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Privacy-preserving smart meter control strategy
including energy storage losses

Ramana R. Avula, Tobias J. Oechtering and Daniel Månsson
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract—Privacy-preserving smart meter control strategies
proposed in the literature so far make some ideal assumptions
such as instantaneous control without delay, lossless energy
storage systems etc. In this paper, we present a one-step-ahead
predictive control strategy using Bayesian risk to measure and
control privacy leakage with an energy storage system. The
controller estimates energy state using a three-circuit energy
storage model to account for steady-state energy losses. With
numerical experiments, the controller is evaluated with real
household consumption data using a state-of-the-art adversarial
algorithm. Results show that the state estimation of the energy
storage system significantly affects the controller’s performance.
The results also show that the privacy leakage can be effectively
reduced using an energy storage system but at the expense of
energy loss.

Index Terms—Smart meter privacy, Bayesian hypothesis test-
ing, partially observable Markov decision process (PO-MDP),
energy storage losses, dynamic programming

I. INTRODUCTION

A smart grid (SG) is a next-generation energy network

with capabilities to improve grid reliability and efficiency of

power generation and distribution with smooth integration of

renewable energy sources. In this automated network, a smart

meter (SM) is a crucial component which measures the energy

consumption of the user and transmits the readings to the

utility provider at regular intervals of time. This raises privacy

concerns [1] since high-resolution readings can allow anyone

who has access to this data to infer about consumer’s behavior.

Since its introduction in [2], non-intrusive load monitoring

(NILM) techniques are known to be quite effective in disag-

gregating the smart meter readings and thereby detecting the

states of most of the general types of household appliances

[3]. A comparative study was done in [3], which shows that

the existing state of the art NILM algorithms are capable of

achieving detection accuracy up to 99% for certain appliance

types, which is quite concerning in the privacy context.

Addressing this issue, several privacy-preserving techniques

have been proposed in the literature, which are surveyed in [4],

[5]. Secure communication and cryptographic approaches [6]–

[8] may succeed in preventing the unauthorized third party

access, but they would fail to protect the consumer privacy

from a greedy authorized or compromised utility provider. A

promising physical layer privacy approach is load signature

moderation (LSM), where an energy storage system (ESS)

is used to moderate the consumer’s load profile in order to

hide appliances’ usage information. LSM using rechargeable
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Fig. 1: Schematic of the proposed smart metering system

where the energy management unit controls privacy leakage

to an adversary by using energy storage system with a model

describing its losses and one-step-ahead predictive control.

battery has previously been investigated in [9]–[14] to obtain

optimal control strategy under different privacy settings. How-

ever, all the works so far make some ideal assumptions such

as instantaneous control without delay, lossless ESS etc. These

idealized strategies may provide theoretic performance bounds

but the feasibility of such strategies in practical situations

must be further investigated. In this paper, we present a one-

step-ahead predictive control scheme modeled in a PO-MDP

framework using an ESS. Similar to [13], we use a privacy

metric based on Bayesian risk. The overview of the proposed

system is shown in Fig. 1. In this work, we restrict our analysis

to the electrochemical battery as an energy storage technology.

Nonetheless, the same approach can be followed for other

storage technologies by modeling them as their equivalent

electrical circuits [15]. For a battery system, we present a

model describing its losses in power conversion, losses due

to internal resistance and self-dissipation. To the best of our

knowledge, this is the first work to consider the non-idealities

in ESSs in the context of smart meter privacy.

The rest of the paper is organized as follows. In Section

II, we present a model for ESS considering the steady state

energy losses. We also present the charge and discharge

bounds of ESS and also quantify the energy loss associated

with a discrete control action. In Section III, we present an

overview of the system along with the control strategy. In

Section IV, we evaluate the performance of the controller with

real household data using a state-of-the-art NILM algorithm.

Lastly, we conclude the paper in Section V.
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II. ENERGY STORAGE SYSTEM MODEL

Since batteries stores the energy as chemical potential in

their electrodes, it can only be interfaced with a DC (Direct

Current) system. Hence, power converters are needed to inte-

grate the battery with an AC (Alternating Current) system. The

battery along with the power converters form the ESS. In this

work, we model the ESS using three simple electrical circuits

as shown in Fig. 2 to account for the steady state energy

losses. Even though several other processes of the ESS such

as capacity fade, increase in internal resistance, temperature

dependence etc., can also be considered, as a first step, we

restrict our focus to the steady state energy losses. In the

following, we present our analysis of the three-circuit model

in more detail.
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Fig. 2: Three-circuit energy storage system model

A. Losses due to self-dissipation

Self-dissipation occurs even if the ESS is not connected to

any load. Similar to [16], we model this phenomenon using

an RC circuit as shown in Fig. 2(a). The capacitor C holds

the charge content, Q of the battery and dissipates through a

parallel resistor R. In this circuit, the power converter and load

are together represented as a current source controlled by the

current flowing in the second circuit shown in Fig. 2(b). Given

the self-discharge rate γ and a constant current Ibat flowing into

the battery, the charge content of the battery is updated as

Qt+Δt = (1− γ) · Qt + β · Ibat (1)

where,

γ = 1− exp
(−ΔT

RC

)
; β =

−γΔT

log(1− γ)
(2)

B. Losses due to internal resistance

Similar to [16], the losses that occur in battery during its

charging and discharging operations are modeled using a series

resistor r, as shown in Fig. 2(b). The open circuit voltage of

the battery, VOC is represented as a voltage source controlled

by the capacitor charge Q in the first circuit shown in Fig. 2(a).

For an input power of P from the power converter, the current

flowing into the battery is given as

Ibat =

√
V2

OC + 4rP− VOC

2r
(3)

C. Losses due to power converters

As shown in Fig. 2(c), we model power converters as ele-

ments with a constant efficiency factor within their operating

region. For an input power of D from the load, the power at

the battery terminals can be written as

P = D · (ηc1{D ≥ 0}+ η−1
d 1{D < 0})

= D · δ(D) (4)

where ηc, ηd are the efficiency factors of AC-DC and DC-AC

converters respectively and 1{A} is equal to 1 if A is true, and

0 otherwise. δ(D) is the common factor for both operations.

D. Three-circuit ESS model

Integrating the three circuits by combining (1), (3) and (4),

the controller updates the energy state of the battery evolving

over time using the equation given as

Zt+Δt = (1− γ)Zt +
βVOC

2r

(√
V2

OC + 4rDtδt − VOC

)
(5)

where γ, r are time-invariant parameters, β depends on the

time step Δt and δt depends on the control variable Dt. By

limiting the battery current to Imax, from (3), we have the

control space limited as

Dmax =
1

4rηd

(
(VOC + 2rImax)

2 − V2
OC

)
(6)

Dmin =
ηc
4r

(
V2

OC − (VOC − 2rImax)
2
)

(7)

Due to the finite energy capacity of the battery Zmax, from

(5) we have the following constraints on Dt:

Dt,max =
V2

OC

4rηd

⎛
⎝(

2r
[
Zmax − (1− γ)Zt

]
βV2

OC

+ 1

)2

− 1

⎞
⎠

(8)

Dt,min =
ηcV2

OC

4r

⎛
⎝([−(1− γ)2rZt

βV2
OC

+ 1

]+)2

− 1

⎞
⎠ (9)

where [x]+ is equal to x if x ≥ 0, and 0 otherwise. In

comparision to (5), the energy state of an ideal lossless battery

evolves over time as

Zt+Δt,ideal = Zt + Dt ·Δt (10)

Using (5) and (10), the energy loss associated with a discrete

control action can be given as

Eloss(Zt,Dt) = Zt + Dt ·Δt− Zt+Δt (11)

III. SYSTEM OVERVIEW AND CONTROL STRATEGY

The proposed smart metering system uses an ESS for load

signature moderation. The ESS can be placed either in series

or in parallel configurations, in between the SM and house

as shown in Fig. 3. Both these configurations have been used

in the literature for SM privacy. Under ideal assumptions, the

two configurations are equivalent. However, considering the

energy losses, we have the following proposition.
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Fig. 3: Placement of ESS between smart meter and house.

Proposition 1. The average energy loss in the parallel con-
figuration is strictly less than that of series configuration.

Proof. Let X be the average energy demand by the house and

Y be the average energy request from the grid. Assuming that

the energy from the battery is not discharged back into the grid,

only (Y − X) flows through the ESS components in parallel

configuration, however, the total energy Y from the grid flows

through the ESS components in series configuration, leading

to higher energy losses.

In order to reduce the energy losses, we consider a system

with ESS in the parallel configuration as shown in Fig. 1.

The discrete time system is controlled for every time slot k
within a finite time horizon {1, 2, . . . , N}. Each time slot k is

of a fixed time duration T . Let e and q be the resolution of

energy and power measurements respectively. In the following

analysis, we use the capital letters to denote random variables,

their realizations by the lower-case letters and the range space

by calligraphic letters.

For each time slot k, Xk denotes the aggregate power drawn

by all the appliances in the house and is defined on X=
{0, q, 2q, . . . , xmax}. Zk defined on Z= {0, e, 2e, . . . , zmax}
denotes the energy available in the battery. The power drawn

by the ESS is denoted as Dk and it is the control variable

which is defined on D = {−dmin, . . . ,−q, 0, q, . . . , dmax},
where dmin and dmax are the maximum discharge and charge

power of the ESS respectively, given in (6) and (7). D∗k
defined on D denotes the desired battery power consumption

scheduled by the energy management unit (EMU). In the

presence of an ESS, the SM records the aggregate power

demands of consumer and ESS. In this work, we allow the

energy from the battery to be discharged to the grid resulting

in negative values of SM measurements. It is represented by

the random variable Yk = Xk + Dk which is defined on

Y = {−dmin, . . . ,−q, 0, q, . . . , xmax + dmax}. Hk defined

on H denotes the n-ary joint hypothesis of all the appliances

in the house and Ĥk defined on H denotes the hypothesis

detected by the adversary having access to the consumer’s

statistical and real-time data as well as the control strategy

employed by the EMU.

A. Bayesian risk

Similar to [13], we use detection-theoretic approach by for-

mulating the smart meter privacy problem into an adversarial

Bayesian hypothesis testing where an adversary having access

to the consumer’s statistical and real-time data tries to make a

guess on the hypothesis state using a decision strategy. In the

Bayesian formulation, each of the hypothesis test outcomes

is assigned a cost and the decision strategy that minimizes

the average decision-making cost will be employed by the

adversary [17]. The average cost or Bayesian risk function,

R, is given as

Rk =
∑

i,j∈H2

Ci,j · P (Ĥk = i | Hk = j) · P (Hk = j) (12)

where Ci,j is the cost of deciding Ĥk = i when Hk = j is

true. By setting the cost of a correct decision to zero and the

cost of an error to unity, the risk function gives the average

error probability of an adversarial detection strategy.

In this work, the accumulated minimum Bayesian risk
(AMBR) is chosen as a privacy metric, which is given as

AMBR =

N∑
k=1

R∗k (13)

where R∗k = min{Rk}. The AMBR is a good choice for

measuring privacy due to its operational meaning. It explicitly

characterizes the best possible detection performance achiev-

able by any adversary.

B. Control strategy

Ideally, the controller uses all the information available until

time k (denoted as Ik) to choose an action dk+1. However, as

described in [18], since Ik is increasing in dimension with k,

its sufficient statistic given by the posterior distribution of the

Markov chain Hk conditioned on Ik (denoted as πk) is used

instead of Ik to choose the action dk+1. For a given initial

battery state z0, this posterior distribution forms a information
state or belief state at time k, given as

πk(i) = P (Hk = i | Ik)
= P (Hk = i | πk−1, xk) (14)

where Ik = {z0, π0, x1, y1, π1, . . . , πk−1, xk}. The control

system is modeled as a PO-MDP controlled sensor, as shown

in Fig. 4, by making the following assumptions:

• The hypothesis of the house Hk evolves over time fol-

lowing a first-order Markov chain with a time-invariant

transition probability PHk|Hk−1
.

• The controller observes the Markov chain Hk only

through a noisy measurement Xk made with a time-

invariant observation probability PXk|Hk
.

• The control signal D∗k is generated by the controller using

time-dependent control strategy PYk|Xk−1,Zk−1,Πk−1
.
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Given the initial energy state, z0, the controller estimates the

state of ESS at any time k using the equation

zk = f(zk−1, dk) (15)

where dk = yk − xk and f is a deterministic function of

ESS model given by (5). As described in [17], the minimum

Bayesian risk function based on our assumptions is given as

R∗k(πk−1, zk−1, μk) =
∑
y∈Y

min
ĥ∈H

{ ∑
g,h,x∈H2×X

C(ĥ, h)·

PYk|Xk−1,Zk−1
(y | x, z) · PXk−1|Hk−1

(x | g)·
PHk|Hk−1

(h | g) · PHk−1
(g)

}
For the finite time horizon, the optimal control strategy is the

solution to the nonlinear optimization problem with objective

function given as

μ∗ = argmax
{μ1,··· ,μN}

N∑
k=1

R∗k(πk−1, zk−1, μk) (16)

subject to the constraints given as

PYk|Zk−1
(yk | zk−1) = 0 if

⎧⎪⎨
⎪⎩
yk < dk,min

or

yk > dk,max + xmax

The belief state space (denoted as Π) is a |H| − 1 di-

mensional unit simplex. Solving this optimization problem

requires discretization of Π in order to get a finite set. The

optimization variable in (16) is of dimension N × |Y| × |X |
and solving it in its original form is computationally complex

as the dimensionality of the the problem increases with N .

This can be formulated into a recursive dynamic programming

problem as given in the following proposition, the proof of

which follows from [18].

Proposition 2. For the finite horizon PO-MDP with model
given in Section III, the optimal control strategy μ∗ = {μ∗1, μ∗2,
. . . , μ∗N} is the solution to the following backward recursion:
Initialize VN (π, z) and then for k = N − 1, . . . , 1 iterate

Lk(πk−1, zk−1, μk) = R∗k(πk−1, zk−1, μ) +∑
xk,yk∈X×Y

Vk+1(πk, zk) · P (xk, yk)

Vk(πk−1, zk−1) = max
μk

{
Lk(πk−1, zk−1, μk)

}
δ∗k(πk−1, zk−1) = argmax

μk

{
Lk(πk−1, zk−1, μk)

}

With the designed optimal strategy μ∗, a real-time PO-MDP

controller is implemented as shown in the following algorithm.

Algorithm 1 Realtime PO-MDP controller

Initialisation: π0, z0
1: for k = 1 to N do

Pre-process :

2: Choose action y∗k = μ∗k(πk−1, zk−1)
ESS control :

3: if (y∗k < xk + dk,min) then
4: Limit yk = xk + dk,min

5: else if (y∗k > xk + dk,max) then
6: Limit yk = xk + dk,max

7: else
8: Allow yk = y∗k
9: end if

Post-process :

10: Update the belief state πk = T (πk−1, xk)
11: Update the ESS state zk = f(zk−1, yk − xk)
12: end for

IV. NUMERICAL EXPERIMENTS

The simulation experiments to validate our control scheme

are implemented in MATLAB using real household con-

sumption data from ECO reference dataset [19]. The control

strategy is obtained by solving the optimization problem using

the nonlinear programming solver based on interior point

algorithm [20]. We simulate a scenario where the controller is

tasked to protect the events of a water kettle every day between

8 AM and 9 AM. The controller chooses an action every

minute by observing the real-time appliance consumption data.

For this objective, a 12V 100Ah lithium-ion battery is selected,

which can sufficiently satisfy the power requirements of the

kettle. To simplify the problem, we assume a fixed VOC equal

to the nominal battery voltage. The parameters used in the

simulation are listed in Table I. The Markov chain probabilities

of the PO-MDP control model are estimated from 30 days of

labeled training data and listed in the Table II.

A. Visualization of control actions

With this setup, the control actions for different initial states

of the battery are simulated and are shown in Fig. 5. Due to

the measurement quantization, switching events are noticed as

peaks in the smart meter measurements as shown in Fig. 6.

These residual peaks are informative to an adversary operating

with high precision measurements. However, the cardinality of

the state space increases with measurement precision, which

increases the dimensionality of the optimization problem by

O(n2). Fig. 7 shows the evolution of the state of charge (SOC)

of the battery due to control actions. It is interesting to notice

that without any design objective on the battery state, the

control scheme is steering the battery towards the full charge

state. This result in the degradation of controller’s performance

which is discussed in the following.



TABLE I: Simulation parameters

Parameter Symbol Value
Max. appliance power demand xmax (W) 1700
Time slot duration T (s) 60
Time horizon length N 60
Power measurement resolution q (W) 500
Energy measurement resolution e (Wh) 5
Battery nominal voltage Vnom (V) 12
Battery capacity Qmax (Ah) 100
Max. allowed battery charging current Imax (A) 80
Max. allowed battery discharging current Imin (A) 80
Battery internal resistance r (Ω) 0.006
Battery self-discharge rate γ (%/month) 3
Power converter efficiency ηc, ηd (%) 95
Cardinality of X |X | 4
Cardinality of Y |Y| 8
Cardinality of Z |Z| 241
Cardinality of H |H| 2
Cardinality of Π |Π| 11
Max. allowed battery input power Dmax +2q
Min. allowed battery input power Dmin -2q
ESS model parameter β 0.017

TABLE II: PO-MDP control parameters

Parameter Value

Ci,j

[
0 1
1 0

]

π0

[
0.95 0.05

]T

P (Hk|Hk−1)

[
0.98 0.34
0.02 0.65

]

P (Xk|Hk)

[
1 0 0 0
0 0.17 0.14 0.17

]T

B. Evaluation of controller’s performance

To evaluate the performance of the controller, we simulate

an adversary using NILM algorithm. In particular, we simu-

lated Weiss’ algorithm [21] which extracts switching events

from the aggregate smart meter data and assigns each event to

the appliance with the best match in a signature database. This

algorithm is implemented using NILM toolbox developed by

[19]. We use 30 days of labeled training data to create the

signature database. Weiss algorithm utilizes three-dimensional

consumption data (i.e., real, reactive, and distortion powers)

in order to match an event signature. We tested its detection

performance by injecting the controlled battery current in-

phase to the supply voltage resulting in corrupted real power

measurements. The accuracy of the adversarial detection is

measured using F-score, which is given as

F-score =
1

1 + (FN + FP)/(2TP)
(17)

where FN, FP and TP denote false negative, false postive and

true positive respectively. The F-score lies between 0 and 1,

where F-score = 0 indicates no detection and F-score = 1

indicates complete detection.

The Weiss’s algorithm is simulated under different test

conditions using 30 days of validation data and the obtained

average F-scores, energy losses and the AMBR are listed in Ta-

ble III. It can be seen from the results that the AMBR and the

F-score are correlated. The test case without a battery resulted
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in the highest F-score. While using a battery, the controller

is able to reduce the F-score significantly. However, it can be

observed that the ability of the controller to preserve privacy

depends on the initial state of the battery. For this simulation

setup, the controller performed better when initialized with

a battery of 25%-50% SOC compared to full charge. This

indicates that if the battery state is steered towards 25%-50%

SOC by the end of the control time horizon, it would result

in better performance for the next control horizon. However,

this improved performance is achieved at the cost of increased

energy loss.



TABLE III: Evaluation of controller against NILM algorithm

with different initial battery states

Initial battery SOC (%) F-score Energy loss (Wh) AMBR
0 0.1333 40.421 152.57
25 0.0357 36.217 153.51
50 0.0357 36.230 153.51
75 0.2667 26.770 153.50
90 0.4833 14.174 153.49

100 0.6333 9.779 148.89
Without battery 0.7931 0 0

C. ESS model comparision

For the simulated battery, Fig. 8 shows the difference

between the % change in the state of charge of the battery

estimated by three-circuit model and an ideal lossless model

for different input powers. The model difference is particularly

significant at high power levels. Due to very low γ for

electrochemical batteries, the difference in state estimation is

negligible when comparing three-circuit models with and with-

out considering self-dissipation. However, for energy storage

systems with high self-dissipation rate such as flywheels, the

self-dissipation phenomenon cannot be neglected.
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V. CONCLUSION

In this paper, we presented a privacy-preserving control

scheme based on Bayesian risk and a three-circuit model

to estimate the energy loss associated with a control action.

The controller is modeled as a PO-MDP controlled sensor

to maximize the Bayesian risk function of an adversarial

hypothesis testing and the resulting nonlinear optimization ob-

jective is solved in a backward recursion. Extensive numerical

experiments were carried out to evaluate the performance of

the controller thoroughly. Especially, we tested the controller’s

performance against a state-of-the-art NILM algorithm using

real energy consumption data. We investigated the effect of

the initial state of the energy storage system on the controller’s

performance. An important conclusion from this work is that

the privacy leakage can be reduced by using an energy storage

system but at the expense of energy loss. Without an accurate

model, the error in state estimation propagates and if not

corrected, leads to suboptimal privacy control.

Future work will focus on the trade-off between the privacy

and energy loss, time dependency of the model parameters

as well as control strategy and including more energy storage

technologies.
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