
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2019

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1783

Learning based segmentation
and generation methods for
handwritten document images

KALYAN RAM AYYALASOMAYAJULA

ISSN 1651-6214
ISBN 978-91-513-0599-8
urn:nbn:se:uu:diva-379636

Dissertation presented at Uppsala University to be publicly examined in TLS, Carolina
Rediviva Library, Dag Hammarskjölds Väg 1, Uppsala, Wednesday, 8 May 2019 at 09:00 for
the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty
examiner: Professor Nicholas Howe (Department of Computer Science, Smith College).

Abstract
Ayyalasomayajula, K. R. 2019. Learning based segmentation and generation methods for
handwritten document images. Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1783. 97 pp. Uppsala: Acta Universitatis
Upsaliensis. ISBN 978-91-513-0599-8.

Computerized analysis of handwritten documents is an active research area in image analysis
and computer vision. The goal is to create tools that can be available for use at university
libraries and for researchers in the humanities. Working with large collections of handwritten
documents is very time consuming and many old books and letters remain unread for centuries.
Efficient computerized methods could help researchers in history, philology and computer
linguistics to cost-effectively conduct a whole new type of research based on large collections
of documents. The thesis makes a contribution to this area through the development of methods
based on machine learning. The passage of time degrades historical documents. Humidity,
stains, heat, mold and natural aging of the materials for hundreds of years make the documents
increasingly difficult to interpret. The first half of the dissertation is therefore focused on
cleaning the visual information in these documents by image segmentation methods based on
energy minimization and machine learning. However, machine learning algorithms learn by
imitating what is expected of them. One prerequisite for these methods to work is that ground
truth is available. This causes a problem for historical documents because there is a shortage of
experts who can help to interpret and interpret them. The second part of the thesis is therefore
about automatically creating synthetic documents that are similar to handwritten historical
documents. Because they are generated from a known text, they have a given facet. The visual
content of the generated historical documents includes variation in the writing style and also
imitates degradation factors to make the images realistic. When machine learning is trained on
synthetic images of handwritten text, with a known facet, in many cases they can even give an
even better result for real historical documents.

Keywords: Machine learning, handwriting, handwritten document anlysis, deep learning,
image processing

Kalyan Ram Ayyalasomayajula, Department of Information Technology, Division of Visual
Information and Interaction, Box 337, Uppsala University, SE-751 05 Uppsala, Sweden.
Department of Information Technology, Computerized Image Analysis and Human-Computer
Interaction, Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Kalyan Ram Ayyalasomayajula 2019

ISSN 1651-6214
ISBN 978-91-513-0599-8
urn:nbn:se:uu:diva-379636 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-379636)

To my family, both personal and research

List of papers

This dissertation is based on the following papers, which are referred to in the
text by their Roman numerals.

I Kalyan Ram Ayyalasomayajula, and Anders Brun. Document
binarization using topological clustering guided Laplacian Energy
Segmentation. In In 14th International Conference on Frontiers in
Handwriting Recognition (ICFHR 2014), Crete, Greece, September
1-4, 2014, pages 732–737. IEEE, Sep 2014. DOI:
10.1109/ICFHR.2014.94

II Kalyan Ram Ayyalasomayajula and Anders Brun. Historical
document binarization combining semantic labeling and graph cuts. In
20th Scandinavian Conference on Image Analysis 2017, Tromsø,
Norway, pages 278–287. Springer, 2017. DOI:
10.1007/978-3-319-59126-1_32

III Kalyan Ram Ayyalasomayajula, Filip Malmberg, and Anders Brun.
PDNet: Semantic Segmentation integrated with a Primal-Dual
Network for Document binarization. In Pattern Recognition Letters
(PRL) , Elsevier, 2018. DOI: 10.1016/j.patrec.2018.05.011

IV Kalyan Ram Ayyalasomayajula, Carl Nettelblad and Anders Brun.
Feature evaluation for handwritten character recognition with
regressive and generative Hidden Markov Models. In International
Symposium on Visual Computing, pages 278–287. Springer, 2016.
DOI: 10.1007/978-3-319-50835-1_26

V Kalyan Ram Ayyalasomayajula, Tomas Wilkinson, Filip Malmberg
and Anders Brun. CalligraphyNet: Augmenting handwriting
generation with quill based stroke width 26th IEEE International
Conference on Image Processing, Taipei, 2019 (Submitted)

Reprints were made with permission from the publishers.

Associated (peer-reviewed) acts
Ashis Kumar Dhara, Kalyan Ram Ayyalasomayajula, Erik Arvids Markus
Fahlström, Johan Wikström, Elna-Marie Larsson and Robin Strand. Segmen-
tation of Post-operative Glioblastoma in MRI by U-Net with Patient-specific
Interactive Refinement, Proceedings, Brain Lesion (BrainLes), MICCAI work-
shop,2018.

Manish Bhatt, Kalyan Ram Ayyalasomayajula and Phaneendra K. Yalavarthy.
Generalized Beer-Lambert model for near-infrared light propagation in thick
biological tissues. Journal of Biomedical Optics, 2016. ISSN 1083-3668, Vol-
ume 21, 10.1117/1.JBO.21.7.076012

Technical reports
Kalyan Ram Ayyalasomayajula and Anders Brun. Topological clustering
guided document binarization. Swedish Symposium on Image Analysis, 2015.

Kalyan Ram Ayyalasomayajula and Anders Brun. Document Binarization
Combining with Graph Cuts and Deep Neural Networks. Swedish Symposium
on Image Analysis, 2017.

Kalyan Ram Ayyalasomayajula, Filip Malmberg and Anders Brun. Realis-
tic handwritten document generation using an RNN with style transfer based
pre- and post-processing. Swedish Symposium on Deep Learning, 2018.

Summary of contributions
The roman numerals correspond to the numbers in the list of papers.

I,III,IV Sole contributor to the paper idea, theoretical design, experiment
planning and implementation. Significant contributions to the writing
and conclusions.

II Sole contributor to experiment planning and implementation. Major con-
tribution to the paper idea. Significant contribution to the writing and
conclusions.

V Sole contributor to the paper idea, theoretical design and implementa-
tion. Significant contributions to the experiment planning, writing and
conclusions.

Sammanfattning på svenska (Summary in Swedish)
Datoriserad analys av handskrivna dokument är ett aktivt forskningsområ-

de inom bildanalys och datorseende. Målet är att skapa verktyg som kan bli
tillgängliga vid till exempel universitetsbibliotek och för forskare inom hu-
maniora. Arbetet med stora samlingar av handskrivna dokument är mycket
tidsödande och många gamla böcker och brev förblir olästa i århundraden.
Fungerande datoriserade metoder skulle kunna hjälpa forskare inom till ex-
empel historia, filologi och datorlingvistik att kostnadseffektivt bedriva helt
ny typ av forskning baserat på stora samlingar av dokument. Avhandlingen
gör ett bidrag till detta område genom utveckling av metoder som bygger på
maskininlärning.

Tidens tand bryter ned historiska dokument. Väta, fläckar, brand, mögel och
naturligt åldrande av materialen under hundratals år gör att dokumenten blir
allt svårare att tyda. Den första halvan av avhandlingen är därför inriktad på
att rengöra den visuella informationen i dessa dokument genom bildsegmen-
teringsmetoder baserade på energiminimering och maskininlärning.

Maskininlärningsalgoritmer lär sig dock genom att imitera vad som förvän-
tas av dem. En förutsättning för detta är att ett facit är tillgängligt, vilket ofta
kallas för ”ground truth” på engelska. Detta medför ett problem för historiska
dokument eftersom det är brist på experter som kan hjälpa till att tyda och tol-
ka dessa. Den andra delen av avhandlingen handlar därför om att automatiskt
skapa syntetiska dokument, som liknar handskrivna historiska dokument. Ge-
nom att de är genererade från en känd text så har de ett givet facit. Det visuella
innehållet i de genererade historiska dokumenten inkluderar variation i skriv-
stilen och imiterar även nedbrytningsfaktorer för att göra bilderna realistiska.
När maskininlärning tränas på syntetiska bilder av handskriven text, med ett
känt facit, så kan de i många fall ge ett ännu bättre resultat även för verkliga
historiska dokument.

Acknowledgements
Towards the end of the thesis I cannot help but think of the very beginning

of my research journey. My research endeavor would not have been success-
ful without the support from many people, so I think now would be a good
time for the reader to get some coke and popcorn as this is going to be a long
list. First of all I would like to thank my parents, Saraswati Ayyalasomaya-

jula and Jagannatha Rao Ayyalasomayajula for all the love, motivation and
learning environment provided to pursue science. There were times when the
going was tough and the experiments blew up in my face, without the love and
support of my wife, Swarna Manjari Ayyalasomayajula picking myself up
would have been difficult. I am grateful for the lighter and fun filled moments
I had with my son Avyay Ayyalasomayajula and my brother Indu Shekhar

Ayyalasomayajula and his family.

I would like to express my sincere gratitude to my supervisor Anders Brun

for all the research discussions to ensure there was never a dearth of ideas, for
academic counseling and for the freedom to pursue research with unorthodox
methods at times. Also, my co-supervisors Filip Malmberg, who has been a
great mentor in my final years of PhD education and Ewert Bengtsson for all
his expert advice and mentoring.

After my masters I was motivated to learn computer vision and machine
learning. However, transitioning into machine learning was only possible due
to my fellow graduate students in the q2b lab Fredrik Wahlberg and Tomas

Wilkinson. Talking to them and working with them was how I ticked up the
tricks of the trade. After being a part of the early deep learning reading group
with Sajith Sadanandan and Omer Ishaq, the momentum started to pick up.
Though having spent relative short time with the new members of the team it
quite stimulating discussing with Sukalpa Chanda, Raphaela Helg and Ekta

Vats on their ideas on new direction of research.

I had my fair share of breaking things, but thanks to the proactive support
from Astrid Raidl the GPU server was seldom down and thanks to the re-
sourcefulness of Thomas Sundell and Joakim Sjöåker the support for lab
machines was quick. I am grateful to Anna-lena Forsberg for helping me
navigate with skatteverket, migrationverket and other bureaucratic rigmarole
through out my graduate studies and Lena Nordström and Camilla Pajunen
for their help with balancing out entries with primula.

There was never a dull moment at the IT department thanks to the social
interaction with all my fellow graduate students Anton Alexsson, Thomas

Lind, Mikael Laaksoharju, Rebecca Andreasson, Maike Paetzel, Sebas-

tian Wallkötter, Alex Yuan Gao, Anders Persson, Diane Golay, Ida Bodin,

Ted White and all seniors from HCI and Vladamir Curic, Elisabeth Lin-

near, Damian Matuszewski, Fredrik Nysjö, Johan Nysjö, Teo Asplund,

Amit Suveer, Anindya Gupta, Gabriele Partel, Leslie Solorzano, Johan

Öfverstedt, Nicolas Pielawski and all seniors at CBA. Dave Zachariah, Per

Mattsson and Johannes Nygren from SysCon for all the kinds of discussions
that span a variety of topics from both technical and non technical pool. Niko-

las Hedlund and Marcus Westerberg for all the fun course at department of
mathematics.

Finally, I would like to thank Vetenskapsrådet for funding me and my col-
leagues at q2b through the framework grant "Searching and datamining in
Large Collections of Historical Handwritten Documents" (Dnr 2012-05743).

Contents

1 Introduction . 1
1.1 General document image research . 1

1.1.1 Working with degraded documents . 1
1.1.2 Lack of research validation . 3

1.2 Choice of methods . 5
1.3 Overview of the thesis . 5

1.3.1 Scientific contributions of the thesis . 6
1.3.2 Notation used in the thesis . 7

2 Data sets . 8
2.1 DIBCO dataset . 8
2.2 Synthetic dataset . 9
2.3 UJIPenchar2 dataset . 10
2.4 NIST-19 dataset . 11
2.5 IAM online dataset . 11
2.6 IAM offline dataset . 12
2.7 George Washington Letters . 12

3 Overview on learning approaches . 13
3.1 Introduction to deep learning . 13

3.1.1 Basics of convolution layers . 13
3.1.2 Batch Normalization and drop out . 16
3.1.3 Loss function . 17
3.1.4 Back propagation . 18
3.1.5 Stochastic gradient descent . 19

3.2 Hidden Markov Models . 20
3.2.1 Basic of Markov system . 20
3.2.2 Hidden Markov Model . 21
3.2.3 State estimation . 22
3.2.4 Most probable path . 22
3.2.5 Learning a Hidden Markov model . 23

4 Segmentation . 24
4.1 Segmentation using Graph Cut . 25

4.1.1 Introduction to graph cuts . 26
4.1.2 Maximal flow - Minimal cut duality on graphs 27
4.1.3 Uniqueness of minimum cut . 29

4.1.4 Density based clustering . 31
4.1.5 Mean shift clustering . 34
4.1.6 Overview of Paper I . 36

4.2 Graph cut in combination with Neural architecture . 39
4.2.1 OverFeat . 40
4.2.2 Fully Convolutional Neural Network . 40
4.2.3 Architecture of Fully convolution neural network 42
4.2.4 Improve segmentation performance of network 44
4.2.5 Overview of Paper II . 45

4.3 End-to-end learning with Primal-Dual network . 45
4.3.1 Introducing Total Variation regularizer . 46
4.3.2 Primal-dual theory . 50
4.3.3 Smooth approximation using Bregman functions 52
4.3.4 Overview of Paper III . 56

5 Text generation . 64
5.1 Feature evaluation for text analysis . 65

5.1.1 Markov Random Field approach . 65
5.1.2 Fragmenting into piecewise smooth curves 68
5.1.3 Stroke combination with path openings . 70

5.2 Hidden Markov Model based generation . 71
5.2.1 Overview of Paper IV . 72
5.2.2 Feature Extraction . 73
5.2.3 Naive Strip features . 73
5.2.4 Marti-Bunke features . 73
5.2.5 Gabor features . 74
5.2.6 Discrete Cosine Transform features . 74
5.2.7 Histogram of Oriented Gradients features . 74
5.2.8 Pyramid Histogram Of visual Words features 74
5.2.9 Local Binary Patterns features . 74
5.2.10 Experiments . 75
5.2.11 Data-sets . 75
5.2.12 Evaluation . 75
5.2.13 Regression Tests . 76
5.2.14 Generative Tests . 77
5.2.15 Conclusions . 80

5.3 Neural architecture for handwriting generation . 80
5.3.1 Overview of Paper V . 81
5.3.2 Data augmentation . 81
5.3.3 Generation . 83
5.3.4 Style refinement . 84
5.3.5 Experiments with word spotting on generated pages 86
5.3.6 Conclusion . 87

6 Conclusions and future work . 88
6.1 Future work . 88

References . 90

1. Introduction

This chapter serves in dual capacity as an introduction to the document anal-
ysis in general as well as an introduction to the line of research selected for
the thesis. It is the author’s opinion that shedding some light into the thought
process could explain the structure of the thesis and the associated chapters.
The emphasis here is to show the invisible thread that binds the thesis topics
together putting them into a bigger perspective of handwriting research in gen-
eral. Effort is made here to explain the choices made not only in selecting the
over all methods but also the choice of picking a particular datasets to some
extent.

1.1 General document image research
Writing records has been a means of book keeping, a way to preserve knowl-
edge and pass on the experience through generations. They include religious
books and tenets were scarcely available often copied by hand maintained at
common place of meeting. These places contained attendance of people in a
locality some times also serving as a record of people migrating from a differ-
ent place. Some of the documents are a collections of correspondence main-
tained by the upper strata of the society who were educated. These provide
a glimpse in to the social networking within the aristocrats and the royalty.
These documents are also of interest to the historians as they provide a time
line to track changes in dressing style and fashion. In some cases meticulous
records are maintained that serve as a legal petition in the royal crown on civil
disputes all of which are of interest to historians and linguists alike.

1.1.1 Working with degraded documents
Preprocessing a document for use in document analysis systems (DAS) is the
first step to make the information usable. It is defined as noise removal and
binarization withe thin line separating the two [82, 117]. Unprocessed doc-
uments can effect the performance of Optical Character Recognition (OCR)
or DAS with unpredictable behavior. Classical preprocessing steps consist of
binarization, slant correction due to slope in the written characters from ver-
tical, skew correction due to slope in the written line from horizontal. These
correction are often crucial for recognizing the actual shape of the characters

1

Figure 1.1. Images (a-j): (a) Ink blotting (b) spill over parchment (c) textured back-
ground (d) stroke variation (e) scanning artifact (f) bleed through (g) smudging of
ink (h) low contrast between ink and paper (i) crease formation along paper folds (j)
smudging along with low contrast between ink and paper. Images (k-m): (k) Original
image with blue, green, red boxes highlighting strokes, loops and curves respectively
(l) Ground truth annotation with attention to shape (m) Ground truth annotation with
attention to ink occupancy

form the artifacts. Ancient manuscripts and historical documents are liable to
degradations. Research into document binarization aims to achieve state of
the art results either through building new techniques or combining the advan-
tages of known techniques in a novel way. It garners a lot of attention in the
document research community with latest methods summarized in the Docu-
ment Image Binarization Contest (DIBCO) every year. Ancient manuscripts
can be degraded due to their storage conditions: faded-out ink or parchment
aging, noise like background stains can arise from environmental effects like
mold or humidity as shown in first set of images in Fig.1.1.

The results of binarization are often subjective as shown in first set of im-
ages in Fig.1.1. However, binarization is a preprocessing step for OCR, doc-
ument layout analysis, document classification, skew and slant correction to
name a few. One goal of binarization is to reduce the image to a black and
white representation as most of the tasks on document images deal with the
actual writing which is the ink [61] which is well represented by a binarized
image. When working with large datasets binarized images reduces storage
for these large archives. The most important aspect of binarization is to sep-
arate the foreground (FG) text from the background (BG) parchment. This
task would call upon the combined techniques of image denoising and seg-

2

mentation. The results from any binarization algorithm are often reported in
the following three metrics:

F-Measure

F −Measure =
2×Recall ×Precision

Recall +Precision
(1.1)

where, Recall = T P
T P+FN , Precision= T P

T P+FP , T P,FP,FN denote the True Pos-
itive, False Positive and False Negative values, respectively.

Peak Signal to Noise Ratio

PSNR = 10log
(

C2

MSE

)
(1.2)

where, MSE =
∑i=1

M ∑ j=1
N [I(i, j)−I′(i, j)]2

MN PSNR is a measure of how close is one
image to another. Higher the value of PSNR, more is the similarity between
binarized image and the ground truth. Note that C equals to the difference
between foreground and background, M,N are the width and height of the
image respectively.

Distance Reciprocal Distortion Metric

The DRD Metric serves as a measure of visual distortion in a binary document
images [76]. It correlates with the human visual perception and measures the
distortion for all the flipped pixels as follows:

DRD =
∑S

k=1 DRDk

NUBN
(1.3)

where NUBN is the number of non-uniform (gray pixels) 8× 8 blocks in the
ground truth (GT) image, and DRDk is the distortion of the k-th flipped pixel
that is calculated using a 5× 5 normalized weight matrix WNm as defined in
[76]. DRDk equals to the weighted sum of the pixels in the 5×5 block of the
GT that differ from the centered k-th flipped pixel at (x,y) in the binarization
result image B as defined below:

DRDk =
2

∑
i=−2

2

∑
j=−2

|GTk(i, j)−Bk(i, j)|×WNm(i, j) (1.4)

1.1.2 Lack of research validation
Most of the applications of practical interest when working with the handwrit-
ten material is focused in reducing the manual labor that is involved in working
with them. These task typically include word spotting:finds words of interest,
dating: find the approximate time the document originated, writer identifi-
cation: determining the scribe or the scriptorium the document was written

3

Figure 1.2. Glossary of the key parts of handwritten text.

by, or transcription: convert the entire document into words. A huge effort
when working on handwriting research is dedicated to reducing the manual
intervention in these tasks. Thus these research methods should not only be
autonomous but also very accurate in their performance as manual validation
of the results can as tedious as original task itself. Since the methods have a
set of documents image as input with some intended "value" as an expected
output they fall within the purview of supervised learning methods. One of the
major problem when applying supervised learning to old handwritten material
is the lack annotated data. Generating realistic looking handwritten documents
can aid in reducing the effort required to generate labeled data for such tasks.

Being able to render handwriting of living and historical authors has a lot of
practical uses. In particular it is often faster to create reliable ground truth for
transcription and word spotting tasks by handwriting synthesis. Synthesized
writing styles are often used by banks to transfer sensitive information, such
as credit cards, sent through the post. And is some cases synthesized hand-
writing is used as a camouflage for sending banking information, which can
be improved.

Historians and philologists are often interested in the form of writing and
analyzing the written material. We introduce some terminology that is of-
ten used in this context as shown in Fig.1.2 such as glyph (a written form of a
character as outlined in blue box), rules (gray line that provide a cue to straight
writable area) ascender, descender (part of characters that go above or below
the rules respectively as shown in green boxes), ligature (connection between
characters as shown in red box), the lower of the rules is referred to as the
baseline. The idea of using synthetic text data has been around for sometime
and has seen some success in tasks such as printed word recognition in the

4

wild where using synthetic text has proven very successful in improving the
results [98]. Also in text recognition and binarization tasks using synthetic im-
ages to augment training data of deep neural networks have been explored in
[10, 124]. The challenge involved in producing synthetic handwriting is that
there are varied sources of variations that need to be modeled. However, in
the current thesis we deal with four major sources stroke shape, stroke width,
foreground degradation (fading, smudging, gradation etc of ink), back ground
degradation (textured page, bleed through, blotting etc). Thus using synthetic
handwritten material can be used to mimic the under lying statics of the ink
variation, the degradation in the parchment, variation of strokes, glyphs etc.
This can evaluate the data-mining tasks employed in handwriting through cre-
ation of ground truth, which is very difficult to procure. The main problem
of getting ground truth is due to the subjective nature of the underlying hand-
writing task and the relative expertise of the person creating it. All of these
associated problems are mitigated by use of synthetic handwritten material.

1.2 Choice of methods
When working with large amount of datasets such as handwritten material
the algorithms need to have the capability to be generalizable with very few
parameters to tweak. The ability to learn the required task for the under lying
data is an essential trait of such methods. In most of the task the relevant
behavior such as dating a document, identifying an author of a document,
spotting a required word etc are governed by some under lying statistics or
features of the data. It is usually these statistics that are of interest and reveal
a pattern associated to the task at hand. Another requirement be able measure
the performance of the methods in a quantitative means. This quantitative
measurement can lead to investigate corner cases from which the parameters
governing the method can be further fine tuned to improve the over all results.
Towards this end the methods investigated in this thesis are focused on end-
to-end trainable machine learning methods that encompass both these criteria.

1.3 Overview of the thesis
The concluding section for this chapter tries to summarize the scientific contri-
butions of this thesis and provide an overview of the thesis structure. Chapter
1 provides an overview of the field. The datasets used in the thesis are dis-
cussed in Chapter 2. Chapter 3 provides a very broad but necessary context
on machine learning techniques which is by no means exhaustive but acts in
the capacity of being an introduction to the methods. Chapter 4 and Chapter
5 form the bulk of the thesis, they to provide some introduction specifically
to the methods discussed in these chapters. Chapter 4 of the thesis deals with

5

methods used to digitally cleanse the historical documents to make the writing
free from degradations. The direction towards meeting this end was through
image segmentation based approaches. The first three papers in the thesis
make up for this chapter. Chapter 5 delves into a complementary direction to
the previous approach of research, by reproducing the writing style and the vi-
sual degradations artificially to generate a handwritten document. This chapter
discusses the last two papers of the thesis.

1.3.1 Scientific contributions of the thesis
The contributions of this thesis consists of 5 peer-reviewed papers, and intro-
ductory chapters which explain and extend some of the results related to these
papers.

Paper I

A theoretically interesting framework that improves an existing a state-of-the-
art graph-cut segmentation is presented. This was achieved by identifying the
most useful seeds and preserving the context surrounding them to improve the
edge map aiding the graph-cut.

Paper II

Continuing the line of thought from Paper I, the approach in this paper tries to
merge the probability output for the classes from a deep convolutional network
as a mask within which the edges are preserved and parts where the network
is very positive about their class affinity are used as seeds.

Paper III

This approach takes the method discussed in Paper II further to design an
end-to-end trainable neural network. The improvement in the results are due
to jointly training semantic labeling with a post-processing network that was
designed using proximal operator theory.

Paper IV

A hidden markov model was implemented to evaluate the classification as well
as generation capabilities of widely used hand crafted features on handwritten
characters.

Paper V

A recurrent neural network is proposed that can cope with style and stroke
variations. The recurrent neural networks is used in conjuncture with genera-
tive adversarial networks for data augmentation and texture enhancements in
an attempt to imitate real images. The binary output from segmentation from
Papers I-III can be used as cues for the style transfer.

6

The introductory sections in the chapters provide a deeper understanding
of some of the concepts from the papers, for instance Sec.3.1, Sec.3.2 pro-
vide an overview to deep learning and hidden markov models respectively;
Sec.4.1, Sec.4.1.4, Sec.5.1 provide an introduction to graph-cuts, clustering
and markov random fields applied to image features respectively.

1.3.2 Notation used in the thesis

x is used to denote a vector

x is used to denote a scalar

xn is used to denote data with n samples

xi is used to denote the ith index in an equation environment

ith and iteration in the algorithm environment

xn
i is used to denote the ith index during

nth iteration when both indeces and iterations are used.

P[.] denotes the probability of a random variable.

E[.] denotes the expectation of a random variable.

7

2. Data sets

The work presented in the dissertation has focused on cleaning the ink from
the background clutter and later again faithfully reproduce the writing style
and the background clutter to serve as ground truth. In order to quantitatively
measure the performance of these methods the following datasets have been
used in various capacities.

Gray scale
Input

Adaptive
binarization

Skeletonization

Manual
correction

Skeletonization

Estimated
GroundTruth
construction

Evaluation

Binarization
methodology

F-measure
MissingText
BrokenText
FalseAlarms
Deformation••

••
•

b/w image

skeletonized
image

manually
corrected
skeleton

Skeletonized
ground truth

Skeletonized
ground
truth

construction
stage

b/w image

b/w image

Figure 2.1. A the DIBCO ground truth image generation pipeline

2.1 DIBCO dataset
The Document Image Binarization Contest (DIBCO) dataset is often used in
quantitative evaluation of binarization algorithms. This dataset consists of
parts of high resolution document images including handwriting and printed
material. The dataset is a compact collection of various types of degradation
often encountered in the foreground ink and background in historical material

8

Figure 2.2. Examples from synthetic dataset

as shown in Fig.1.1(a). The dataset provides ground truth as well as the metrics
described in Sec.1.1.1 required for quantitative evaluation [92]. The dataset
employs semi-automatic skeleton of the grayscale image refined by the user
to eliminate any aberrant pixels or join broken stroke to mend discontinuities.
The ground truth image is then estimated by growing back the foreground
using morphological dilations over the refined skeleton bounded within the
edges along text boundaries. This data set has been used in Papers I-III to
measure the algorithm performance and in Paper V get style content.

2.2 Synthetic dataset
When training learning based binarization algorithms formulated as a segmen-
tation paradigm having annotated data is crucial. Towards this end fractal
noise was employed to generate various background textures to mimic the
degradations in a stochastic manner. Fractal noise also known as Pink noise is
created by rescaling Perlin noise and adding onto itself. There are three steps
to generating Perlin’s noise as show in the algorithm below:

Algorithm 1: Perlin noise generation
Input: nDim, point (number of dimensions)
Output: texture (Textured image)

ndGrid ← nDimGridWithRandomGradients(nDim)
prods ← dotProdOfGradAndDistVecAtNode(ndGrid)
texture ← interpolateWithinGridCell(prods)

An n-dimensional grid is generated by associating a random n-dimensional
unit vector at each node. The random vectors are constructed by picking points
at random from an n-dimensional space. A Monte Carlo approach is used to

9

Figure 2.3. Instances of ’a’ in UniPenn(first row), NIST (second row)

select these random points from a unit cube restricted to fall within a unit cir-
cle. These points can then be normalized to unit length. The n-dimensional
argument for the noise function is the associated with the closest cell in the
grid from the previous step. A dot product between the gradient vector at this
node and the distance vector to the point is then computed. The grid bound-
ing the point will have 2n nodes resulting in O(2n) order complexity to this
step. Between the 2n dot products computed at the nodes of the cell con-
taining the argument point, an interpolation is carried out so that the noise
function vanishes at the nodes. These step help in producing realistic looking
textures often used in computer graphics. The generated blobs and textures
for the background can be controlled by sampling lower and higher frequency
components used in the noise function respectively. Bleed through effect was
created by adding blurred text over the foreground text. The entire color space
was randomly sampled to create varied background and foreground pigments.
The synthetic data thus generated was used to pretrain a large semantic label-
ing networks used in Paper II and III.

2.3 UJIPenchar2 dataset
The Universitat Jaume I pen characters dataset version 2 (UJIPenchar2), of
online handwritten characters [30] captures the stylus co-ordinates of 60 writ-
ers when writing two instances of each character in upper and lower case.
This data-set has recorded information of 120 instances of each character as
an (x,y)-coordinate trace of the pen. This on-line pen information is converted
to offline images of characters using spline interpolation tracing the pen trajec-
tory from captured coordinates. This dataset was used in Paper IV for Hidden
Markov Model training.

10

Figure 2.4. (a)Instance of a line rendered from IAM online coordinates. (b) An exam-
ple of IAM offline form.

2.4 NIST-19 dataset
The National Institute of Standards and Technology’s special database 19
(NIST-19) consists of handwritten forms from 2100 different users. It has hand
printed forms from 3600 writers with 810,000 character images isolated from
their forms with annotations to serve as ground truth in classification tasks.
About 1472 instances per lowercase character as shown in Fig.2.3, were ex-
tracted from these forms using the underlying recognition system [52]. This
dataset was used in Paper IV as well.

2.5 IAM online dataset
The IAM online Handwriting Database [77] consists of samples of writing
contributed by 221 writers, more than 1,700 acquired forms all made available
in XML format. These file capture the coordinates of the stylus trajectories
written on a writing device along with their transcription. It consists of 13,049
isolated and labeled text lines with 86,272 word instances from a vocabulary
of 11,059 words an example is shown in Fig.2.4(a). This dataset was used in
Paper V for training a recurrent neural network.

11

Figure 2.5. Cropped image of a page from George Washington Letterbook 1.

2.6 IAM offline dataset
The IAM offline Handwriting Database [79] has 1,539 pages of scanned text
from 657 writers contributing samples of their handwriting. This constitutes
of 5,685 isolated and labeled sentences with a total of 13,353 text lines that
are isolated and labeled. This totals to about 115,320 labeled word instances.
These words have been extracted from the scanned pages using an automatic
segmentation scheme and were manually verified. All form, line and word
images are provided along with the corresponding form label files, including
segmentation information. A variety of estimated parameters from the pre-
processing steps such as binarization threshold per line, and accuracy of word
annotation are included as meta-information in a XML file format. An in-
stance of the written style is shown in Fig.2.4(b). This dataset was used in
Paper V for word spotting based evaluation.

2.7 George Washington Letters
The George Washington data set, is typically used within the community as
a data base for text recognition by [41], by using a subset consisting of 20
pages from the George Washington letters available in the United States Li-
brary of Congress written by George Washington and one secretary with iden-
tical handwritings. In handwriting generation the images from letterbook 1,
written between Aug. 11, 1754 to Dec. 25, 1755 has been used. The orig-
inal collection can be found on the website of the United States Library of
Congress1. As an example, a cropped image from letterbook 1, page 101, is
shown in figure 2.5. This dataset was used in Paper V for style width augmen-
tation.

1https://www.loc.gov/resource/mgw2.001

12

3. Overview on learning approaches

The literature on machine learning techniques is so vast that even an attempt to
summarize them into a book would be an arduous task. This chapter intends is
to provide a bare bones introduction to the preliminary building blocks behind
the learning paradigms that have been implemented in this thesis. As these
methods would be described in detail in the following chapters as and when
the are discussed, now would be a good place to introduce the basics behind
them. The learning based methods discussed here are classification using con-
volution neural network used in semantic segmentation, sequence to sequence
learning using hidden markov models and recurrent neural networks used for
handwriting generation.

3.1 Introduction to deep learning
Convolutional Neural Networks (CNNs) are ubiquitous in computer vision,
image processing and related applications since their success in the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) in 2013. The success
of these networks can be attributed to a variety of tricks and tweaks accumu-
lated over the years since the inception of artificial neural networks (ANN).
Three salient aspects to their success are compact feature representation, end-
to-end training, and the advent of graphical processing units (GPUs) supported
by efficient software libraries. CNNs are known for their ability to represent
large datasets into compact features using convolutional filters as a building
block over various scale representations of underlying image data. Using back
propagation to communicate the gradients across various network blocks to fa-
cilitate training the whole network end-to-end. State-of-the-art libraries such
as PyTorch, Tensorflow, Caffe, MXNet have supported this trend in machine
learning with efficient implementations on GPUs making portability and test-
ing the research ideas on various applications of interest further reinforcing
the trend.

3.1.1 Basics of convolution layers
The main building block of CNNs is the convolutional layer. The term convo-
lution as used in the deep learning literature is element wise multiplication be-
tween two matrices input layer and convolutional filter respectively. In image

13

Input

1 10 0 0

1 10 0 0

1 1 10 0

1 1 10 0

1 1 1 0 0

Filter / Kernel

1 10

10 0

1 10

1 10 0 0

1 10 0 0

1 10× 1 0× 0 1× 1

0× 0 1× 1 1× 0 1 0

1× 1 1× 0 1× 1 0 0

4

1 10 0 0

1 10 0 0

0 0× 0 1× 1 1× 1 1

0 1× 0 1× 1 1× 0 0

1 1× 1 1× 0 0× 1 0

4 3

Figure 3.1. Example of convolutions with the input and filter kernel shown in dashed
outline.

based applications convolution is applied on the input data using a convolution
filter to produce a feature map.

14

32

3

32

32

32

10

5× 5× 3

32× 32× 1

32× 32× 1

1× 1× 1
1× 1× 1

Figure 3.2. Example of convolutions with 3D input and filter kernels.

Fig.3.1 shows an example convolution operation shown with binary 2D in-
put to demonstrate how convolutions work. In general images can be multi-
dimensional with arbitrary values bounded within a specific range. However,
the said convolution framework is generalizable to such N ×M ×K filters as
shown in Fig.3.2. It can be seen how two feature maps learnt from two dif-
ferent filters can be stacked along the depth dimension. As the convolution
operation for each filter kernel is performed independently the resulting fea-
ture maps are disjoint. The stride and padding are two important parameters
other than the filter size that influences the convolutional feature map. Stride
is the step length by which the filter kernel is moved over the input during
convolution Fig.3.1 shows output with one pixel stride. Padding adds extra
pixels filled with zeros or edge values across the boundary of the input so that
the output size matches the input size. The convolution operation is usually
followed by pooling operation to reduce the output dimensionality. This en-
ables to reduce the number of parameters in the network reducing the time
required for training the network. Pooling layers down sample each feature
map independently along height and width dimensions, keeping the depth in-
tact. The most common type of pooling operation is max pooling which takes
the maximum value within the pooling window. As opposed to the convolu-
tion operation, there are no parameters that need learning in pooling; however
the window size and stride needs to be specified. Fig.3.3 shows the result of
max pooling using a 2× 2 window and stride 2. The output of the convolu-
tion layer is subjected to a non-linear activation so that learning the function
approximation takes place during training network [27, 29, 33]. A very com-
monly used activation function include rectified linear unit (ReLU) for CNNs
and sigmoid and hyperbolic tangents for RNNs.

15

1 2 3 4

3 2 1 0

5 6 7 8

1 1 2 4

3 4

6 8

Figure 3.3. Example of max pooling using a 2×2 window of stride 2.

ReLU Sigmoid Hyperbolic tangent

f (x) =

{
x; if x > 0
0 otherwise

f (x) =
1

1+ e−x f (x) =
ex − e−x

ex + e−x

It is common in the deep learning literature to refer to convolution layer,
with max pooling and ReLU associated non linearity as a convolutional block.
A few of these convolutional blocks are repeated with varying parameters
along the depth of the network ending in a fully connected layer before the
final classification through a soft-max layer; σ(z) j =

ez j

∑K
k=1 ezk

denotes the out-

put on the jth-component of input vector z ∈ R
K .

3.1.2 Batch Normalization and drop out
A common problem encountered in training large neural networks is the issue
of vanishing/exploding gradients. This often results due to the fact the output
from the layer change very little after being squashed to the range of [0,1]
from the non-linearity as a consequence the gradients along the weight training
vanish (or explored depending on the context). To increase the stability of
a neural network, batch normalization normalizes the output of a previous
activation layer around the unit normal distribution. However, the mean and
the covariance are learned during the stochastic gradient descent as hyper-
parameters. This allows stochastic gradient descent to denormalize by learning
the mean and the covariance, instead of changing all the weights thus leading
to train a stable network. The Algo.2 summarizes these steps.

Another important idea to prevent over-fitting of data is to use dropout.
When training a neural network a neuron is exempted from training by dis-

16

Algorithm 2: Batch norm transform for a batch
Input: Values of x over a mini-batch: B = {x1 · · ·xm};

Hyper-parameters: γ,β
Output: {yi = BNγ,β (xi)}

μB ← 1
m ∑m

i=1 xi (mini-batch mean)
σ2

B ← 1
m ∑m

i=1(xi −μB)2 (mini-batch variance)
repeat

x̂i ← xi−μB√
σ2

B+ε
(normalize)

yi ← γ x̂i +β ≡ BNγ,β (xi) (scale and shift)
until ∀xi in mini-batch

abling the gradients update to them with probability p. This is achieved by
disabling the inputs and outputs to the selected neuron during the current it-
eration. The neurons to be dropped are sampled with probability p at every
training step. This leads to a neuron dropped at one step can be active at an-
other. The hyper-parameter p is referred to as the dropout-rate. The network
trained with drop-out performs better due to two reasons: (a) it forces the
neurons to train independently (b) as no to batches are identical the trained
network acts like an network-ensemble.

3.1.3 Loss function
As stated previously the deep networks act as function approximators thus the
nature of the loss function used in a network depends on the learning task the
it is trying to solve. Two of the commonly encountered tasks are regression;
predicting a numerical value and classification; select a category as an output
label. Classification can lead to various cases such as predicting a binary out-
come, predicting a single label from multiple classes, or predicting multiple
labels from multiple classes. Each of these choice result in different loss func-
tion and their associated activation functions. The following table summarizes
the task and their associated losses and activation functions used.

Task Output Activation Loss function

Regression Numerical value Linear MSE
Classification Binary outcome Sigmoid BCE1

Classification Single label, multiple classes Softmax CE
Classification Multiple labels, multiple classes Sigmoid BCE2

17

Mean squared error (MSE):
1
N

n

∑
i=1

(yi − ŷi)
2

Binary cross entropy (BCE1): −(y log ŷ+(1− y) log(1− ŷ))

Cross entropy (CE): −
M

∑
i=1

yi log ŷi

Binary cross entropy (BCE2): −
M

∑
i=1

(yi log ŷi +(1− yi) log(1− ŷi))

where, yi is the true value and ŷi is the predicted value, M the number of classes
and N the number of regression data points.

3.1.4 Back propagation
The basic idea behind of back propagation is a simple chain rule of differen-
tiation w.r.t the parameters that we need to learn. Fig.3.4(a) shows a simple
graph with the following relations between the inputs and the outputs:

Y = (α +β + γ)X , Z = eY +Y 2 (3.1)

Understanding the gradient computation in forward shown in Fig.3.4(a) is
straight forward i.e compute the gradient of output, of each block w.r.t input
of the block which finally gives the gradient of Z w.r.t X as shown below:

∂Z
∂Z

= 1,
∂Z
∂Y

=
(
eY +2Y

)
,

∂Y
∂X

= (α +β + γ)

∂Z
∂X

=
∂Z
∂Z

∂Z
∂Y

∂Y
∂X

= 1 · (α +β + γ) · (eY +2Y
) (3.2)

However, gradient are propagated in the network in the backward pass in
order to understand this it is convenient to think of the network in terms of
the output. The idea is to compute how each much each input as contributed
in the change in the output. The idea is still applying chain rule shown in
Eq.3.2 but in the reverse direction as shown in Fig.3.4(b). This distinction is
important due to the fact that when updating the parameters while training it
would be computationally optimal to limit the effect of gradient computation
to a block. This would result in cascading the gradients over the entire network
parameters correctly.

18

X Y = (α+ β + γ)X Z = eY + Y 2

α

β

γ

eY

Y 2

Forward pass
(

∂
∂X

)

∂X
∂X = 1

∂Y
∂X = α+ β + γ

∂Z
∂X =

(
α+ β + γ

)(
eY + 2Y

)

Reverse pass
(
∂Z
∂

)

∂Z
∂X =

(
α+ β + γ

)(
eY + 2Y

)
∂Z
∂Y =

(
eY + 2Y

) ∂Z
∂Z = 1

Figure 3.4. Computational graph with various block operations. Derivatives compu-
tations along the forward pass are shown in red and long reverse passe are shown in
blue for the corresponding blocks.

Fig.3.5(a) shows the values along a computational graph along with the gra-
dients in the forward pass. Fig.3.5(b) shows an interesting effect of backprop
in updating the gradients on the parameter b. As b influences c,d which are
inputs to e the cascaded effect of ∂e

∂b = ∂e
∂c +

∂e
∂d

3.1.5 Stochastic gradient descent
The idea behind stochastic gradient descent (SGD) is to optimize the proposed
loss by descending along the significant gradient direction and suppress other
spurious directions. The weights of the network are initialized randomly and
are updated by back propagating the gradients from the loss function down to
the respective weight updates. The most ideal scenario for optimizing the loss:

N

∑
i=1

|yi − f (xi)|2 (3.3)

between the output yi and the target function approximation f (xi) that is
learned by the network during training we need to use all the N data sam-
ples involved in the least square problem in Eq.3.3. However, as the set are
large with N >> 1 they are split into mini-batches so that the under lying least
squares problem is tractable computationally. But this does not ensure that the
optimal descent direction is picked up. SGD operates on the fact that if un-
der lying mini-batches are reflective of the inherent data statics the gradients
would point out in the correct direction on average. This sentiment is reflected

19

e = c ∗ d
e = 6

e = a+ b
c = 3

∂e
∂c = 2

d = b+ 1
d = 2

∂e
∂d = 3

b
b = 1

∂c
∂b = 1 ∂d

∂b = 1

a
a = 2

∂c
∂a = 1

(a)

∂e
∂e = 1

∂e
∂c = 2

∂e
∂c = 2

∂e
∂d = 3

∂e
∂d = 3

∂e
∂b = 5

∂c
∂b = 1 ∂d

∂b = 1

∂e
∂a = 2

∂c
∂a = 1

(b)

Figure 3.5. Backprop updates along a graph.

in various momentum based approaches employed in SGD:

Vt = βVt−1 +(1−β)St ; β ∈ [0,1] (3.4)

where Vt−1 is the accumulated gradients over time and St is the average gradi-
ent obtained by SGD using the current mini-batch.

3.2 Hidden Markov Models
This section provides an overview of the Rabiner’s tutorial on Hidden Markov
Models (HMMs) [108]

3.2.1 Basic of Markov system
A Markov system has N states, denoted by s1,s2, · · · ,sN which are being vis-
ited in discrete time steps t = {0,1, · · ·}. The system is in one of the states in
a given time step t denoted by qt . From transition form one state to another
is random, with the current state determining the probability distribution for
the next state. The Markovian property of the system tells us that qt+1 is con-
ditionally independent of {qt−1,qt−2, · · · ,q0} given qt i.e. P(qt+1 = s j|qt =

20

si) = P(qt+1 = s j|qt = si,qt−1 = si−1, · · ·q0 = s0). All the transitions in the
systems are denoted in a matrix of transition probabilities A

A =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1N
a21 a22 · · · a2N

.

.

.
aN1 aN2 · · · aNN

⎤⎥⎥⎥⎥⎥⎥⎦ (3.5)

where ai j = P(qt+1 = s j|qt = si). This matrix helps us to calculate pt(i), the
probability the state is si at time t. We can write pt+1(j) = P(qt+1 = s j) in-
ductively as

∑
i=1

P(qt+1 = s j ∧qt = si)

=
N

∑
i=1

P(qt+1 = s j|qt = si)P(qt = si)

=
N

∑
i=1

ai j pt(i)

When working with real world data there is associated randomness in de-
termining the output from the final state as well. In order to model this lets
add another layer of complexity to the system. Say the output Ot of the state
qt is noisily determined. Again making the assumption that Ot is conditionally
independent of {qt−1,qt−2, · · ·q1,q0,Ot−1,Ot−2, · · ·O1,O0} given qt . In other
words: P(Ot = X |qt = si) = P(Ot = X |qt = si, any earlier history).
This gives another matrix B consisting of emission probabilities or output
probabilities.

B =

⎡⎢⎢⎢⎢⎢⎢⎣
b1(1) b1(2) · · · b1(M)
b2(1) b2(2) · · · b2(M)

.

.

.
bN(1) bN(2) · · · bN(M)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.6)

3.2.2 Hidden Markov Model
HMMs are a natural choice when the underlying application to which they are
applied deal with determining any of the following three choices:

• State Estimation: The aim of such a application is to determine P(qT =
Si|O1O2 · · ·OT). This problem is solved using a dynamic programming
step discussed further in this section.

21

• Most probable path: Here the task is to find the most probable path
taken along a state machine given the output O1O2 · · ·OT and compute
the probability of taking such a path. This paves way to the Viterbi
algorithm.

• Learning a Hidden Markov model: The aim here is to design a complete
HMM that is most likely to produce an output string of observations
O1O2 · · ·OT . This give rise to an expectation maximization algorithm.

A HMM is specified by the parameter set λ = {N,M,Π,AN×N ,BN×M} of
which the starting state probabilities (Π), the transition matrix (AN×N), and
emission matrix (BN×M) can be learnt. However the number of states (N) and
the number of output symbols (M) must be known apriori.

3.2.3 State estimation
Definition. Given observations O1O2 · · ·OT

αt(i) = P(O1O2 · · ·Ot ∧qt = Si|λ); 1 ≤ t ≤ T (3.7)

αt(i) is the probability of ending in Si on the t-th time step given the first t
observations in a random trail.

αt(i) can be shown to take the recursive form

αt(i) = ∑
k

akibi(Ot)αt−1(k) (3.8)

Using Bayes’ rule we can compute the state estimation as

P(qt = Si|O1O2 · · ·Ot) =
αt(i)

∑N
j=1 αt(j)

(3.9)

3.2.4 Most probable path
Definition. The path of length t −1 with maximum probability of producing
the observations O1 · · ·Ot ending in the state Si on time step t is defined as
maximum probable path denoted as mppt(i).

We define the terms:

mppt(i) = argmax
q1···qt−1

P(q1 · · ·qt−1 ∧qt = Si ∧O1 · · ·Ot) (3.10)

δt(i) = P(mppt(i)) = max
q1···qt−1

P(q1 · · ·qt−1 ∧qt = Si ∧O1 · · ·Ot) (3.11)

22

We can solve this problem can be solved through Viterbi algorithm by claim-
ing that the most probable path with last two states as Si,S j is the most prob-
able path to Si, followed by the state transition Si → S j, which gives us the
following recursive relations:

δt(j) = δt−1(î)ai jb j(Ot), mppt(j) = mppt−1(î)Sî (3.12)

where î = argmaxi δt−1(i)ai jb j(Ot)

3.2.5 Learning a Hidden Markov model
Inferring the parameters λ that govern a HMM producing the observations
O1 · · ·OT is achieved through expectation maximization using the Baum-Welch
algorithm as shown below:

Algorithm 3: Baum-Welch Algorithm

Input: O1 · · ·OT ; Initialize: λ = {A0 = 0N×N,B
0 = 0N×M,π0 = 0N

Output: A = {ai j},B = b j(k),{πi}
repeat

γk
t (i) ← E[transition Si → S j|λ k−1]

ξ k
t (i, j)← E[transition out of Si|λ k−1]

πk
i = γ1(i) subject to ∑i πk

i = 1

ak
i j ← ∑T−1

t=1 ξ k
t (i, j)

∑T−1
t=1 γk

t (i)

bk
j ←

∑T
t=1

s.tOt=vk

γk
t (i)

∑T
t=1 γk

t (i)

k ← k+1
until convergence

The Baum-Welch algorithm is likely to be stuck in local minima, but the pa-
rameters estimated can serve as adequate models for the corresponding data.

23

4. Segmentation

Document analysis systems have a series of processing steps each dedicated
to a specific task. It is analogous to classical image processing prior to the in-
troduction of deep learning. These steps are accomplished through processing
blocks each designed to accomplish a specific task. A typical image process-
ing pipeline cascaded such blocks in series with the output of one serving as
the input to the next block as shown in Fig.4.1.

Image
(acquisition) Pre-processing Feature

extraction
High level
learning Output

Figure 4.1. A generic image analysis pipe-line. The high level learning for document
systems is the machine learning task of interest such as layout analysis, text generation
or transcription

This approach is true for many document image processing pipelines as
well. The first step in any document processing pipeline is denoising i.e. to
remove the noise in the existing images as discussed in [82, 117]. Denoising
is not the only task in pre-processing, skwe/slant correction, contrast enhance-
ment etc. can be part of pre-processing but will not be discussed in this chapter.
Traditionally binarization is defined as the task of separating the foreground
text from the back ground parchment on which it has been written. This is
by definition segmentation of the document image into foreground and back-
ground classes.

Binarization though a critical preprocessing step for task such as Optical
character recognition (OCR), document layout analysis, document classifica-
tion etc. is a subjective and ill-posed problem [60]. As documents are written
using a monochromatic ink on a paper the entire information of relevance is
present in the distribution of the ink [61]. A binarized image thus, is a compact
representation of the ink distribution when applied on large archives. Images
with distinct bimodal distribution over the two classes can benefit from global
threshold algorithm such as Otsu [96], which maximizes the inter class varia-
tion simultaneously minimizing the intra class variance. Better methods often
considered as milestones in document image binarization [60] were achieved
by fine tuning Otsu’s approach to compensate for the background variations
lead to improved methods such as Niblack [91] and Sauvola [112], which are
often referred to as adaptive thresholding.

24

The techniques discussed in this chapter of the thesis expand the basic def-
inition of binarization further to encompass attributes from denoising along
with the underlying task of segmentation. The reason for this will be made
clear as we proceed into the details of each approach. However this would
be a good point in the chapter to explain the intuition behind these methods
on the whole. We can argue that intuitively it makes sense to combine de-
noising as a part of segmentation to make the text image as clear as possible
for further tasks in the analysis pipeline. This would make it difficult to draw
a distinct line between segmentation and denoising in the traditional sense.
Hence it requires encapsulating the nature of noise into the segmentation step
with suitable cost function. This is the primary idea behind the techniques dis-
cussed in this chapter which have been explored using graph cuts, deep neural
architectures and on occasions mixing these two approaches.

4.1 Segmentation using Graph Cut
This section introduces graph cuts related topics as they are a recurrent theme
behind the ideas in this chapter and also the beginning of following chapter on
text generation. In addition to graph cuts density based clustering techniques
will be explored as there play an important role when applied to document bi-
narization. A more comprehensive summary of graph cuts can be found here
[32, 71]. In order to show the relation between the work presented in the the-
sis their related ideas and extensions we will consider image segmentation as
an ill-posed inverse problem [105, 121]. It is formulated as an inverse prob-
lem as we are trying to reconstruct the class association of each pixel given
the properties of the underlying image. Ill-posed as their is a lot of informa-
tion missing or obfuscated either due to the signal or measurement noise in
image acquisition or due to occlusion, lighting or perspective distortion. It
is a standard approach to formulate segmentation as an optimization problem
[22]. The trick is to design a suitable objective function E often refereed to as
energy function / cost function defined as:

E : (x,zn)→ R (4.1)

where the energy E(x,zn) is assigned to all possible combinations of (x,zn)
of input data zn and the quantity to be inferred x. We consider the quantity to
be inferred; class label of a pixel as a vector x ∈ {0,1}Ncl in one-hot encoding
with Ncl classes. Similarly zn is a vectorized data of sample size n available
per pixel in an image. It is a standard convention to consider the image as a
flattened 1×nm vector representative of an n×m image array. The optimiza-
tion framework provides a intrinsic measure of how well the solution x fits the
input data zn. Hence it is common to refer to the optimal solution xopt as the
solution yielding the minimum energy:

xopt = argmin
x

E : (x,zn) (4.2)

25

As discussed previously the very nature of the problem is ill-posed hence
there can be more than one solution that can satisfy Eq.4.2. External con-
straints can be introduced on the energy function Eq.4.1 to ensure it is well-
posed. These constraints can be dictated by the physics of the problem, some
desirable criteria on the solution, sometime heuristic based on observations
etc. In computer vision and image processing a common form of the resulting
energy is:

E(x,zn) = Edata(x,z
n)+λEprior(x,z

n) (4.3)

where the first term is to data dependence term, the second term serves as
a regularization (or stabilization) on constraints given by our a priori knowl-
edge, λ is the regularization constant used to control the trade-off between
data and prior terms.This approach of energy function formulation is com-
mon in denoising, deblurring, motion estimation and segmentation of images
[22]. An in depth introduction to such energy formulation and computational
approaches to solve them can be found in [16, 22].

4.1.1 Introduction to graph cuts
A graph also referred to as a flow network consists of set of nodes (or vertices)
v ∈ V , and a set of edges (or arcs) e ∈ E ⊆ V ×V . We consider a directed
weighted graph G = (V,E). We assume that each edge (i, j) ∈ E is assigned
a real-valued weight wi j ≥ 0 and wi j = wi j is possible. A cut C = (S,T) in G
is a partition of V i.e V = S∪T,S∩T = /0. The term cut set refers to the set
of edges connecting nodes in S with nodes in T . Associated with each cut is a
cost of a cut, |C| defined as the sum of the weights of the edges in the cut set:

|C|= ∑
{(i, j)∈E|i∈S, j∈T}

wi j (4.4)

An important observation is that the cost associated with a cut is by definition
directed and the cut set contains edges going specifically from S to T . And
possibility of wi j = w ji is important for image processing. In this thesis, we
deal with a special case of graph cuts called st-cuts. Before we define the no-
tation for st-cut, we will interpret a graph as a large network of water pipes.
As per the flow network analogy where the edge weight wi j corresponds to
directed flow capacity in the edge. In this setting, we add two additional nodes
s and t called terminal nodes. These nodes are capable of producing and con-
suming infinite flow capacity hence called source and sink nodes respectively.
In the set V each node now has two choices: either being associated with the
source node or the sink node. Hence combinatorially speaking, resulting in
2|V |−2 possible st-cuts.

26

4.1.2 Maximal flow - Minimal cut duality on graphs
Image segmentation requires a maxflow algorithm with is efficient in handling
the nature of graphs resulting in image. The working principle behind the
maxflow algorithm used in the graph cuts one needs an insight into a funda-
mental duality that is quintessential to all graph-cut problems. Interpreting the
graph as flow network results in a fundamental results in combinational opti-
mization which says that a minimum cut problem can be solved by finding the
maximum flow from the source to the sink [42, 95]. Following the flow anal-
ogy for a graph the edges in the graph denote pipes with their weight represent-
ing the maximum water they can carry. Then flow can be formally viewed as
a mapping assigning non-negative values to each edge i.e. f : E → R

+∪{0}.
We denote the flow along the edge (i, j) ∈ E by fi j, which must satisfy the
following criteria:

Capacity constraint: 0 ≤ fi j ≤ wi j ∀ (i, j) ∈ E (4.5)

Flow conservation: ∑
(i, j)∈E

fi j = ∑
(j,i)∈E

f ji ∀ i ∈V {s, t} (4.6)

The capacity constraint guards the flow along an edge from exceeding the
permitted edge capacity. The flow conservation maintains the flow entering
and exiting a node to be equal. In the current context it is helpful to refer
wi j and | f | as the edge capacities and value of flow respectively. The later is
defined as:

| f |= ∑
(s,i)∈E

fsi − ∑
(i,s)∈E

fis = ∑
(i,t)∈E

fit − ∑
(t,i)∈E

fti (4.7)

Eq.[4.7] although similar to the flow conservation it helps compute the flow
along each edge. This helps to formulate the cut as a maximum flow prob-
lem tasked to find a feasible flow of the maximum value along the network.
Obtaining maximum flow in polynomial time is an important result in combi-
natorial optimization, which can be can done in two ways. The first appraoch
is with augmenting path principle [2, 42], the second comprises Push-Relabel
style methods [49]. The graph-cut method used in the thesis is based on the
augmented path and is variants in order to simplify any further explanation,
we assume that for each edge (i, j) ∈ E the opposite edge (j, i) is also in E.
There is no loss of generality due to this assumption as adding edges with zero
capacity does not alter the problem nor its solutions in any way. Augmenting
path principle is based on residual graph and residual capacity. Given the
original graph G and a flow f , the residual capacity ri j of an edge (i, j) ∈ E
is the maximum additional flow that can be sent from i to j using both edges
(i, j) and (j, i), formally ri j = wi j − fi j + f ji. An edge is called saturated if
its residual capacity is zero. A residual graph is a directed graph with the
same topology as G with the distinction that the edge weights reflect the ac-
tual residual capacity with respect to f . Ford and Fulkerson [42] devised the

27

s t

10

10

51

8

6

4

10

10

12

(a)

s t

10

10

51

8

6

4

10

10

12

(b)

s t

10

5

5

06

8

1

5

4

10

10

7

5

(c)

s t

1

9

5

5

06

0

8

0

6

4

0

10

2
8

2

10

Minimum cut

(d)

Figure 4.2. Steps in maximum flow computation using the augmenting path strategy.
(a) The input graph with edge weights wi j. (b) The initial residual graph with residual
capacities ri j being the same as wi j in the input graph (zero flow) resulting augmenting
path is shown in red. (c) Residual graph after pushing 5 flow units (flow with least
edge capacity) across the path. Edges with updated residual capacity are shown in
blue. A new augmenting path is shown in red. (d) Residual graph at the end of
the computation. The red and blue vertexes correspond to sets s and t respectively.
Saturated edges comprising the minimum cut set are shown in green.

augmenting path strategy for determining the maximum flow. The following
steps are performed in order to achieve the maximal flow:

Ford-Fulkerson algorithm:

1. Start with a zero flow, i.e., with a residual graph which is exactly the
same as G.

2. Find an augmenting path from s to t along unsaturated edges in the resid-
ual graph.

3. Push the flow along the path by the amount equal to the minimum resid-
ual capacity encountered on the path. This amount is subtracted from
the residual capacity of each edge on the path and added to the resid-
ual capacity of opposite edges. At least one edge on the path becomes
saturated following this step.

4. While there exists another path from s to t along unsaturated edges repeat
from step 2.

28

Fig.4.2 depicts the steps in Ford-Fulkerson algorithm. The worst-case time
complexity of this approach is O(|E|| f |) with convergence guaranteed for in-
tegral edge capacities, irrespective of the path selection mechanism. However,
the algorithm may diverge for non-integral capacities or converge to a wrong
value. This problem can be eliminated by choosing the shortest possible aug-
menting path in each iteration of the algorithm as shown by Edmonds and Karp
[38] with O(|V ||E|2) time complexity. The approach was further enhanced by
Dinitz [34] by constructing a layered acyclic sub-graph of all shortest paths in
the residual graph in each iteration, through breadth first search from the sink.
Further using depth first search and backtracking, a maximum flow saturating
the sub-graph often termed as the blocking flow is computed. This results in
strict increase in the shortest augmenting paths with every iteration and the
algorithm converges in O(|V |2|E|) steps. A salient aspect of the augmenting
path family of methods is that they maintain a feasible flow invariance during
the whole computation, as opposed to Push-Relabel methods [26, 49] where
the flow conservation rule is relaxed. In Push-Relabel methods, the flow is
optimistically pushed from the source to the sink with positive flow excess
allowed at the nodes - such a node is called active. A heuristic label is stored
at each node corresponding to a lower bound on the distance of the node to
the sink. This avoids infinite cycles in addition admissible excess pushes are
only those towards nodes closer to the sink. If no further admissible push ex-
ists, a relabelling operation takes place and the heuristic distance of the node
is updated according to its neighbours. This is followed by a discharge op-
eration corresponding to the series of push and relabel operations prior until
the node’s flow excess becomes zero. When no more active nodes remain, a
second stage is initiated that restores feasibility by delivering back the conser-
vation rule to the source where ever the flow violating occurred. The minimum
cut is already known at the end of the first stage. There are several variants of
Push-Relabel depending on the active node selection rule. The first-in first-out
(FIFO) selection order has a O(|V |3) worst-case time complexity while meth-
ods selecting the active node with the largest estimated distance to the sink
have O(|V |2√|E|) time complexity.

4.1.3 Uniqueness of minimum cut
From Ford-Fulkerson theorem we know that the cost of a minimum cut is equal
to the value of a maximum flow [42], i.e., for a directed weighted graph G and
the associated minimum cut C and maximum flow f , it holds that |C| = | f |.
This suggests a possibility of deriving the solution for a minimum cut problem
based on the maximum flow. More precisely, the set S consists of all the nodes
reachable in the final residual graph via unsaturated edges from the source.
The set T being complement of S contains the rest of the graph nodes. In
Fig.4.2(d), these sets correspond to the red and blue nodes, respectively. The

29

P

P

P

P

P

P

P

A

A

A

A

F

F

F

F

A

F

F

F

A

F

F

A

A

A

A

P

P

P

P

P

P

P

P

P

P

S T

Figure 4.3. Boykov-Kolmogorov maximum flow algorithm scheme [11] with the S
and T trees and active (A), passive (P) and free (F) nodes. An augmenting path (bold)
is found when the two dynamic trees touch. This is indicated as the boldest line. All
the remaining active nodes and passive are connected using thicker strokes indicating
their inclusion in the source or sink tree. And all free nodes are indicated with thin
lines. The place where the trees meet is shown with a discontinuous thick line.

set of edges corresponding to the minimum cut is highlighted in green. As
ensured by the Ford-Fulkerson algorithm the edges constituting the cut set are
always saturated at the end of the computation, with zero residual capacity.
The cost of the cut is the sum of the initial weights of the green edges which
is 18. This is the same as the flow value as determined from the residual graph
by comparing the residual and initial capacities of edges leaving the source
(or entering the sink). The equivalence of minimum cut and maximum flow
enables us to solve the minimum cut problem in polynomial time. However,
there can be several minimum cuts possible in the graph, so neither the solution
of the minimum cut problem nor the maximum flow problem has to be unique.

As mentioned previously, a minimum cut is typically computed using a
maximum flow algorithm. Before proceeding with the segmentation problem,
a brief discussion on maximum flow algorithm used in image processing will
be useful. Besides the methods covered in previous section, there are other
approaches for determining the minimum cut such as pseudoflow algorithms
[59], planar graphs methods [83] and randomised techniques for undirected
graphs [69]. These approaches are not a good fit for use in image processing
due to their complexity of square order of edge or vertices cardinality. Also
the graph topology from images result in directed graphs where large portion
of the nodes are connected to the terminals. The graph cut algorithm used in
binarization is result of a study from Boykov and Kolmogorov [19] comparing
maximum flow algorithms for best performance within the scope of computer
vision. This study resulted in development of a new maximum flow algorithm,
based on the nature of graphs in computer vision that gained popularity in the
field.

30

The main idea of the Boykov-Kolmogorov algorithm (BKA) is illustrated
in Fig.4.3. Though the algorithm is based on the augmenting path principle
and its efficiency cna be attributed to the way augmenting paths are searched.
BKA simultaneously grows two dynamic search trees from the terminal nodes
s and t respectively in the residual graph as shown in Fig.4.3. All the nodes
from which the tree can grow are denoted active, these include the nodes on
the border, while those already include in the trees are denoted as passive. A
node which is not yet included in either of the two trees is called free. The
algorithm repeatedly tracks the active nodes along the two trees and tries to
grow the tree from them by trying to acquire their free neighbours. When the
two trees touch an augmenting path is found. This stage is called tree growth.
Following the tree growth is the augmentation stage, where the flow is sent
along the augmenting path. The augmentation step may result in breaking the
trees into forests due to saturated edges. Hence, it is followed up with an adop-
tion stage where new parents are found for the orphan nodes thus restoring the
two trees and the whole process is repeated starting with tree growth stage
again till convergence. Boykov and Kolmogorov conjectured that the previ-
ously outlined algorithm can outperform the Dinitz and Push-Relabel meth-
ods substantially in practice on images. The compuational gain is mainly due
to avoiding the expensive breadth first search operation on graphs arising in
image processing which, requires scanning all image pixels. However, the
Boykov-Kolmogorov approach to graph construction does not guarantee the
flow augmentation along the shortest possible path. This leads to a loss of
the strongly polynomial time complexity. In fact, increasing graph connec-
tivity severely impacts the performance of BKA as discussed by Boykov and
Kolmogorov in [19]. When dealing with graphs with high connectivity, the
Push-Relabel methods are faster.

4.1.4 Density based clustering
The graph cut using BKA can be assisted by providing better source and sink
points in sets s and t respectively. This was achieved by detecting the text
and background clusters of a document based on the cluster densities formed
by them. This section provides the necessary background in understanding
the employed density based clustering methods. The characteristic feature of
density-based algorithms is that they distinguish between areas having points
with high and low density in some space of data representation with some no-
tion of distance. An area in such a metric space (a space with mathematical
notion of distance) is said to be of high density if it contains a large number of
data points per area unit; otherwise, it is of low density. Under this understand-
ing of metric space, a cluster is an area with point density exceeding a required
threshold value or with density greater than that of the enclosing space. The ar-
eas that does not constitute clusters are considered to be noise. Density-based

31

p1

p0 p2
p1

p0 p2 p3 p4
p5

Figure 4.4. Steps in maximum flow computation using the augmenting path strategy.
(a) p0 is directly density-reachable from core point p1; p0 is is density-reachable from
p2 (Mn = 6). (b) Both p0 and p5 are density-reachable from point p2, so p0 and p5
belong to C(p2) (Mn = 6).

algorithms employ a density function in order to locate clusters. By defini-
tion, clusters are regarded as dense regions interspersed by noise, regions of
low density or empty space [54]. The clusters produced by density-based al-
gorithms are capable of finding outliers and theoretically can be of arbitrary
shape. The Density-Based Spatial Clustering of Applications with Noise algo-
rithm (DBSCAN) [39] is scalable algorithm for density based clustering onto
large datasets. It has good performance for low-dimensional datasets. In the
DBSCAN algorithm, the density function definition requires an object to sat-
isfy the following criterion in order to be a member of a cluster: there should
be a minimum of k objects located within the neighborhood covering a certain
radius of an object. The algorithm determines the underlying structure of the
data through core points, directly density-reachable points, density-reachable
points, border points and clusters or noise, as defined below:

Definition. A core point p with respect to a neighborhood radius ε if its ε-
neighborhood denoted Nε(p) contains at least certain number of points often
denoted to as Mn.

Definition. A point p is directly density-reachable from point q with respect
to ε and Mn if the following two conditions are satisfied:

• p ∈ Nε(p)
• q is a core point.

32

Definition. Point p is density-reachable from a point q with respect to respect
to ε and Mn if there is a sequence of points p1, · · · , pn such that p1 = q, pn = p
and pi+1 is directly density-reachable from pi, i = 1, · · · ,n−1.

Definition. Point p is a border point if it is not a core point and is density-
reachable from a core point.

We consider as set of data points D, the above definitions implies that a
point is a border point if it is not a core point by definition, but it has to be-
long to the ε-neighborhood of some core point. Let C(o) denote all density-
reachable points from point o in D. If o is not a core point, then C(o) is empty.
In Fig.4.4 p0 and p5 belong to C(p2), since points p0 and p5 are density reach-
able from core point p2.

Definition. A cluster is as a non-empty set of all points in D which are density-
reachable from a same core point.

Definition. Noise is the set of all points in D that are not density-reachable
from any core point.

There are some important corollaries from these definitions that shed some
light on the underlying clustering structure detected on D. Two core points
belonging to the same cluster describe the same cluster. This implies that each
core point p belongs to exactly one cluster, a border point may belong to more
than one cluster [73]. Noise contains points that are neither core, nor bor-
der points. Another definition for noise are points in D which do not belong
to any cluster. However in practical applications it is not sufficient to deter-
mine the density of the clusters but also the relative hierarchy is important.
DBSCAN fails to perform hierarchical clustering as it is incapable of distin-
guishing dense clusters in close proximity to sparse clusters. This drawback
was corrected in Ordering points to identify clustering structure (OPTICS) [7].
It is an improvement over DBSCAN to identify clusters of varying densities.

To produce a consistent hierarchical clustering results have to obey a spe-
cific order in which points are to be processed when expanding a cluster. By
selecting an point which is density-reachable with respect to the lowest ε value
to guarantee that higher density clusters are detected first. In principle OP-
TICS works as an extension of DBSCAN algorithm iterated for an infinite
number of distance parameters εi which are smaller than a generating dis-
tance, ε (i.e. 0 ≤ εi ≤ ε , where ε can be seen as the least upper bound on
the distance in D). OPTICS differs from DBSCAN in one aspect that it does
not assign cluster memberships. Instead, it stores the order in which the ob-
jects are processed and this information would then be used by an extended
DBSCAN algorithm to assign cluster memberships. Thus, OPTICS does not

33

Figure 4.5. Density based clusters on left can be identified from corresponding val-
leys in reachability curve by OPTICS on right. The clusters and the valleys in the
reachability plots are color coded.

explicitly produce a data set clustering instead, it outputs a cluster ordering.
The ordering is linear list of all points under analysis and represents the hi-
erarchical density-based clustering structure of the data. Visually objects in a
denser cluster are listed closer to each other in the cluster ordering. This en-
sured that the ordering is equivalent to density-based clustering obtained from
a wide range of parameter settings. Thus, OPTICS does not require any the
user-specified parameter to provide a specific density threshold. The cluster
ordering can be useful in three ways (a) it can used to extract basic cluster-
ing information (e.g., cluster centers, cluster shapes), (b) derive the intrinsic
clustering structure, (c) as well as provide a visualization of the clustering that
can reveal underlying hierarchy. In order to construct the different clusters
simultaneously, the objects are processed in a specific order. This ordering
procedure selects an object that is density-reachable with respect to the lowest
ε-value so that clusters with higher density will be processed first. Based on
this idea, OPTICS needs two important pieces of information per object: Core
Distance, Reachability Distance as discussed in DBSCAN and reveals the or-
dering as shown in Fig.4.5 for additional details on ordering one can look into
[7]. The plot as shown in Fig.4.5 is often referred to as reachability plot.

4.1.5 Mean shift clustering
As it can be inferred from the previous section the computation complexity of
determining the clusters using OPTICS requires O(N2) where N is the num-
ber of data points. When applying this to an image this is computationally
taxing. Moreover, computing the actual hierarchical structure through reach-
ability plot could be an overkill for binarization. A more optimal approach
would be to coarsely converge on to the core points in a cluster using the point
densities indicated by ×’s in Fig.4.7. Such an approach would be unreliable

34

Figure 4.6. 1 Distribution of points as per their density in a 2D feature space as shown
in (a) with contour outline of probability density function (pdf) around the modes.
Shifting of points towards their corresponding modes in the pdf as shown in (b). Cov-
ergence of the points on their respective modes as shown in (c).

on other statistics of the cluster such as cluster size and boundary. However,
such an approach woulde be computationally faster. It is to this end that a
crude clustering strategy based on mean shift was employed.

Mean Shift is a non parametric iterative algorithm applicable in finding
modes, clustering etc. over unsupervised data points. Mean Shift since its
introduction has been extended to applications in other fields like computer
vision due it flexibility and versatility [28, 43]. The first step in computing
mean shift is to have a kernel density estimation (KDE). The underlying as-
sumption is that the data lying in some feature space was sampled from a
probability density function (pdf). KDE is a method to estimate the underly-
ing pdf form the data. The density estimation is done by placing a kernel (i.e
a weighting function) on each point in the data set. Adding up the output from
all the individual kernels generates a surface which represents the probability
density function if normalized correctly. The resulting pdf can vary depending
on the kernel bandwidth parameter used.

1 This image has been modified from [89]

35

Figure 4.7. (a) Foreground and background cluster centroids are marked with ×’s in
the binarization space (b) Effect of a large bandwidth of mean shift (c) With a refined
bandwidth the cluster modes are detected.

If dense regions points corresponding to data clusters are present in the
feature space, then they correspond to the local maxima often referred to as
mode of the probability density function. For each data point, the mean shift
step associates it with the nearby mode of the pdf. For each data point, mean
shift defines a window around it are per the choice of the kernel. The mean
associated with the data points with the window is computed. Then it shifts the
center of the window to the mean and repeats this procedure until convergence.
After each iteration, we can view the algorithm to shrink the window to a more
denser region around each mode.

4.1.6 Overview of Paper I
In document image binarization a theoretical framework was developed that
enables us to use of the two algorithms interchangeably. In this approach a
clustering approach drawing upon the benefits of structure and simple thresh-
old limits that OPTICS has to offer was combined with the speed and ease of
computation from Mean shift clustering (MSC). The output from the cluster-
ing algorithm is used in the source-sink estimates and to refine the edge map

36

essential for Howe’s algorithm.

Algorithm 4: Algorithm for Clustering guided binarization
Input: BW (bandwidth), dataPoints ← [I,dIx,dIy], image

thi, tlo, tsz (thresholds)
Output: binaryImage

laplacian ← Laplacian(image)
edgeImage ← Canny(image, thi)
clusters ← MeanShiftCluster(dataPoints, BW)
repeat

BW ← BW/2
clusters ← MeanShiftCluster(dataPoints, BW)

until (sizeof(maximal(clusters)) ≥ tsz)
binaryImage ← [maximal(clusters)== 0]
edgeImage ← Compute8neighbours(inaryImage, edgeImage)
binaryImage ← GraphCut(laplacian, edgeImage)
weakEdgeImage ← Canny(image, tlo)
edgeImage ← edgeImage | (weakEdgeImage & binaryImage)
binaryImage ← GraphCut(laplacian, edgeImage)

For the clustering algorithm we choose the following three feature for each
pixel i) intensity value for each pixel (I), ii) gradient in x direction (dIx) and
iii) the gradient in y direction (dIy). Each pixel can then be represented as a
point in a three-dimensional space by the ordered triplet (I,dIx,dIy) we define
this as the binarization space denoted by B. It can be noted that the region B
is bounded within the region

S =

⎧⎪⎨⎪⎩
0 ≤ I ≤ 255,
−255 ≤ dIx ≤ 255,
−255 ≤ dIy ≤ 255.

(4.8)

We define the density clusters picked by OPTICS as τCl and MSC as τN . Rest
of this section shows OPTICS and MSC so far are related and their inter-
changeable operability. The OPTICS framework enables us to view any given
collection of points as a large cluster with sub-clusters of varying densities
within it. This approach is useful in the database classification where the
entire collections of data-points can be viewed as a dendrogram with dense
sub-clusters embedded within a larger diffused cluster. This approach classi-
fies clusters based on reachability-metric values [7], that can be viewed as a
function mapping each point in B to a real number depending on proximity
of the point to a core object. The clusters are identified if the variation be-
tween the reachability-metric values of two successive ordered points exceed

37

Figure 4.8. Typical output image blocks where (a) is the original image (b) is the
output from OPTICS (c) is the output from MSC.

Table 4.1. Comparison of the results for FM, p-FM, PSNR for best and worst scenar-
ios

File Name FMeasure p-FMeasure PSNR
Howe MSC Howe MSC Howe MSC

2013_HW05.bmp 69.40 85.72 71.24 88.55 15.95 20.17
2012_H13.png 63.05 78.09 66.50 81.33 15.58 17.24
2011_PR6.png 85.81 92.04 86.66 93.01 18.13 20.94
2011_PR2.png 74.98 79.91 77.21 82.46 11.46 12.70

2011_HW1.png 85.41 73.79 87.80 75.53 13.91 10.72
2009_H05.bmp 86.05 75.35 87.25 76.25 19.80 16.71

2013_HW03.bmp 85.59 77.96 88.85 81.14 17.49 15.98

a certain threshold [7]. This mechanism of identifying clusters from the lo-
cal minima in the reachability metric plot works for the binarization or image
segmentation cases, but can prove to be an overkill. The MSC on the other
hand employs radially symmetric kernels operating on ε-neighbourhoods to
detect dense sub-clusters within a given collection of points [28]; however
by iteratively reducing the bandwidth of these kernels we can reconstruct the
whole structure of the data-points. This fact can be verified by observing that
OPTICS operates on τCl and MSC operates on τN . As proved in [8] τCl ⊂ τN
which means that all the clustering structure captured by OPTICS is well pre-
served by MSC. Hence they are inter-changeable for the classification of BG
and FG. For coarse separation of the background (BG) from foreground (FG)
of the document. By thresholding on the size of all the dense clusters put to-
gether that were separated from the larger diffused cluster, which is equivalent
to detecting the local minima following the peaks in the reachability metric
in OPTICS. This enables us to deploy MSC to detect clusters as predicted by
OPTICS but at a faster convergence rate. Fig.4.8 shows a typical 128x128
block of the output for OPTICS and MSC for a DIBCO image.

38

Figure 4.9. 2 The image shows various aspects of scene understanding (a) Image clas-
sification (b) Object detection or localization (c) Semantic segmentation (d) Instance
segmentation

4.2 Graph cut in combination with Neural architecture
From the discussion in the previous section it can be inferred that results of
graph-cut can benefit a lot from an approach that can produce better edge es-
timates. To take this idea further we attempt to assist the graph-cut through
source-sink and edge estimates from the output of a Fully Convolutional Neu-
ral Network (FCNN). The idea is built from the fact that FCNNs have been
very effective in producing state-of-the-art results in semantic segmentation
[74]. The binarization results can be posed as a semantic segmentation prob-
lem with two class instances. A FCNN is very much capable of combining
coarse, high layer information with fine, low layer information. Incorporat-
ing such an information into graph-cut’s cost associated with source-sink and
the edges can be useful for the overall binarization of the document. All the
fore-mentioned salient features of FCNN are not completely new and have al-
ready been used and discussed previously in a well know architecture called
OverFeat [113]. These ideas were revisited in new light and improved upon
in FCNN [74]. All the required architectural features of overfeat required for
understanding FCNN are presented briefly in the following section.
2 This image has been modified from [46]

39

4.2.1 OverFeat
Four major task in scene understanding in computer vision are classification:
labeling an image Fig.4.9(a), object detection or localization: labeling a spe-
cific object by drawing a bounding box around it Fig.4.9(b) there is however a
subtle distinction where detection needs to identify small objects and also la-
bel the background when no object is present, semantic segmentation: labeling
each pixel associated with an object in a scene Fig.4.9(c) and finally instance
segmentation: it is a super set of semantic segmentation in the aspect that each
pixel of object instance of the same class are to be treated and labeled differ-
ently as well for e.g. pixels of three instances of cubes need to be identified
separately Fig.4.9(d). The OverFeat architecture proposed by Yann Lecun’s
team was capable of accomplishing both classification and localization.

The important contribution of this approach is as follows:

• Modified a well known CNN model (AlexNet) to get faster and accurate
predictions

• Fine stride Max pooling: Introducing fine-strides max pooling on higher-
layer features.

• Multi-scale classification: Using input images at various scales
• Regression Network for localization/detection: Use a smaller 2 layer

network on features from higher-layer to regress on the bounding box
coordinates.

These ideas were influential in the vision community to experiment with
exiting deep architecture in image classification and experiment with various
scales. It also pioneered the idea of attempting to combine features from vari-
ous scales. Another take home message was advocating differentiable formu-
lation of the task for better performance. These ideas were further explored in
FCNN architecture.

4.2.2 Fully Convolutional Neural Network
Fully convolution neural network introduced three significant steps that paved
path to a new trend of CNN based state of the art segmentation approaches:

• Adapting convolutional layers used in classification to segmentation.
• Image upsampling as a deconvolution layer.
• Fusing the output from various scales through skip connections.

As reviewed in the previous chapter on deep learning Sec.3.1.1 image clas-
sification using CNN is conventionally, downsizes an input image and subjects
the image to a series of convolution layers. These high level features outputs
from the deeper layer is then sent through fully connected (FC) layers, and the
final prediction for the input image based on the label with highest probability

40

227× 227 55× 55 27× 27 13× 13

convolution fully connected

′′tabby cat′′

(a)

;

H ×W H
4 × W

4
H
8 × W

8
H
16 × W

16
H
32 × W

32

convolution

(b)

Figure 4.10. (a) Convolution layers for an AlexNet like architecture for image clas-
sification. (b) The FC layers can be viewed as 1 × 1 convolutional layers for the
down-sampled image. Upsampling the output of FC layers creates a label image map.

as shown in Fig.4.10(a). An alternative perceptive could be to view the FC
layers of the network as 1× 1 convolutional layers as shown in Fig.4.10(b).
The output from the FC layer can be upsampled (by a factor of 32 in this case)
to calculate the pixelwise output label map as an image.

In order to understand the upsampling as a convolution layer we need to
look at segmentation in the backward path. Fig.4.11 shows a typical segmen-
tation network with the forward path where each pixel label is inferred from
the labeled ground truth. However something interesting in the backward pass
where the network weights are learned. Convolution with a kernel results in
the output getting smaller depending on the stride in the forward pass. Even
with a simple 3× 3 kernel with stride 1 it results in a loss of 2 pixels along
each dimension. This observation enables up to see upsampling as a convo-
lution in the backward pass hence the name deconvolution, up convolution, or
transposed convolution.

Fig.4.12 shows this operation in the backward pass. The input to the upsam-
pling layer is shown in blue square and the output with each stride is traced

41

96

256
384 384 256

4096 4096 21

pixelwise
predictions segmentation

ground truth

Forward/Inference

Backward/Learning

segmenta

d

Figure 4.11. Typical Semantic segmentation network

Figure 4.12. Deconvolution seen as convolution where the input is the blue square and
output is the green square.

fro left to right in the green square. Since the weights can be learned through
simple gradient descent the whole network is implemented end-to-end using
convolutions alone.

4.2.3 Architecture of Fully convolution neural network
A fully convolutional neural network with seven convolutional block each
layer being a 3x3 convolutions is shown in Fig.4.13. It learns to combine
coarse, high layer information with fine, low layer information. Pooling and
prediction layers are shown as gray and green grids respectively. Each check-
ered pattern reveals the relative spatial coarseness, while intermediate convo-
lutional layers are shown in blue as vertical lines. The output from strided
convolution and a pooling layer is a down sampled version of the input affect-
ing the resolution at the final layer. To match output the labels at the same
resolution as the input, upsampling layers are incorporated. Depending on
the number of upsampling layers used, the FCNN in [74] can have three vari-
ations of stream-nets. Fig.4.13 shows an FCN-32s: which depicts a single-

42

image conv1 pool1 conv2 pool2 conv3 pool3

conv4pool4conv5pool5conv6-732× upsampled
prediction (FCN32s)

Figure 4.13. Semantic segmentation using FCNN with the layer connection indicated
along the arrows in top bottom and side. Convolution layers are indicated in blue and
each convolution group is followed by a max pooling layer.

32 × upsampled
predictions (FCN-32s)

2 × upsampled
predictions

pool4
predictions

16 × upsampled
predictions (FCN-16s)

2 × upsampled
predictions

pool3
predictions

8 × upsampled
predictions (FCN-8s)

pool5pool4pool3

∑ ∑

Figure 4.14. Semantic segmentation using FCNN with the layer connection indicated
along the arrows in top bottom and side. Convolution layers are indicated in blue and
each convolution group is followed by a max pooling layer.

stream net, it upsamples stride 32 predictions back to image resolution in a
single step. Fig.4.14 shows the idea behind FCN-16s and FCN-8s. FCN-16s
flow can be followed by tracking the arrows marked in red. It combines the
predictions from pool5 upsampled by 2 with the prediction from the pool4
layer, at stride 16, it allows the network to predict finer details, while retaining
high-level semantic information. FCN-8s flow can be followed by tracking
the arrows marked in blue. It follows the same prediction strategy as in FCN-
16s. In order to combines additional predictions from pool3, the prediction
from pool4 is again upsample by 2 before combining with pool3 predictions
achieving an overall stride 8, to provide further precision. Combining the low
level features with high level semantic information is achieved through skip
connections that allow for a better gradient propagation while training.

43

Figure 4.15. Fig (a) shows edge map from Canny threshold picked through optimiza-
tion as described in [61], fig (b) shows the pruned edge map from the class probabili-
ties, fig (c) shows few samples from synthetic text data

4.2.4 Improve segmentation performance of network
The experiments were conducted on the DIBCO [106] datasets for binariza-
tion consisting of 76 images. The dataset was divided into training, validation
with 70-30 split. The image and ground truth were converted into 500× 300
pixels of cropped images with overlap of 100 pixels horizontally and verti-
cally to augmented data in order to create more data for training. The cropped
size 500× 300 permitted the images to fit into memory in Convolutional Ar-
chitecture for Fast Feature Embedding framework [65] (commonly known as
CAFFE). The model was then initialized with weights from pre-trained model
on PASCAL-VOC dataset available at [114]. The FCN-8 architecture was
used as it has a better receptive field which translates to accurate pixel label-
ing for binarization. In order to train the network on binarization data, the
weights for layers till FC7 are loaded from the pre-trained model and layers
beyond FC7 are trained on the DIBCO dataset using the ground truth labels.
The training was continued for 150,000 iteration till an accuracy of 75% was
obtained for mean Intersection over Union (mIoU) for predicted vs. ground
truth segmented regions.

In order to eliminate any bias that could arise due to over-fitting the net-
work to data, the experiments were repeated by training the network on syn-
thetic data. Documents resembling historical handwritten and printed material
were generated synthetically. Various filters were applied to resemble back-
ground textures and degradations in the parchment. The text was generated
using handwriting and machine printed fonts from the GoogleTMfonts [50].
Fig.4.15(c) shows few cropped images from the synthetic dataset. The results
from binarization on DIBCO dataset using the network trained on the syn-
thetic dataset are presented in Table-4.2 in FC(S) column to compare with a
network trained in DIBCO dataset in FC column.

44

4.2.5 Overview of Paper II
All the observations made so far have been incorporated into the proposed
method as follows:

• The labels obtained from FCNN output act as very good source and sink
estimates.

• The network performs very well in estimating the background, but gives
a very conservative estimate of the foreground labels. This is due to the
class imbalance between FG and BG pixels, as the FCN is optimized for
"overall accuracy" on class label prediction.

• The probability map of the BG class thresholded on mean BG class prob-
ability is good indication of FG/BG separation.

• A graph is constructed by including edges within this thresholded proba-
bility mask give a good estimate of the FG spread as shown in Fig.4.15(a),(b).

• These source, sink and edge map serve as very reasonable estimates for
a graph-cut algorithm to be applicable.

Table 4.2. Comparison of the results for F-Measure, PSNR for the best and average
over DIBCO datasets

File Name FMeasure PSNR
Howe TCl FC FC(S) Howe TCl FC FC(S)

2011_HW6.png 78.9 76.1 86.4 43.9 15.6 14.4 17.2 12.7
2011_PR2.png 74.9 79.9 80.1 78.4 11.4 12.7 12.7 12.4
2012_H13.png 63.0 78.1 87.4 44.9 15.5 17.2 19.2 14.5
2013_HW5.png 69.3 85.7 91.7 86.9 15.9 20.1 22.8 21.1
2013_HW7.png 51.4 51.6 74.3 34.0 18.1 18.1 20.0 17.3
2013_PR6.png 70.0 72.8 84.8 79.5 10.3 10.9 14.1 13.1

Mean over DIBCO 87.7 88.3 89.8 75.1 17.8 18.0 18.4 16.0

The Table 4.2. provides quantitative evaluation of Howe’s (Howe), Topo-
logical Clustering (TCl), FCNN+GraphCut trained on DIBCO dataset (FC)
and FCNN+GraphCut trained on synthetic data set (FC(S)) comparing few of
the DIBCO metrics [106] for brevity. Results shown are for the files which
have shown more then 10% gain on any one of the metrics in absolute scale.
A high score on F-Measure and Peak Signal to noise ratio (PSNR) is desirable
for an algorithm which are defined Sec.1.1.1. Fig.4.16 shows the results for
visual comparison between methods

4.3 End-to-end learning with Primal-Dual network
The graph-cut based segmentation methods discussed so far have benefited
from better estimations of source-sink nodes and also the edge estimates. A

45

Figure 4.16. Image Rows R1,R2,R3,R4 and R5 shows the DIBCO images, ground
truth, FCNN, Howe and FCNN+GraphCut outputs respectively for images shown in
columns C1 −C4.

natural progression along this direction of research would be to integrate the
graph-cut based energy minimization framework into the deep framework so
that both these steps can be trained end-to-end. Although people have tried
something similar with sub-modular functions and graph-cuts [1, 37], the cur-
rent approach was a contemporary to these methods. The current section
deals with this extension using a primal-dual scheme for optimizing a total-
variation formulation of the energy function [109].

4.3.1 Introducing Total Variation regularizer
The following sections try to summarize the work done by Antonin Chambolle
et.al in the area of total variation formulation and primal-dual schemes applied
to various imaging problems such as denoising, deblurring, super resolution
and segmentation. Further details can be found in [21, 22].

46

The total variation (TV) was first introduced in [110] for image denoising
and reconstruction. The underlying approach for TV as well as other vari-
ational methods, arise when image analysis problems are formulation using
Bayesian inference. We consider image 2D-signal in a discrete setting, where
images g = (gi, j), 1 ≤ i, j ≤ N are discrete as well as bounded i.e gi, j ∈ [0,1]
or {0, · · · ,255}. These image problems are commonly referred to as inverse
problems as mentioned in Sec.4.1. In the current approach we try to solve
these inverse problems using a linear model as mentioned below:

g = Au+n (4.9)

where u ∈ R
N×N is the true or noise free signal, A can be any linear oper-

ator acting on u. Often most of the constraints in imaging problem can be
conveniently formulated as a linear operator. n = (ni, j) is the noise often mod-
eled as a Gaussian distributed with zero mean and standard deviation σ . A
common practice is to introduce the "working knowledge" or the notion one
has about the signal or the phenomenon governing the signal using a prior
P(u) ∼ e−p(u)du. Then, the posteriori probability for u given g can be com-
puted from Bayes’ rule, as follows:

P(u|g)P(g) = P(g|u)P(u) (4.10)

Since the pdf of P(g|u) is the probability density for n = g−Au, which is
assumed to be Gaussian, hence

P(g|u) = e−
1

2σ2 ∑i, j |gi, j−(Au)i, j|2 (4.11)

and from Bayes’s rule in Eq.4.3.1 we have the probability of u given the ob-
servation g is

P(u|g) = 1
Z(g)

e−p(u)e−
1

2σ2 ∑i, j |gi, j−(Au)i, j|2 (4.12)

where Z(g) that normalization factor so that
∫
P(u|g) = 1 which takes the form

Z(g) =
∫

u
e−
(

p(u)+ 1
2σ2 ∑i, j |gi, j−(Au)i, j|2

)
du (4.13)

typically the domain of the integral is on all possible images u ∈ R
N×N or

[0,1]N×N as per the choice of discretization. The maximum a posteriori (MAP)
image reconstruction is to find the “best” image which maximizes this proba-
bility P(u|g), or equivalently, which minimizes:

min
u

(
p(u)+

1
2σ2 ∑

i, j
|gi, j − (Au)i, j|2

)
(4.14)

To understand the problem better and study its characteristics further we retain
the minimization of an energy s in Eq.4.14. But we do away with the Bayesian

47

framework, and the discrete model. We will now deal with images in the con-
tinuous setting: as grey-level values functions g,u : Ω →R or g,u : Ω → [0,1],
where Ω ⊂R

2 for all practical cases will be the unit square [0,1]2, but without
loss of generality may as well be any bounded open set of R2 or RN ,N ≥ 1.
The operator A can be a bounded linear operator from L2(Ω) to itself, where
L2(Ω) denotes all square integrable functions with their domain being Ω. Then
minimization problem in MAP can be written as the following continuous for-
mulation:

min
u∈L2(Ω)

(
λF(u)+

1
2

∫
Ω
|u(x)−g(x)|2dx

)
(4.15)

where F is a functional corresponding to the a priori probability density p(u)
in the discrete case.

The continuous setting lets to recover the desired signal u(x) in square-
integrable L2(Ω) with λ > 0 balancing the respective importance of the two
terms in the problem. However, a good choice of F is a problem to deal with
in this case. Standard Tychonov regularization approaches advocate the use of
quadratic F’s, such as:

F(u) =
1
2

∫
Ω

u2(x)dx or F(u) =
1
2

∫
Ω
|∇u|2(x)dx (4.16)

where,

∇u(x) =

⎛⎜⎜⎜⎜⎜⎝
∂u
∂x1

(x)
∂u
∂x2

(x)
.
.

∂u
∂xN

(x)

⎞⎟⎟⎟⎟⎟⎠ (4.17)

is the gradient of u at x. The advantage of these choices is that the corre-
sponding problem to solve is linear, with the Euler-Lagrange equation for the
minimization result in

λu+u−g = 0 or −λ∇u+u−g = 0 (4.18)

in the first ans second cases respectively, where ∇u = ∑i
∂ 2u
∂x2

i
is the Laplacian

of u. Fig.4.17 shows the effect of the above two functional on denoising. In
the first case, using F(u) = 1

2
∫

Ω u2(x)dx as shown in Fig.4.17(c) no visible
regularization has occurred. In the second case, with F(u) = 1

2
∫

Ω |∇u|2(x)dx
introduces too much regularization as shown in Fig.4.17(d). A key observation
is that the regularization is agnostic to any edge information which is impor-
tant for object delineation.

All the experimentation with various functionals led to the fact that a good F
should simultaneously ensure some spatial regularity, along with preservation

48

Figure 4.17. 3 (a) An image with white square on a dark background. (b) image
in (a) with noise, (c) restoring (b) with F(u) = 1

2
∫

Ω u2(x)dx (d) restoring (b) with
F(u) = 1

2
∫

Ω |∇u|2(x)dx

of edges. Two of the early ideas that probed into this approach are as shown
below [47, 87].

min
u,l

p(u, l)+
1

2σ2 ∑
i, j
|gi, j −ui, j|2 (4.19)

min
u,K

λ
∫

Ω\K
|∇u|2dx+μlength(K)+

∫
Ω
|u−g|2dx (4.20)

The first idea in Eq.4.19 considers an slack variable l = (li+1/2, j, li, j+1/2)
where each coordinate can take values {0,1}: li+1/2, j = 1 indicates that there
is an edge between locations (i, j) and (i+1, j) and takes the value 0 when no
edge exists. And p(u, l) stands for

p(u, l) = λ ∑
i, j

(
(1− li+ 1

2 , j
)(ui+1, j −ui, j)

2 +(1− li, j+ 1
2
)(ui, j+1 −ui, j)

2
)

+μ ∑
i, j

(
li+ 1

2 , j
+ li, j+ 1

2

)
(4.21)

with λ ,μ > 0. The second case in Eq.4.20 goes further ahead along the obser-
vation that the p(u, l) comprises of Laplacian term and length along a 1D curve
K ⊂ Ω, this fromulation is called Mumford-Shah model [87]. The Mumford-
Shah model has created a lot of interest in the community for over two decades.
However, it was not only difficult to analyze mathematically but also very
complicated to compute numerically. A convex and edge preserving method
was first proposed in [110] where the energy functional can be seen as:

F(u) =
∫

Ω
|∇u(x)|dx (4.22)

3 This image has been borrowed from [21]

49

This model is known as Rudin-Osher-Fatemi model (ROF) which intro-
duced the total variation as regularizer F(u) for inverse problem.

min
u

∫
Ω
|∇u(x)|dx+

λ
2 ∑

i, j
|gi, j −ui, j|2 (4.23)

where the total variation for a digital signal yn is defined as

V (y) = ∑
n
|yn+1 − yn| (4.24)

4.3.2 Primal-dual theory
The following section build the necessary theoretical intuition required for the
following sections. However, hoping to even summarize the mathematical re-
sults into a single section has proved to be a herculean task. A more serious
reader is directed to consult the following texts [6, 40, 48, 128] to obtain neces-
sary background. The attempt made in this section is to summarize all results
and even though the said arguments might appear to be hand-waving and not
concrete proofs are to be accepted in good faith as they are in fact based on
rigorous mathematical construction.

As observed from the previous we are interested in functionals that are
bounded. This gives us a useful dual formulation for total variation in Eq.4.22
as

J(u) = sup
{
−
∫

u div φdx : φ ∈C∞
c (Ω;RN), |φ(x)| ≤ 1∀ x ∈ Ω

}
(4.25)

for u ∈ L1(Ω) For a smooth function u ∈C1(Ω) or u ∈W 1,1(Ω)

−
∫

Ω
u div φdx =

∫
Ω

φ ·∇udx (4.26)

and taking the supremum over all φ such that |φ | ≤ 1 is J(u) =
∫

Ω |∇u(x)|dx

The importance of the above definition of J(u) is that it can be used to
shows that a Mumford-Shah like problem as defined below

min
E⊂Ω

λPer(E,Ω)−
∫

E
g(x)dx (4.27)

and a convex problem in J(u)

min
u∈(Ω;[0,1])

λJ(u)−
∫

Ω
u(x)g(x)dx (4.28)

has the same unique solution. Leading to formulating a solution to the ROF
model

min
u

λJ(u)+
1
2

∫
Ω
|u(x)−g(x)|2dx (4.29)

50

By considering a more general form

min
x∈X

F(Kx)+G(x), (4.30)

involving a linear map K : X → Y with the induced norm

||K||= max{||Kx|| : x ∈ X with ||x|| ≤ 1} (4.31)

where X ,Y are the primal and dual spaces, respectively and F,G are any func-
tionals. The corresponding dual formulation of this equation is a generic
saddle-point problem

min
x∈X

max
y∈Y

〈Kx,y〉+G(x)−F∗(y), (4.32)

where 〈Kx,y〉 is the inner product induced by the vector space Y and F∗ is the
convex conjugate of F .

The advantage of such an approach is discussed further down with the
segmentation example, for now we can observe that this structure readily
presents a computationally tractable algorithm. The dual variable y ∈ Y acts
like bounded slack variables introduced to ease the solution in the resulting
dual space Y . Introducing the dual variable y relieves the initial composition
of F(Kx) making computations involving 〈Kx,y〉 independent of F∗(y). As
per the structure of segmentation problem, F is typically an indicator function
for capturing the constraints on x, which translates to F∗ being an indicator
function for capturing the constraints on its dual variable y. Since the primal
space has ||x|| ≤ 1 if the dual variable is bounded, which is most often the
case then iterating repeatedly between the two variables should converge to a
solution.

The solution takes a form involving the proximal operator or gradient of the
functions F,G depending on them being convex or convex as well as differen-
tiable, respectively. The basic idea behind a proximal operator is a generaliza-
tion of projection on to a vector space. This makes it an ideal operator that can
be used in a gradient descent algorithm where the iteration involves taking a
suitable step towards the solution along the gradient direction. But since the
function need not be differentiable the gradient need not necessarily exist and
hence the question of uniqueness along the gradient direction does not arise.
This results in a set of permissible vectors that though not strictly a gradient
can act as one at a given point x, such a set of permissible vectors is called sub-
gradient. The set ∂F is the subgradient it is also the set of underestimators of
F at x. A closely related set is the resolvent operator with the property

x = (I + τ∂F)−1(y) = argmin
x

{ ||x− y||2
2τ

+F(x)
}
. (4.33)

51

Figure 4.18. Projections onto primal and dual sets U,P respectively

It can be interpreted as the closest point x in the set under consideration to
the given point y under an associated error F(x). The primal-dual formulation
allows for an algorithm that iterates between the primal and dual variables x,y,
respectively in this case leading to convergence according to the f orward −
backward algorithm

yn+1 = proxx(yn) = (I +σ∂F∗)−1(yn +σKx̄n);

xn+1 = proxy(xn) = (I + τ∂G)−1(xn − τK∗yn+1);

x̄n+1 = xn+1 +θ(xn+1 − xn),

(4.34)

where τ , σ are step lengths along dual and primal subgradients and θ is the re-
laxation parameter in iterating the primal variable. These steps can be seen as
projections onto the primal and dual sets till convergence as shown in Fig.4.18

4.3.3 Smooth approximation using Bregman functions
As discussed in the previous section, by introducing a labeling function u =
(ul)

k
l=0 : Ω → R and viewing the data fitting term as a weighing function fl =

52

λ
2 |g(x)− cl | Eq(4.29) can be generalized as:

min
u=(ul)

k
l=1

J(u)+
k

∑
l=1

∫
Ω

ul fldx,

k

∑
l=1

ul(x) = 1,ul ≥ 0,∀x ∈ Ω

(4.35)

where J(u) is the relaxation term and u(x) = cl the class label.

Considering the image discretized over the Cartesian grid of size M ×N
as {(ih, jh) : 1 ≤ i ≤ M,1 ≤ j ≤ N}, where h is the size spacing and (i, j) the
indices in discrete notation. X is a vector space in R

MN equipped with standard
inner product 〈u,v〉 for u,v ∈ X . The gradient is defined as ∇ : X → Y , ∇u =

(
ui+1, j−ui, j

h ,
ui, j+1−ui, j

h) with Y = X ×X equipped with the inner product defined
as,

〈p,q〉Y = ∑
i, j

p1
i, jq

1
i, j + p2

i, jq
2
i, j, p = (p1, p2),q = (q1,q2) ∈ Y.

Applying the above framework to Eq.4.35 with J(u) = 1
2 ∑k

l=1
∫

Ω |∇ul |, we
have

min
u=(ul)

k
l=1

1
2

k

∑
l=1

(∫
Ω
|∇ul |+ 〈ul , fl〉

)
+δU(u), (4.36)

where G(u) = δU(u) is the indicator function for the unit simplex,

U =

{
u ∈ Xk :

k

∑
l=1

ul(x) = 1,ul ≥ 0

}
. (4.37)

f = (fl)
k
l=1 ∈ Xk is the discretized weighting function or the cost per pixel,

u = (ul)
k
l=1 is the primal variable and Xk is the extension of the vector space

for k classes. Considering

1
2

k

∑
l=1

(∫
Ω
|∇ul |+ 〈ul , fl〉

)
=

max
p=(pl)

k
l=1

(
k

∑
l=1

(
〈∇ul , pl〉+ 〈ul , fl〉

))
−δP(p),

(4.38)

where p ∈ Y k is the dual variable, with Y k is the extension of the gradient
vector space for k classes, δP(p) is the indicator function for p ∈ P defined as

P =

{
p ∈ Y k : ||pl ||∞ ≤ 1

2

}
. (4.39)

53

We have the primal-dual formulation as

min
u=(ul)

k
l=1

max
p=(pl)

k
l=1

(
k

∑
l=1

(
〈∇ul , pl〉+ 〈ul , fl〉

))
+δU(u)−δP(p), (4.40)

with u, p related as 〈∇u, p〉Y = −〈u,divp〉X . This result is a consequence of
applying Guass Divergence theorem on the scalar function u and vector field
p. A corollary of the fore mentioned result is the relation −div = ∇∗ where
div,∇∗ are divergence in Y ; and the conjugate of gradient ∇, respectively. Fur-
ther since ∇∗ =−∇T it turns out that div = ∇T .

The sets considered so far are unit simplex and unit ball (or more strictly a
ball of radius 1

2) as defined by U,P in Eqs.4.37,4.39, respectively. The resol-
vent of these sets are orthogonal projections on unit simplex and point projec-
tion onto unit ball, respectively. However, in the case of segmentation when
using more sophisticated relaxation that yield better delineation along edges,
like paired calibrations is used in Eq.4.35 given by,

J(u) =
∫

Ω
Ψ(Du);

s.t Ψ(a) = sup
b

{
k

∑
l=1

〈al ,bm〉 : |al −bm| ≤ 1,1 ≤ l ≤ m ≤ k

}
,

(4.41)

where a = (a1, · · · ,ak),b = (b1, · · · ,bk). The corresponding set for the dual
variables is no longer a unit ball, but intersection of unit balls given by,

P =
{

p ∈ Y k : |pl − pm|∞ ≤ 1,1 ≤ l ≤ m ≤ k
}
. (4.42)

The resolvent of which, is an orthogonal projection on to such an intersection
of unit balls. As the relaxations get more sophisticated the corresponding
resolvent set becomes more complex and orthogonal projections on to them
get computationally more involved. One approach towards getting a solution
that can be used in a computational algorithm is to use Bregman functions.
Suppose we have a convex function ψ(x) that is continuously differentiable
on the interior of its domain; int(X) and continuous on its closure; cl(X), we
use x̄ to denote a point from int(X). A Bregman proximity function Dψ :
X × int(X)→ R generated by ψ is defined as

Dψ(x, x̄) = ψ(x)−ψ(x̄)−〈∇ψ(x̄),x− x̄〉. (4.43)

In iterative algorithms, the Bregman proximity function can be used with
the proximity operator for a convex function g : X → R as

proxψ
αg(x̄) = argmin

x∈X
αg(x)+Dψ(x, x̄). (4.44)

54

In image segmentation problem the basic class of functions of interest are
of the form g(x) = 〈x,c〉+δX(x) as seen in Eq.4.40. The associated proximal
operator is

proxψ
αg(x̄) = argmin

x∈X
α〈x,c〉+Dψ(x, x̄). (4.45)

The necessary and sufficient condition for optimality, which has a unique so-
lution for Eq.4.45 is

∇ψ(x̄)− c = ∇ψ(x). (4.46)

This constraint is implicitly taken care by the Bregman proximity function.
For further details on Bregman functions one may refer [94]. In image seg-
mentation the dual variables belong to the intersection of unit balls as shown in
Eq.4.42 so each coordinate of the dual variable p should satisfy −1 ≤ p j ≤ 1
and solve the dual problem

max
p=(pl)

k
l=1

k

∑
l=1

〈∇ul , pl〉−δP(p). (4.47)

A suitable Bregman proximity functions that encode the dual variable con-
straints and the corresponding proximity solution along each coordinate i are
given by

ψ(x) =
1
2
[(1+ x) log(1+ x)+(1− x) log(1− x)] ;

(
proxψ

αg(x̄)
)

i =
exp(−2αci)− 1−x̄i

1+x̄i

exp(−2αci)+
1−x̄i
1+x̄i

,
(4.48)

where ci = (∇u)i is the i-component of the ∇u. Similarly, the primal problem
deals with

min
u=(ul)

k
l=1

〈ul , fl〉+δU(u), (4.49)

with the primal variables u restricted by ui ≥ 0 along each coordinate. The
Bregman function encoding these constraints and the corresponding proximal
solution are given by

ψ(x) = x logx,(
proxψ

αg(x̄)
)

i = xi exp(−2αci) .
(4.50)

To satisfy ∑k
l=1 ul(x) = 1 in Eq.4.37 it is sufficient to normalize it as(

proxψ
αg(x̄)

)
i =

xi exp(−2αci)

∑K
j=1 x j exp(−2αc j)

, (4.51)

where ci = (∇T p)i − fi, fi denoting the cost associated with the ith class.
Eqs.4.48 and 4.51, can now be used in Eq.4.34 to converge to a solution for
image segmentation.

55

Input

Unary Network

(
∂
∂x,

∂
∂y

)

PDUpdate Loss
function

Binary
output

(a)

Figure 4.19. (a) Basic architecture of binarization network (PDNet) with unary net-
work (ENet), primal-dual update (PDUpdate), loss function and finite difference
scheme based edge estimation blocks is depicted. Network modules are shown in solid
lines and layers are shown as dashed lines. (b) This image summarizes the advantage
of the PDNet over simple semantic segmentation. Upon zooming into a typical FG
patch the pixels in blue are segmented by both ENet and PDNet. Pixels marked in red
and green are over and under estimated by ENet. These are successfully delineated in
PDNet due to PDUpdate scheme.

4.3.4 Overview of Paper III
As discussed in the previous section using an FCNN, is best suited for seman-
tic labeling of pixels, which is the primary objective in segmentation. The
crucial idea was to use skip connections to combine the coarse features from
deep layers with fine features from shallow layers to improve the final seg-
mentation. Training such models on text images, however, often result in loss
of finer details along edges. Hence a post processing step such as a graph-cut,
often improves the results as shown in our previous work [9]. Here, we im-
prove upon our previous work by incorporating the energy minimization step
directly in the network to facilitate joint end-to-end training of both the se-
mantic segmentation and energy minimization steps. To this end, we adopt a
primal-dual update (PDUpdate scheme [94]). See Fig.4.19(a). This frame-
work helps in training the unary cost associated with pixel labeling, pairwise
cost [16] associated with smoothness of neighboring pixels and the cost of
overlooking an edge when merging regions into a single framework, result-
ing in an optimally segmented image. The basic architecture of the proposed
end-to-end binarization network call Primal-Dual Network (PDNet) is shown
in Fig.4.19(a). The network is built of three basic blocks:

– Unary network: This is a semantic segmentation network that is capable
of classifying each pixel in a given image into respective classes. Ideally
such a network is quite capable of segmenting a given image by itself.
Underlying such a classification is a cost associated with labeling each
pixel as a particular class. We use the efficient neural network (ENet)
proposed by [99]. The motivation for such an architecture is presented
in the following section. However, as shown in our previous work [8]
and [9], text segmentation is sensitive to edge artifacts. Instead of using

56

this network output directly we use the output prior to a typical softmax-
like classification layer as the cost term for each pixel that can be further
refined to improve the segmentation result.

– Primal-Dual Update: The design of this network is inspired from pre-
vious methods that made use of conditional random field (CRF) such
as [23], as a post processing layer in segmentation. This allows for a
way to incorporate structural information among neighboring pixels in
segmentation. However, we wanted to extend this idea further in text im-
ages, where the label propagation between neighbors should be encour-
aged but also restricted along the edges as shown in Fig.4.19(b). Use of
PDUpdate scheme in tasks that involve total-variation formulation of
energy function is already explored in depth super resolution [109], and
multi-class labeling problem [94]. We extend these ideas into a more
stable architecture that permits end-to-end training within the intended
theoretical framework of the underlying proximal operator, eliminating
the exploding gradient problem due to its recurrent structure.

– Loss function: A typical document image has a lot of background pix-
els as opposed to written text, which naturally leads to class imbalance
between the two classes in the training data. The loss function used in
the network is a weighted Spatial Cross Entropy loss [12], often used to
counter any class imbalance in the training samples. However, due to the
redistribution of pixel labels resulting from the total-variation regular-
ization as a part of the PDUpdate these weights need to be re-adjusted.
We propose an empirical approach to achieve this intended outcome.

ENet architecture

The ENet architecture is inspired from scene parsing CNNs based on proba-
bilistic auto-encoders [90], where two separate neural networks are combined
as an encoder-decoder pair. The encoder is trained to classify an input through
downsampling and the decoder is used to up sample the encoder output. The
ENet architecture also tries to make use of the bottleneck module that was
introduced in the ResNets [56]. A bottleneck structure consists of a main
branch that is separated from an extension consisting of convolutions filters.
These two branches are later merged using elementwise addition as shown in
Fig.4.20(b). The convolution layer ����, is either a regular, dilated or full
convolution and if the bottleneck is downsampling then a max pooling layer is
added to the main branch.

A few key aspects of ENet architecture as shown in Table.4.3. The en-
coder constitutes of the bottleneck sections 1-3 and sections 4,5 are part of
the decoder. (indicated by BNs.l; s for section and l for layer within the sec-
tion). ENet has some important architectural details that improve the speed
of training keeping the parameters quite low. The projection layers do not
include bias terms, to reduce the number of kernel calls and overall memory

57

Table 4.3. ENet architecture for an example input of 512×512, C in the fullconv layer
is the number of classes BN is the bottle neck layer indexed 1-5

Name Type Output size
initial 16×256×256

E
nc

od
er

BN1.0 downsampling 64×128×128
4×BN1.x 64×128×128

BN2.0 downsampling 128×64×64
BN2.1 128×64×64
BN2.2 dilated 2 128×64×64
BN2.3 asymmetric 5 128×64×64
BN2.4 dilated 4 128×64×64
BN2.5 128×64×64
BN2.6 dilated 8 128×64×64
BN2.7 asymmetric 5 128×64×64
BN2.8 dilated 16 128×64×64

Repeat section 2, without BN2.0

D
ec

od
er

BN4.0 upsampling 64×128×128
BN4.1 64×128×128
BN4.2 64×128×128
BN5.0 upsampling 16×256×256
BN5.1 16×256×256

fullconv C×512×512

operations without effecting the accuracy. The network architecture heavily
reduces the input size in the first two blocks allowing for small feature maps
to be retained for further processing. This is because visual information can
be highly compressed due to its inherent spatial redundancy. ENet opts for a
large encoder with smaller decoder as opposed to a more symmetric design.
This is motivated by the fact that encoder must be able to operate on smaller
resolution data, reducing the role of the decoder to that of simple upsampling.

ENet further exploits the redundancy in convolution weights by strategic re-
placement of n×n convolutions with two n×1 and 1×n convolutions filters
as discussed in [66] and [115]. Strong downsampling of feature space needs
to be compensated with equally adept up-sampling. Convolutions layer were
alternated with dilated convolutions to have a wide receptive field, while at the
same time avoiding overly downsampling the input. Parametric rectifier linear
Units (PReLU) [55], were used to learn the negative slope of non-linearities
through an additional learnable parameter. Most of these aspects on receptive
fields, non-linear activation functions and concerned limitation in text segmen-
tation were raised in our previous work [9], making ENet architecture worth
exploring for text binarization.

58

Input

Conv(3x3) MaxPool(2x2)

Concat(a)

MaxPooling

Padding

+

Conv

1x1

1x1

Regularizer

PReLU

PReLU

(b)

Figure 4.20. (a) ENet initial block. Convolution with kernel size 3×3, stride 2; Max-
Pooling is performed with non-overlapping 2 × 2 windows, there are 13 convolution
filters, which sums up to 16 feature maps after concatenation. (b) ENet bottleneck
module. conv is either a regular, dilated, or transposed convolution (also known as de-
convolution) with 3×3 filters, or a 5×5 convolution decomposed into two asymmetric
ones.

Primal-Dual Update scheme

The primal-dual update is built on three basic concepts

– Total variation formulation for segmentation.
– Proximal operator approach to decouple the underlying total variation

and gradient operations.
– Bregman functions based proximal operator smoothing to make proxi-

mal calculations differentiable.
as discussed in the previous section. The primal-dual formulation of the seg-
mentation problem is given by

min
u=(ul)

k
l=1

max
p=(pl)

k
l=1

(
k

∑
l=1

(
〈∇ul , pl〉+ 〈ul , fl〉

))
+δU(u)−δP(p) (4.52)

with the primal and dual updates given by

û = ΠU(ū− τ∇T p− τ f)
p̂ = ΠP(p̄+σ∇u)

(4.53)

where are u = (ul)
k
l=1, p = (pl)

k
l=1, f = (fl)

k
l=1 are the primal, dual and cost

vectors for 1, · · · ,k classes respectively.

59

u
k i
=

1 k

pk i
=
0

u
su

m
=

1 k

û
k i
=

ex
p
(−

2τ
(∇

T
pk
) i
−2

τ
f
k i
)u

k i
∑ k l=

1
ex
p
(−

2τ
(∇

T
pl
) i
−2

τ
f
l i)
u
l i

p̂k j
=

ex
p
(−

2σ
(∇

u
k
) j
)−

1−
p̄
k j

1+
p̄
k j

ex
p
(−

2σ
(∇

u
k
) j
)+

1−
p̄
k j

1+
p̄
k j

û
su

m
=
u
su

m
+
α
û
k i

û
k i
=

ex
p
(−

2τ
(∇

T
pk
) i
−2

τ
f
k i
)u

k i
∑ k l=

1
ex
p
(−

2τ
(∇

T
pl
) i
−2

τ
f
l i)
u
l i

p̂k j
=

ex
p
(−

2σ
(∇

u
k
) j
)−

1−
p̄
k j

1+
p̄
k j

ex
p
(−

2σ
(∇

u
k
) j
)+

1−
p̄
k j

1+
p̄
k j

û
su

m
=
u
su

m
+
α
û
k i

û
k i
=

ex
p
(−

2τ
(∇

T
pk
) i
−2

τ
f
k i
)u

k i
∑ k l=

1
ex
p
(−

2τ
(∇

T
pl
) i
−2

τ
f
l i)
u
l i

û
su

m
=
u
su

m
+
α
û
k i

Fi
gu

re
4.

21
.P

D
U

pd
at

e
sc

he
m

e
un

ro
lle

d
th

ri
ce

p̄k i
is

in
iti

al
iz

ed
to

ze
ro

s,
ūk i,

u s
um

ar
e

in
iti

al
iz

ed
to

1 k
th

e
pa

ra
m

et
er

s
τ,

σ
,

an
d

α
ar

e
ca

lc
ul

at
ed

in
th

e
ne

tw
or

k
th

ro
ug

h
gr

ad
ie

nt
de

sc
en

t.
T

he
ar

ro
w

s
in

di
ca

te
th

e
de

pe
nd

en
ci

es
of

ea
ch

bl
oc

k

60

δU(u),δP(p) are the indicator functions for the primal and dual variables
u, p corresponding to the constraints sets U,P, respectively defined in Eqs.4.37
and 4.42. The orthogonal projections on to U,P are given by ΠU ,ΠP, respec-
tively . One approach to obtain a closed form representation for the projections
in Eq.4.53 satisfying the constraints implicitly, is to use the Bregman proxim-
ity functions. The updates for the p,u are given in Eqs.4.48,4.51, respectively.
For the segmentation result to converge, the primal and dual updates need
to be iterated over. PDNet has primal-dual updates unrolled over five times.
A PDUpdate with thrice such unrolled iteration is shown in Fig.4.21, The
p̄k

i , ū
k
i , and usum are initialized to 0, 1

k and 1
k , respectively. The overall output

of the network can be interpreted as a perturbation of the unary cost using
primal-dual updates to give a more controlled segmentation. The final seg-
mentation is obtained by using a weighted cross entropy loss on the final usum.

Loss function

A cross entropy criterion (CEC) combines the logistic-softmax over the class
with classwise negative log likelihood criterion to obtain the final classifica-
tion. A common problem in classification is imbalance in the samples over
classes. This problem can be countered by adjusted the weights associating
with each class, often estimated from the class histograms. However, due to
the smoothing introduced by the PDUpdate the weights for CEC loss esti-
mated from the histogram alone overcompensate for the imbalance. We pro-
pose a power law over the histogram based weight calculation. The weighing
used is inverse of square-root of class histograms. This power law is deter-
mined by the computing the training loss with PDUpdate being part of the
network iterated over various exponents as shown in Fig.4.22(a).

The typical primal-dual updates when properly initialized are usually sta-
ble. However, when training a PDUpdate scheme on image data in deep
networks exploding gradient problem is commonly encountered. Implemen-
tations by [109] and [94], have dealt with this issue by gradient clipping to
specific bounds during back-propagation. We resorted to another approach of
clamping the values in primal and dual updates as shown in Fig.4.22(b). This
approach has two advantages:

– The clamping as shown in Fig.4.22(b) resets the pixel where instability
was encountered to their initial values 0, 1

k for p̄k
i , ū

k
i , respectively. The

cost estimates for these pixels can be refined in further iterations, thus the
resulting scheme is more faithful to the theoretical primal-dual approach.

– The gradients in this approach are not clipped during back-propagation
thus leading to a faster training of the network making the loss converge
within 10 epochs as opposed to 30 epochs in a network without clamp-
ing.

61

Figure 4.22. (a) Tuning of the exponent to be determined in the power law. The
training error is plotted against exponent values form [−1,−0.1]∪ [−0.1,−0.01] is
steps of -0.1,-0.01 for the first and second intervals, respectively. The ellipse indicates
range of suitable exponents that produce identical segmentation results. The exponent
used in PDNet is -0.5. (b) The network learns permissible values for primal and dual
variables ui, pi in PDUpdate by setting a large maximum value of λmax = 1030 in
positive and negative direction for them. At the same time values less than |ε| are
clamped to 10−8.

The encoder of the unary network was pre-trained on patches of sizes 128×
256 with batch-size 30 on the Synthetic dataset. The pre-trained encoder
was then used to initialize the decoder weights and then the decoder was per-
trained on the Synthetic dataset using the same patch size and batch size. This
gives the pre-trained unary model. This model was then used to initialize the
weights of the unary model that is to be trained on the augmented DIBCO
dataset. The gradients were trained using ADAM [70], with the learning rate,
weight decay, and momentum set to 5×10−4,2×10−4 and 0.9, respectively.
The unary models were trained for 20 epochs and the best model with least
loss was picked in further steps. When training the unary and PDUpdate
the learning rate was set to 5× 10−4 for the first 10 epochs and decayed to
2×10−4 and 1×10−4 between 11 - 15 and 16 - 20 epochs, respectively. The
results on DIBCO dataset, with the proposed binarization network is summa-
rized in Table.4.4.

PDg, PDc are the outputs from primal-dual networks trained on grayscale
and color images, respectively. GC is the result obtained from a graph-cut
based approach as discussed in [9]. It takes the output from the unary model
as seed points along with the output from the classification layer acting as
costs for pixels and Canny edges as boundaries estimates for segmentation.
This approach requires three parameters a) cost associated with pixels label-

62

Table 4.4. Comparison of the results for F-Measure for various methods.

Year FMeasure (↑)
PDg PDc GC TM DBC

2009 91.50 90.46 89.24 89.76 91.24
2010 92.91 90.45 89.84 94.89 91.50
2011 91.87 85.68 88.36 93.60 88.74
2012 93.04 89.64 91.97 92.53 92.85
2013 93.97 93.20 90.59 93.17 92.70
2014 89.99 93.79 92.40 91.96 96.88

2016 90.18 89.89 88.79 89.52 88.72

ing as obtained from the unary network, 2) weight associated to edges and
Canny threshold to estimates the boundaries. It then employees an external
graph-cut method [19], to obtain the final segmentation. In contrast to this
approach the current methods does all these parameter estimations and the en-
ergy minimization in end-to-end manner in a single framework. TM are the
results from another CNN based approach developed by [119], which aug-
ments the segmentation result with relative darkness feature [126], to aid in
binarization. DBC are results from winning entries in DIBCO competitions
using various classical approaches in as given in [93, 107]. For brevity the
above table includes only the F-Measure scores for all the methods that have
been compared. For more details on other metrics that have been compared
and the under lying methodology please refer to [10].

63

5. Text generation

This chapter introduces the work related to handwritten text generation. Once
again a more compact overview of all the relevant ideas can be gained by
going through the sections [5.2, 5.3]. The other sections provide the nec-
essary background required to follow the ideas in greater depth. Again the
introduction to the background topics is by no means exhaustive. However,
references have been provided to the readers to make the discussions more
holistic. Handwriting synthesis as a field often deals with computer generated
online and offline data that resembles human handwriting. It can be seen as
an inverse process for transcription as it converts a sequence of character into
images. Transcription on the other hand converts handwritten image samples
into digital text. There are two popular approaches to text generation. First,
often referred to as kinematic model or movement-simulation for handwriting
[35, 36, 44, 45, 101, 102]. This approach for handwriting aims at mimicking
the muscular movement that enables a stylus to write [122]. Second, approach
deals with part structure model or shape-simulation approaches, which try
to model the writing itself by imitating the individual strokes within writing.
Movement-simulation approach requires access to the online data (sensor data
capture during writing process). Shape-simulation approaches on the other
hand are suitable for offline data (images with actual writing style) [120].

Handwriting synthesis garners a rapidly increasing interest in the document
analysis community due to its impact it can have on application areas to im-
prove the performance of text recognition systems in terms of speed, as well
as more stability of results [3, 4, 15, 57, 84, 103]. Text beautification of hand-
written passages through personalized fonts [5]. Forgery detection in signature
analysis and document authentication and forensics [13, 14]. It can be inferred
from the diversity of these application areas that there can be different eval-
uation methods for text synthesis methods. Applications focused on forgery
and beautification using personalized fonts aim to capture distinctive features
characteristic of an author. Data generation for recognition on the other hand
aim at diversity with the sole purpose to create variation in the morphology
of the writing style. Thus there are two main components to handwriting syn-
thesis namely generation and concatenation [20, 53]. Handwriting generation
attempts to create samples of writing maximizing the shape alterations and
writing morphology over a give vocabulary of words. Whereas concatenation
aims at creating out of vocabulary words, by either putting together sequence
of characters or strokes that build a character.

64

5.1 Feature evaluation for text analysis
This section tries to summarize some failed attempts at generation by the au-
thor. The underlying principles were revisited over couple of times with vary-
ing degrees of success in Sec.3.2. With the final attempt yielding a path for-
ward to handwriting generation. The main reason behind the current section
is to build up the basic ideas that led to the final approach that was adopted in
Sec.5.3.

5.1.1 Markov Random Field approach
A first step towards handwriting generation is to identify features that can be
used in generation. Some of the popular features were analyzed to understand
the workings of a feature detector that is usable. The idea behind such an
approach is to make an attempt at identifying a character on the whole from
its pixels or parts through voting based on the class prediction from each of
its neighbours. Such a voting scheme can be noisy due to excess bias from
local features and needs to be smoothed out. In continuation with the ideas
developed from graph-cut approach used for text binarization the smooth-
ing was achieved with a Markov random field (MRF). A consensus based on
maximum voting in a patch can then be used to classify a character and con-
sequently these characteristic features can be used to generate handwriting.
Though other features ever evaluated as well, the method is outlined using
SIFT (Scale Invariant Feature Transform) features [75] over every pixel or an
image patch (this approach is called dense-SIFT). A Support Vector Machine
(SVM) based classifier was trained on these SIFT features from the training
images for all the characters. The pixels for the test set were then classified
as belonging to one of the 52 alphabets (including the upper and lower case).
The vote from the classifier was allowed to switch to a different class in order
to favor smooth regions. The class switching was controlled by a parameter
that allows for the label from the neighbor to spread controlled through a MRF.

SIFT is a popular feature used in object classification, keypoint detection
in objects and scene stitching. It was an early attempt in computer vision to
incorporate the ideas of scale and rotational invariance into a feature as the
same object can look different under scaling and rotational transforms. In ad-
dition attempt was made to make the feature robust to noise and illumination
variation in images. A SIFT feature is built upon a sequence of steps:

• Scale space construction
• Keypoint detection
• Keypoints pruning
• Keypoints orientation
• Feature generation

65

Figure 5.1. 4 (a) Local extrema detection, in a 3× 3× 3 neighborhood of a pixel
marked with × in a stack of DoG images. (b) Gradient orientation from 4×4 neigh-
borhood of an oriented keypoint.

The scale space is constructed by convolving an image I(x,y) with a Gaus-
sian filter G(x,y,σ)

L(x,y,σ) = G(x,y,σ)∗ I(x,y) (5.1)

where G(x,y,σ) = 1
2πσ2 e−

(x2+y2)
σ2 , where σ is called the scale. Difference of

Gaussian (DoG) at different scales is performed to detect points of interest.

D(x,y,σ) = L(x,y,kσ)−L(x,y,σ)

= [G(x,y,kσ)−G(x,y,σ)]∗ I(x,y)
(5.2)

Keypoint detection is done by detecting the local extrema in the scale space.
To achieve this the convolved images are grouped as per an octave (an octave
corresponds to doubling in the value of σ). To ensure that a fixed number
of blurred images are contained per octave group, the value of k is selected
suitably. Consequently this also ensures the same number of DoG images per
octave.

The local extrema (maxima or minima) in the DoG images are stalked
across various scales. Thus if the pixel is a local maximum or minimum, it
is selected as suitable candidate for being a keypoint or an interest point. Of
all the keypoints candidates those with low contrast or along the edges are re-
moved. The remaining keypoints are assigned an orientation based on a gradi-
ent histogram computed in their respective neighborhoods. Corresponding to
the peaks in the histogram dominant orients are picked. A separate keypoint is
created as per direction of the histogram maximum and directions within 80%
threshold of this maximum.
4 This image has been borrowed from [64]

66

Figure 5.2. MRF over individual pixel dSIFT features classification. Each class per-
centage in terms of number of pixel in images are given in the color-bar. The first, sec-
ond, third, fourth columns indicate the class distribution for the characters H,B,A,C
respectively.

As all the properties are measured corresponding to the keypoint’s orienta-
tion, such a feature provides invariance to rotation. Around a selected keypoint
that is oriented, the feature descriptor is computed as a set of orientation his-
tograms on 4× 4 pixel neighborhood as shown in Fig.5.1. The histograms
contain 8 bins each, resulting in a feature vector with 4×4×8 = 128 compo-
nents.

67

By densely sampling SIFT features of the same scale and orientation using
a sampling step the dense-SIFT feature (dSIFT) representation of an image
can be obtained. In order to use these features to classify the character there
needs to be some flexibility to either retain the class label from the classifier
or switch the label to make an image patch classification more homogenous.
This can be best modelled as an MRF where we can define a neighborhood to
a pixel (often referred to as a clique, though generally clique can have pixel
connectivity beyond the 8-neighborhood of a pixel). Changing the class la-
bel has an associated cost and so does having non-smooth noisy patches. The
overall cost associated with the image can be interpreted as an energy which
can be optimized to have as many smooth regions within the image as possible
along with being consistent in their classification resulting in a lower energy
configuration. Thus we can formulate the MRF as a probability distribution
over variables x1, ...,xn defined by an undirected graph G in which nodes cor-
respond to the variables xi taking the form:

p(x1, ...,xn) =
1
Z ∏

c∈C
φc(xc) (5.3)

where C denotes the set of cliques, which are fully connected subgraphs of
G and Z is the normalization factor. Using MRF with dSIFT features for
character recognition was useful with some degree of success in identifying
a character as shown in Fig.5.2. However, upon trying the same approach on
handwritten text to spot a word given a query word as an example template
proved less useful as shown in Fig.5.3 due to interference from the context
surround the region of interest.

5.1.2 Fragmenting into piecewise smooth curves
In order to make the features more structured an attempt was made to use
piecewise smooth curves such as line segments, arcs of circle and ellipse as
features [100]. This approach can be broken down into three basic steps:

• Hypothesis selection
• Validation
• Model selection

The first step is to select suitable candidates by recursively searching for
similar gradient orientation. These neighboring regions are recursively merged
if they follow a roughly smooth convex contour. These gathered pixels are
used to estimate either a line segment or an elliptic curve to a reasonable fit
these curves are called the hypothesis. These curves from the first step are
then validated in the second step where tangents to the detected segments are
used to measure the degree of structuredness. The third step is used when
more than one hypothesis satisfy the validation stage. The multiple hypotheses

68

Figure 5.3. Difficulty in controlling the MRF spread over dSIFT features classification
when applied over historical material. The query word is outlined in red and each
instance of the word is marked on the document in red. Few instances have been
magnified on the right showing a lot of variation due to noisy dSIFT features.

Figure 5.4. (a) Input image. (b) Corresponding ellipses and line segments detection.
Elliptical and circular arcs are in red and blue receptively and line segments are in
green.

are subjected to suitable geometric interpretation for the given data and the
most suitable model is selected. The result of the method is shown in Fig.5.4.
Though the results are much better than the MRF case the model selection
case is very sensitive to noise. Thus the same character with minor differences
can be represented into very different features hence limiting their utility for
classification and generation.

69

Figure 5.5. (a) Cropped image sample of handwriting (b) Output corresponding to
horizontal component of constrained path opening (c) Output corresponding to ver-
tical component of constrained path opening (d) Output corresponding to diagonal
component of constrained path opening (e) Cropped image sample of historical hand-
writing (f) Output corresponding to vertical component of constrained path opening
for historical material with ambiguities circled in red.

5.1.3 Stroke combination with path openings
The path opening uses a combination of morphological openings using paths
as structuring elements. A path opening of length L is the supremum of all
openings using structuring elements of L connected pixels arranged in a spe-
cific adjacency relation. In the specific case of two-dimensional images there

70

are (in practice) four such adjacency relations producing the approximately
horizontal, vertical, and diagonal paths. The horizontal paths, for example,
are formed by adding pixels to the right horizontally or diagonally (i.e. north-
east (NE), east (E), or south-east (SE)). Similarly the vertical paths are formed
by adding pixels to the NW, N, or NE. The diagonal paths are created in an
analogous manner. Computing the opening using all possible structuring ele-
ments of length L of this kind is impractical, since there are O(3L) such paths.
However, Talbot and Appleton present an algorithm that computes path open-
ings in 2D, that is O(N log(L)) (where N is the number of pixels) [118] that
is generalizable to nD images [58]. Finally, an algorithm that produces an ap-
proximation of the path opening, called the parsimonious path opening, which
approximates by preselecting a subset of paths in the image and then used to
retrieve the information [85]. The algorithm is independent of the length L of
the paths, and only depends on the size of the image with time complexity of
O(N). The output of path openings are interesting in that they decompose the
character completely but the decomposition is not unique. due to the fact that
horizontal and vertical components allow for few diagonal pixels to capture
the approximate direction as indicated in 5.5(f).

5.2 Hidden Markov Model based generation
The process of training an HMM with a finite, discrete state space, depends
on computing a matrix of state transition probabilities denoted by A, a vector
of start probabilities denoted by π , a matrix of state-specific emission proba-
bilities distributions denoted by B which are computed by training relevant
examples as discussed in Section3.2. In the current context, we consider
the Baum-Welch and Bakis algorithms. The Baum-Welch algorithm is an
Expectation-Maximization procedure that tries to answer question of deter-
mining the (π,A,B) parameters which, help maximizing the HMM perfor-
mance. However, there is an inherent directionality in Latin based text which
is exploited in the left-right topology using Bakis algorithm. Here the states
move left to right but not the other way around.

As HMMs are efficient at handling sequential information, images are often
processed using a sliding window. The sliding window approach can be used
at word or character level to identify words or characters respectively [104].
In the current approach the content within each window is used to extract fea-
tures, which are then labeled. By concatenating labels of successive sliding
windows, a string is formed corresponding to the original image. A HMM-
bank, containing multiple disjoint HMMs is trained on the labeled training se-
quences. A query image is then classified based on a scoring mechanism over
all the HMMs in the bank. The HMM in the bank that is trained on instances
of a character giving the most favorable likelihood for the whole sequence of

71

Figure 5.6. An overview of the experimental setup with individual process blocks

labels is selected as the classifier output. This setup provides an ideal testing
environment to understand the strengths of different image features when used
along with a sliding-window HMM. A Support Vector Machine (SVM) classi-
fier is also trained on the features under study, in order to provide a benchmark
for comparison (Fig. 5.6(i)).

5.2.1 Overview of Paper IV
In order to evaluate various features we have used identical pre-processing and
classification procedures for all feature sets tested. As shown in Fig. 5.6 each
image is converted to a gray-scale image rescaled to 100× 100 pixels (Fig.
5.6(a),(b)). Binarization is carried out if it is necessary to compute specific
feature such as background to foreground transitions. The image is then di-
vided into overlapping patches allowing for about 50% overlap over adjacent
windows (they can be stripes favored by Marti-Bunke type features or patch
based Fig. 5.6(c),(d)). Features are then extracted on each patch indepen-
dently. The features thus accumulated over the training data are then clustered
using k-Means and a label is assigned to each patch as per the cluster to which
it belongs. The experiments are repeated with and without whitening the fea-
ture vector to understand its behavior.

In the current context HMMs are primarily used as classifiers of labeled
sequences. In transcription of documents in Latin based script one is likely
to encounter alphabetic letters in both upper and lower case, so an individual
class for each character in each case is defined. This architecture leads to an
HMM-bank with 52 individual HMMs, one for each letter in upper and lower
case. Virtual beginning and end states are introduced, denoted by start and
end, respectively. In case the feature extraction step produces n segments there

72

will be n+2 states in the HMMs. These special beginning and end states are
included to facilitate concatenation multiple training observation sequences
to form one observation sequence on which individual HMM is trained. The
classification of a query image is done by converting it to a query string us-
ing the labels obtained from the k-Means clustering. The query string is then
passed to each character HMM in the bank and likelihood score is returned. A
decision based on the maximum score returned from HMM-bank results in the
classification of the query image to a letter. More details on the architecture
can be found here [11].

5.2.2 Feature Extraction
In the following section we provide a brief description of seven different fea-
ture extraction methods. They have all found previous use in character recog-
nition. Some of these are unique to character recognition using HMMs, while
others are widely known as generic feature extraction methods in image anal-
ysis and computer vision.

5.2.3 Naive Strip features
Each image is binarized and then divided into vertical segments. Within each
segment connected components are identified and three of the maximal com-
ponents are picked based on the component length, Cl . These components are
then identified as long, Ł if Cl ≥ n ·wd , short, S if wd ≤Cl < n ·wd , or none,
N if Cl < wd , where wd is the width of the segment and n is a scale-factor.
Each segment can thus be identified with a triplet formed by Ł,S ,N . There
can be 10 combinations of these triplets and these form the class labels for this
feature. This rather naive approach tries to identify the alphabetic letters based
on edge patterns in a non-overlapping moving window over an image [25].

5.2.4 Marti-Bunke features
This is a nine-dimensional feature that is obtained for each vertical segment of
the image. This feature captures rough shape, texture and span information of
a character by computing some statistics and estimates over each segment. The
shape information is based on computing the upper and lower contour posi-
tion of the character in each segment, and the gradient of the upper and lower
contours of the segment. The texture information is retained in the number
of background-foreground transitions and by computing the number of fore-
ground pixels between the upper and lower contour divided by the height of
the contour. The character span is estimated by computing mean, the center of

73

gravity and the second order moment of the segment [81]. For efficient com-
putation of these features binarized as well as gray-scale images are required.
This feature is a compact representation of the shape information, but lacks
a scale estimate that is required in differentiating the upper and lower case
alphabet for instance in the case of x, o, c etc.

5.2.5 Gabor features
The feature is built by dividing the gray-scale image into a grid. A complex
Gaussian kernel is built with varying sigma at different angles between the
real and imaginary part of the kernel (the argument of a complex number) [67].
The mean of the absolute value of the convolution output is set as the threshold
and the count of instances that have exceeded this threshold in each grid at
each scale and orientation is cascaded to form the overall feature vector [24].
In the current framework it is forty-dimensional (5 scales × 8 orientations)
feature per patch are the default parameter settings.

5.2.6 Discrete Cosine Transform features
Each patch is then subjected to a discrete cosine transform (DCT) [88]. As
most of the energy content of the image is contained in the low frequency, the
coefficients are reordered by zig-zag scan in each patch. The most significant
coefficients per patch can be picked up and cascaded to form the feature vector.
In the default settings ten most significant coefficients are picked for each
patch.

5.2.7 Histogram of Oriented Gradients features
For each of the patch gradients are computed along various orientations [31],[97].
A histogram over the computed gradients in the given patch is cascade into a
feature vector. In the current setup this is a 31-dimensional vector per patch.

5.2.8 Pyramid Histogram Of visual Words features
This feature is a bag of dense Scale Invariant Feature Transform (SIFT) fea-
tures at various scales [18]. This is a 512 dimensional feature vector due to
the accumulation of 128 dimensional SIFT features at 4 scales.

5.2.9 Local Binary Patterns features
Within each selected path the center pixel is compared with every other pixel
in a 3 × 3 neighborhood. Comparison between the pixels in encoded into a

74

8-dimensional vector of 0s and 1s depending on the gray scale value of the
central pixel being higher or lower than the neighbor respectively. The vector
can thus be a 128 dimensional but is quantized into 58 possible patterns thus
resulting in 58 dimensional vector averaging over the patch. [116].

5.2.10 Experiments
All the experiments were conducted using two data sets as described below.

5.2.11 Data-sets
UJIPenchar2

The UJIPenchar2 dataset of online handwritten characters [30] were subjected
to morphological erosion with a 3×3 cross structuring element to create char-
acters of varying stroke width. Then a series of affine transformations are
applied to the resulting images such as clockwise and counter-clockwise ro-
tation about the vertical axis by 10 degrees, skewing the image in horizontal
and vertical direction and adding noise along the edges of the character thus
creating 3600 instances of each letter as shown in Fig.2.3.

NIST-19

The NIST dataset consists of handwritten forms from 2100 different users pro-
vided with a form based handprint recognition system. About 1472 instances
per lowercase character as shown in Fig.2.3, were extracted from these forms
using the underlying recognition system [52].

5.2.12 Evaluation
On each of the datasets a random sample of 1012 images are picked of which
512 are used for training and 500 images are used for testing. The results
reported here are percentage of classification accuracy %accuracy= Tc

N , where
Tc are images correctly labeled in the test set and N total number of test images
averaged over all the letters.

The experiments can be broadly classified into two classes. First, a re-
gressive evaluation of classification accuracy of the HMM classifier trained
on each of the features described previously are benchmarked against SVM
using a polynomial kernel of degree three. The focus has been on not only
understanding the classification capability of the features, but also capture
the parameter settings that are well suited for each method such as effect of
whitening and k-Means clusters which directly influence the number of labels
at each state in the HMMs. These parameter settings are then used in the ex-
periments where the HMMs are used as a generative models for characters in

75

Figure 5.7. Comparison of classification accuracy percentage of HMM classifier wiht
k-Means Clustering with k=10 and k=20

order to further understand the feature in capturing the variance in the hand-
writing over characters. The results from the generative model are useful in
visually interpreting the performance of features and also the role of better
resolution on performance of HMMs.

5.2.13 Regression Tests
Number of kMeans clusters:

In state of the art HMMs for handwriting transcription labeling the feature
vector is done through training Gaussian Mixture models. The features are
used to train a mixture model with 4 distributions. This model is in turn used to
initialize and train a mixture with 8 distributions and this procedure is repeated
successively to obtain a model with either 16 or 32 distributions [111]. In a
similar spirit we have clustered the features using kMeans with k=5,10,...40
and found that going beyond k=20 does not yield any significant improvement
in classification accuracy but makes the HMM training slower due to more
labels. Effect of moving from k=10 to k=20 is shown in Fig. 5.7. For all the
experiments that follow k=20 during the k-Means clustering step.

Topology and whitening of data:

Two topologies tested in these experiments are the Baum-Welch and the Bakis
topologies. The classification accuracy for these topologies are mostly similar.
The results with and without of data whitening on the two HMMS topologies

76

Table 5.1. Classification accuracy percentages for HMM and SVM Classifiers

Feature Baum-Welch Bakis WhitenedUniPenn NIST UniPenn NIST
Naive-Strip 12.9 26.13 12.92 25.49

YesMarti-Bunke 43.36 66.68 43.46 67.09
Gabor 52.24 70.48 52.24 70.5
DCT 59.37 72.82 60.89 73.76
HOG 63.36 77.68 64.58 76.82

PHOW 52.24 70.48 48.38 68.68
LBP 42.37 65.82 41.56 65.76

Naive-Strip 12.9 26.13 12.92 25.49

NoMarti-Bunke 37.68 65.47 38.2 66.0
Gabor 54.24 71.99 54.23 71.93
DCT 61.43 74.18 61.09 74.0
HOG 65.16 79.66 66.48 77.32

PHOW 55.94 72.38 53.03 71.86
LBP 45.30 69.22 44.16 67.76

SVM poly. deg. 3 75.75 85.63 - - -

are available in Table5.1. The results from HMM classifier are compared with
SVM with a polynomial kernel of degree three which is one of the top per-
forming classifier on NIST digits dataset [127] with the entire image is used
as input. This result is reported in Table 5.1. However, to make the comparison
more fair, we also feed the SVM with feature data, in Table 5.2.

Sliding windows:

It is a common practice in word and character HMMs to apply the sliding win-
dow from left to right and feed the HMM with features from thin overlapping
image stripes. In this paper we extend this paradigm, also sweeping top-down
and testing square shaped patches, and investigate whether the performance
of the HMMs is improved. The size and step length of the sliding window
in these cases are calculated such that length of the label sequence generated
per image in both the methods are almost same, thus no bias in introduced in
the HMM training. Table5.2 shows the comparison between Marti-Bunke and
DCT. As the dimensionality of these features are nine and ten respectively,
they are comparable.

5.2.14 Generative Tests
In the final experiments, we use the trained HMMs as generative models in-
stead of classifiers. The results are synthesized instances of characters, which
gives a glimpse of what a given HMM model is able to capture. It also enable

77

Table 5.2. Comparison of features for patch vs strip based sliding window approach

Feature UniPenn NIST
HMM + MB + Strip 43.46 67.09
HMM + MB + Patch 45.90 75.83
HMM + DCT + Strip 44.77 67.85
HMM + DCT + Patch 59.79 76.09

SVM + MB + Strip 59.56 82.23
SVM + MB + Patch 65.79 85.67
SVM + DCT + Strip 58.54 84.34
SVM + DCT + Patch 60.32 85.0

Figure 5.8. Character instances of B,A,G from HMMs. top row: DCT+strip, middle
row: DCT+patch, bottom row: MB+patch

us to make a qualitative comparison between features through the analysis of
the emission matrix (B). The most probable state transitions are generated

78

Figure 5.9. Reduced rank of emission matrices over various character HMMs

from the transition matrix (A) and the label at each state is generated from
the emission matrix (B). The image corresponding to the label are generated
from the k-Means cluster center of that label. This approach has two benefits.
Firstly, it provides a qualitative way to visualize the results by showing the
extent of variation in the writing of each character as captured by the features.
Fig. 5.8 helps in comparing the letters generated with strip and patch mode,
by comparing top and middle rows, and also features from Marti-Bunke and
DCT features by comparing the middle and bottom rows.

Secondly, a the generative experiments helps to analyze the learning trans-
fered to HMMs through the features. By construction, for an HMM with with
Ns states its transition matrix (A) is square and diagonal dominant as we are
forcing a inherent directionality through the way the image of the character is
swept. The variation in the various handwritten characters are captured in the
emission matrix (B), which is a rectangular matrix of size Ns ×Nl , where Nl
are number of emission labels at each state. In order to capture this variation
efficiently, matrix B has to be of full rank. By performing a low rank ap-
proximation of B, we can determine which feature is efficient. In the current
experiment Ns = 25, Nl = 20. For an efficient feature, the rank for the low rank
approximation of B needs to be as high as possible, i.e as close to 20 as possi-
ble. Fig. 5.9 shows these results in parallel coordinates [86] representation of
the rank for Marti-Bunke and DCT features respectively to limit the width of
the graph only the result for HMMs trained for upper case letters is provided.

79

pix-2-pix
Greedy
Chamfer
Search

< x′, y′, w′, eos′ >

Data augmentation

< x′, y′, w′, eos′ >

< Newergonna · · · ... >
ΣRNN< x, y, w, eos >Renderer

Writing generation

Σ AdaIN

Style refinement

Figure 5.10. The main processing blocks and their corresponding neural architectures
are indicated in solid blue and red rectangles respectively. The input-output blocks are
shown with dashed blue and orange outlines respectively.

5.2.15 Conclusions
The HMMs performance of the ergodic and left-right topologies are almost
identical over all the features. The Marti-Bunke features performs well when
increasing the number of segments that divides the image. However, Marti-
Bunke features suffers from performance issues when the sequence length get
longer. Features that are able to encode the scaling information, such as HoG,
Gabor and DCT, are able to outperform the other features such as Marti-Bunke
and local binary patterns. This is particularly due to effectively handling the
scaling that occurs over upper and lower case characters such as c,k,o,p,x. The
best performing feature extration appears to be HoG. DCT has only slightly
worse performance than HoG, but is more compact (1/3 of the dimensionality).
The results indicate that performance of character recognition HMMs could
be improved, by moving from a strip based sliding window approach to a
patch based. Finally, The SVM classifier, which processes all feature values
in parallel rather than as a sequence, consistently beats HMM. This indicates
that HMMs may suffer from their inherently one-dimensional data processing,
in this particular application.

5.3 Neural architecture for handwriting generation
Our generative model for documents which we term CaligraphyNet, extends
handwriting generation model from [51]. The pipeline consists of a data aug-

80

mentation stage that is capable of generating stroke width information at each
stylus position. The image rendered from a sequence of (x,y)-coordinates trac-
ing the stylus movement is given as the input to the data augmentation stage.
A recurrent neural network (RNN) is then trained using the transcription cor-
responding to the stylus movement as a sequence-to-sequence learning prob-
lem. The trained model is then used to generate a sequence of coordinates,
stroke width and end-of-stroke information for a sentence as a quadruplet
< x,y,w,eos > given a text sequence as input. Output images can then be
rendered based on these parameters creating a series of binary images corre-
sponding to a passage of sentences. A style transfer reflecting the ink and
parchment variation can be applied in style refinement block on the generated
document image.

The paper is organized into four major sections. The introduction provides
an overview of the main idea behind the method. This is followed by a method-
ology section that explains the important blocks with in the model. This is
followed by an experiment section where we briefly outline the datasets used
and the experimental setup required for the generative model, together with
some results. The paper is concluded with some discussion on challenges and
future direction for the current work.

5.3.1 Overview of Paper V
The generative model can be divided into three major blocks: Generative ad-
versarial Network (GAN) based data augmentation; RNN based writing gen-
eration; Style transfer using instance normalization for style refinement.

5.3.2 Data augmentation
The purpose of this block is to augment variable stoke width onto existing
written strokes that is stochastic. This is done to induce natural stroke width
of a writing instrument over text and also act as a regional mask over which
ink degradations can spread, both of which are ubiquitous in historical docu-
ments. Fig.3 in [68] provides examples of such cases. In order to accomplish
this task and evaluate it quantitatively we have augmented modern writing
with quill based stroke width from historical documents. pix2pix [63] is a
GAN based style transfer architecture that can learn the visual features from
one image representation and transform them to another image representation.
In the present context it can be employed to learn stroke variations from the
skeleton representations of the written material with suitable training data. In
the data augmentation block, images of handwritten sentences are rendered by
using the online-IAM [78] dataset as shown in Fig.5.12(a), which are treated
as skeleton representation of the writing. Stroke width is added to these ren-

81

Figure 5.11. (a) Six instances of the word "honeybees" as generated by second block.
(b) Three style instances output from third block on a given text.

dered images by using the trained pix2pix architecture as an image based style
transfer network. Any arbitrary style of stroke width can now be added to the
rendered images with the right training. In the current experiment we show re-
sults with the George Washington letters style [123] as shown in Fig.5.12(b).
This approach suffers from the drawback of merging loops and strokes that
are close by into a single thick strokes. This is resolved by learning the stroke
width at local minima in the distance field from the style transfered image with
the respective coordinates as the staring point for the gradient descent. The ini-
tial and final points for the descent algorithm are as shown in Fig.5.12(c) with
red and green dots respectively. The stroke width at the minima in the dis-
tance field is then attributed to the corresponding starting point from which
the descent algorithm was initialized. We call this approach greedy chamfer
search [17] as minima along the distance transform is searched using gradient
descent in a greedy fashion. Result of augmenting stroke width can be seen in
in Fig.5 in [68]

82

Figure 5.12. This image shows the output of three major steps in the pre-processing
stage stitched together. (a) shows the output image rendered from the stylus trajecto-
ries. (b) shows the style transfer on to the rendered image from the pix2pix network
using the George Washington dataset style [123]. (c) Skeleton point adjustment on the
stroke distance field to get the stroke width at a given coordinate.

5.3.3 Generation
The RNN used in our model is an extension of the architecture used in [51].
The model combines a mixed density network (MDN) with three long short
term memory cells (LSTM) to generate artificial handwriting examples. This
network predicts the exact location of the next point, and whether the current
point is the end-of-stroke. It makes use of the MDN approach and have the
network output a set of parameters of a joint-probability distribution for the
relative location of the next location (Δx,Δy), along with a simple Bernoulli
distribution for end-of-stroke probability. We extend this model by letting it
predict a triplet for next location (Δx,Δy,Δw) where Δw denotes the learned
stroke width variation.

We used nmix = 20 mixtures in our model, to be consistent with the setup in
[51]. In total, we would have neos + nπ + nmix ∗ (nμ + nσ + nρ) output values
from our network, Z, from the MDN to infer our distribution. nμ = nσ = 3
for the (Δx,Δy,Δw)-triplet we predict, and nρ = 3 to capture the covariance
between the triplet parameters. One of these values would be used as the end-
of-stroke probability neos = 1, and nπ = 20 additional values would define the
probability of each mixture, there are 201 values that constitute 20 sets of 2D
Normal distribution parameters. More details on the design choices, model
parameters and their inter relationship can be found in Appendices A and B
in [68]. As the output values are real numbers that may not be bounded, we
would perform a transform to get the values in the required parameter space:

eos =
1

1+ exp(Z0)
, Πk =

exp(Zk)

∑20
i=1 exp(Zi)

(5.4)

83

μ1 = Z21→40, σ1 = exp(Z81→100),

ρ12 = tanh(Z141→160)

μ2 = Z41→60, σ2 = exp(Z101→120),

ρ23 = tanh(Z161→180)

μ3 = Z61→80, σ3 = exp(Z121→140),

ρ31 = tanh(Z181→200)

(5.5)

where the random variables x1,x2,x3 correspond to the Δx,Δy,Δw respectively.
With the corresponding means and variances and correlations are denoted by
μi’s,σi’s,ρi j’s i, j ∈ {1,2,3}, i = j respectively. Using these transformations,
like in the previous MDN example, the Πk values undergo the softmax oper-
ator so they sum up to one. The end-of-stroke probability eos is also bound
between 0 and 1. The standard deviation parameters will be strictly positive,
and the correlations between x,y,w variables will be between -1 and 1. After
the parameters have been obtained, the probability density of the next stroke
will be defined as:

P(X = x) =
K−1

∑
k=0

Πk P(X = x|μ,Σ) P(Xeos = xeos)

X = [X ,Xeos] ,x = [x1,x2,x3]
T ,μ = [μ1,μ2,μ3]

T ,

Σ =

⎡⎣ σ2
1 σ1σ2ρ12 σ1σ3ρ31

σ1σ2ρ12 σ2
2 σ2σ3ρ23

σ3σ1ρ31 σ2σ3ρ23 σ2
3

⎤⎦
(5.6)

The network is then trained with the transcription text corresponding to
the trajectories triplets as shown in Fig. 5.13. Few examples of handwriting
instances generated from this block are shown in Fig.5.10 for more instances
refer to [68] Fig.6.

5.3.4 Style refinement
The trained RNN from stage two can be used to generate synthetic handwritten
documents with any text given as input. The output from RNN is a sequence of
trajectory parameters that can be used to render text document images. These
images can be used as a mask for both the text and background. These masks
can be viewed a the mean for the text and background that can perturbed by
adding variance to them in order to generate textures variations over both these
areas. This idea of style transfer is called adaptive instance normalization as
used in the AdaIN network [62]. The AdaIN network in style refinement block
was applied on each of the sentence images to get realistic document images

84

[x
t−

1
,y

t−
1
,w

t−
1
,<

eo
s
>

t−
1
]

O
n
e
-h

o
t

L
S
T
M

1

A
tt
e
n
ti
o
n

M
e
ch

a
n
is
m

(G
a
u
ss
ia
n

C
o
n
v
o
lu
ti
o
n
)

L
S
T
M

2

L
S
T
M

3

M
D
N

[x
t,
y t
,w

t,
<

eo
s
>

t]

[x
t−

1
,y

t−
1
,w

t−
1
,<

eo
s
>

t−
1
]

O
n
e
-h

o
t

L
S
T
M

1

A
tt
e
n
ti
o
n

M
e
ch

a
n
is
m

(G
a
u
ss
ia
n

C
o
n
v
o
lu
ti
o
n
)

L
S
T
M

2

L
S
T
M

3

M
D
N

[x
t,
y t
,w

t,
<

eo
s
>

t]T
im
e
st
ep

t
−

1

[x
t−

1
,y

t−
1
,w

t−
1
,<

eo
s
>

t−
1
]

O
n
e
-h

o
t

L
S
T
M

1

A
tt
e
n
ti
o
n

M
e
ch

a
n
is
m

(G
a
u
ss
ia
n

C
o
n
v
o
lu
ti
o
n
)

L
S
T
M

2

L
S
T
M

3

M
D
N

[x
t,
y t
,w

t,
<

eo
s
>

t]T
im
e
st
ep

t

[x
t−

1
,y

t−
1
,w

t−
1
,<

eo
s
>

t−
1
]

O
n
e
-h

o
t

L
S
T
M

1

A
tt
e
n
ti
o
n

M
e
ch

a
n
is
m

(G
a
u
ss
ia
n

C
o
n
v
o
lu
ti
o
n
)

L
S
T
M

2

L
S
T
M

3

M
D
N

[x
t,
y t
,w

t,
<

eo
s
>

t]

[x
t−

1
,y

t−
1
,w

t−
1
,<

eo
s
>

t−
1
]

O
n
e
-h

o
t

L
S
T
M

1

A
tt
e
n
ti
o
n

M
e
ch

a
n
is
m

(G
a
u
ss
ia
n

C
o
n
v
o
lu
ti
o
n
)

L
S
T
M

2

L
S
T
M

3

M
D
N

[x
t,
y t
,w

t,
<

eo
s
>

t]T
im
e
st
ep

t
+
1

Fi
gu

re
5.

13
.T

he
un

ro
lle

d
R

N
N

fo
rt

hr
ee

tim
e

st
ep

s.
w

ith
x-

co
or

di
na

te
,y

-c
oo

rd
in

at
e,

w
-s

tr
ok

e
w

id
th

an
d

eo
s-

en
d

of
st

ro
ke

fla
g.

85

as shown in Fig.8 in [68]. The style transfer is stochastic in nature giving a
lot of flexibility to the model.

5.3.5 Experiments with word spotting on generated pages
The online-IAM [78] dataset has been used for the generation in the paper
and George Washington dataset has been used for stroke width style transfer.
The IAM online Handwriting Database is structured as 221 writers contributed
samples of their handwriting, more than 1,700 acquired forms all made avail-
able in XML format. The files have been parsed and relative position as pre-
processed to be fed to the RNN. The George Washington dataset have been
used for the stroke style content. The George Washington letters dataset [123]
has 306 pages that provides enough training data for stroke width transfer with
a well known historical document as source. A 70-30 split was used for train
and test data split. The binarized images of pages were used as the target for
stroke width transfer with skeletonized images as input for pix2pix training.
The pix2pix network was trained on the skeletonized version of 512× 512
patches of the dataset. The trained pix2pix model has an F-Measure score (de-
fined in Appendix D in [68]) of 85% on average on the test set with respect to
stroke width transfer as shown in Fig.5 in [68].

To test the variability in the generated images a vocabulary of approxi-
mately 7000 words was selected from the IAM dataset and about 150,000
images were generated from the RNN model. The generated words were then
placed on an image canvas creating a dataset of rendered pages along with
the bounding box information of each word position on the canvas as shown
in Fig.7 in [68]. As a quantitative evaluation of our proposed text generation
approach we used the generate data to train a model for word spotting (word
image retrieval). A subset of the IIIT-HWS dataset [72] consisting of a 1 mil-
lion images generated from a 10k word vocabulary is used as a baseline. We
use the Ctrl-F-Net word spotting model [125] to perform the experiments. For
evaluation, we follow the standard procedure of measuring the mean average
precision (mAP) at 25% and 50% overlap thresholds. We evaluate the sce-
nario of using word images as queries, called query-by-example (QbE) and
using text string as queries, called query-by-string (QbS). For more details on
training and evaluation, see Appendix C in [68]. The trained models evaluated
on the offline IAM handwriting dataset [80]. In Table.5.3 the Ctrl-F-Net word-
spotting model performance when trained on various datasets is reported. IIIT
row corresponds to 1 million images IIIT-HWS dataset. CNet corresponds to
2193 pages generated from CaligraphyNet over a 7000 offline IAM vocabu-
lary. We also tried a direct approach for generation by interchanging pix2pix
and RNN blocks to avoid stroke width learning but this approach results in
blobby images that needs smoothing through interpolation making the current

86

Table 5.3. MAP comparison in % evaluated on the IAM dataset using different train-
ing datasets. ∗ on IIIT is described in Appendix C

50% 25%

Dataset QbE QbS QbE QbS

IIIT∗ 43.5 21.7 44.7 23.0

CNet 41.6 21.3 42.9 23.4

approach a better choice as shown in Fig.4 in [68]. The size of CNet dataset
being 15% of IIIT dataset is able to perform identically in terms of wordspot-
ting results reducing trained time of Ctrl-F Net by a factor of 8.

5.3.6 Conclusion
The CaligraphyNet discussed in the paper can be used in generating ground
truth for document image related tasks like wordspotting etc. The experiments
show that we can match the wordspotting performance with a much lesser data
size using realistic generated data as opposed to font rendered data. Using
training data with more writing variations to further boost results is planned.
AdaIN fails to induce background variation when there are degradations like
bleed through etc. Further experiments using masked inputs for efficient tex-
ture transfer in AdaIN is planned.

87

6. Conclusions and future work

Handwritten document images have the unique characteristic of being amenable
to be interpreted as visual objects to be recognized within an image. And on
the other hand can be interpreted as time series data that can be analyzed as
natural sequences. Hence, research into handwritten images will prove to be
an interesting research topic for many years to come. However, from the dis-
cussion in this thesis, including 5 research papers, it can be concluded that:

• Energy minimization based methods with improved seed and edge maps
are successful for segmenting the ink for the parchment.

• Neural architecture for semantic labeling can be improved by end-to-end
training with a proximal based differentiable post-processing.

• Synthetic handwriting generation with style, stroke and texture varia-
tions can be trained with recurrent neural architectures and augmented
with generative adversarial networks.

• Synthetic handwritten images can be used for pretraining deep architec-
tures used for binarization and word spotting of handwritten document
images.

6.1 Future work
This section can be quite biased towards learning based methods as they were
the focus of the thesis. The deep learning methods used in the thesis have
helped in achieving state of the art results in binarization and very useful gen-
eration results. However, in would be unfair to give the whole credit to ma-
chine learning alone. All the neural architectures were based on supervised
learning where automated annotation of data was obtained through classical
image processing methods. In cases these techniques were useful in refining
output from deep networks. Another observation is that working with classical
methods is very useful in understanding the underlying structure of the data,
for example sequential learning methods like HMMs, classical image based
features with Support Vector machines or Random forest methods. These in-
sights can then be used to modify the deep architectures even better. Hence,
complement deep methods with classical methods for learning and image anal-
ysis could prove to be very fruitful.

88

Despite the tremendous benefits of using deep methods in the thesis it is
fair to say that a majority of the improvements gained were due to careful
engineering which is a very well accepted point by most of the deep learn-
ing practitioners as well. So delving into theoretical understanding of these
methods can be quite rewarding to make these methods more stable, ease up
working with them and save a lot of time for the developers debugging them.
Hence, there is already a trend developing in the vision community to favor
understandable deep methods with sound reasoning instead of marginal im-
provement in performance. It is the hope of the author that this trend would
be more reinforced in the future.

Another aspect missing in the methods is to incorporate linguistic cues.
The thesis has taken a strong direction along computer vision. Using lan-
guage based embeddings and language models can enhance the applicability
of these approaches into other avenues like word spotting, dating and writer
identification all of which are very useful for document researchers using these
methods.

89

References

[1] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE
transactions on medical imaging, 37(6):1322–1332, 2018.

[2] Ravindra K Ahuja. Network flows: theory, algorithms, and applications.
Pearson Education, 2017.

[3] Abdullah Almaksour, Eric Anquetil, Réjean Plamondon, and Christian
O’Reilly. Synthetic handwritten gesture generation using sigma-lognormal
model for evolving handwriting classifiers. In 15th biennial conference of the
international graphonomics society, 2011.

[4] Abdullah Almaksour, Eric Anquetil, Solen Quiniou, and Mohamed Cheriet.
Evolving fuzzy classifiers: Application to incremental learning of handwritten
gesture recognition systems. In Pattern Recognition (ICPR), 2010 20th
International Conference on, pages 4056–4059. IEEE, 2010.

[5] Abdullah Almaksour, Eric Anquetil, Solen Quiniou, and Mohamed Cheriet.
Personalizable pen-based interface using lifelong learning. In ICFHR, 2010
International Conference on, pages 188–193. IEEE, 2010.

[6] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded
variation and free discontinuity problems, volume 254. Clarendon Press
Oxford, 2000.

[7] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander.
Optics: ordering points to identify the clustering structure. In ACM Sigmod
record, volume 28, pages 49–60. ACM, 1999.

[8] Kalyan Ram Ayyalasomayajula and Anders Brun. Document binarization
using topological clustering guided laplacian energy segmentation. In
International Conference on Frontiers in Handwriting Recognition (ICFHR),
September 1-4, 2014, Crete, Greece., pages 523–528, 2014.

[9] Kalyan Ram Ayyalasomayajula and Anders Brun. Historical document
binarization combining semantic labeling and graph cuts. In Scandinavian
Conference on Image Analysis, pages 386–396. Springer, 2017.

[10] Kalyan Ram Ayyalasomayajula, Filip Malmberg, and Anders Brun. PDNet:
Semantic segmentation integrated with a primal-dual network for document
binarization. Pattern Recognition Letters, 2018.

[11] Kalyan Ram Ayyalasomayajula, Carl Nettelblad, and Anders Brun. Feature
evaluation for handwritten character recognition with regressive and generative
hidden markov models. In International Symposium on Visual Computing,
pages 278–287. Springer, 2016.

[12] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. arXiv
preprint arXiv:1511.00561, 2015.

[13] Lucas Ballard, Daniel Lopresti, and Fabian Monrose. Forgery quality and its
implications for behavioral biometric security. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 37(5):1107–1118, 2007.

90

[14] Lucas Ballard, Fabian Monrose, and Daniel P Lopresti. Biometric
authentication revisited: Understanding the impact of wolves in sheep’s
clothing. In USENIX Security Symposium, 2006.

[15] Sabri Bayoudh, Harold Mouchere, Laurent Miclet, and E Anquetil. Learning a
classifier with very few examples: analogy based and knowledge based
generation of new examples for character recognition. In European
Conference on Machine Learning, pages 527–534. Springer, 2007.

[16] Andrew Blake, Pushmeet Kohli, and Carsten Rother. Markov random fields for
vision and image processing. Mit Press, 2011.

[17] Gunilla Borgefors. Hierarchical chamfer matching: A parametric edge
matching algorithm. IEEE Transactions on pattern analysis and machine
intelligence, 10(6):849–865, 1988.

[18] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random
forests and ferns. In IEEE International Conference on Computer Vision, 2007.

[19] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. In
EMM-CVPR, pages 359–374. Springer, 2001.

[20] Javier Cano, Juan-Carlos Pérez-Cortes, Joaquim Arlandis, and Rafael Llobet.
Training set expansion in handwritten character recognition. In Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages
548–556. Springer, 2002.

[21] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and
Thomas Pock. An introduction to total variation for image analysis.
Theoretical foundations and numerical methods for sparse recovery,
9(263-340):227, 2010.

[22] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of mathematical
imaging and vision, 40(1):120–145, 2011.

[23] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Semantic image segmentation with deep convolutional nets and
fully connected crfs. arXiv preprint arXiv:1412.7062, 2014.

[24] Masashi Koga Cheng-Lin Liu and Hiromichi Fujisawa. Gabor feature
extraction for character recognition: Comparison with gradient feature. In
Proc. Int. Conf. Doc. Analy. Reco., volume 8th, pages 121–125. IEEE, 2005.

[25] Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, and Ching Y. Suen.
Character Recognition Systems. A Guide for Students and Practioners.
Wiley-Interscience. Wiley, 2007.

[26] Boris V Cherkassky and Andrew V Goldberg. On implementing the
push—relabel method for the maximum flow problem. Algorithmica,
19(4):390–410, 1997.

[27] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of
deep learning: A tensor analysis. In Conference on Learning Theory, pages
698–728, 2016.

[28] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on pattern analysis and machine
intelligence, 24(5):603–619, 2002.

91

[29] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems (MCSS), 5(4):455–455, 1992.

[30] et al. D. Llorens. The ujipenchars database: A pen-based database of isolated
handwritten characters. In Proc. Int. Lang. Res. Eval., volume 6th, pages
2647–2651. LREC, 2008.

[31] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
Proc. CVPR, 2005.

[32] Ondřej Daněk. Graph cut based image segmentation in fluorescence
microscopy. PhD thesis, Masarykova univerzita, Fakulta informatiky, 2012.

[33] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks.
In Advances in Neural Information Processing Systems, pages 666–674, 2011.

[34] Yefim Dinitz. Dinitz’algorithm: The original version and even’s version. In
Theoretical computer science, pages 218–240. Springer, 2006.

[35] Moussa Djioua and Réjean Plamondon. An interactive system for the
automatic generation of huge handwriting databases from a few specimens. In
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on,
pages 1–4. IEEE, 2008.

[36] Moussa Djioua and Réjean Plamondon. Studying the variability of
handwriting patterns using the kinematic theory. Human Movement Science,
28(5):588–601, 2009.

[37] Josip Djolonga and Andreas Krause. Differentiable learning of submodular
models. In Advances in Neural Information Processing Systems, pages
1013–1023, 2017.

[38] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM),
19(2):248–264, 1972.

[39] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases with
noise. In Kdd, volume 96, pages 226–231, 1996.

[40] LawrenceCraig Evans. Measure theory and fine properties of functions.
Routledge, 2018.

[41] Andreas Fischer, Andreas Keller, Volkmar Frinken, and Horst Bunke.
Lexicon-free handwritten word spotting using character hmms. Pattern
Recogn. Lett., 33(7):934–942, May 2012.

[42] Lester Randolph Ford Jr and Delbert Ray Fulkerson. Flows in networks.
Princeton university press, 2015.

[43] Keinosuke Fukunaga and Larry Hostetler. The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE Transactions
on information theory, 21(1):32–40, 1975.

[44] Javier Galbally, Julian Fierrez, Javier Ortega-Garcia, and Réjean Plamondon.
Synthetic on-line signature generation. part ii: Experimental validation.
Pattern Recognition, 45(7):2622–2632, 2012.

[45] Javier Galbally, Réjean Plamondon, Julian Fierrez, and Javier Ortega-Garcia.
Synthetic on-line signature generation. part i: Methodology and algorithms.
Pattern Recognition, 45(7):2610–2621, 2012.

[46] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor
Villena-Martinez, and Jose Garcia-Rodriguez. A review on deep learning

92

techniques applied to semantic segmentation. arXiv preprint
arXiv:1704.06857, 2017.

[47] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on pattern analysis
and machine intelligence, (6):721–741, 1984.

[48] Enrico Giusti and Graham Hale Williams. Minimal surfaces and functions of
bounded variation, volume 2. Springer, 1984.

[49] Andrew V Goldberg and Robert E Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

[50] Google. Google Fonts dataset. ������������	
�������������, 2017.
[Online; accessed 10-Jan-2017].

[51] Alex Graves. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013.

[52] P. J. Grother. Nist special database 19 handprinted forms and characters
database. National Institute of Standards and Technology, 1995.

[53] Thien M Ha, Matthias Zimmermann, and Horst Bunke. Off-line handwritten
numeral string recognition by combining segmentation-based and
segmentation-free methods. Pattern Recognition, 31(3):257–272, 1998.

[54] Jiawei Han, Micheline Kamber, and Anthony KH Tung. Spatial clustering
methods in data mining. Geographic data mining and knowledge discovery,
pages 188–217, 2001.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, pages 770–778, 2016.

[57] Muriel Helmers and Horst Bunke. Generation and use of synthetic training
data in cursive handwriting recognition. In Iberian Conference on Pattern
Recognition and Image Analysis, pages 336–345. Springer, 2003.

[58] Cris L Luengo Hendriks. Constrained and dimensionality-independent path
openings. IEEE Transactions on Image Processing, 19(6):1587–1595, 2010.

[59] Dorit S Hochbaum. The pseudoflow algorithm: A new algorithm for the
maximum-flow problem. Operations research, 56(4):992–1009, 2008.

[60] Nicholas R Howe. A laplacian energy for document binarization. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
6–10. IEEE, 2011.

[61] Nicholas R Howe. Document binarization with automatic parameter tuning.
International Journal on Document Analysis and Recognition (IJDAR),
16(3):247–258, 2013.

[62] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with
adaptive instance normalization. In ICCV, 2017.

[63] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros.
Image-to-image translation with conditional adversarial networks. CoRR,
abs/1611.07004, 2016.

[64] Allan Jepson. Local Features Tutorial: Nov. 8,’04.
����������������������	�����������������	������ ���� ,

93

2004. [Online; accessed 26-Mar-2019].
[65] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 675–678. ACM, 2014.

[66] Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened
convolutional neural networks for feedforward acceleration. arXiv preprint
arXiv:1412.5474, 2014.

[67] Rohit Prasad Anurag Bhardwaj Jin Chen, Huaigu Cao and Prem Natarajan.
Gabor features for offline arabic handwriting recognition. In Proc. Int. Work.
Doc. Analy. Sys., volume 9th, pages 53–58. IAPR, 2010.

[68] Kalyan Ram Ayyalasomayajula, Tomas Wilkinson, Filip Malmberg, Anders
Brun. Supplementary material for calligraphynet in paper v, 2019.

[69] David R Karger. Random sampling in cut, flow, and network design problems.
Mathematics of Operations Research, 24(2):383–413, 1999.

[70] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[71] Vladimir Kolmogorov and Carsten Rother. Minimizing nonsubmodular
functions with graph cuts-a review. IEEE transactions on pattern analysis and
machine intelligence, 29(7), 2007.

[72] Praveen Krishnan and CV Jawahar. Matching handwritten document images.
In European Conference on Computer Vision, pages 766–782. Springer, 2016.

[73] Marzena Kryszkiewicz and Łukasz Skonieczny. Faster clustering with dbscan.
In Intelligent Information Processing and Web Mining, pages 605–614.
Springer, 2005.

[74] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, pages 3431–3440, 2015.

[75] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[76] Haiping Lu, Alex C Kot, and Yun Q Shi. Distance-reciprocal distortion
measure for binary document images. IEEE Signal Processing Letters,
11(2):228–231, 2004.

[77] H. Bunke M. Liwicki. IAM-OnDB - an on-line English sentence database
acquired from handwritten text on a whiteboard. In ICDAR, pages 956–961.
IEEE Computer Society, 2005.

[78] H. Bunke M. Liwicki. IAM-OnDB - an on-line English sentence database
acquired from handwritten text on a whiteboard. In ICDAR, pages 956–961.
IEEE Computer Society, 2005.

[79] U-V Marti and Horst Bunke. A full english sentence database for off-line
handwriting recognition. In ICDAR, 1999 5th International Conference on,
pages 705–708. IEEE, 1999.

[80] U-V Marti and Horst Bunke. The IAM-database: an English sentence database
for offline handwriting recognition. International Journal on Document
Analysis and Recognition, 5(1):39–46, 2002.

[81] U.V. Marti and H. Bunke. Using a statistical language model to improve the
performance of an hmm-based cursive handwriting recognition systems. in
hidden markov models: applications in computer vision. World Scientific

94

Publishing Co., Inc., pages 65–90, 2002.
[82] Ines Ben Messaoud, Hamid Amiri, Haikal El Abed, and Volker Margner.

Document preprocessing system-automatic selection of binarization. In
Document Analysis Systems (DAS), 2012 10th IAPR International Workshop
on, pages 85–89. IEEE, 2012.

[83] Gary L Miller and Joseph Naor. Flow in planar graphs with multiple sources
and sinks. SIAM Journal on Computing, 24(5):1002–1017, 1995.

[84] Hidetoshi Miyao, Minoru Maruyama, Yasuaki Nakano, and Toshihiro
Hananoi. Off-line handwritten character recognition by svm based on the
virtual examples synthesized from on-line characters. In Document Analysis
and Recognition, 2005. Proceedings. Eighth International Conference on,
pages 494–498. IEEE, 2005.

[85] Vincent Morard, Petr Dokládal, and Etienne Decenciere. Parsimonious path
openings and closings. IEEE Transactions on Image Processing,
23(4):1543–1555, 2014.

[86] R. Moustafa. Parallel coordinate and parallel coordinate density plots. In
Interdisciplinary Reviews: Computational Statistics, volume Vol 3(2), pages
134–148. Wiley, 2011.

[87] David Mumford and Jayant Shah. Optimal approximations by piecewise
smooth functions and associated variational problems. Communications on
pure and applied mathematics, 42(5):577–685, 1989.

[88] T. Natarajan N. Ahmed and K.R. Rao. Discrete cosine transfom. In Trans. on
Computers, volume 23th, pages 90–93. IEEE, 1974.

[89] Matt Nedrich. Mean shift clustering. ������
������	
���������	����������������
������������������ ,
2015. [Online; accessed 26-Mar-2019].

[90] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y Ng. Multimodal deep learning. In ICML, 2011), pages 689–696,
2011.

[91] Wayne Niblack. An introduction to digital image processing, volume 34.
Prentice-Hall Englewood Cliffs, 1986.

[92] K. Ntirogiannis, B. Gatos, and I. Pratikakis. An objective evaluation
methodology for document image binarization techniques. In 2008 The Eighth
IAPR International Workshop on Document Analysis Systems, pages 217–224,
Sep. 2008.

[93] Konstantinos Ntirogiannis, Basilis Gatos, and Ioannis Pratikakis. Icfhr2014
competition on handwritten document image binarization (h-dibco 2014). In
ICFHR, 2014 14th International Conference on, pages 809–813. IEEE, 2014.

[94] Peter Ochs, René Ranftl, Thomas Brox, and Thomas Pock. Bilevel
optimization with nonsmooth lower level problems. In International
Conference on Scale Space and Variational Methods in Computer Vision,
pages 654–665. Springer, 2015.

[95] JB Orlin, RK Ahuja, and TL Magnanti. Network flows, theory, algorithms and
applications. Prentice Hall, New Jersey, 5:5, 1993.

[96] Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

95

[97] D. McAllester P. F. Felzenszwalb, R. B. Grishick and D. Ramanan. Object
detection with discriminatively trained part based models. In PAMI, volume
32nd, pages 1627 – 1645. IEEE, 2009.

[98] Sobhan Naderi Parizi, Andrea Vedaldi, Andrew Zisserman, and Pedro
Felzenszwalb. Automatic discovery and optimization of parts for image
classification. arXiv preprint arXiv:1412.6598, 2014.

[99] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv preprint arXiv:1606.02147, 2016.

[100] Viorica Pătrăucean, Pierre Gurdjos, and Rafael Grompone Von Gioi. A
parameterless line segment and elliptical arc detector with enhanced ellipse
fitting. In Computer Vision–ECCV 2012, pages 572–585. Springer, 2012.

[101] Réjean Plamondon and Moussa Djioua. A multi-level representation paradigm
for handwriting stroke generation. Human movement science,
25(4-5):586–607, 2006.

[102] Réjean Plamondon, Chunhua Feng, and Anna Woch. A kinematic theory of
rapid human movement. part iv: a formal mathematical proof and new
insights. Biological Cybernetics, 89(2):126–138, 2003.

[103] Réjean Plamondon, Christian O’reilly, Javier Galbally, Abdullah Almaksour,
and Éric Anquetil. Recent developments in the study of rapid human
movements with the kinematic theory: Applications to handwriting and
signature synthesis. Pattern Recognition Letters, 35:225–235, 2014.

[104] T. Plotz and G. A. Fink. Markov models for offline handwriting recognition: A
survey. Int. J. Docu. Analy. Reco., 12:269–298, November 2009.

[105] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational vision and
regularization theory. In Readings in Computer Vision, pages 638–643.
Elsevier, 1987.

[106] Ioannis Pratikakis, Basilis Gatos, and Konstantinos Ntirogiannis. Icdar 2013
document image binarization contest (dibco 2013). In ICDAR, 2013 12th
International Conference on, pages 1471–1476. IEEE, 2013.

[107] Ioannis Pratikakis, Konstantinos Zagoris, George Barlas, and Basilis Gatos.
Icfhr2016 handwritten document image binarization contest (h-dibco 2016). In
ICFHR, 2016 15th International Conference on, pages 619–623. IEEE, 2016.

[108] Lawrence R Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[109] Gernot Riegler, David Ferstl, Matthias Rüther, and Horst Bischof. A deep
primal-dual network for guided depth super-resolution. arXiv preprint
arXiv:1607.08569, 2016.

[110] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: nonlinear phenomena,
60(1-4):259–268, 1992.

[111] D. Ollason V. Valtchev S. Young, J. Odell and P. Woodland. The HTK Book:
Hidden Markov Models Toolkit V2.1. Wiley-Interscience. Wiley, 1997.

[112] Jaakko Sauvola and Matti Pietikäinen. Adaptive document image binarization.
Pattern recognition, 33(2):225–236, 2000.

96

[113] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[114] Evan Shelhamer. Caffe FCNN model. ����������	
����
�������������������	����
���	���
�	
��	
�������� , 2017.
[Online; accessed 10-Jan-2017].

[115] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision. In
CVPR, pages 2818–2826, 2016.

[116] M. Pietikäinen T. Ojala and D. Harwood. Performance evaluation of texture
measures with classification based on kullback discrimination of distributions.
Proc. ICPR, 1994.

[117] Salvatore Tabbone and Laurent Wendling. Multi-scale binarization of images.
Pattern Recognition Letters, 24(1-3):403–411, 2003.

[118] Hugues Talbot and Ben Appleton. Efficient complete and incomplete path
openings and closings. Image and Vision Computing, 25(4):416–425, 2007.

[119] Chris Tensmeyer and Tony Martinez. Document image binarization with fully
convolutional neural networks. In ICDAR, 2017 14th IAPR International
Conference on, volume 1, pages 99–104. IEEE, 2017.

[120] Gabriel Terejanu. On the handwritten captcha. Available:(Accessed 30.03. 14).
[121] Demetri Terzopoulos. Regularization of inverse visual problems involving

discontinuities. IEEE Transactions on pattern analysis and Machine
Intelligence, (4):413–424, 1986.

[122] Jue Wang, Chenyu Wu, Ying-Qing Xu, and Heung-Yeung Shum. Combining
shape and physical modelsfor online cursive handwriting synthesis.
International Journal of Document Analysis and Recognition (IJDAR),
7(4):219–227, 2005.

[123] George Washington. George Washington letters from the library of congress.
Library of congress, 1799.

[124] Tomas Wilkinson, Jonas Lindstrom, and Anders Brun. Neural Ctrl-F:
segmentation-free query-by-string word spotting in handwritten manuscript
collections. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4433–4442, 2017.

[125] Tomas Wilkinson, Jonas Lindström, and Anders Brun. Neural word search in
historical manuscript collections. arXiv preprint arXiv:1812.02771, 2018.

[126] Yue Wu, Premkumar Natarajan, Stephen Rawls, and Wael AbdAlmageed.
Learning document image binarization from data. In 2016 IEEE International
Conference on Image Processing (ICIP), pages 3763–3767. IEEE, 2016.

[127] Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86th,
pages 2278–2324. IEEE, 1998.

[128] William P Ziemer. Weakly differentiable functions: Sobolev spaces and
functions of bounded variation, volume 120. Springer Science & Business
Media, 2012.

97

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1783

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-379636

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2019

	Abstract
	List of papers
	Contents
	1. Introduction
	1.1 General document image research
	1.1.1 Working with degraded documents
	1.1.2 Lack of research validation

	1.2 Choice of methods
	1.3 Overview of the thesis
	1.3.1 Scientific contributions of the thesis
	1.3.2 Notation used in the thesis

	2. Data sets
	2.1 DIBCO dataset
	2.2 Synthetic dataset
	2.3 UJIPenchar2 dataset
	2.4 NIST-19 dataset
	2.5 IAM online dataset
	2.6 IAM offline dataset
	2.7 George Washington Letters

	3. Overview on learning approaches
	3.1 Introduction to deep learning
	3.1.1 Basics of convolution layers
	3.1.2 Batch Normalization and drop out
	3.1.3 Loss function
	3.1.4 Back propagation
	3.1.5 Stochastic gradient descent

	3.2 Hidden Markov Models
	3.2.1 Basic of Markov system
	3.2.2 Hidden Markov Model
	3.2.3 State estimation
	3.2.4 Most probable path
	3.2.5 Learning a Hidden Markov model

	4. Segmentation
	4.1 Segmentation using Graph Cut
	4.1.1 Introduction to graph cuts
	4.1.2 Maximal flow - Minimal cut duality on graphs
	4.1.3 Uniqueness of minimum cut
	4.1.4 Density based clustering
	4.1.5 Mean shift clustering
	4.1.6 Overview of Paper I

	4.2 Graph cut in combination with Neural architecture
	4.2.1 OverFeat
	4.2.2 Fully Convolutional Neural Network
	4.2.3 Architecture of Fully convolution neural network
	4.2.4 Improve segmentation performance of network
	4.2.5 Overview of Paper II

	4.3 End-to-end learning with Primal-Dual network
	4.3.1 Introducing Total Variation regularizer
	4.3.2 Primal-dual theory
	4.3.3 Smooth approximation using Bregman functions
	4.3.4 Overview of Paper III

	5. Text generation
	5.1 Feature evaluation for text analysis
	5.1.1 Markov Random Field approach
	5.1.2 Fragmenting into piecewise smooth curves
	5.1.3 Stroke combination with path openings

	5.2 Hidden Markov Model based generation
	5.2.1 Overview of Paper IV
	5.2.2 Feature Extraction
	5.2.3 Naive Strip features
	5.2.4 Marti-Bunke features
	5.2.5 Gabor features
	5.2.6 Discrete Cosine Transform features
	5.2.7 Histogram of Oriented Gradients features
	5.2.8 Pyramid Histogram Of visual Words features
	5.2.9 Local Binary Patterns features
	5.2.10 Experiments
	5.2.11 Data-sets
	5.2.12 Evaluation
	5.2.13 Regression Tests
	5.2.14 Generative Tests
	5.2.15 Conclusions

	5.3 Neural architecture for handwriting generation
	5.3.1 Overview of Paper V
	5.3.2 Data augmentation
	5.3.3 Generation
	5.3.4 Style refinement
	5.3.5 Experiments with word spotting on generated pages
	5.3.6 Conclusion

	6. Conclusions and future work
	6.1 Future work

	References

