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Abstract

Imbalanced training data is a common problem in machine learning applications. This
problem refers to datasets in which the foreground pixels are significantly fewer than
the background pixels. By training a machine learning model with imbalanced data, the
result is typically a model that classifies all pixels as the background class. A result that
indicates no presence of a specific condition when it is actually present is particularly
undesired in medical imaging applications. This project proposes a sequential system of
two fully convolutional neural networks to tackle the problem. Semantic segmentation of
lung nodules in thoracic computed tomography images has been performed to evaluate the
performance of the system. The imbalanced data problem is present in the training dataset
used in this project, where the average percentage of pixels belonging to the foreground
class is 0.0038 %. The sequential system achieved a sensitivity of 83.1 % representing an
increase of 34 % compared to the single system. The system only missed 16.83% of the
nodules but had a Dice score of 21.6 % due to the detection of multiple false positives. This
method shows considerable potential to be a solution to the imbalanced data problem with
continued development.
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1 Introduction

This chapter introduces the major problems covered by this thesis work.

1.1 Background

Machine learning refers to an application of artificial intelligence that allows systems to
automatically learn from data and predict outputs without being explicitly programmed [1].
Furthermore, these systems acquire the ability to progressively improve their performance
from experience. The implementation of machine learning algorithms is popular in the
computer vision field. The aim of this field is to enable a computer to understand and
interpret digital images and videos.

In recent years, a new machine learning approach, deep neural networks, has revolutionized
the research in the computer vision field. The breakthrough of this new approach is due to
the increase of available training data and the development of more powerful hardware [2].
Artificial deep neural networks have made a step forward by adopting the way the human
brain works. For a human brain, understanding visual scenes and recognizing objects is an
easy task. For a computer, this task is more complicated. The resemblance between the brain
and neural networks allows the computer to learn how to analyze the images similarly to the
brain.

One application within the computer vision field in which the implementation of deep
networks has achieved huge success is semantic segmentation. Semantic segmentation
performs partition of objects in images by classifying each pixel of an image to a class. For
example, it is used in the medical field to analyze images in order to identify and segment
abnormalities, such as tumours.

Although deep learning networks have shown outstanding performance, they have a
significant drawback: the requirement of a considerable amount of data. Moreover, this data
should be balanced. Imbalanced data refers to the problem in which the classes that a pixel
can be classified into are not represented equally. This is a problem in many medical imaging
applications where non-healthy pixels are commonly considerably fewer than healthy pixels.
The problem arises when training a network with imbalanced data. It results in a network
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1.2. Purpose

which learns to classify all pixels as the major class, healthy. The network will make correct
predictions for all healthy pixels, which constitute the majority of the medical image. This
means that the network will get high accuracy and assume that it performs adequately, when
it in fact does not find any of the patholgical pixels. This is considered a weakness in the deep
learning field, specifically in medical applications where it is particularly undesired to report
a result that indicates no presence of a medical condition, when it truly is present.

The problem behind imbalanced training data arises due to the inverse proportionality
characteristic between sensitivity and specificity. A sensitive network is biased to identify
the positives cases, i.e., non-healthy pixels. A specific network identifies negative cases, i.e.,
healthy pixels. The perfect system would have both high sensitivity and specificity. However,
it is difficult to acquire both high sensitivity and specificity when using a single network due
to the inverse proportionality: when one increases, the other decreases.

This thesis will investigate the possibility to handle imbalanced data by implementing a
sequential segmentation system of two networks. The first network will be sensitive. The
second network will be specific, to remove the healthy pixels predicted as non-healthy
from the segmentation performed by the first network. This approach will neglect the
proportionality limitation and allow both high sensitivity and specificity.

1.2 Purpose

The main goal of this thesis is to investigate if a sequential segmentation system can overcome
the imbalanced training data problem, considering lung nodule segmentation in thoracic
computed tomography images. Is it possible to achieve better performance in terms of
sensitivity, specificity and Dice, using this method instead of a one-step approach, i.e., a single
network?

1.3 Problem Statements

Following aims were stated for the master thesis:

• Can a sequential system of two fully convolutional neural networks get better
performance compared to a single fully convolutional neural network in terms of
sensitivity, specificity and Dice when segmenting imbalanced data?

• How does the variability in the data affect the performance of both the sequential and
the single system?

• Can the sequential system get results comparable to the radiologists that reviewed the
computed tomography images that were used in this thesis?

• On the same dataset, how does the training and inference time differ between the two
systems?

1.4 Limitations

The thesis work was conducted over 20 weeks, and therefore required limitations to confine
the project to a feasible scope.

• This thesis only considered one deep neural architecture.

• Only one dataset was used which was a collection of thoracic computed tomography
images. The number of images used to train and test the two systems was limited due
to availability and computing resources.
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2 Theory

This chapter contains relevant theory for the thesis. First of all the basics of machine
learning and neural networks are explained including the fundamental components of
a generic network and its optimization algorithm. Next, diving deeper in the machine
learning field, deep learning and convolutional neural networks are described along with
their most important features. This part will give the knowledge necessary to understand
the implemented system. The evaluation method used to evaluate the performance of the
systems is introduced. Lastly, the basics of computed tomography imaging are explained to
get an understanding of the type of data this thesis uses to explore the problem statements.

2.1 Machine Learning

Machine learning is a method that automatically detects patterns in data, and then, by using
the uncovered patterns, predicts future data or performs decision-making tasks. Predicting
the future given some past data always involves some uncertainty and, therefore, machine
learning can be seen as a form of applied statistics with a heightened emphasis on the use
of computers algorithms to statistically estimate complex functions [2]. Financial services,
health care, retail, social media and search engines are examples of approaches that usually
have some functionality based on machine learning.

The machine learning type with the widest use is is supervised learning [1]. The goal is to
learn a mapping from inputs x to outputs y based on a labelled set of input-output pairs.
Each pair consists of an input object x and the desired output value called label, d. The label
tells which class x belongs to. The form of the input and output can in principle be anything,
an image, a graph, a sentence, etc. A common example is the development of a system that
tells if an image contains specific objects. The first step is to collect the system a dataset with
numerous images of the objects together with the desired output classes. The supervised
learning algorithm analyzes this data and learns which features characterize each class and
produces an inferred function that can be used for mapping new unseen instances.

A model, a dataset, an optimization algorithm and a cost function are the main components to
build a machine learning algorithm [2]. This section provides the basics of these components
and presents a fundamental model in machine learning called artificial neural networks.
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2.1. Machine Learning

2.1.1 Artificial Neural Networks

Artificial neural networks are brain-inspired systems. According to Haykin (2009) [3], neural
networks resemble the brain in two aspects: firstly, neural networks acquire knowledge from
its environment through a learning process and secondly, the acquired knowledge is stored
in so-called synaptic weights which are interneuron connection strengths. Figure 2.1 shows a
schematic representation of a neural network neuron, node, and its counterpart in a biological
neuron. Each neuron receives signals from other neurons, x, and if the signal is high enough
the neuron is triggered and the signal is transferred to the dendrites by synapses, w. Further,
the cell body receives the input signal, wx, from the dendrites and produces an output y,
which is calculated by using an activation function. After that, the output is sent forward to
next neuron through the axon.

Figure 2.1: Model of a neural network node and its counterpart in a biological neuron where
x is the signal received from other neurons, w corresponds to the synaptic weights, wx the
input signal to the cell body that applies a function f to produce an output y

Figure 2.2: Schematic representation of the architecture of a neural network with four layers

A basic architecture of a neural network is represented in Figure 2.2. This neural network
consists of four layers that are connected with weights, w. The layers between the input
and output layer are the hidden layers. The input layer contains three nodes that are fully
connected to the four nodes of the first hidden layer, the nodes of the first hidden layer are
fully connected to the nodes of the second hidden layer which in turn are fully connected
to the output layer. Fully connection implies every node in a layer is connected to each and
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2.1. Machine Learning

every node in the next layer. The output of a node is multiplied with the weight, w, of the
next node. Figure 2.1 illustrates how a single node works. Each node has its own weights and
bias associated. Due to the full connection, each node receives several inputs at the time and
are added to each other according to

z = b +
n

ÿ

i=1

wi ˆ xi (2.1)

As seen in Figure 2.2 and Equation 2.1, each node in a neural network has an additional input
called bias, b. The bias is usually represented as an input x = 1 and a weight w0 (w0 = b), and
allows the activation function to be shifted to left or right in order to handle tasks whose
optimal model does not pass through the origin. An activation function is then applied to
the sum, z, to ensure stability. In other words, the activation function restricts the sum by
keeping it between predetermined limits as, for example, between 0 and 1. The activation
function used in this thesis is called Parametric Rectified Linear Unit (PReLU) and is defined
by Equation 2.2. This activation function introduces a parameter, α, that allows a non-zero
gradient when the node is not active and it is learned along with other network parameters.

y(z) =

#

z, if z ą 0;
αˆ z, otherwise.

(2.2)

In order to get a basic understanding of what happens in the layers of a neural network
a simple example will be explained next: A network is intended to recognize a specific
object in an image. The first layer may analyse the pixel values of the image. The next layer
could identify edges based on lines of similar pixel values. Next might recognize shapes
and textures and so forth. As deeper layers are reached, the network will have created more
complicated structures and patterns detectors in order to recognize more complex features.
These architectures that consist of multiple layers with many nodes per layer and are able to
represent increasingly complex features are known as deep networks and belong to the class
deep learning which will be described in more detailed in section 2.2. [2]

Loss function

In order to improve the performance and get a robust network, it is necessary to penalize the
network when it outputs wrong results. This is achieved by introducing the loss function (L)
which is the error calculated as the difference between the predicted output and the actual
output. There are different loss functions that give different errors for the same prediction
which causes different considerable effects on the network performance. The aim during
training is to minimize this function since a low loss function value implies good results.

2.1.2 Training an Artificial Neural Network

Before starting the training process some fixed parameters are established as the activation
and loss function, the number and type of layers, and the initial weights. Generally, the initial
weights of the nodes are initialized with random values calculated according to different
initialisation techniques [4].

The training process is actually the learning process which takes the training inputs and
desired outputs and updates the network parameters accordingly in order to calculate an
output as close as possible to the desired output. This is achieved using a method called
backpropagation [5] which consists of two phases: propagation and weight update. The first
step is to propagate the training inputs through the network to generate the outputs. At this
stage, the output of the randomly initialized network is obtained and at the same time the
network has the corresponding desired output in order to calculate the loss function. Now
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2.1. Machine Learning

the machine learning problem becomes an optimization problem with the aim to minimize
the loss function. One of the most fundamentals optimization techniques used is the gradient
descendent which calculates the derivative of the loss function to optimize the weights [2].
Thereafter, the error is backpropagated from the end to the start to update the weights. Since
the weights are updated with small steps, several iterations are necessary for the network
to learn and finally converge. Figure 2.3 shows a schematic representation of the training
process including all the steps mentioned above.

Figure 2.3: Schematic representation of the training process

Optimization algorithm: Stochastic gradient descendent

Gradient descendent is an optimization algorithm that calculates the gradient of the loss
function with respect to all weights. The weights are updated accordingly to the gradient
with the purpose that the network converges on a local minimum. The weight update step is
defined by

wk+1 = wk + ∆wk where ∆wk = ´η
BL
Bwk

(2.3)

where η is the learning rate or step size and BL
Bwk

is the gradient loss for the weight wk. The
learning rate is an hyper-parameter that adjusts how much the weights should be updated
with respect to the loss gradient. The establishment of this parameter can be tricky because a
small value means that the achievement of convergence will be very slow while a too large
value can imply the convergence will never be reached and the system could therefore fail. By
giving another look at Equation 2.3 and focus on the gradient loss instead, it can be seen that a
negative gradient signifies that the local minimum of the loss function has not been achieved
yet and, therefore, by increasing the weight the error will decrease. On the other hand, if
the gradient is positive, it means that the local minimum has been passed and, therefore, an
increase in the weight will entail an increase of the error. If the gradient is zero, the stable
point is reached and no weight update is necessary, see Figure 2.4.
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2.1. Machine Learning

Figure 2.4: A negative gradient requires an increase of the weight to minimize the loss
function. A positive gradient requires a decreasing of the weight

Instead of updating the weights after each training input or after the whole dataset, a
common method is to calculate the gradient after a subset of inputs, a mini-batch. This
method, known as stochastic gradient descent, is much faster and efficient but the result
is an approximation of the gradient.

The Adaptive Moment Estimation (ADAM) optimizer [6], is a stochastic gradient descent
optimization algorithm that stands out in performance considering memory requirements
and computational efficiency. This method calculates individual adaptive learning rates for
each parameter in its algorithm. ADAM is suited for applications that are large in terms
of parameters and data. It is commonly used in deep learning applications and is used
throughout this thesis.

Regularization techniques

The main challenge in machine learning is to develop a network that has the ability to
generalize in order to perform well on unseen data and avoid overfitting. Overfitting is a
modelling error that occurs when the system performs well on training data but really poor
on unseen data. Deep neural networks are more prone to overfitting due to the complexity of
the networks [7]. The non-linear hidden layers that constitute a deep neural network can
learn highly difficult relationships between inputs and outputs. However, some of these
relationships could be the result of sampling noise that exists in the training dataset but
not in the test dataset which leads to a bad generalization of the network. Regularisation
techniques are then used to reduce this problem by making slight modifications to the
learning algorithm. Some of these techniques include weight penalties, dropout [8], soft
weight sharing [9] and early stop of the training as soon as a decrease in performance in
validation data is detected. In this thesis, only weight penalties are applied to generalize the
systems.

Weight decay

The generalization ability of a neural network depends on an equilibrium between the
complexity of the network and the information in the training data [10]. In order to decrease
the networks complexity, a weight decay [11] can be introduced to limit the growth of the
weights and force superfluous weights to zero. This can be achieved by adding a term, λ,
to the loss function L(w) that penalizes large weights and limits the freedom of the model.
Equation 2.4 shows the new loss function with weight decay and Equation 2.5 shows the
weight update step using the new loss function.

rL(w) = L(w) +
λ

2
w2 (2.4)
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2.2. Deep Learning

wk+1 = wk + ∆wk where ∆wk = ´η
BL
Bwk

´ ηλwk (2.5)

Batch normalisation

Batch normalisation [12] is a technique that takes a batch and normalizes the data in order
to improve the stability and performance of the neural network. It can also be seen as a
regularizer. The training of a deep neural network is complicated since each layer’s input
depend on the parameters in all previous layers. Therefore, small changes in the network
parameters are amplified as deeper layers are reached. The network needs to be constantly
adapting to new distributions which slow down the training. This phenomenon is known as
covariance shift. Covariance shift requires careful tuning regarding learning rate and weight
initialisation. Batch normalisation reduces the covariance shift by normalizing by zero mean
and unit variance the inputs to each layer. This makes the network less sensitive to the
learning rate parameter and weight initialisation. Higher learning rates can therefore be used
which reduces training times. For this reason, batch normalisation is primarily seen as an
optimization technique and is also implemented in this thesis.

2.2 Deep Learning

Conventional machine learning methods were not able to process data in their raw form and,
therefore, they required human engineering and expertise to convert the raw data into valid
features from which the machine could detect patterns [13]. These methods performed well
on tasks that could be solved by choosing the right set of features to extract for that specific
task and providing a simple learning algorithm. However, for many tasks, it is difficult to
know which features are necessary to solve the task.

Deep learning methods, instead, allow the machine to automatically learn these features
directly from raw data eliminating the engineering by hand. This approach is known as
representation learning [2]. The machine not only learns to map the features to outputs but
also what features should be extracted. For this reason, deep learning models have achieved
huge success in tasks like visual object recognition, object detection, speech recognition and
many others [13].

Deep learning architectures are composed of multiple layers that learn multiple levels of
features. The machine learns complex features out of simpler features which implies the level
of feature abstractness increases with deeper layers. Connecting more layers and making the
architecture deeper leads to a machine that can represent more complicated and abstracted
features. Nevertheless, it will require more time to learn [2].

2.2.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) [14] is a simple neural network that uses
convolution as mathematical operation instead of general matrix multiplication [2].
Convolutional networks are specialized to process data that has a grid-like topology as
images. These networks have achieved tremendous success in image analysis applications.

A schematic representation of the architecture of a convolutional neural network for a
binary classification problem is shown in Figure 2.5. It consists of three different layers:
convolutional, pooling and fully connected layer. There has to be at least one convolutional
layer in the network in order for it to be called a convolutional network [2].
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2.2. Deep Learning

Figure 2.5: Standard architecture of a convolutional neural network

Convolutional layer

In a convolutional layer the weights are arranged as scalars in a kernel. The kernel is then
convolved with the input image or a set of feature maps to produce a feature map. Each
convolution results in a feature map and each feature map contains features the network has
considered important during the learning process.

The success of convolution relies on three peculiarities: sparse interactions, weight sharing
and spatial invariance. Sparse interactions mean that the network is not fully connected as in
a conventional neural network, i.e., all nodes in a layer are not connected to all nodes in the
next layer. Limiting the number of connections of each node implies that fewer parameters
need to be stored. This is accomplished by having a kernel smaller than the input. A kernel
smaller than the input implies that each weight of the kernel is used at every position of the
input as the kernels move through the whole input. Therefore, the weights are shared on
different spatial positions meaning that the number of weights needed is reduced.

These two peculiarities reduce memory requirements, improves statistical efficiency and
make the convolutional layer harder to overtrain since fewer parameters need to be
trained [2]. Furthermore, they introduce a translation invariance property to the layer. This is
useful in the case that if a specific object has to be detected, it should not matter if the object
is placed in a corner or in the centre.

In a convolutional layer, several convolutional kernels are used. For example, in Figure 2.5,
the network takes an image with one channel and outputs four features maps. For this, it is
necessary to have four different kernels, one from each input channel to each output channel.
Usually, the kernels keep the size of the input image but they can also decrease it. The size is
kept by adding zeros around the input before the convolution and after in order to only keep
the central part of the output but with the same size as the input. The convolutional layer
ends with an activation function.

Pooling layer

Pooling layers are used to downsample the outputs of the convolutions. This is accomplished
by applying a pooling function that substitutes the output with a summary statistic of the
nearby outputs. Nowadays the standard pooling function is max pooling [15] which replaces
the convolutions output with the highest value within the output. For example, applying a
max pooling layer with kernel size 2ˆ2 and a stride of 2 to a convolution output of size 4ˆ4
results in an output of size 2ˆ2, i.e., a stride of 2 divides the width and height dimensions of
the output by 2.
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2.2. Deep Learning

Fully Connected layer

Fully connected layers are generally placed at the end of a convolutional neural network.
These layers are exactly the same layers as in a conventional neural network, i.e., each node
in the previous layer is connected to each node in the fully connected layer.

The very last layer of the network, known as classification layer, computes the class scores.
A softmax function is commonly used as the activation function of the nodes in this layer.
The softmax function maps the non-normalized output of the last fully connected layer to a
probability distribution over predicted output labels. Suppose that z is a vector that contains
the sum of each node of the classification layer, as shown in Equation 2.1. Softmax performs
the computation seen in Equation 2.6 to predict the output probabilities ŷi where |V| is the
number of classes. [2]

ŷi(z) =
ezi

ř|V|

i1=1 ezi1
(2.6)

After applying softmax each ŷi is in the interval [0,1], and
ř

i ŷi = 1.

Receptive field The term receptive field [16] is the amount of nodes from the previous layer
that affect a specific node in the current layer. As mentioned in previous sections, every single
node is the result of a convolution performed in the previous layer. As this process is repeated
over many layers, the amount of nodes that affect the next node is increased, see Figure 2.6.
The entire networks receptive field corresponds to the receptive field of the classification layer
node since it makes the prediction.

Figure 2.6: Schematic representation of the receptive field of a specific node. Left: The
highlighted nodes are the units that affect the node l2,3. Right: The deeper the layer the bigger
is its respective receptive field. The highlighted nodes represent the nodes that affect node l3,3

2.2.2 3D Semantic Segmentation

Convolutional neural networks are typically used on classification tasks, where only one class
is predicted for the whole input image. However, in many visual applications, the output
should also include localization, i.e., a class label is predicted to each pixel of the image.
Classification needs to understand the context, what is in the input image. Segmentation not
only needs to understand what is in the input image but also where.

In many medical imaging applications, data consists of 3D volumes commonly represented
as stacks of 2D images. Segmentation can be performed directly on the 2D slices and merge
the results afterwards. However, this approach ignores the spatial inter-slice correlation [17].
Running segmentation on 3D volumes solves that problem and predicts a class to each voxel,
i.e., a pixel in 3D.
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One constraint when using 3D images in combination with deep networks is that the entire
volume cannot be used as input to the network due to Graphics Processing Unit (GPU)
memory limitations. For this reason, the entire volume is split into sub-volumes called
image-segments. Bigger segments increase performance since more accurate representation
of the entire data is kept.

2.3 Evaluation

When the training has converged and the model is finished, the evaluation of the system
is performed. There are many different quantitative measures to evaluate performance of
voxel-label semantic segmentation algorithms [18]. Most of these quantitative measures can
be derived from the four basic cardinalities, namely true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), of the confusion matrix, see Figure 2.7.

Figure 2.7: Confusion matrix and the four cardinalities

In order to answer the problem statements of this thesis, four quantitative measures will be
calculated: sensitivity, specificity, Dice and F2-score.

Sensitivity, also called recall, measures how well the model identifies positive cases. It is the
number of true positives (TP), i.e., the number of nodule voxels correctly classified as nodule,
upon the total number of nodule voxels observed, i.e., the addition of true positives (TP) and
false negatives (FN), i.e,

Sensitivity =
TP

TP + FN
(2.7)

Specificity measures how well the model identifies negative cases. It is the number of true
negatives (TN), i.e., the number of non-nodule voxels correctly classified as non-nodule, upon
the total number of non-nodule voxels observed, i.e., the addition of false positives(FP) and
true negatives (TN), i.e,

Speci f icity =
TN

FP + TN
(2.8)

Generally, accuracy is used to measure how well the model performs. It is a measurement of
correctness calculated according to Equation 2.9. However, this measure can be misleading
since it does not take into account the mislabelled voxels. This a significant problem in
imbalanced data since the model will get high accuracy even though it classifies wrong for
the minority class.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.9)
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There are other accuracy-measures that are affected by mislabeling voxels, such as Dice score.
The Dice score is calculated according to Equation 2.10 which considers both sensitivity
and precision. Precision measures how well the model identifies positive cases among all
retrieved cases. It is the number of true positives (TP) upon the addition of true positives
(TP) and false positives (FP), see Equation 2.11.

Dice = 2ˆ
precisionˆ sensitivity
precision + sensitivity

=
2ˆ TP

2ˆ TP + FP + FN
(2.10)

Precision =
TP

TP + FP
(2.11)

F2-score is a similar accuracy-measure as Dice with the difference that the false negatives are
more weighted than false positives and, therefore, is more relevant in medical applications.
It is calculated according to

F2 =
5ˆ TP

5ˆ TP + 4ˆ FN + FP
(2.12)

2.4 Computed Tomography

Computed Tomography (CT) is an image generation technique based on radiation,
particularly x-rays, used to create detailed images of internal parts of the body. Computed
tomography consists of a motorized x-ray tube that shoots beams of x-rays as it rotates
around the patient. An arc-shaped detector is located directly opposite the source and rotates
at the same time. The x-rays which pass through the patient, are detected by the detector and
transmitted to a computer for image reconstruction.

2.4.1 Basic Principle

The principle of computed tomography is to measure the spatial distribution of a physical
quantity called attenuation.

Attenuation is defined as the natural logarithm of the ratio of initial intensity, I0, to
attenuated intensity, I, see Equation 2.13. In the simplest case, i.e., a homogeneous object
with monochromatic radiation, the attenuated intensity is given by Equation 2.14 where µ
is the linear attenuation coefficient and d the absorber thickness. It can be remarked that the
intensity decreases exponentially with absorber thickness. By combining Equation 2.13 and
2.14, the total attenuation is given as the product between the linear attenuation coefficient
and the absorber thickness.

Attenuation = ln
I0

I
(2.13)

I = I0 ˆ e´µˆd (2.14)

However, the human body is not homogeneous and the total attenuation depends on the local
value of the linear attenuation coefficient for each ray path interval, i.e., each structure of the
body. This can be expressed as the integral over the local linear attenuation coefficients along
the ray path, see Equation 2.15, and the total attenuation can be calculated as Equation 2.16

I = I0 ˆ e´
şd

0 µˆds (2.15)

Attenuation = ln
I0

I
=

ÿ

µi ˆ di (2.16)

Lastly, computed tomography scanner uses polychromatic x-rays, rays with different
energies, and this factor has to be taken into account since linear attenuation coefficient
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may depend strongly on energy, E. This effect is added in Equation 2.17 which shows the
mathematical expression used in CT measurements. [19]

I =
ż Emax

0
I0(E)ˆ e´

şd
0 µ(E)ˆds ˆ dE (2.17)

2.4.2 Computed Tomography Images

As mentioned before, the x-ray tube and the detector rotates around the patient. In one
rotation, for each angular position of the source, an attenuation profile, also known as
a projection, is obtained. This profile is a set of projection values. Each time the source
completes one full rotation a 2D image slice of the patient is constructed by using a
sophisticated algebraic reconstruction technique which analyzes all projections and assigns
a numerical value to each pixel of the slice. This value is the average of all the attenuation
values contained within the corresponding pixel [19]. The patient is then moved, usually 1-10
mm, and the process is repeated to produce another image slice. The image slices can either
be displayed individually or stacked together as a 3D image of the patient. Figure 2.8b shows
an individual image slice. The advantage of acquiring 3D images is the ability to reconstruct
images in three different plans: coronal, axial and sagittal, see Figure 2.8a. It is helpful to view
the anatomy in all three planes when evaluating the extent of a disease in a patient.

However, the attenuation coefficient is not very descriptive and due to energy dependency
it is difficult to compare images obtained with scanners of different voltages. For this reason,
CT values are specified in Hounsfield units.

(a) Anatomy planes: (A) Axial,
(B) coronal, (C) sagittal. Figure
from [20]. (b) CT axial slice. (c) CT with a marked nodule.

Figure 2.8: Example of anatomy planes, an axial CT image and an axial CT image with the
presence of a lung nodule

Hounsfield units

The Hounsfield Unit (HU) is a quantitative value for describing radiodensity in CT images.
It is a linear transformation of the linear attenuation coefficient into a scale of arbitrary units
in which water has value 0 HU and air -1000 HU. It is calculated by

HU =
µ´ µwater

µwater ´ µair
ˆ 1000 (2.18)

The Hounsfield scale has usually a range from -1024 HU to 3071 HU for medical scanners [19].
Most of the body areas present positive HU units, exceptions are lung tissue and fat which
present negative values due to their low attenuation and density (µwater ą µlung).

The range of Hounsfield scale contains 4096 gray levels but humans can only distinguish
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a maximum of 80 gray levels [19]. In order to allow the observer to interpret the images,
a limited number of HU are displayed. This is achieved by defining a window, an interval
of interest, to represent the complete gray scale. The centre of the window corresponds
approximately to the mean of the HU unit of the structure of interest and the window width
defines the image contrast. For example, a narrow window is chosen when differences in
attenuation of the structures to be differentiated are really small as in the brain while a wide
window is used for large differences as the lungs and skeleton. This results in a change of the
appearance of the image to highlight particular structures.

2.4.3 Lung Nodules

Lung nodules, also known as coin lesions, are lung tissue abnormalities. Their form is overall
round or oval-shaped with a diameter that can vary from 3 to 30 mm, see Figure 2.8c.
Although lung cancer always manifests lung nodules, not all lung nodules are cancerous.
Actually, most lung nodules are benign and are the results of scars or inflammations from any
type of lung infection. Despite the fact that most nodules are benign, there is a big challenge
in developing systems that find and segment nodules since it is a relevant way to diagnose
lung cancer. [21]
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3 Related Work

Several articles and projects within the field have been used as inspiration to the development
of this thesis work. This chapter briefly presents the previous work done in the field of
semantic segmentation along to the most known networks. It also describes the original
architecture of the network that this thesis is based on and its novel contributions and
history. Furthermore, it gives an overview of the different works done to attempt to solve
the imbalanced training data problem.

3.1 Semantic Segmentation

Deep learning has rapidly become a methodology of choice for semantic segmentation. The
breakthrough came when Long et al. first introduced fully convolutional neural networks
in [22]. A Fully Convolutional Neural Network (FCN) is a conventional convolutional neural
network where the last fully connected layers are replaced by convolutional layers in order
to output spatial maps instead of class probabilities, see Figure 3.1. In [22], powerful existing
convolutional network models (AlexNet [23], VGG [24], GoogLeNet [25], ResNet [26]) were
transformed into fully convolutional networks in order to make dense predictions, i.e.,
predict a label for each voxel. The key insight is to keep the ability of convolutional neural
networks to learn hierarchies of features and refine the spatial information. In other words,
fully convolutional networks combine what and where.

The removal of fully connected layers allows the network to handle inputs of arbitrary
size. Moreover, the number of weight parameters is reduced and, consequently, the training
time and computational cost. It can be mentioned that several studies as [27] have shown
that the number of parameters in a network can be decreased and still maintain the same
performance.

15



3.1. Semantic Segmentation

Figure 3.1: Fully Convolutional Network. The top image shows a classifier, CNN, that is next
transformed to an FCN by replacing fully connected layers with convolution layers as seen in
the middle image. The middle image shows a network that produces spatial heatmaps and by
including a deconvolution layer for upsampling, dense predictions can be performed. Figure
inspired by Long et al. [22]

Nowadays, the most successful deep learning techniques for semantic segmentation stem
from Long et al. research. Other variants to the FCN presented by Long et al. but with
similar architecture are [28], [29], [30], [31]. They all present an encoder which produces
feature maps or low-resolution image representations and a decoder which maps those
low-resolution images to pixel-wise predictions. In general terms, the encoder stage is a
suitable CNN whose fully connected layers have been removed. The encoder in [28], [22], [31]
has the same architecture as the convolution part of the VGG net [24]. The VGG net is a very
deep network of 16-19 weight layers with very small (3ˆ3) convolution filters. Usually, the
differences between the architectures lie on how the upsampling and pixel-wise classification
is performed, i.e., on the decoder. For example, SegNet [28] uses unpooling to upsample
the feature maps in the decoder. This network presents a symmetrical architecture and each
decoder has its corresponding encoder. Of these, during max-pooling in the encoder, the
indices of the pixels locations are stored and passed to the decoder. The decoder, by using
the stored max-pooling indices, upsamples the feature maps. This means that SegNet does
not learn the upsampling whereas FCN based architectures use learnable deconvolutions
initialized with bilinear interpolation filters to upsample the input feature maps.

3.1.1 Semantic Segmentation in Medical Applications

Segmentation tasks in medical imaging applications are extremely relevant. Therefore, after
the success of methods based on FCN and CNN for segmentation tasks of natural images,
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likewise methods were developed for medical imaging analysis [32], [33], [34], [35], [36], [37].

In both [32] and [36] an architecture made of two convolutional pathways is used to
perform brain lesion segmentation. The motivation is to get both local and larger contextual
information when segmenting a voxel. The way they achieved this purpose differs between
the two pieces of research. In [32], one pathway has smaller (7ˆ7) receptive field compared to
the other (13ˆ13). In [36], the inputs of the two pathways are centred at the same image but
one of them is extracted from a downsampled, i.e., lower resolution, version of the image.

The two-step approach that this thesis implements is inspired by several articles as [35], and
particularly from [37] and [38]. The work in [37] presents a two-step approach to segment
lesions in the liver from CT images. A first network is trained to find the region of interest of
the liver which is further sent to the second network to segment lesions within the liver. This
is motivated by the fact that smaller input regions entail to more accurate segmentation. In
addition, a preprocessing and a postprocessing step are also implemented. As a preprocessing
step in order to exclude irrelevant organs and objects, the Hounsfield unit values of the
CT that belonged to the liver were windowed and, thereafter, contrasted by histogram
equalization. This facilitates the first network to segment the liver. The postprocessing step
is performed by implementing a 3D dense conditional random fields CRFs [39] to achieve
higher segmentation accuracy. Similarly, [38] presents a sequence of two networks where the
first network outputs a predicted segmentation mask. The mask is then used to shrink the
input of the second network and get rid of the unnecessary background. The main differences
compared to this thesis are the preprocessing step which only normalizes the data, there is no
postprocessing step and the networks present the same architecture. The reason is to be able
to answer the problem statement since the implementation of other processing steps or use
of different architectures will not allow knowing the reason the sequential system worked
better or worse.

3.1.2 U-Net

This thesis is based on an architecture called 3D U-Net [34]. It is a fully convolutional neural
network developed to perform dense volumetric segmentations. The network is based on the
previous U-Net architecture [33] from Ronneberger et al.

The 3D U-Net replaces all 2D operations from the previous U-Net with their 3D counterparts,
reduces the number of downsampling blocks from four to three, reducing therefore the
number of convolution layers from twenty-three to eighteen and applies batch normalisation
before each activation. Its architecture is shown in Figure 3.2.
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Figure 3.2: 3D U-Net architecture. The feature maps are represented as blue boxes. Above the
boxes is denoted the number of feature maps. Figure inspired by Çiçek et al. [34]

The left side represents the contracting path or encoder and the right side the expansive
path or decoder. The encoder consists of the application of two 3ˆ 3ˆ 3 convolutions, each
followed by a rectified linear unit and a 2 ˆ 2 ˆ 2 max pooling operation with a stride of
two in each dimension for downsampling. The number of feature maps is doubled after each
downsampling step. The decoder consists of an upsampling of the feature map followed by
an upconvolution of 2ˆ 2ˆ 2 by strides of two in each dimension which halves the number
of feature maps, a concatenation with the equivalently feature map from the encoder (known
as skip connections), and two 3ˆ 3ˆ 3 convolutions followed by ReLU. In the end, a 1ˆ 1ˆ 1
convolution layer is applied to map the 64-component feature vector to the number of desired
classes. Due to the downsampling blocks of the network, there is a constraint regarding the
input size defined by

Input size = 92 + Mˆ 8, where M ě 0 (3.1)

Deep networks with convolutions of 3D kernels overwhelm the computational cost due to
the big amount of learnable parameters in the network. Therefore, when dealing with 3D
data all convolutional kernels should be small in order to preserve computational speed
and memory usage. By using the smallest kernel size (3ˆ 3ˆ 3), the U-Net architecture has
1,906,995 parameters in total.

Furthermore, for these types of networks it is extremely important to perform a good
initialisation of the weights. The reason is that, otherwise, parts of the network will never
contribute, while others may give excessive activations. For the U-Net architecture, the initial
weights are initialized from a Gaussian distribution.

The choice of using 3D U-Net is motivated by its outstanding performance on very different
biomedical segmentation applications. The availability of widely developed documentation,
the novel contributions to the field of deep learning and the implementation in several works
proves the significance of this network.

3.2 Imbalanced Training Data

One of the main challenges in using fully convolutional networks is when the training data is
imbalanced, which is frequent in many medical imaging applications. A clear example is the
segmentation of lung nodules where the number of nodule voxels is much lower than healthy
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voxels. When training a network with imbalanced data results in a network extremely biased
towards the non-nodule class. This is particularly undesired in medical applications since
false negatives are more important than false positive.

It is difficult to teach a machine to recognize something when it hardly ever sees it. For
this reason, several methods have been proposed to address this problem and they can be
divided into two main categories: data level and algorithmic level. Methods that combine the
two levels are also available. Data level methods operate on the training data and change
its class distribution by performing oversampling [40] or undersampling [41]. The other
category keeps the training set unchanged but adjusts the training algorithm by using class
experts [42], two-step training [32] or different types of loss functions as weighted [33],
similarity [43], [44], and asymmetric similarity [45], [46].

Oversampling and undersampling are methods that result in having an equal number of
samples of each class. Oversampling replicates randomly samples that belong to the minority
class. This method, however, may lead to overfitting [40]. Undersampling, as opposed to
oversampling, removes random samples from the majority class. This method presents
several drawbacks as the removal of data that may contain important information and the
reduction of data available.

Another method called Class Expert Generative Adversarial Network (CE-GAN) has been
proposed in [42] as the solution for the imbalanced data problem. Class Experts (CE) uses
layers that have been pretrained to recognize the features of a single class. The Generative
Adversarial Network (GAN) is the algorithm used to pretrain the layers. Each layer is trained
with only a single class and the GAN algorithm is beneficial since it is able to determine
whether an input data is from the assigned class or not due to the use of a discriminative
model in the process.

Imbalanced data can also be handled by implementing a new form of training. A two-phase
training is presented in [32]. The first phase consists of training the network with patches that
contain all classes equally. During the second phase, the output layer is re-trained with the
imbalanced data in order to get a more representative distribution of the classes.

During recent years many studies have derived more robust and appropriate loss functions
in order to tackle imbalanced data. The loss functions that have presented a big potential to
address this problem are named below. All the losses are explained for binary classification,
i.e., foreground and background. Let N be the number of image elements, i.e., voxels, rn the
referenced foreground voxels, pn the predicted foreground voxels and for the background
class 1´ rn and 1´ pn respectively.

Weighted cross-entropy (WCE) The weighted cross-entropy was introduced in [33] in order
to reduce weights for the frequently seen background class and increase weights for the
foreground class. It can be expressed as

WCE = ´
1
N

N
ÿ

n=1

wrnlog(pn) + (1´ rn)log(1´ pn), (3.2)

where w =
N´

ř

n pn
ř

n pn
is the weight assigned to the foreground class.

Dice Loss (DL) Milletari et al. proposed in [43] a loss function based on Dice score
coefficient which is a measure of overlap to assess segmentation performance. It can be
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expressed

DL = 1´
řN

n=1 pnrn + ε
řN

n=1 pn + rn + ε
´

řN
n=1(1´ pn)(1´ rn) + ε
řN

n=1 2´ pn ´ rn + ε
= 1´

2ˆ TP
2ˆ TP + FP + FN

(3.3)

The Dice score is the harmonic mean of precision and recall since it weighs false positives and
false negatives equally. For this reason, this loss forms a symmetric similarity loss function.

Generalized Dice Loss (GDL) The Generalized Dice Loss is based on the Generalized Dice
Score (GDS) and it was proposed in [44] as a loss function. It is a weighted loss where the
contribution of each class, label, is corrected by the inverse of its square volume. It can be
expressed as

GDL = 1´ 2
ř2

l=1 wl
ř

n rln pln
ř2

l=1 wl
ř

n rln + pln
, where l denotes the class and wl =

1

(
řN

n=1 rln)2
(3.4)

Tversky loss function (TL) The Tversky loss function is based on the Tversky index. It
is an asymmetric similarity loss function since it weighs false negatives and false positives
unequally by multiplying them with different constants. Different approaches based on
Tversky index have been developed in which the difference relies on how the weights are
distributed.

The Tversky loss function proposed in [46] is expressed in equation 3.5. The best results were
given when α = 0.3 and β = 0.7. It is worthy to mention that in the case of α = β = 0.5 this
loss simplifies to be the Dice loss.

TL = 1´
řN

n=1 pnrn
řN

n=1 pnrn + α
řN

n=1 pn(1´ rn) + β
řN

n=1(1´ pn)(1´ rn)

= 1´
TP

TP + αFP + βFN

(3.5)
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4 Method

This chapter describes the implementation of the two systems explored in this thesis. A
description of the data is given, as well as its origin and the preprocessing steps performed to
make it usable. This is followed by the motivations of the architecture of the two implemented
systems.

4.1 Data

The data used as input to the implemented networks were thoracic computed tomography
images. These images were in DICOM format and belonged to the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI) database, which is
accessible for public download from The Cancer Imaging Archive [47]. This database contains
1018 helical thoracic CT images with lung nodules of different sizes and shapes.

These CT images have been reviewed independently by four thoracic radiologists in a
two-phase reading process. During the first phase, the radiologists were asked to detect
nodules and mark them as (1) nodule equal to or greater than 3 mm, (2) nodule smaller than
3 mm or (3) non-nodule greater than 3 mm. For the first group of nodules, the radiologists
had to draw a complete outline around the nodule. The outline is an outer border, meaning
that pixels belonging to the nodule do not overlap with the outline.

The four radiologists read the same cases and did the annotations independently. The results
of the first phase were compiled and sent back to the readers for the second part of the process.
In the second phase, the radiologists read the cases independently again with the benefit that
they could see the markings from the other three radiologists and their own markings. They
then made a final decision about the marking of each case. The four radiologists did not agree
on the classification and shape of all lung nodules. The annotations of the four radiologists
were saved in XML-files, and they constituted the ground truth images for this project.

The nodules with a size greater than 3 mm have a higher probability of being cancerous
and are therefore of higher relevance clinically. Furthermore, the non-nodules are other
pulmonary lesions that do not possess malignancy [47]. Hence, this thesis only focused on
nodules equal to or greater than 3 mm, and considered the rest as non-malignant nodules.
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There were 2669 lesions marked by at least one radiologist as a nodule equal to or greater
than 3 mm while only 928 (34.8 %) of these nodules were marked by all four radiologists [48].

4.1.1 Preprocessing of Images

Deep learning algorithms require large amounts of data in order to develop a generalized
model. However, the quality of the data also affects the performance of the network. The
LIDC-IDRI database has been created by the collaboration of seven academic centers and
eight medical imaging companies [47]. This means that the images differ in terms of image
size, voxel dimension, data type, modality and manufacture, see table 4.1.

CT images

Width and Height 512 pixels

Number of slices [80-625]

Pixel spacing [0.48828125-0.9765625]z[0.48828125-0.9765625] mm

Slice thickness 1,1.25,2,2.5,5 mm

Data type int16, uint16, uint32

Manufacturer GE Medical Systems, Toshiba, Siemens, Philips

Modality CT, DX, CR

Table 4.1: Characteristics of the computed tomography images of the LIDC-IDRI database.

Here follows an explanation of the preprocessing steps performed in this project in order to
normalize the data. The algorithms used for collecting, preprocessing, visualising the data
and the creation of the ground truth were implemented in python v2.7.

– Step 1: Axial CT modality. The lung nodule outline is only seen in the axial CT modality.

– Step 2: Int16 as data type. All images were converted to the data type int16 since it
was the most common data type within the dataset. Additionally, the Hounsfield scale
comprises negative units, and, therefore, a data type that allows negative values was
required.

– Step 3: Normalization of voxel values. All voxel values were converted to Hounsfield
units, according to Equation 4.1. As mentioned in section 2.4.2, each voxel value
represents the attenuation coefficient (IV) of the corresponding tissue. The rescale
intercept (I) and the rescale slope (S) were extracted from the metadata of the images.

HU = IV ˆ S + I, (4.1)

The scan field of a CT scanner is a cylinder and, therefore, the most suitable geometry to scan
is a cylinder. However, the output is squared and the pixels outside of the cylinder boundaries
are handled differently depending on the manufacturer. These pixel values had to be changed
before the conversion to the Hounsfield units in order to correspond to air, according to the
Hounsfield scale.

– Step 4: Removal of artefacts. Artefacts degrade the quality of CT images. Due to time
limitations, the artefacts were removed by setting all the pixels values above 1900 HU
to soft tissue. Bone is the body structure with the highest HU value, 1800-1900 HU [49].
For this reason, in this project, all HU values above 1900 were considered artefacts.
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– Step 5: Normalization of voxel dimension. All images were resampled to the dimension
of the image with highest resolution, i.e., 0.48828ˆ0.48828ˆ1 mm. The highest
resolution was chosen in order to keep all the information. This signified a change in
the width and height dimensions, and was different for all images.

– Step 6: Conversion to NIfTI format. Due to network requirements, the input data was
required to be in NIfTI format and not in DICOM.

– Step 7: Creation of the ground truth data. A ground truth volume for each CT image
was created by reading the corresponding XML-file. For this thesis project, two ground
truth datasets were required to implement the sequential system which is further
explained in section 4.2.3. In one dataset, all nodules that were annotated by at least
one radiologist were labelled. This corresponded to an agreement level of 25 %. In the
second dataset, only the nodules that were annotated by at least three radiologists were
labelled. This dataset constituted the essential ground truth dataset of the project, i.e.,
the dataset used to evaluate the performance of the two systems. This was motivated
by the fact that if at least three radiologists agreed regarding a nodule, it was highly
probable that it truly was a nodule. Figure 4.1 shows an example of the two different
datasets.

Figure 4.1: Top left: A ground truth slice with a nodule marked by the four radiologists.
Green pixels are marked by one radiologist, blue by two, red by three and white by all four.
Top right: a zoomed in ground truth slice . Bottom left: A ground truth slice corresponding
to the dataset with an agreement level of 25 %, where all the marked pixels were included.
Bottom right: Only the pixels marked by at least three radiologists, i.e., white and red pixels,
were included. This constituted the dataset with an agreement level of 75 %
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4.1.2 Datasets

Apart from the two ground truth datasets created, three additional datasets were
distinguished. The difference between the three datasets were the number of data and
the difficulty in nodule identification. Each of these three dataset was split into training,
validation and test sets. The training set was used to train the network. After each training
phase, the validation set was used to evaluate the performance of the network and determine
when the network had converged. In the end, the test set was used to evaluate the network
accuracy. Table 4.2 shows the distribution of the three datasets.

Datasets
Datasets Number of images Training images (60 %) Validation images (20 %) Test images (20 %)

P NP Tot P NP Tot P NP Tot
Dataset 1 125 75 0 75 20 5 25 20 5 25
Dataset 2 275 165 0 165 45 10 55 45 10 55
Dataset 3 574 344 0 344 100 15 115 100 15 115

Table 4.2: Representation of the different datasets. All training images had the presence (P)
of nodules, while validation and test images had both images with and without nodules (no
presence, NP).

Originally the database from the LIDC-IDRI contained 1018 images. However, some of
these contained errors in the XML-file and did not have complete metadata. There were
missing tags, such as Slice Location, Slice Thickness and Pixel Spacing which were necessary
to normalize the images. Furthermore, 264 images did not contain any nodules. Only 574
images were included in dataset 3, while the rest were dismissed. The comparison between
the performance of the two systems was done with the results obtained using this dataset.

Dataset 1 contained images with low noise, and most importantly, nodules that were clear
and easy to distinguish. The images that presented the largest nodules were included in this
dataset. Several examples are shown in Figure 4.2, 4.3, 4.4.

Figure 4.2: A slice of a CT image included in dataset 1. Left: The axial CT slice with the ground
truth mask of agreement level 75 %. Right: The same axial CT slice without the mask. As
illustrated, the nodule can easily be distinguished and there is no presence of other structures
that can be misinterpreted as a nodule
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Figure 4.3: A slice of a CT image included in dataset 1. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
The nodule can easily be recognized as it presents a big diameter and clear shape. In this slice,
the blood vessels are more prominent

Figure 4.4: A slice of a CT image included in dataset 1. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
This slice shows one of the largest and most clear nodule in the entire dataset
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Dataset 2 contained all the images from dataset 1, as well as 150 additional images. The new
images contained nodules with smaller size, but they could still be recognized because of
their shape and appearance. The presence of other structures, such as blood vessels, could
make the detection more difficult. Several examples can be seen in Figures 4.5, 4.6 and 4.7.

Figure 4.5: A slice of a CT image included in dataset 2. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
The nodule is of smaller size, and due to its appearance it can be misinterpreted as a blood
vessel (brighter spots)

Figure 4.6: A slice of a CT image included in dataset 2. Left: The axial CT slice with the ground
truth mask of agreement level 75 %. Right: The same axial CT slice without the mask. The size
of the nodule is smaller compared to the nodules in dataset 1, but can still be distinguished
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Figure 4.7: A slice of a CT image included in dataset 2. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
The presence of other structures with similar shape and pixel values makes it more difficult
to detect the nodules

Dataset 3 contained all CT images available from the LIDC-IDRI database. Besides the entire
dataset 2, 290 additional images were added. This dataset contained all types of nodules. The
nodules most difficult to detect were those with a small size and those close to many blood
vessels, as the blood vessels could be falsely interpreted as nodules. Several examples can be
seen in Figures 4.8, 4.9 and 4.10.

Figure 4.8: A slice of a CT image included in dataset 1. Left: The axial CT slice with the ground
truth mask of agreement level 75 %. Right: The same axial CT slice without the mask. The
nodule presented in this image can be considered difficult to distinguish due to the presence
of blood vessels with similar appearance
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Figure 4.9: A slice of a CT image included in dataset 2. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
This nodule is very difficult to segment as it is hidden due to the presence of multiple blood
vessels

Figure 4.10: A slice of a CT image included in dataset 2. Left: The axial CT slice with the
ground truth mask of agreement level 75 %. Right: The same axial CT slice without the mask.
Another example of a difficult nodule to segment

4.2 Implementation

NiftyNet [50] is an open source platform for research in medical image analysis. NiftyNet
contains the implementation of a 3D U-Net network with a TensorFlow backend. The
hardware available had the following specifications:

• CPU: Intel Core i7-6700K, 4 cores @ 4.00GHz

• GPU: GeForce GTX 1070, 8GB

• RAM: 32 GB

In this section, the two systems used in the project are explained. Both systems were
implemented with the same network architecture in order to be able to compare performance.
Each system was implemented on the three, i.e., three different models of each system were
developed.

4.2.1 Network Architecture

The network architecture implemented in both systems is illustrated in its entirety in
Figure 4.11. Architecturally, the only change performed was the reduction of feature maps
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in the deeper layers. The reason for this decision was the possibility to use a batch size larger
than one.

Figure 4.11: Schematic representation of the 3D U-Net network architecture implemented.
Each blue box represents three steps: convolution, batch normalization and PReLu activation.
The output has the same size as the input and contains a prediction for each voxel

4.2.2 Training

As previously mentioned, the whole 3D image volume cannot be used as input to the network
due to memory constraints. For this reason, the training was performed on sampled volume
segments of size 96ˆ 96ˆ 96 pixels. Eight segments were sampled from each input image
volume. The sampling of these segments occurred randomly where each class had the same
probability of being sampled. Two of these segments were put in batches, i.e., two segments
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were utilized in each training iteration. The Generalized Dice loss mentioned in Equation 3.4
was the loss function implemented in the network to calculate the error.

4.2.3 Single System

This system was developed to be compared to the sequential system. It consisted of a one-step
approach in which the semantic segmentation of lung nodules was performed by using the
3D U-Net network. A schematic representation of this method is illustrated in Figure 4.12.

This method was trained, validated, and tested with the three different datasets mentioned
in section 4.1.3. The ground truth was the set which had an agreement level of 75 %.

Figure 4.12: Schematic representation of the single system. The 3D U-Net network is fed with
input images and outputs a prediction

4.2.4 Sequential System

The sequential system consisted of a two-step approach, in which two 3D U-Net networks
were implemented with the same architecture. The aim was to tackle the imbalanced data
problem by specializing the networks: the first network having high sensitivity and the
second high specificity.

The first network was trained to have very high sensitivity in order to find all nodule voxels,
i.e., not acquire any false negatives. High sensitivity results in a network biased to predict the
foreground class. Consequently, the prediction of many false positives was bound to occur.
This problem was supposed to be solved by the second network which was focused to have
high specificity. A high specificity results in the rejection of false positives. The results would
be only true positives and true negatives.

To achieve the characteristics of high sensitivity and high specificity, the training of the two
networks in the sequential system differed in two aspects: the input volumes and the ground
truth datasets. The first network was trained with the 25 % ground truth dataset. This was
motivated by the fact that if at least one radiologist thought that a specific voxel belonged to
the nodule class, it was because a certain grade of similarity or correlation existed between
that voxel and a nodule voxel. The idea was to make the first network more sensitive to
nodule voxels. The input volumes were the entire CT images. The input volumes of the
second network had a resolution of 96ˆ 96ˆ 96 pixels. These volumes were created from
both images with and without nodules. The 75 % ground truth dataset was used.

When performing inference, only the predictions from the first network were passed on to
the second network. This was implemented by applying a bounding box of size 96ˆ 96ˆ
96 pixels around the predictions. These small volumes became the input to the second
network. Figure 4.13 illustrates a schematic representation of this system. The positions of
the bounding boxes were saved in order to reconstruct the prediction. This step removed a
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lot of uninteresting background information and made the data more balanced for the second
network.

Figure 4.13: Schematic representation of sequential system. The first network which has high
sensitivity makes a first prediction of the input image. A bounding box is placed around the
predictions and are passed on to the second network. The second network makes a prediction
of the inputs. A postprocessing step to put together all the bounding boxes and background
is performed

4.2.5 Evaluation

Evaluation was performed quantitatively and qualitatively. The quantitative measures were
sensitivity, specificity, Dice and F2-score (described in section 2.3). Dice and F2-score measures
accuracy. These measures were calculated for the images that contained nodules. The images
without presence of nodules were evaluated according to the number of false positives. In
addition to the results from each image, the median of all images is presented to give a simple
evaluation of the general performance of the system. The median was selected, as the average
is more susceptible to outliers. The qualitative measurement was performed by an observer
that examined the predictions and calculated the number of nodules found, with the 75 %
ground truth dataset as reference.

4.2.6 Pipeline

In order to get a general overview of the whole implementation, Figure 4.14 illustrates the
general workflow from data gathering to the final prediction.
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Figure 4.14: Schematic representation of the overall implementation. Data was gathered
from the LIDC-IDRI database and preprocessed. The database was divided into three
datasets. The system was then fed with the data. When a training process was completed,
a validation was performed using the validation data. If the results were not satisfactory,
some hyper-parameters were tuned and the training was performed again. This procedure
was iterated until satisfactory results were achieved. Testing was then performed by feeding
the network with data previously unseen. The last step was to evaluate the final segmentation
predictions created during testing
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5 Results

This chapter presents the results obtained. The quantitative metrics sensitivity, specificity,
Dice and F2-score of the two systems for the three datasets are presented. The qualitative
results are also included. The differences in training and inference time between the two
different systems are illustrated. Finally, a comparison in performance between the three
different datasets is presented.

All the networks have been trained with a learning rate of 0.0001, weight decay of 0.0001 and
a batch size of two.

5.1 Dataset 1

This section provides quantitative and qualitative results of the single system (S1) and the
sequential system (S2) for dataset 1. Dataset 1 contained 125 patients in total. The test study
was performed with 25 patients. The results for each patient are illustrated in Appendix A.

Model 1 - Sensitivity
Quantitative Qualitative

System Median Average Standard Deviation Nodules found
S1 82.90% 75.29% 21.19% 42/46 (91.30 %)
S2 80.39% 75.28% 19.09% 41/46 (89.13 %)

Table 5.1: The median, average, standard deviation and nodules found of the sensitivity for
the singular system (S1) and the sequential system(S2) are presented.
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Model 1 - Specificity
Quantitative

System Median Average Standard Deviation
S1 99.99724033 % 99.99645237 % 2.84ˆ 10´3 %
S2 99.99152775 % 99.997580539 % 12.6ˆ 10´3 %

Table 5.2: The median, average, standard deviation of the specificity for the singular system
(S1) and the sequential system(S2) are presented.

Model 1 - Accuracy
Dice score F2-score

System Median Average Standard Deviation Median
S1 48.23% 48.04% 21.74% 58.46%
S2 24.28% 27.42% 18.86% 41.31%

Table 5.3: The median, average, standard deviation of the Dice score for the singular system
(S1) and the sequential system(S2) are presented. The median of the F2-score is also presented.

Figure 5.1: Examples of well segmented nodules. The first row shows the ground truth
slices of three patients. The second and third row illustrate the predictions performed by the
single system (S1) and the sequential system (S2) respectively. Patient number 10 achieved a
sensitivity of 100 % in both systems
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Figure 5.2: Examples of poorly segmented nodules. In some predictions a nodule is missed,
the entire shape is not segmented or healthy tissue is incorrectly segmented. The first row
shows the ground truth slices of three patients. The second and third row illustrate the
predictions performed by the single system (S1) and the sequential system (S2)
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Figure 5.3: Examples of predicted nodules in patients with no presence of lung nodules
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5.2 Dataset 2

This section provides quantitative and qualitative results of the single system (S1) and the
sequential system (S2) for dataset 2. Dataset 2 contained 275 patients in total. The test study
was performed with 55 patients. The results for each patient are illustrated in Appendix A.

Model 2 - Sensitivity
Quantitative Qualitative

System Median Average Standard Deviation Nodules found
S1 71.09% 62.81% 31.33% 87/98 (88.78 %)
S2 83.79% 78.37% 19.55% 90/98(91.83 %)

Table 5.4: The median, average, standard deviation and nodules found of the sensitivity for
the singular system (S1) and the sequential system(S2) are presented.

Model 2 - Specificity
Quantitative

System Median Average Standard Deviation
S1 99.99790183 % 99.99737419 % 2.24515ˆ 10´3 %
S2 99.99065834 % 99.98769872 % 10ˆ 10´3 %

Table 5.5: The median, average, standard deviation of the specificity for the singular system
(S1) and the sequential system (S2) are presented.

Model 2 - Accuracy
Dice score F2-score

System Median Average Standard Deviation Median
S1 42.50% 42.17% 27.90% 53.86%
S2 20.03% 26.78% 22.90% 35.53%

Table 5.6: The median, average, standard deviation of the Dice score for the singular system
(S1) and the sequential system(S2) are presented. The median of the F2-score is presented.
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Figure 5.4: Examples of well segmented nodules. The first row shows the ground truth slices
of three patients. The second and third row illustrate the predictions performed by the single
system (S1) and the sequential system (S2)
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Figure 5.5: Examples of poorly segmented nodules. In some predictions a nodule is missed,
the entire shape is not segmented or healthy tissue is incorrectly segmented. The first row
shows the ground truth slices of three patients. The second and third row illustrate the
predictions performed by the single system (S1) and the sequential system (S2)
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Figure 5.6: Examples of incorrect segmentations in patients with no presence of lung nodules
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5.3 Dataset 3

This section provides quantitative and qualitative results of the single system (S1) and the
sequential system (S2) for the dataset 3. Dataset 3 contained 574 patients in total, i.e., all
of the available data from the LIDC-IDRI database. The test study was performed with 115
patients. The results for each patient are illustrated in Appendix A.

Model 3 - Sensitivity
Quantitative Qualitative

System Median Average Standard Deviation Nodules found
S1 62.03% 53.82% 31.78% 172/208 (82.69 %)
S2 83.10% 70.80% 29.50% 173/208 (83.17 %)

Table 5.7: The median, average, standard deviation and number of nodules of the sensitivity
for the singular system (S1) and the sequential system(S2) are presented.

Model 3 - Specificity
Quantitative

System Median Average Standard Deviation
S1 99.99873866 % 99.99809282 % 1.8ˆ 10´3 %
S2 99.9954062 % 99.99380404 % 5.51ˆ 10´3 %

Table 5.8: The median, average, standard deviation of the specificity for the singular system
(S1) and the sequential system(S2) are presented.

Model 3 - Accuracy
Dice score F2-score

System Median Average Standard Deviation Median
S1 32.71% 37.16% 28.47% 41.76%
S2 21.60% 30.95% 27.34% 38.05%

Table 5.9: The median, average, standard deviation of the Dice score for the singular system
(S1) and the sequential system(S2) are presented. The median of the F2-score is presented.
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Figure 5.7: Examples of well segmented nodules. The first row shows the ground truth slices
of three patients. The second and third row illustrate the predictions performed by the single
system (S1) and the sequential system (S2)
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Figure 5.8: Examples of poorly segmented nodules. In some predictions a nodule is missed,
the entire shape is not segmented or healthy tissue is incorrectly segmented. The first row
shows the ground truth slices of three patients. The second and third row illustrate the
predictions performed by the single system (S1) and the sequential system (S2) respectively
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Figure 5.9: Examples of incorrect segmentations in patients with no presence of lung nodules
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5.4 Training and Inference Time

This section compares the training and inference time of the two systems

Training and inference time
Method Training time Inference time for one CT image

Single system 36h 47s
Sequential system 86h 1min 5s

Table 5.10: Training and inference time of the two systems.

5.5 Datasets

This section gives an overview of the influence of the data on the performance of the systems.

Figure 5.10: The median value of sensitivity, specificity, Dice and F2-score of the three datasets
using the single system

45



5.5. Datasets

Figure 5.11: The median value of sensitivity, specificity, Dice and F2-score of the three datasets
using the sequential system

Figure 5.12: The specificity of the two systems is plotted in order to observe the trend of the
curves in detail
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5.6 Ground Truth Reliability

This section provides an overview of the reliability of the ground truth. This was calculated by
evaluating the performance of the radiologists with the same metrics used to evaluate the two
systems. The segmentation performed by each radiologist was compared to the ground truth
dataset corresponding to the 75 % agreement level. This calculations were limited since (1)
the radiologists were not independent because they could see the annotations from the other
radiologists before they took the final decision and (2) the ground truth was created from the
annotations of these radiologists. This means that the radiologists were judged entirely based
on their own results, see section 4.1. This means that the radiologists’ performance can be
assumed to be significantly overestimated.

Sensitivity
Quantitative

System Median Average Standard Deviation
Radiologist 1 69.05% 63.50% 34.50%
Radiologist 2 99.74% 98.91% 1.50%
Radiologist 3 98.33% 83.81% 29.60%
Radiologist 4 95.10% 91.08% 10.90%

All 4 96.70% 84.33% 26.88%

Table 5.11: The median, average and standard deviation of the sensitivity for each radiologist,
as well as the combination of all four, are presented. Twenty random samples from the test
images were used.

Specificity
Quantitative

System Median Average Standard Deviation
Radiologist 1 99.99978 % 99.99939 % 8.58ˆ 10´4%
Radiologist 2 99.99944 % 99.99842 % 2.16ˆ 10´3 %
Radiologist 3 99.99916 % 99.99824 % 2.17ˆ 10´3 %
Radiologist 4 99.99946 % 99.99840 % 1.97ˆ 10´3 %

All 4 99.99945 % 99.99861 % 1.92ˆ 10´3%

Table 5.12: The median, average and standard deviation of the specificity for each radiologist,
as well as the combination of all four, are presented. Twenty random samples from the test
images were used.
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Dice score
Quantitative

Radiologist Median Average Standard Deviation
Radiologist 1 61.17% 62.14% 26.90%
Radiologist 2 82.58% 80.71% 11.40%
Radiologist 3 72.74% 65.98% 25.41%
Radiologist 4 79.38% 76.54% 83.27%

All 4 76.06% 71.34% 22.27%

Table 5.13: The median, average and standard deviation of the Dice score for each radiologist,
as well as the combination of all four, are presented. Twenty random samples from the test
images were used.

Four new ground truth datasets were created from twenty random samples from the test
images. The aim was to see how the ground truth datasets vary depending on which
radiologist is responsible for the segmentation. Each ground truth dataset has considered
the segmentations of three of the four radiologists available and an agreement level of 67 %
has been established. The four different ground truth were compared to each other, giving six
different combinations.

Resemblance between the datasets
Quantitative

Ground Truth datasets Median Resemblance Average Resemblance Standard deviation
GT1 and GT2 96.70% 94.50% 8.49%
GT1 and GT3 95.63% 95.17% 3.78%
GT1 and GT4 91.21% 88.44% 13.34%
GT2 and GT3 95.62% 95.77% 2.63%
GT2 and GT4 91.36% 88.48% 12.69%
GT3 and GT4 91.12% 88.25% 13.12%

Table 5.14: Resemblance between the ground truth datasets based on nodule voxels.
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6 Discussion

This chapter includes an analysis of the results obtained, followed by a reflection of the data
and the implementation. Proposals for future work concludes the chapter.

6.1 Analysis of Results

This section analyses the results in order to answer the problem statements.

Performance

The sequential system was based on sensitivity and specificity, and these two were therefore
the main quantitative metrics in this project. The sequential system achieved a sensitivity
of 83.1 % while the single system achieved a sensitivity of 62.03 %. In this aspect,
an improvement of 34 % is obtained with the sequential system. The system performs
consistently with more than 50 % of the data above an average sensitivity of 70.80 %.

Specificity remains constant and near 100 % for both systems. This was suspected since
specificity takes into account the correctly predicted background voxels, i.e, true negatives
which constitutes more than 99 % of the input volumes. Despite a specificity near 100 %, a
trend can be seen in Figure 5.12. The single system presents a higher specificity.

The Dice scores are low in both systems but particularly in the sequential system with a score
of 21.6 %. The single system was more accurate reaching a Dice score of 32.71 %. By analyzing
the qualitative results, the single and sequential system segmented a majority of the nodules
correctly, only missing 17.3 % and 16.8 % respectively.

Data Influence

The variability in data affects the single system the most. As observed in the results, the
sensitivity decreases from 82.9 % when using the first dataset to 62.03 % when using the third
dataset. All quantitative measurements experienced a decrease of 25 % except specificity that
shows a slight increase as the number of data expands. The influence of data in the sequential
system is almost negligible. The specificity, Dice and F2-score measurements experience a
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decrease when the second dataset is used, but increases again with the use of the entire
dataset. The sensitivity reaches its highest value, 83.79 %, in the second dataset and is almost
kept constant for the third dataset for which it is only decreased by 0.008 %.

Training and Inference time

The sequential system consists of two networks, and therefore the training time is the training
time of both trainings combined. For this reason, the training time of the sequential system
is twice as high as the single system, which only consists of one network. The number of
iterations of the different trainings vary depending on the dataset used.

Ground truth reliability

Three radiologists achieved a sensitivity above 95 % when comparing their own
segmentations with the 75 % ground truth dataset. However, the first radiologist achieved a
sensitivity of 69.05 %. The results of the specificity were similar. The first radiologist obtained
a Dice score of 61.17 % while the other three achieved a Dice score above 70 %. When
comparing the ground truths, it can be seen that all ground truth datasets presents a standard
deviation around 5-10 %.

6.2 Discussion of Results

The results were partially unexpected based on the architecture motivation of the sequential
system. The sequential system achieved a sensitivity of 83.1 % for the whole dataset. This is
an adequate result considering that sensitivity is calculated voxel-wise. This may be an unfair
estimation of the performance of the system. Although the system has found a nodule and
predicted the area, it can be punished by adding or missing some border voxels. To some
degree the ground truth is unreliable. As seen in image 4.1, the four radiologists could not
agree about the shape of the nodule and only 34.8 % of nodules marked by one radiologist
were marked by all four. This means that the ground truth dataset with an agreement level
of 75 % can present mislabelled voxels and uncertainty. Additionally, in some cases the
radiologists considered different shapes for the same nodule, and the coinciding pixels do
not correspond to an entire nodule with a diameter greater than 3 mm. Hence, the systems
do not segment these nodules because the diameter is too small.

Section 5.6 shows the variability in the ground truth and the performance of the radiologists.
It is not surprising, knowing the amount of information that must be reviewed in order to
establish an accurate diagnosis. There are many slices per patient, containing many pixels
that the radiologists must go through. An example of this disagreement can be observed in
Figure 4.1. The statistical measurements described in section 5.6 were performed in order to
prove that it is suboptimal to compare the results of the system to a level of performance that
is impossible to achieve. The radiologists cannot reach 100 % accuracy, and their segmentation
is used as ground truth. The implemented systems can only ever reach an accuracy as
good as the ground truth it is trained with. The sequential system still achieved a sensitivity
higher than the first radiologist, showing that this system can be at least as accurate as an
experienced radiologist. Furthermore, there is a variance in the ground truth. Depending on
which radiologists are included in the ground truth dataset the number of nodule voxels can
vary. A standard deviation of almost 10 % is presented in the ground truth. The ground truth
will never be 100% reliable, as it is created with a factor of human error and subjectivity.

The challenge of the sequential system relies on the second network which had the task
of rejecting the false positives. The first network achieved a relatively high sensitivity, but
as previously mentioned, many healthy voxels were also predicted as nodules. The high
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number of false positives was responsible for the low Dice score achieved by the sequential
system. There are several reasons that could have affected the poor performance of the second
network. The training was performed in volumes that contained nodules, and the number
of volumes with no presence of nodules was relatively low. This was predicted to work well
since the validation performed on the second network achieved a Dice score of 90 %, and most
volumes with no nodules obtained zero false positives. However, this training method may
have made the second network biased to the foreground class. For this reason, the patients
with no presence of nodules got many false positives as presented in the results. In addition,
due to the difficulty of increasing sensitivity in the first network, the time to train and tune
the second network was limited.

Furthermore, Dice score may not be an optimal accuracy measure for this type of applications
where the ground truth shows a degree of subjectivity. A more statistical measurement that
considers area, localization and number of nodules would be more suitable. For example, if
a healthy voxel is segmented as a nodule, and it is close to a segmented nodule, it should not
be considered a false positive even though it is not included in the ground truth.

The results from the sequential system suggests that there is potential to use this method
as an approach to manage imbalanced training data. However, further research and tuning
is necessary, specifically in the second network. One suggestion that may improve the
performance of the second network is the further tuning of the Generalized Dice loss function.
The contribution of each class could be corrected by the inverse of its volume instead of the
inverse of its square volume, since the training data used for the second network was more
balanced. Another approach that would be interesting to investigate further would be the
use of the Tversky loss function. In this approach the first network would focus on the false
negatives while the second network would focus on the false positives.

6.3 Limitations

One of the main challenges during this thesis project was the variability in the data and the
attempt to normalize it.

The anisotropic resolution of the CT images complicated the training of discriminative filters.
Images with different resolution, i.e., voxel size, needed a different number of voxels to
represent the same structure. This created difficulties for the network to establish a pattern
and extract features. The resampling to a standard resolution signifies a width and a height
different from 512ˆ 512 pixels. The new width and height of each image depended on the
original voxel dimension. This divergence has been an obstacle to the learning process. By
analyzing the results, it can be observed that the systems have made nodule predictions
outside of the lungs. The systems have been fed small volumes of size 96ˆ 96ˆ 96 pixels,
meaning that the entirety of the CT image has not been seen by the systems. Hence, it is
difficult to get an overview of the anatomy presented in the image. For this reason, it would
be desirable to have equal resolution and image size within the whole dataset. This could
be achieved by performing image registration. Although, as previously mentioned in section
2.2.2, the whole image cannot be used as input due to GPU limitations, it could be possible
to use volumes with the entire width and height, but not all image slices. Another possibility
would be to downsample all images, e.g. from 512ˆ 512 to 218ˆ 218 slices. However, the risk
of downsampling would be that it would decrease the image quality. Furthermore, the image
processing could be improved by a more advanced algorithm for the removal of artefacts.
However, the basic approach for artefact removal used in this project have seemingly not
yielded any negative effects.

The imbalanced data problem was the main challenge of the project. In the beginning of

51



6.4. Future Work

the project, the systems were biased to segment the whole input as the background class.
The database that was used consisted of extremely imbalanced data. The images with
nodules presented an average percentage of 0.0038 % nodule voxels. For this reason, all the
images with no presence of nodules (« 200) were dismissed to make the data slightly less
imbalanced. These images were only included in the validation and test set. Due to difficulties
in the learning process, a first dataset containing clear, evident, and big nodules was used to
investigate if the problem lied within the system or the imbalanced data. Additionally, two
other datasets were created in order to investigate how the data affected the performance of
the systems.

The hardware restrictions have also limited the development of the systems. A batch size of
two has been used to train the networks. By using larger batch sizes, better approximations
of the entire data set would have been achieved during training. The hardware limitations
made it necessary to reduce the number of feature maps in deeper layers and to use smaller
kernel sizes and image segment volumes. Small kernel sizes and image segment volumes
yields small receptive fields and possibly insufficient spatial knowledge of the voxel being
examined.

The constraint in the 3D U-Net regarding input size mentioned in Equation 3.1 has also
constituted an obstacle. The main idea was to have a bounding box of smaller size, e.g.
64 ˆ 64 ˆ 48 pixels. A nodule spreads out as much as 30 slices and 60 pixels in width
and height. This would remove even more background, making the data more balanced in
comparison to the first network of the sequential system. Furthermore, the second network
does not depend on the spatial information as much as the first network, and therefore a
smaller input segment would be suitable. In the implementation performed in this thesis,
both networks have inputs of size 96ˆ 96ˆ 96 pixels due to the given constraint. It would
be interesting to try the sequential system with a fully convolutional network without this
limitation.

Three networks have been used in the implementation of this thesis and each network
has been trained, validated and tested for three datasets. Consequently, nine models were
implemented. Each model needed at least 36 hours of training. This time consumption has
limited the tuning of hyper-parameters and the exploration of different loss functions and
optimizers.

6.4 Future Work

Managing imbalanced data is an important aspect to consider in machine learning. Therefore,
it is necessary to perform further investigation in this field. An approach worth further
investigation would be the comparison between the sequential system and the singular
system when using the same resources. The sequential system uses twice the amount of
resources. It would be interesting to analyze the results when increasing the resources of the
singular system by adding nodes and layers to the same amount as the sequential system.

A new performance evaluation criteria could also be explored. This is necessary in
segmentation applications whose ground truth are not fully reliable. A statistic metric that
takes into account marking proximity could be a solution. Voxels near the nodules marked
by the radiologists would not be taken into account when calculating performance, neither
as false positives or true positives.

The algorithms developed can be used for any type of segmentation by changing the data and
retraining the networks. It would be interesting to see how the sequential system performs
with other types data, with more reliable ground truth and less imbalance within the data.
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7 Conclusion

The main objective of this thesis was to explore a new approach to manage imbalanced
training data. A deep learning framework was developed to segment lung nodules from
thoracic CT images where the average percentage of nodule voxels was 0.0038 %.

The sequential system achieved a higher sensitivity than the single network. The sequential
and single system obtained a sensitivity of 83.1 % and 62.03 % respectively. When the dataset
contained images of clear and easily distinguishable nodules, both systems performed
similarly. However, when the dataset was more generalized, the performance of the
sequential system was superior, achieving an improvement of 34 %.

The sequential system only missed 16.83 % of the nodules, and shows promise to reach better
results with continued development. However, it obtained a low Dice score of 21.6 % since
multiple false positives were segmented. This performance is too low, and the system cannot
be used in medical applications yet.
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A Results

Model 1 - Single system (S1)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 86.10% 99.90% 86.85% 86.40% 3/3
2 74.85% 99.90% 56.40% 66.19% 3/3
3 85.86% 99.90% 78.73% 82.86% 4/4
4 72.66% 99.90% 46.72% 59.46% 3/3
5 85.10% 99.90% 81.61% 83.67% 2/2
6 70.89% 99.90% 16.27% 30.26% 1/1
7 97.20% 99.90% 18.87% 36.53% 1/1
8 70.86% 99.90% 44.77% 57.47% 3/5
9 94.02% 99.90% 75.32% 85.53% 1/1

10 100.00 % 99.90% 62.04% 80.34% 1/1
11 88.05% 99.90% 52.43% 69.24% 1/1
12 85.14% 99.90% 66.84% 76.73% 3/4
13 78.36% 99.90% 20.96% 37.40% 2/2
14 53.57% 99.90% 49.75% 51.97% 1/1
15 15.05% 99.90% 22.65% 17.40% 2/3
16 87.29% 99.90% 19.19% 36.08% 1/1
17 25.29% 99.90% 37.98% 29.19% 2/2
18 82.68% 99.90% 31.89% 50.50% 1/1
19 69.63% 99.90% 41.51% 54.78% 2/2
20 83.30% 99.90% 50.11% 65.85% 5/5

Table A.1: Results of the first dataset using the single system. The quantitative measures
sensitivity, specificity, Dice and F2-score are measured. The qualitative results show the
number of nodules correctly predicted in relation to the total number of nodules.
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Model 1 - Single system (S1)
Patients with no presence of nodules False positives

21 2949
22 13364
23 1244
24 3494
25 14529

Table A.2: The test dataset contains five patients with no presence of nodules. This table
shows the number of false positives predicted by the single system

Model 1 - Sequential system (S2)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 60.46% 99.90% 54.56% 57.96% 3/3
2 50.63% 99.90% 16.37% 27.56% 3/3
3 81.90% 99.90% 73.22% 78.19% 4/4
4 70.19% 99.90% 44.40% 56.97% 3/3
5 94.76% 99.90% 69.34% 82.64% 2/2
6 80.94% 99.90% 11.48% 23.67% 1/1
7 92.25% 99.90% 4.40% 10.28% 1/1
8 60.89% 99.90% 19.80% 33.96% 5/5
9 93.65% 99.90% 24.34% 43.77% 1/1

10 100.00 % 99.90% 13.07% 27.31% 1/1
11 90.23% 99.90% 24.23% 43.18% 1/1
12 83.94% 99.90% 29.52% 48.31% 3/4
13 90.65% 99.90% 12.35% 25.63% 2/2
14 64.81% 99.90% 28.93% 43.32% 1/1
15 73.55% 99.90% 27.92% 44.48% 2/3
16 79.84% 99.90% 3.23% 7.62% 1/1
17 16.74% 99.90% 21.24% 18.29% 2/2
18 84.80% 99.90% 13.63% 27.45% 1/1
19 77.33% 99.90% 28.32% 45.70% 2/2
20 54.08% 99.90% 28.06% 39.45% 2/5

Table A.3: Results of the first dataset using the sequential system. The quantitative measures
sensitivity, specificity, Dice and F2-score are measured. The qualitative results show the
number of nodules correctly predicted in relation to the total number of nodules.

Model 1 - Sequential system (S2)
Patients with no presence of nodules False positives

21 13108
22 12366
23 22861
24 15409
25 59659
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Table A.4: The test dataset contains five patients with no presence of nodules. This table
shows the number of false positives predicted by the sequential system

Model 2 - Single system (S1)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 84.76% 99.90% 87.21% 85.72% 3/3
2 52.97% 99.90% 50.54% 51.97% 3/3
3 80.66% 99.90% 82.30% 81.31% 4/4
4 68.96% 99.90% 74.08% 70.92% 3/3
5 60.64% 99.90% 69.34% 63.85% 2/2
6 85.46% 99.90% 15.37% 30.26% 1/1
7 82.92% 99.90% 29.27% 47.84% 1/1
8 66.16% 99.90% 25.00% 39.88% 4/5
9 95.30% 99.90% 88.63% 92.51% 1/1

10 97.43% 99.90% 54.35% 73.97% 1/1
11 93.28% 99.90% 56.22% 73.82% 1/1
12 80.06% 99.90% 65.60% 73.57% 4/4
13 68.08% 99.90% 14.60% 27.61% 2/2
14 63.72% 99.90% 58.50% 61.52% 1/1
15 16.30% 99.90% 14.42% 15.49% 2/3
16 82.70% 99.90% 38.59% 56.75% 1/1
17 12.12% 99.90% 17.08% 13.71% 1/2
18 88.32% 99.90% 50.09% 67.67% 1/1
19 55.68% 99.90% 42.54% 49.56% 2/2
20 85.24% 99.90% 63.89% 75.19% 4/5
26 6.44% 99.90% 1.91% 3.31% 1/1
27 90.27% 99.90% 52.80% 70.31% 2/2
28 34.99% 99.90% 25.97% 30.72% 4/5
29 90.07% 99.90% 86.41% 88.57% 3/3
30 0.09% 99.90% 0.06% 0.07% 0/1
31 8.27% 99.90% 13.39% 9.76% 2/2
32 76.83% 99.90% 55.51% 66.60% 1/1
33 79.86% 99.99% 86.42% 82.36% 6/7
34 52.99% 99.90% 31.25% 41.46% 1/1
35 0.00% 99.90% 0.00% 0.00% 0/1
36 68.64% 99.90% 53.15% 61.47% 4/4
37 97.87% 99.90% 75.81% 87.67% 1/1
38 64.39% 99.90% 64.33% 64.36% 5/5
39 5.19% 99.90% 4.52% 4.90% 1/2
40 79.10% 99.90% 18.76% 34.59% 1/1
41 91.85% 99.90% 69.10% 81.16% 1/1
42 79.84% 99.90% 45.03% 60.98% 2/3
43 68.84% 99.90% 40.60% 53.86% 1/1
44 94.06% 99.90% 88.09% 91.57% 1/1
45 0.00% 99.90% 0.00% 0.00% 0/1
46 71.09% 99.90% 14.08% 27.13% 2/2

61



47 70.27% 99.90% 12.24% 24.25% 1/1
48 4.69% 99.90% 5.53% 4.99% 1/1
49 77.13% 99.90% 27.12% 44.39% 2/2
50 93 % 99.90% 28.12% 48.37% 2/2

Table A.5: Results of the second dataset using the single system. The quantitative measures
sensitivity, specificity, Dice and F2-score are measured. The qualitative results show the
number of nodules correctly predicted in relation to the total number of nodules.

Model 2 - Sequential system (S2)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 87.63% 99.90% 73.69% 81.47% 3/3
2 82.40% 99.90% 33.08% 51.62% 3/3
3 62.49% 99.90% 44.48% 53.78% 4/4
4 83.50% 99.90% 34.16% 52.92% 3/3
5 92.36% 99.90% 75.47% 84.77% 2/2
6 82.79% 99.90% 11.39% 23.60% 1/1
7 95.67% 99.90% 17.74% 34.70% 1/1
8 73.21% 99.90% 12.14% 24.31% 4/5
9 94.49% 99.90% 22.09% 40.88% 1/1

10 98.12% 99.90% 14.66% 29.93% 1/1
11 91.04% 99.90% 47.88% 66.91% 1/1
12 79.56% 99.90% 26.81% 44.52% 3/4
13 95.67% 99.90% 5.80% 13.29% 2/2
14 78.05% 99.90% 4.01% 9.32% 1/1
15 72.21% 99.90% 20.17% 35.53% 2/3
16 85.80% 99.90% 6.27% 14.13% 1/1
17 19.61% 99.90% 27.10% 22.05% 2/2
18 88.63% 99.90% 21.50% 39.42% 1/1
19 79.44% 99.90% 21.24% 37.90% 2/2
20 48.79% 99.90% 16.38% 27.23% 2/5
26 30.59% 99.90% 1.78% 4.09% 1/1
27 85.20% 99.90% 28.81% 47.78% 2/2
28 82.96% 99.90% 23.58% 41.32% 4/5
29 86.40% 99.90% 68.76% 78.36% 3/3
30 63.81% 99.90% 7.01% 15.04% 1/1
31 63.90% 99.90% 22.78% 37.10% 2/2
32 86.62% 99.90% 6.07% 13.73% 1/1
33 91.21% 99.90% 90.03% 90.73% 7/7
34 83.79% 99.90% 10.60% 22.28% 1/1
35 83.21% 99.90% 20.03% 36.79% 1/1
36 41.42% 99.90% 10.79% 19.40% 4/4
37 100.00 % 99.90% 35.80% 58.23% 1/1
38 86.42% 99.90% 60.48% 73.76% 5/5
39 84.46% 99.90% 18.22% 34.41% 2/2
40 83.47% 99.90% 6.08% 13.70% 1/1
41 86.99% 99.90% 60.76% 74.18% 1/1
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42 91.21% 99.90% 15.09% 30.22% 2/3
43 89.20% 99.90% 8.05% 17.73% 1/1
44 94.08% 99.90% 82.07% 88.88% 1/1
45 70.17% 99.90% 6.70% 14.65% 1/1
46 73.92% 99.90% 10.81% 22.16% 2/2
47 81.08% 99.90% 7.91% 17.24% 1/1
48 11.28% 99.90% 6.84% 8.95% 1/1
49 90.51% 99.90% 40.97% 61.00% 2/2
50 93.20% 99.90% 18.78% 36.05% 2/2

Table A.6: Results of the second dataset using the sequential system. The quantitative
measures sensitivity, specificity, Dice and F2-score are measured. The qualitative results show
the number of nodules correctly predicted in relation to the total number of nodules.

Model 2 - Sequential system (S2)
Patients with no presence of nodules False positives

21 10816
22 35730
23 26359
24 22170
25 6728
51 34473
52 31038
53 38037
54 25902
55 72625

Table A.7: The test data contains ten patients with no presence of nodules. This table shows
the number of false positives predicted by the sequential system.

Model 3 - Single system (S1)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 75.26% 99.90% 79.94% 77.07% 3/3
2 53.57% 99.90% 52.81% 53.26% 3/3
3 75.56% 99.90% 72.92% 74.48% 4/4
4 79.19% 99.90% 72.50% 76.37% 3/3
5 54.49% 99.90% 66.31% 58.68% 2/2
6 68.96% 99.90% 19.31% 34.00% 1/1
7 88.96% 99.90% 30.50% 50.36% 1/1
8 74.10% 99.90% 39.99% 55.25% 4/5
9 92.22% 99.90% 93.24% 92.63% 1/1

10 99.80% 99.90% 41.83% 64.21% 1/1
11 88.20% 99.90% 66.66% 78.11% 1/1
12 84.20% 99.90% 75.19% 80.35% 4/4
13 77.90% 99.90% 21.63% 38.17% 2/2
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14 53.91% 99.90% 58.07% 55.50% 1/1
15 16.65% 99.90% 14.96% 15.93% 2/3
16 83.85% 99.90% 18 % 34.04% 1/1
17 11.92% 99.90% 19.85% 14.19% 1/2
18 86.84% 99.90% 43.72% 62.14% 1/1
19 61.31% 99.90% 43.82% 52.87% 2/2
20 81.15% 99.90% 64.20% 73.40% 5/5
26 5.90% 99.90% 2.21% 3.54% 1/1
27 81.59% 99.90% 45.85% 62.20% 2/2
28 59.03% 99.90% 37.16% 47.78% 5/5
29 90.17% 99.90% 87.66% 89.15% 3/3
30 0.00% 99.90% 0.00% 0.00% 0/1
31 4.24% 99.90% 5.92% 4.78% 1/2
32 83.02% 99.90% 89.04% 85.33% 1/1
33 70.95% 99.90% 80.89% 74.62% 6/7
34 62.76% 99.90% 58.40% 60.94% 1/1
35 1.45% 99.90% 1.14% 1.31% 1/1
36 54.27% 99.90% 53.81% 54.08% 3/4
37 92.23% 99.90% 82.18% 87.93% 1/1
38 74.69% 99.90% 70.66% 73.02% 5/5
39 8.13% 99.90% 8.32% 8.20% 1/2
40 94.95% 99.90% 74.17% 85.38% 1/1
41 82.06% 99.90% 78.33% 80.53% 1/1
42 86.06% 99.90% 54.89% 70.13% 3/3
43 38.64% 99.90% 28.78% 33.98% 1/1
44 92.59% 99.90% 94.25% 93.25% 1/1
45 0.00% 99.90% 0.00% 0.00% 0/1
46 70.73% 99.90% 27.56% 43.49% 2/2
47 53.38% 99.90% 17.81% 29.68% 1/1
48 0.89% 99.90% 1.37% 1.04% 0/1
49 73.57% 99.90% 43.66% 57.75% 2/2
50 92.20% 99.90% 31.20% 51.74% 2/2
56 69.98% 99.90% 15.25% 28.73% 1/1
57 64.32% 99.90% 61.46% 63.14% 2/2
58 46.71% 99.90% 41.96% 44.69% 2/2
59 36.23% 99.90% 51.51% 41.11% 1/1
60 0.12% 99.90% 0.04% 0.07% 0/1
61 70.99% 99.90% 70.55% 70.81% 1/1
62 15.31% 99.90% 25.57% 18.24% 1/2
63 40.52% 99.90% 49.35% 43.64% 1/3
64 6.15% 99.90% 10.07% 7.29% 1/2
65 16.38% 99.90% 24.89% 18.98% 2/2
66 14.67% 99.90% 21.41% 16.78% 1/2
67 17.04% 99.90% 1.67% 3.64% 1/3
68 88.73% 99.90% 52.22% 69.34% 1/1
69 1.74% 99.90% 1.42% 1.60% 1/3
70 36.12% 99.90% 10.18% 17.89% 1/2
71 39.83% 99.90% 40.97% 40.28% 1/1
72 55.05% 99.90% 10.53% 20.46% 1/2
73 47.88% 99.90% 61.54% 52.54% 1/2
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74 0.00% 99.90% 0.00% 0.00% 0/2
75 51.94% 99.90% 44.32% 48.60% 1/1
76 4.70% 99.90% 1.78% 2.84% 1/1
77 50 % 99.90% 10.17% 19.48% 1/1
78 77.44% 99.90% 80.66% 78.70% 7/7
79 91.32% 99.90% 48.24% 67.28% 2/2
80 95.51% 99.90% 44.57% 65.55% 1/1
81 1.27% 99.90% 2.32% 1.55% 1/4
82 63.65% 99.90% 72.84% 67.03% 5/6
83 69.77% 99.90% 32.57% 47.89% 1/1
84 97.73% 99.90% 17.09% 33.85% 1/1
85 96.57% 99.90% 13.89% 28.57% 1/1
86 76.88% 99.90% 78.32% 77.45% 1/1
87 69.21% 99.90% 30.54% 45.94% 4/4
88 74.67% 99.90% 13.89% 27.14% 2/2
89 81.65% 99.90% 81.03% 81.40% 4/4
90 0.00% 99.90% 0.00% 0.00% 0/1
91 77.35% 99.90% 84.23% 79.96% 3/3
92 0.00% 99.90% 0.00% 0.00% 0/1
93 23.60% 99.90% 37.66% 27.75% 4/6
94 74.23% 99.90% 82.75% 77.42% 2/2
95 28.42% 99.90% 35.11% 30.76% 1/1
96 39.36% 99.90% 11.71% 20.25% 2/2
97 50.54% 99.90% 31.55% 40.73% 2/2
98 0.00% 99.90% 0.00% 0.00% 0/1
99 41.77% 99.90% 6.47% 13.12% 1/2

100 0 % 99.90% 0 % 0 % 0/1
101 10.97% 99.90% 11.90% 11.33% 1/2
102 63.40% 99.90% 2.56% 6.03% 2/2
103 32.08% 99.90% 32.84% 32.38% 2/4
104 82.86% 99.90% 54.38% 68.50% 1/1
105 78.12% 99.90% 14.52% 28.39% 1/1
106 46.99% 99.90% 3.69% 8.25% 1/1
107 17.44% 99.90% 11.41% 14.40% 2/2
108 39.05% 99.90% 48.71% 42.42% 1/1
109 90.77% 99.90% 3.20% 7.60% 1/1
110 79.70% 99.90% 12.30% 24.97% 1/1

Table A.8: Results of the third dataset using the single system. The quantitative measures
sensitivity, specificity, Dice and F2-score are measured. The qualitative results show the
number of nodules correctly predicted in relation to the total number of nodules.

Model 3 - Single system (S1)
Patients with no presence of nodules False positives

21 936
22 1771
23 5504
24 10889
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25 3135
51 8791
52 166
53 1655
54 2031
55 1151
111 3246
112 25563
113 15156
114 19
115 5

Table A.9: The test data contains fifteen patients with no presence of nodules. This table
shows the number of false positives predicted by the single system.

Model 3 - Sequential system (S2)
Quantitative Qualitative

Patient Sensitivity Specificity Dice F2-score nodules
1 75.12% 99.90% 80.90% 77.33% 3/3
2 83.96% 99.90% 51.97% 6.37% 3/3
3 71.78% 99.90% 47.52% 59.61% 4/4
4 75.64% 99.90% 47.71% 61.29% 3/3
5 92.80% 99.90% 81.45% 87.90% 2/2
6 77.14% 99.90% 13.63% 26.93% 1/1
7 94.45% 99.90% 8.34% 18.41% 1/1
8 61.79% 99.90% 8.38% 17.42% 3/5
9 93.52% 99.90% 77.77% 86.51% 1/1

10 99.90% 99.90% 7.41% 16.66% 1/1
11 87.73% 99.90% 64.11% 76.46% 1/1
12 85.97% 99.90% 30.08% 49.31% 3/4
13 98.30% 99.90% 12.36% 26.00% 2/2
14 81.34% 99.90% 30.42% 48.72% 1/1
15 71.33% 99.90% 39.99% 54.30% 2/3
16 86.71% 99.90% 8.74% 18.98% 1/1
17 18.26% 99.90% 25.46% 20.59% 2/2
18 88.80% 99.90% 20.21% 37.67% 1/1
19 79.52% 99.90% 26.85% 44.56% 2/2
20 64.44% 99.90% 35.87% 48.87% 3/5
26 80.14% 99.90% 20.47% 37.00% 1/1
27 84.39% 99.90% 35.63% 54.54% 2/2
28 88.83% 99.90% 33.08% 53.06% 5/5
29 91.83% 99.90% 81.39% 87.35% 3/3
30 3.17% 99.90% 0.56% 1.10% 0/1
31 59.43% 99.90% 51.06% 55.77% 2/2
32 88.35% 99.90% 47.14% 65.46% 1/1
33 88.96% 99.90% 88.99% 88.97% 7/7
34 81.03% 99.90% 39.34% 56.91% 1/1
35 86.39% 99.90% 12.17% 25.11% 1/1
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36 79.56% 99.90% 42.05% 58.64% 4/4
37 100.00 % 99.90% 53.03% 73.84% 1/1
38 82.81% 99.90% 68.93% 76.64% 5/5
39 95.14% 99.90% 20.50% 38.73% 2/2
40 85.53% 99.90% 10.63% 22.41% 1/1
41 91.98% 99.90% 66.76% 79.91% 1/1
42 68.56% 99.90% 23.75% 39.08% 3/3
43 83.38% 99.90% 7.04% 15.63% 1/1
44 93.90% 99.90% 87.28% 91.13% 1/1
45 0.00% 99.90% 0.00% 0.00% 0/1
46 68 % 99.90% 16.47% 30.20% 2/2
47 76.35% 99.90% 17.75% 32.90% 1/1
48 55.55% 99.90% 39.40% 47.73% 1/1
49 91.05% 99.90% 11.35% 23.90% 2/2
50 44.40% 99.90% 10.98% 20.03% 2/2
56 0 % 99.90% 0 % 0 % 0/1
57 85.45% 99.90% 22.35% 40.14% 2/2
58 90.32% 99.90% 51.17% 69.16% 2/2
59 92.84% 99.90% 82.84% 88.56% 1/1
60 97.55% 99.90% 15.29% 30.94% 1/1
61 95.35% 99.90% 74.05% 85.51% 1/1
62 56.20% 99.90% 54.70% 55.59% 1/2
63 46.65% 99.90% 26.56% 35.82% 1/3
64 90.70% 99.90% 72.31% 82.33% 2/2
65 0.00% 99.90% 0.00% 0.00% 0/2
66 8.38% 99.90% 5.79% 7.10% 1/2
67 16.40% 99.90% 0.40% 0.97% 1/3
68 97.07% 99.90% 23.45% 43.03% 1/1
69 0.00% 99.90% 0.00% 0.00% 0/3
70 72.34% 99.90% 8.45% 17.98% 2/2
71 77.75% 99.90% 67.48% 73.29% 1/1
72 67.05% 99.90% 14.36% 27.17% 1/2
73 91.34% 99.90% 88.19% 90.05% 1/2
74 0 % 99.90% 0 % 0 % 0/2
75 67.96% 99.90% 13.36% 25.80% 1/1
76 73.50% 99.90% 11.37% 23.07% 1/1
77 77.27% 99.90% 2.74% 6.51% 1/1
78 49.56% 99.90% 32.03% 40.66% 6/7
79 98.06% 99.90% 34.40% 56.35% 2/2
80 97.14% 99.90% 75.80% 87.31% 1/1
81 6.15% 99.90% 10.04% 7.28% 2/4
82 86.02% 99.90% 86.49% 86.20% 6/6
83 87.33% 99.90% 22.04% 39.97% 1/1
84 97.09% 99.90% 7.15% 16.09% 1/1
85 99.43% 99.90% 3.76% 8.89% 1/1
86 89.94% 99.90% 80.74% 86.02% 1/1
87 87.63% 99.90% 21.16% 38.83% 4/4
88 97.19% 99.90% 8.13% 18.05% 2/2
89 71.83% 99.90% 22.82% 38.64% 4/4
90 49 % 99.90% 12.76% 22.94% 1/1
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91 89.50% 99.90% 74.07% 82.61% 3/3
92 93.12% 99.90% 2.37% 5.72% 1/1
93 84.64% 99.90% 75.56% 80.76% 5/6
94 89.14% 99.90% 68.04% 79.30% 2/2
95 0.00% 99.90% 0.00% 0.00% 0/1
96 0.00% 99.90% 0.00% 0.00% 0/2
97 65.54% 99.90% 49.49% 58.04% 2/2
98 100.00 % 99.90% 13.67% 28.37% 1/1
99 46.95% 99.90% 5.95% 12.50% 1/2

100 52.87% 99.90% 14.30% 25.44% 1/1
101 17.88% 99.90% 7.75% 11.74% 1/2
102 87.63% 99.90% 3.43% 8.11% 2/2
103 51.69% 99.90% 27.78% 38.45% 2/4
104 98.10% 99.90% 19.22% 37.13% 1/1
105 90.57% 99.90% 19.16% 36.37% 1/1
106 80.00% 99.90% 4.74% 10.88% 1/1
107 16.49% 99.90% 7.08% 10.77% 1/2
108 89.35% 99.90% 42.06% 61.63% 1/1
109 58.46% 99.90% 0.70% 1.72% 1/1
110 90.98% 99.90% 2.35% 5.65% 1/1

Table A.10: Results of the third dataset using the sequential system. The quantitative
measures sensitivity, specificity, Dice and F2-score are measured. The qualitative results show
the number of nodules correctly predicted in relation to the total number of nodules.

Model 3 - Sequential system (S2)
Patients with no presence of nodules False positives

21 2122
22 22998
23 6983
24 19110
25 14359
51 29120
52 11117
53 10567
54 11525
55 28184
111 3846
112 25201
113 21268
114 5960
115 2028

Table A.11: The test dataset contains fifteen patients with no presence of nodules. This table
shows the number of false positives predicted by the sequential system.
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