◦. Since the robot was

moving in the same direction of the desired rotation of the

object, there was the risk of overshooting the desired angle.

However, thanks to the combination of a slow motion coming

from the timing law computed for the given path, and a tight

gripper opening (1.79 cm) chosen as optimal actions, the

object was successfully repositioned within the acceptable

tolerance, ending with an orientation of θf = 1.9◦.

Once we established the correctness of the integration

strategy, we proceeded to evaluate the performances of our

proposed method by applying it on complete robot tasks.

2) Second Experiment: In this experiment, the robot had

to grasp an object and place it in a cup. Since the general

direction from the initial gripper’s pose to the final one was

found to have an angle φ that was out of the tolerable range,

our system added a waypoint above the cup to improve

the velocity transmission from the gripper to the object.

We chose a distance h = 0.3 m to select the waypoint

pose Pw, which was sent to the motion planner as soft

constraint. Therefore, this experiment shows an example of

the solution discussed in section V-B.2. A scheme of this

particular setup is shown in Fig. 5b. This second experiment

was repeated multiple times (12) to measure the percentage

of successful outcomes of the combination of pivoting with

motion planning.

We constrained the motion of placing the object not to be

vertical, in order to distinguish a successful pivoting action

from a reorientation of the object simply due to the static

equilibrium pose due to the gravity. Therefore, the influence

of the gravity in the goal pose was given by gp = 9.7 m/s2

and α = −169◦. With this final configuration, the static

equilibrium point of the object would lead to θf = −11◦,

while the desired angle was θd = 0◦.

Since the robot regrasped the object at every retrial, the

initial angle slightly varied and ranged between 23.2◦ and

25.6◦. This regrasping affected also the position of the

pivoting point, i.e. the value of r, but this small variation

did not affect the successful outcome of the reorientation.

The pivoting experiment was successful in 83% of the

attempts. We considered a success a reorientation of the ob-

ject within ±2.86◦ from the desired angle, which is the same

tolerance used in the learning. However, failed experiments

were still able to successfully execute the overall task of

inserting the object in the cup, because the reorientation error

was still contained within a small boundary of 5◦, which was

sufficient for the insertion of the object in this particular task.

These errors are due to non negligible errors and delays in

actuation which lead to a mismatch between the executed

trajectory and the commanded one, as well as errors in the

opening of the fingers due to the gripper’s low accuracy of

0.5 mm. The results of this experiment are shown in Fig. 6,

in terms of reorientation error.

3) Third Experiment: We designed the third experiment

to test the behavior of the system in case of a solution that



Fig. 6: Box plot of the error of the second and third experiment. The green
lines mark the values of ±2.86◦. The red line represents the median and
the whiskers represent the minimum and the maximum.

requires a split of the path instead of adding a waypoint

to obtain a proper velocity for pivoting, as described in

section V-B.3. In this experiment, the desired orientation of

the object was 90◦, and after the repositioning the object was

supposed to be placed vertically on the table. The desired

orientation was not achievable when the robot grasped the

object due to a configuration close to joint limits. The initial

orientation of the object varied between 70.1◦ and 72.6◦ in

the 14 trials.

In this setup, the general direction of motion was suitable

for the repositioning, however the final velocity direction of

the planned path was not. A waypoint could not be added

due to a configuration of the robot that would lead to self-

collisions, therefore the pivoting action was performed in the

middle of the planned path, in which the velocity direction

was more suitable. This experiment is summarized in Fig. 5c.

Due to the randomized path planner, the intermediate pose

at which the pivoting action was executed was not always

the same. However, a successful pivoting action was always

executed in a vertical plane, i.e. gp ≈ 9.8, and the value of α
varied around −70◦. We found that this experiment was more

challenging than the previous one, and the repositioning was

successful 71% of the times. The result is shown in Fig. 6.

The challenge was due to the pivoting action requiring a fast

motion to contrast the gravity acceleration, starting from a

pose in which the robot was close to joint limits. Despite

discarding trajectories that did not respect the joint limits, the

actuation of the robot manipulator was more subject to errors,

and small mismatches between the fingers opening were not

negligible for the successful outcome of the pivoting action.

However, unsuccessful reorientations can be overcome by

running our algorithm a second time with a new starting

pose and initial angle.

VII. CONCLUSIONS

In this work we proposed a method for integrating in-

hand repositioning of objects using a pivoting strategy with

the desired motion of the robot manipulator, to reduce the

time spent in the execution of a complex task and enhance

the system’s efficiency. We have shown how to achieve a

successful pivoting action together with the robot’s motion

using standard hardware platforms.

As future work, we plan to improve the constrained path

planning to modify the orientation of the gripper in the pose

chosen for pivoting, so that the influence of gravity can be

controlled when it is strongly against the desired motion.
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