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Abstract

This study investigates the suggestion system of a mobile browser. The goal of a sug-
gestion system is to assist the user by presenting relevant suggestions in an ordered list.
By weighting the different types of suggestions presented to the user, such as history,
bookmarks etc., it is investigated how this affects the performance of the suggestion sys-
tem. The performance is measured using the position, error and Mean Reciprocal Rank
of the chosen suggestion as well as the number of written characters. It is also measured
if the user chose to not use the suggestion system, by searching or entering the entire
URL. The weights were estimated using a Genetic Algorithm. The evaluation was done
by performing an A/B test, were the control group used an unweighted system and the
test group used the weights estimated by the genetic algorithm. The results from the
A/B test were statistically analyzed using BEST and Bootstrap. The results showed an
improvement of position, number of written characters, MMR and the error. There was
no change in how much the user used the suggestion system. The thesis concluded that
there is a correlation between the position of the desired suggestion and when the user
stops typing, and that weighting types is a way to improve said position. The thesis also
concludes that there is a need for future work in regards to evaluation of the optimization
algorithm and error measurement.
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1 Introduction

As of 2017, more than half of the world’s population had access to the internet1. Around half
of all internet traffic is mobile data traffic2, a traffic type that has been growing tremendously
in the last decade. Typing on a mobile device is considered inconvenient by many users. In a
study from 2012, 243 people were monitored while reading and typing on a smartphone and a
desktop computer [3]. The average typing speed on a smartphone was 21.79 words per minute,
compared to 59.27 words per minute on a desktop computer. The test subjects expressed that
typing on a smartphone is a problem. Another study showed similar results, where the average
typing speed on a virtual QWERTY-keyboard was 17.23 words per minute [46].

When navigating the web using a mobile browser, a user typically starts typing in an address
bar. As the user types, the browser suggests sites that are relevant for the user’s input. The
suggestions are represented as an ordered list, see Figure 1.1, where a higher order corresponds
to a higher position. Several studies have shown that a user will value suggestions with a higher
position more than those with a lower position [35, 32]. A study using eye-tracking showed
that, when presented with a list of suggestions, the user only looks at the top of the list [9].
Therefore, it is important for the browser that the correct or desired suggestion is placed high
in the list.

Figure 1.1: Visualization of how the suggestions are presented to the user

1https://en.wikipedia.org/wiki/Global_Internet_usage, accessed: 24-09-2018
2https://www.statista.com/topics/779/mobile-internet/, accessed: 24-09-2018
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1.1. Research Problem

To be able to suggest sites, the browser needs to store and utilize data about the user. It can
be data that the user actively saved, such as favorites and bookmarks. It can also be data that
the browser saved based on the user’s behavior, such as browser history. When suggesting
sites, the browser needs to combine these different types of sites.

To achieve the goal of providing relevant suggestions high in a suggestion list, thus decreasing
the typing required, there are several things the browser can utilize. As in all systems, it is
of interest to evaluate how well the system performs, and if other approaches could perform
better. One of most the popular methods for comparing two alternatives is A/B testing. The
testing method is widely used by large companies, e.g. Facebook [2] and Netflix [25] use the
method and both companies claim that A/B testing is the foundation for experimentation and
testing of new features or improvements of existing features. When performing an A/B test,
what to test and how to evaluate the results are two key aspects.

Instead of using the suggestions presented, a user has the option to either search using the
input string or enter a complete URL. It is not always a user’s intention to use the suggestions,
examples could be when a URL is not present in the user’s previous data or when the intention
is to search. However, an increase or a decrease in the usage of the suggestions could measure
the suggestions usefulness to the user.

1.1 Research Problem

Since typing on a mobile phone can be seen as inconvenient, reducing the required typing could
lead to better user experience. The suggestion system aims to minimize the required typing,
by collecting suggestions of different types. By weighting the suggestion based on type, the
position of the correct or chosen suggestion can be adjusted. The aim is to place the correct
suggestion as high in the list as possible. Changing input to minimize or maximize an output
is an optimization problem. By using logged data from the system, new weights could be
estimated to optimize the position.

To investigate how the weighting of types affect both position and typing, a test has to be
performed on real users.

1.1.1 Research Questions
This thesis aims to investigate if different types of suggestions are equally important for a user.
This will be done by answering the following questions:

1. How can the suggestion error rates be decreased by the introduction of weights in the
system?

2. How will users’ typing be affected by improving the position of the correct suggestion?

3. How can the position improvement of the correct suggestion increase the usage of sugges-
tions, as measured by the percentage of requests being an entered address or a search?

1.2 Delimitations

This thesis will investigate how different suggestion types (such as bookmarks, history, etc.)
are weighted against each other. It will not evaluate the string-matching that occurs before
weighting.

The weighting will be the same for all users, meaning that the values of the different weights
can be seen as constants that get sent to all the users. There might exist approaches where a
weight model is trained on the device, optimizing for the specific user, but due to performance
and privacy limitations, no individual weighting for the users will be considered.
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2 Background

2.1 Browser Suggestions

The conducted study of this thesis will be performed on a mobile browser. To understand
the rest of the thesis, it is of importance to understand how the suggestion system works.
Therefore, this section aims to provide a full overview of the suggestion system of the browser.

As the user starts to type in the address bar, the input string is sent to three different suggestion
providers. The different suggestion providers are:

• History suggestion provider that will provide suggestions from the user’s history.

• Bookmark suggestion provider that will provide suggestions from the user’s bookmarks.

• Favorite suggestion provider that will provide suggestions from the user’s favorites.

Every website in the suggestion providers are represented as a suggestion item. A suggestion
item consists of a title and a URL (e.g. a suggestion item corresponding to Facebook would
have a title Facebook and URL http://facebook.com). Each suggestion provider will perform a
string-matching on the input string against each possible suggestion item. If a match occurs
a string-matching score will be calculated, the string-matching algorithm calculates the score
based on how many characters that match and at what position the matching occurs. The
string-matching score will be used to calculate the suggestion score, the suggestion score is
calculated using:

suggestionScoretype = weighttype ⋅ stringMatchingScore + basetype

As can be seen in the formula above each type of suggestion has its own weight and base. A
suggestion type corresponds to where string-matching occurred (e.g. a match in the title of a
history suggestion would be of type history_title). The different types can be seen in Table
2.1. weighttype is the weight, for a certain type, that controls how much the string-matching
score contributes to the suggestion score. basetype is the base weight that controls how much
the type contributes to the matching score overall.

3



2.1. Browser Suggestions

Once all providers have returned a list of suggestions, they are sorted by their suggestion score,
with a higher score being placed higher in the suggestion list. The suggestions are graphically
presented to the user, see Figure 1.1.

There are several ways the user may proceed from the address bar and the suggestion system.
The user can select a suggestion, search on the input string or enter an address and navigate
to it. When the user has performed one of the actions, a request is sent to the internet, see
Figure 2.1. Some of the request data is also sent to the browser’s server to be logged, the
following data gets logged:

• Title of the correct suggestion

• URL of the correct suggestion

Figure 2.1: Visualization of how a request is sent from the browser

4



2.1. Browser Suggestions

Table 2.1: The different types used when calculating the suggestion score

Name Description
BOOKMARK_TITLE_BASE Base for a title match in a bookmark item
BOOKMARK_TITLE_WEIGHT Weight for a title match in a bookmark item
BOOKMARK_URL_BASE Base for a URL match in a bookmark item
BOOKMARK_URL_WEIGHT Weight for a URL match in a bookmark item
FAVORITE_TITLE_BASE Base for a title match in a favorite item
FAVORITE_TITLE_WEIGHT Weight for a title match in a favorite item
FAVORITE_URL_BASE Base for a URL match in a favorite item
FAVORITE_URL_WEIGHT Weight for a URL match in favorite item
HISTORY_TITLE_BASE Base for a title match in a history item
HISTORY_TITLE_WEIGHT Weight for a title match in a history item
HISTORY_URL_BASE Base for a URL match in a history item
HISTORY_URL_WEIGHT Weight for a URL match in a history item

HISTORY_TYPED_TITLE_BASE Base for a title match in a history item
that the user has typed

HISTORY_TYPED_TITLE_WEIGHT Weight for a title match in a history item
that the user has typed

HISTORY_TYPED_URL_BASE Base for a URL match in a history item
that the user has typed

HISTORY_TYPED_URL_WEIGHT Weight for a URL match in a history item
that the user has typed

The different types of values used to calculate suggestions (shown in Table 2.1) are stored on
the server. The server sends the values to the mobile, where it is used to weight different
suggestions types against each other. The browser supports A/B testing on the values, by
dividing the users into groups and sending different values of the types to each group. There
are several variables to adjust when dividing users into group.
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3 Theory

This chapter will present the theory required to understand the thesis and will follow the
same order as Chapter 4 and 5. It will start off by presenting different approaches to measure
suggestion performance. It will then introduce weight optimization, followed by the theoretical
foundation for the genetic algorithm. To evaluate an A/B test, several approaches exists. This
chapter will present the frequentist, the Bayesian and the bootstrap approach. Lastly, work
related to weighting and evaluation of different types will be presented.

3.1 Measuring Suggestion Performance

This section will present two different performance metrics: Mean Average Precision and Mean
Reciprocal Rank.

3.1.1 Mean Average Precision
Mean Average Precision (MAP) is a metric to evaluate an ordered list of items, where several
items could be relevant. A higher order corresponds to a higher position in the list, the highest
position is 1. MAP is defined as:

MAP (L) = 1

∣L∣

∣L∣

∑
i=1

AveragePrecision(Li)

Where L is a set of ordered lists, Li is the ith ordered list containing items and
AveragePrecision(Li) calculates the average position of the relevant items in Li. [36]

3.1.2 Mean Reciprocal Rank
Mean Reciprocal Rank (MRR) is metric to evaluate a ordered list of items. MRR only considers
the highest positioned relevant item. The highest position on the list corresponds to a position
of 1. It is a equivalent to MAP when there only exist one relevant item. A change from position
1 to 2 (0.5) is much larger than a change from position 9 to 10 (0.011). [13]
MRR is defined as:

MRR(L) = 1

∣L∣

∣L∣

∑
i=1

1

positioni
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3.2. Weight Optimization

Where L is an ordered list of items and positioni is the first relevant item.

3.2 Weight Optimization

Optimization is the task of minimizing or maximizing a function, by changing the inputs
to the function. In the suggestion system such a function measures the performance of the
suggestions. The output of the function varies depending on what weights the suggestion
system receives. The weight can therefore be considered to be input to the performance
function. There exist many algorithms to solve an optimization problem. This section will
present the theory to the Genetic Algorithm.

3.2.1 Genetic Algorithm
A genetic algorithm is a subclass of evolutionary algorithms. It is a search-based metaheuristic
used for solving optimization problems. A genetic algorithm has a set of steps to be performed.
The idea behind the genetic algorithm is loosely based on natural selection, from which most
of the terminology is fetched. The main objective is to have a population of candidates that,
through evolution, improves each generation. The performance of a solution candidate, called
chromosome, is measure by a fitness score. [37]

A flowchart displaying the required steps in a genetic algorithm can be seen in Figure 3.1.
This section will describe each step in the flowchart.

Figure 3.1: Flowchart showing the procedure of a genetic algorithm

Terminology

The terminology is, as stated before, borrowed from natural selection and biology. A candidate
for a solution, for example a possible set of values/combinations for the given problem, is called
a chromosome. If the given problem would be to estimate five numerical values for maximizing
a function, a chromosome would be a set of five numerical values. A chromosome consists of
genes, in the given example a gene would be one of the five numerical values. All chromosomes
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together are called population. For a graphical representation of genes, chromosomes and a
population see Figure 3.2. All chromosomes in the population are evaluated using a fitness
score, a score measuring the performance of a chromosome. A number of chromosomes from a
population are selected, using a selection method, to breed the next generation. The procedure
to generate new chromosomes from the selected chromosome is called crossover. To avoid local
optimas, a randomness is introduced, called mutation. This procedure is repeated generation
after generation until a termination criterion is met. The chromosome with the highest fitness
score from the last generation will be used as the solution to the problem.

Figure 3.2: Figure showing how the weights could be represented in the genetic algorithm

Representation

A chromosome is often represented as an array of genes. How the genes are represented is
problem and implementation specific. The chromosome could be represented as an array of
bits, permutations, real numbers or problem specific objects. [37]

Fitness Score

The fitness score or the fitness function, is the performance measurement of the algorithm.
Depending on the problem, the aim is to either maximize or minimize the score. The fitness
function is the only part of the algorithm where it can receive directions on how to optimize
the problem. [37]

Selection

The selection of which chromosomes that breeds the next generation can be done in a number
of ways. This section will present roulette wheel selection, stochastic universal sampling and
tournament selection.

The roulette wheel selection is a selection method that uses the following formula to calculate
the probability that a chromosome is chosen for breeding [37]:

P (xi) =
f(xi)

n

∑
j=0

f(xj)

Where xi is a chromosome, f(x) returns the fitness score of a chromosome and n is the number
of chromosomes in the population.

A chromosome is then chosen using the probability given from the formula above. This is
repeated until the wanted number of chromosomes are picked. The name originates in the
method being represented as a spinning roulette wheel, where a higher probability corresponds
to a larger area on the spinning wheel. [24]

Stochastic Universal Sampling (SUS) is another selection method, similar to roulette wheel
selection. Following the roulette wheel analogy, where a better fitness corresponds to a larger
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area on the wheel, SUS can be seen as a spinning roulette wheel with several pointers that are
equally spaced, meaning that SUS only needs to be run once to select several chromosomes.
[1]

Tournament selection is a selection method that randomly selects a fixed number of chromo-
somes, the number of chromosome to select is called tournament size. From those chromo-
somes, the one with the best fitness score is chosen for crossover. This is repeated until the
desired number of chromosomes are selected for crossover. [4]

In [18], a comparison between tournament, roulette wheel and Stochastic Universal Sampling
selection is presented. The comparison is done by running three different populations in parallel
on the same problem, each using one of the three selection methods. The results were obtained
by comparing fitness score on the last generation. The result showed that the roulette wheel
had the best fitness score and showed the most stable results.

To ensure that the best chromosomes remains in the population it can be directly transferred
to the next generation. This method is called elitism.

Crossover

Crossover is when two or more chromosomes (called parents) from the current population
creates one or more chromosomes (called children) for the next generation. This is done by,
using some method, combining the genes in the parents. There are several methods and
techniques to perform a crossover.

One of the first crossover method suggested was the 1-point crossover [30]. 1-point crossover
will use two parents to breed two children. A point or index in the chromosome is selected,
most often randomly. All genes before the point in the first parent will be copied to the first
child, and all genes after the point in the first parent will be copied to the second child. The
same method is then applied to the second parent. This will result in two children who both
have different genes from each parent. See Figure 3.3 for a graphical representation of this
example.

Figure 3.3: An example of a 1-point crossover procedure

The 1-point crossover can be generalized to a k-point crossover, where k points are selected
and divided to the children in the same way. Traditionally, the chosen values are: k = [1..2]
[29]. See Figure 3.4 for an example. However, [20] highlights that a crossover with few points
will lead to a positional bias, where genes who are closer located in the chromosome will have
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a higher chance of being passed on to the same child. In [29], an investigation of different
values of k was performed. While there was no clear correlation between a higher k and better
performance, the result showed that a low value of k (k = [1..2]) led to a worse result than
higher values of k.

Figure 3.4: An example of a k-point crossover procedure, where n = 2

If each gene must be unique then a k-point crossover would be problematic, since there is a
risk of a duplicate being transferred from the parents. This requirement is the case when a
genetic algorithm is used to solve The Travelling Sales Problem. A Cycle Crossover is suitable
[37]. The cycle crossover cycles the genes in each parent to create two children with the unique
genes from each parent.

A diagonal crossover uses more than two parents to create children. See Figure 3.5 for a
diagonal crossover where three parents produce three children. Practical evaluation of the
diagonal crossover has shown that using more crossover points and more than two parents
leads to better performance [19].
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Figure 3.5: An example of a diagonal crossover with three parents and three children

A uniform crossover will, for each position in the parent, randomly selects which parent pass
the gene to which children. This method eliminates the positional bias, since genes who are
positioned closer in the chromosome do not have a higher probability of being transferred to
the same children compared to genes who are further away.

Mutation

The mutation introduces randomness in the algorithm and is used to increase exploration by
changing the value of a gene based on randomness. Even though the mutation rate is low, the
mutation will make the genetic algorithm perform notably better compared to no mutation
[38].

There are several mutation operators that can be used in a genetic algorithm. This section
will present the following mutation types: bit-flip, uniform, polynomial and Gaussian.

A bit-flip operator can be used on chromosomes with binary representation. The bit-flip
operator will consider each gene and using a given probability flip the bit (where 0 becomes 1
and vice versa). The probability for a flip can vary, [37] suggests a low value of the probability
(around 0.001) and [11] uses a probability p based on the length of the chromosome n:

p = 1

n

A uniform mutation uses the uniform distribution between the legal values of a gene to calculate
the new value. It does not consider the current value of the gene.

A Gaussian mutation is a mutation type that performs the mutation of a gene using a Gaussian
distribution, also called normal distribution. Once a gene has been selected for mutation, the
value mutates using the following formula:

Gaussian(x) = 1

σ
√
2π

e−
(x−µ)2

2σ2

Where:

11



3.3. Evaluation of Results

• x is the numerical value of the gene

• σ is the standard deviation

• µ is the mean of the distribution

A polynomial mutation uses the polynomial distribution to mutate the value of the gene. [15]

In early works of the Gaussian operator [28], it was compared to the bit-flip mutation. The
comparison showed that the Gaussian mutation produced better results for most cases. Using
a Gaussian mutator can not only enhance the quality but also the robustness of the genetic
algorithm [21].

In [8], a comparison between uniform, polynomial and Gaussian operator was performed. The
comparison was evaluated on an optimization problem using the criterias: efficiency, reliability
and accuracy. The study showed that in terms of efficiency, uniform and Gaussian was the
fastest to converge, with polynomial requiring longer time. In terms of reliability, the operators
performed almost the same. In terms of accuracy, polynomial performed best, with uniform
being second and Gaussian third. Another interesting finding the authors note is that using a
mutation range that narrowed down through the generations was preferable for better results.

Termination Criteria

Termination criteria refers to the criteria that makes the genetic algorithm stop and return
the chromosome with the highest fitness score. There are several ways to determine when to
terminate a genetic algorithm. [37] claims that when the chromosome with the highest fitness
score is stable and do not change for a number of generations, the algorithm should terminate.
[27, 8] use a fixed number of generations before termination. In [43] the authors note that
when using a fixed number of generations the number is often chosen by doing test runs to
determine a suitable value.

3.3 Evaluation of Results

A/B testing is a test approach where two or more different variations of a system is tested on
users. This is done by dividing the users into groups and then assign a variation of the system
to each group. The aim for A/B testing is to evaluate what variation of the system is the most
valuable, measured by some chosen metric. [45]

However, even though the groups A and B in A/B testing may be the same size, the individuals
in the groups can never be the same. By exhibiting individual behavior, this will introduce
randomness or noise in the data. When measuring a specific metric or parameter using A/B
testing it is crucial to evaluate if the result measured is, by some probability, due to the
variation between the groups or due to noise in the data. [45]

There are several statistical approaches to interpret data from an A/B test. Two common
approaches are frequentist and Bayesian [16, 42]. Both frequentist and Bayesian approach is a
parametric test, since it makes assumptions regarding the distribution of the data. Bootstrap
is a statistical test that does not necessarily need to make any assumptions about the data
[41].

A common usage of an A/B test is to evaluate the mean of a parameter. When evaluating
the mean of a parameter the frequentist approach would be to use either a t test or a z
test, depending on sample size [34]. The Bayesian approach would be to use the Bayesian
Estimation Supersedes the t test (BEST) [33].
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3.3.1 Frequentist Approach
In a frequentist approach the following steps can be performed to execute and evaluate an
A/B test [44]:

• Choose what parameter to measure during the A/B test

• Formulate the null hypothesis

• Formulate the alternative hypothesis

• Choose value interval to reach statistical significance

• Calculate p-value to determine statistical significance

Null Hypothesis

A null hypothesis H0 is the hypothesis that the test wants to disapprove. If the null hypothesis
can be disapproved, the test has reached statistical significance and the data have a probability
of being significant of some value p.[44]

If two groups are comparing a parameter µ using an A/B test, the null hypothesis could be:

H0 ∶ µa = µb

Alternative Hypothesis

An alternative hypothesis HA is the hypothesis that the test aims to fulfill [44]. Using the
same example as above, the alternative hypothesis would be:

HA ∶ µa ≠ µb

Statistical Significance

If the null hypothesis can be disproven, the results are said to be statistically significant. The
null hypothesis can only be disproven at a certain probability, called the p − value. How the
p-value is calculated is dependent on the user group and what parameters to measure. E.g. if
a mean of a parameter is calculated, depending on the size of the user group either a t test or
a z test should be performed [34]. These tests will result in a p-value. What p-value interval
that is acceptable is problem specific, although p < 0.05 is commonly used. However, the tests
assumes that the data is normally distributed. [44]

There is controversy and much debate around statistical significance and its p-value. There is
a misconception that the p-value is the probability of the null hypothesis being true with the
given data [26], while it is the probability of the data given that the null hypothesis is true
[12].

3.3.2 Bayesian Approach Using BEST
To use Bayesian statistics to evaluate an A/B test, the Bayesian estimation supersedes the t
test (BEST) can be used. This section will present BEST, as described in the original paper
[33]. The Bayesian approach is based on the Bayes’s theorem [17]:

p(H ∣D) = p(H)p(D∣H)
p(D)

Which can also be written with A and B, but since H corresponds to hypothesis and D to
data it is more appropriate with this naming convention. Just like the frequentist approach,
the Bayesian approach makes assumptions about the distribution of the data.
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BEST uses as a prior, a distribution of allocation of credibility before the data is applied.
The prior should either be a distribution from an earlier test or a distribution based on the
characteristics of the observed data. Making this prior vague and wide will let the data control
the Bayesian inference.

The observed data also needs to be represented using an appropriate distribution. The imple-
mentation referred to in the paper [33], as well as other implementations [14], uses a noncentral
t-distribution to represent the observed data. However, [33] notes that it is important to use
the distribution that is most appropriate to describe the observed data.

Using Markov Chain Monte Carlo (MCMC) the prior and observed data is applied, resulting
in the posterior distribution. The result of BEST is two posterior distributions, one for group
A and one for group B. To measure the lift, how much relatively better group B performed
compared to group A, the following formula can be applied [14]:

lift =Mean(posteriorA − posteriorB
posteriorB

)

3.3.3 Bootstrap
Bootstrap does not make assumptions about the data, rather it creates a distribution by
drawing samples from the data. By resampling the data with replacement, each sampling will
create a mean value of the data. The means from each sample will generate a distribution
over the means in the data. [41]

The approach is performed by the following steps [41]:

1. Repeat r times:

a) Draw n samples from the data
b) Calculate the mean of the n samples

2. Use the means to:

• Draw histogram
• Find confidence interval
• Calculate standard deviation

3.4 Related Work

This section will present work relevant to the problem and approach for this study.

A meta-search engine combines search results from multiple search engines, aiming to provide
better search results from different sources. This could be compared to the suggestion system
of a browser, when combining suggestions from different sources. A challenge is to efficiently
merge the search results from the different engines. [10] propose a model to merge the results
using 5 different metrics: position in original list, number of duplications between search
engines, the match between the search term and the content of the result, the capacity of the
search members and if the result is in the users’ interest area. The study outperformed regular
search engines in the experiment, and placed similar to other meta-search engines. The paper
concluded that when a user had their interests defined, the meta-search engine outperforms
its competitors in terms of personalization and satisfaction.

In [39], the constants for a PID-controller is estimated using a genetic algorithm. The PID-
controller is used to control the steering of a missile system. The constants have a binary
representation. To select which chromosomes to proceed to the next generation a roulette

14



3.4. Related Work

wheel selection is used in combination with elitism. To breed new chromosomes, a multi-point
crossover method is used. Finally, to mutate the new candidates a flip mutation is performed.

It is noteworthy that no related work that investigated weighting using constants on a type
level was found.
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4 Method

To be able to answer the research questions presented in Chapter 1, several results need to be
obtained. This chapter will present the method used to obtain the results. It can be divided
into several steps. An overview of these steps can be seen in Figure 4.1. The first step is to
collect the necessary user data regarding user suggestions. Once the data is collected, an offline
simulation can be performed, where a genetic algorithm was applied to estimate new weights
for the system. These weights would then be applied to the browser during A/B testing,
where the control group used the original unweighted system and the treatment group would
be using the weights estimated by the genetic algorithm. Finally, the data from the A/B test
can be evaluated, using BEST, to draw conclusions regarding the effects of the weights. This
chapter will follow the same chronological order as presented in Figure 4.1 with the exception
of starting off by describing Error, a key concept for the rest of the chapter.
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Figure 4.1: Overview of how the method was performed

4.1 Error

The suggestion list presented to the user is sorted on suggestion score, where a higher score
corresponds to a higher position in the list. When evaluating a suggestion list, it would be of
interest to calculate the error of the suggestion list. Since it is known which suggestion was
chosen, one could think it would simply be how many suggestions are placed above the correct
suggestion. A well established measurement of error, also based on the position, such as MRR
could be suitable. However, since this thesis do not consider the string-matching, and rather
aims investigate different suggestion types, such a measurement could be misleading. Let’s
first consider an example in Figure 4.2, where all suggestions are of the same type.

Figure 4.2: An example of a suggestion list with where all suggestions are of the same type

Using an error measurement based on position would yield a different error for each suggestion
in Figure 4.2. However, the error measurement should be used when optimizing the different
types of suggestions. In this example, the weights do not affect the positioning. Therefore,
adjusting the weights would have no effect on the positioning. Using a error measurement such
as MRR would yield a misleading error, since there is no type specific error in this example.

Let’s consider another, but similar, suggestion list, presented in Figure 4.3. Examining the top
two suggestions in the list, Suggestion 1 and Suggestion 2, it can be seen that both are of the
same type. As stated before, this means that only the string-matching score can differ and is
the reason why one is placed higher than the other. Since only the types should be optimized,
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and not string-matching score, it would be wrong to value one of the suggestions over the
other. If Suggestion 3 was the correct suggestion, weighting the types differently could have
impacted the ordering, potentially placing it above Suggestion 2 and Suggestion 1. A final but
important observation from the example is that the weighting could also affect the positioning
of Suggestion 4, potentially placing it above Suggestion 3 but never above Suggestion 1 or
Suggestion 2.

Figure 4.3: An example of a suggestion list with multiple suggestions of the same type

From the observations from the examples it can be concluded that suggestions below the
correct suggestion are not off interest. It can also be concluded that suggestions above the
correct suggestion of the same type are not of interest, since those suggestions can never change
order. The suggestions of interest for the error measurement is suggestions above the correct
suggestions of a different type. Using this logic, this thesis will let the error e of a suggestion
with index x (where 1 is the topmost item) be the sum of all suggestions with a lower index
that are of a different type. This can be described in the following formula:

ex =
x

∑
i=1

⎧⎪⎪⎨⎪⎪⎩

1, if typex ≠ typei
0, otherwise

where typex is the suggestion type of the suggestion with index x.

Going back to the suggestion list in Figure 4.3 and using the formula above, the error for the
different suggestions can now be calculated. The error for the different suggestions can be seen
in Table 4.1. This error will be the metric to evaluate the offline simulation.

Suggestion Position/Index Error
Suggestion 1 1 0
Suggestion 2 2 0
Suggestion 3 3 2
Suggestion 4 4 1

Table 4.1: Table with the error for the suggestions from Figure 4.3

4.2 Data Collection

In Chapter 2, it was explained that some data was logged when a request was made. The
following data was sent and logged:

• Title of the correct suggestion

• URL of the correct suggestion

To be able to apply a genetic algorithm and to evaluate the results using A/B testing, additional
data had to be sent and logged. The extended data collection was implemented so that the
browser also sent the following data:
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• Number of written characters

• List position of the correct suggestion

• Title of the correct suggestion

• URL of the correct suggestion

• A list of all suggestions from the top of the list down to a maximum of five suggestions
below the correct suggestion, including the following information:

– Type of match (see Table 2.1 for the different types)
– Position in suggestion list
– Suggestion score
– Value of base_<type>
– Value of weight_<type>

The data collection was made in two steps: one for the training data and one for the data
from the A/B test. The collection was made on the same user group for both collections.

4.2.1 Training Data
To estimate new weights, training data was needed. The training data only needed to contain
requests where the user picked a suggestion. Around 100,000 such requests could be collected
each day. Due to time constraints it was decided that 500,000 requests were needed for the
genetic algorithm. 500,000 also seemed like a reasonable amount of data to use for the genetic
algorithm, to not make the execution time of it too long.

4.2.2 A/B Test Data
The A/B test data required to include all types of requests:

• Requests where the user has selected a suggestion

• Requests where the user has performed a search of the input string

• Requests where the user has entered a complete address

It was decided that as much data as possible were to be collected. There was a time constraint
for the collection and it was decided that 8 days was sufficient to collect data for the A/B test.

4.3 Offline Simulation

To facilitate the estimation of new weights using a genetic algorithm, a method to measure
improvements when the weights are adjusted must exist. This section will describe how new
weights could be tested on the user data to see how the error is impacted.

The user data contains the suggestion list presented to the user. It contains base, weight,
string-matching score (SMS) and suggestion score. It also contains the position of the correct
suggestion and the position of the other suggestions. With this information the error for each
suggestion can be calculated, see Section 4.1.
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4.3.1 Example of an Offline Simulation
To describe how the offline simulation is performed more clearly, an example will be presented.
In Figure 4.4 an instance from the user data is shown. It should be noted that base and weight
are the same for all suggestion items, which corresponds to an unweighted system. This means
that the position is only based on the string-matching score (SMS in the figure). The correct
suggestion, the suggestion the user clicked, is Suggestion 5.

Figure 4.4: Example of an unweighted instance of user data used in the offline simulation

When the weights are changed by an optimization approach, the order of the suggestions needs
to be changed. An example of new weights has been added to the example. How the new
weights affect the user data can be seen in Figure 4.5. The string-matching score is unchanged,
but the rest of the values has been affected. The position, and more importantly the error has
changed for the suggestion items. The error of the correct suggestion has changed from 4 to
2, which is an improvement.

Figure 4.5: Example of an instance how the suggestions from Figure 4.4 are adjusted with
new weights

This procedure can now be repeated for each user data entry and for all chromosomes in the
genetic algorithm.

4.4 Estimation of Weights Using a Genetic Algorithm

This section will present how the genetic algorithm was used to optimize the weights. As the
theory stated, the configuration of the genetic algorithm is problem specific. To evaluate what
configuration was suitable an evaluation was done. This evaluation is presented in Appendix
A. Configuration 2 had the best fitness score after the execution. Therefore, the configuration
from Configuration 2 will be used.

4.4.1 Framework for Genetic Algorithm
In [22], a Python-based framework for evolutionary algorithms is presented. The framework,
named Distributed Evolutionary Algorithm in Python (DEAP), is open source and aims to
provide a toolbox for performing evolutionary algorithms, including genetic algorithms. The
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software is written to provide a toolbox where it is easy to extend or provide tools. Adding a
problem specific representation or operator is therefore trivial. DEAP has been used in many
other research projects [40, 47, 23].

4.4.2 Fitness Score
The fitness score used by the algorithm will be average error for a chromosome. The average
error will be calculated on the training data set.

4.4.3 Representation
The weights are represented as numerical values. Each chromosome will consist of 16 numerical
values, representing the different weights.

4.4.4 Selection
In the evaluation in Appendix A, tournament selection exhibits the best results. Therefore,
tournament selection with a tournament size of 5 was used. Elitism with the best chromosome
being transferred to the next generation without crossover or mutation was applied.

4.4.5 Crossover
Many crossover methods presented in the theory suffered from some degree of positional bias.
To avoid the positional bias, a uniform crossover was chosen.

4.4.6 Mutation
The Gaussian mutation operator will be used. By using the Gaussian Mutation Operator
the new value will be randomly chosen using a normal distribution (also known as gaussian
distribution). The mean of the distribution will be the current value of the gene. The standard
deviation was, through the evaluation in Appendix A, chosen to be 400.

4.4.7 Summary
The final configuration used in for the genetic algorithm can be seen in Table 4.4.7.

Type Value
Population Size 20
Number of Generations 200
Chromosome Representation Numerical
Fitness Score Average Error
Selection Tournament Selection, Size = 5
Crossover Uniform Crossover
Mutation Gaussian Mutation, σ = 400
Mutation Probability 0.01
Elitism 1

Table 4.2: Table with the final configuration for the genetic algorithm

4.5 A/B Testing

An A/B test are performed to measure and evaluate the effects of the using a weighted system,
compared to an unweighted system. The groups consisted of a test group (weighted system)
and a control group (unweighted system). The population of the test was the user base of the
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browser. New or existing users were not considered different. The users were randomly and
evenly split. There existed countries where an A/B test was already in progress. Since A/B
testing is about changing one feature and measure its effects, those countries was excluded
from the A/B test performed in this thesis. No other exclusions or filtering of the user base
was made. The following countries were excluded:

• USA

• Russia

• Ukraine

• Bangladesh

• Indonesia

• India

The parameters to be evaluated were:

• Number of characters written for a request

• The error of the correct suggestion for a request

• The position of the correct suggestion for a request

• The percentage of the requests being searches

• The percentage of the requests being addresses entered

From these two groups the average for each of the metrics can be calculated and compared.
However, it is important to evaluate the results with a statistical approach, to evaluate if
the results are significant or not. The evaluation was done using both Bootstrap and BEST.
BEST was chosen since it is a recognized method to evaluate A/B tests and the posterior
distributions are effective to compare. But BEST does require an assumption regarding the
prior data and the distribution of the observed data. As will be described more detailed below,
the assumptions were made to minimize the effect on the posterior distribution. To validate
the results further, evaluation using Bootstrap was also done, a method not requiring any
assumptions.

4.5.1 BEST
The test was performed once for each parameter to evaluate, with identical implementations.
The implementation was fetched from [14] and modified to suit the data.

The prior mean distributions are represented as normal distributions, as [33, 14] suggests. The
normal distribution is defined by a mean µ and τ . µ is calculated as the pooled mean for both
the test group and the control group, meaning that µ will be the same for both groups. τ is
calculated with the formula:

τ = 1√
100 ∗ pooled_std

The pooled standard deviation is multiplied with 100 to create a wide distribution.

The prior standard deviation distributions are represented as uniform distributions, as sug-
gested by [33, 14]. Like the prior mean distributions, pooled values from both the test and
control group were used. The uniform distribution is defined as:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1
b−a , for a ≥ x ≥ b
0, for x < a or x > b
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The starting value a is set to:
a = pooled_std

1000

The end value b is set to:
b = pooled_std ⋅ 1000

The prior distribution of the observed data is in both [33, 14] represented as noncentral t-
distribution. However, a noncentral t-distribution do not represent every observed parameter
in the data. A t-distribution is a continuous distribution, while the position, error, number
of written characters, number of searches and number of entered addresses are discrete and
non-negative. An intuitive distribution for a discrete and non-negative distribution is the
Poisson distribution. However, the variance is greater than the mean, making the distribution
overdispersed and a Poisson distribution is not possible. A suitable probability distribution
for an overdispersed Poission distribution is a negative binomial distribution [31]. Therefore,
the observed data for position, error, number of written characters, number of searches and
number of entered addresses are modeled using a negative binomial distribution. MRR is
modeled as a noncentral t-distribution since it is continuous.

Using the prior and the sampling algorithm Markov Chain Monte Carlo (MCMC) is performed
to calculate the posterior distribution. The number of steps before the algorithm has reached
a suitable convergence was set to 10,000, and then the algorithm went to 25,000 steps. These
steps intervals were recommended in the implementation of [33, 14].

4.5.2 Bootstrap
Bootstrap was implemented as the steps described in Section 3.3.3. The number of iterations
r was set to 1000, as in [41]. The entire data set was used each sample.
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5 Results

5.1 Data Collection

The data collection was divided into two parts. The first part consisted of collecting data of
the unweighted system to use as training data. The second part was the data collection for
the A/B testing. The population of the data collection was the same for both parts.

5.1.1 Training Data
500,000 requests were collected as training data during a few days. Only requests where
the user had chosen a suggestion was collected, no modification or filtering other than those
stated was used when collecting the data. The distribution over the suggestion types shown
and chosen can be seen in Figure 5.1. With 92.7 %, history is by far the most visible suggestion
type. It is also the most chosen suggestion type, making up 90.6 % of the chosen suggestions.

Some suggestion types are visible much more frequently than they are chosen. 33.0 % of the
visible suggestions are history_title, but is only chosen 16.5 % of all requests. Similar, 29.2 %
of the visible suggestions are history_url, but only chosen 9.4 %. The opposite relationship
exists, most notable for history_typed_url and history_typed_title, where is is visible 30.5 %
and chosen 64.7 %.

24



5.1. Data Collection

Figure 5.1: Pie chart of the distribution of the different visible suggestion types and the chosen
suggestion types for the training data

5.1.2 A/B Data
The A/B data was collected during 8 days. No modification of filtering other than those stated
was used when collecting the data. After the 8 days the groups consisted of:

• Group A (Control group):

– 7,727,082 requests in total
∗ 1,022,133 requests where a suggestion was chosen
∗ 784,107 requests where the user entered the address
∗ 5,912,135 requests where a user has searched

• Group B (Test group):

– 7,753,232 requests in total:
∗ 1,058,180 requests where a suggestion was chosen
∗ 788,806 requests where the user entered the address
∗ 5,897,305 requests where a user has searched

The distribution of the suggestion types shown and chosen for Group A (control group) can
be seen in Figure 5.2. The distribution for both the visible and the chosen suggestion types
are similar to the distribution presented in the training data and Figure 5.1.
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5.1. Data Collection

Figure 5.2: Pie chart of the distribution of the different visible suggestion types and the chosen
suggestion types for the control group

The distribution of the suggestion types shown and chosen for Group B (test group) can be
seen in Figure 5.3. These charts are not similar to the charts presented in Figure 5.1 and Figure
5.2. History is still the most shown and chosen suggestion type. However, history_typed_url
is by far the most frequent suggestion type, making up 46.8 % of the visible suggestions and
67.5 % of the chosen suggestions.
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5.2. Weight Estimations using Genetic Algorithm

Figure 5.3: Pie chart of the distribution of the different visible suggestion types and the chosen
suggestion types for the test group

5.2 Weight Estimations using Genetic Algorithm

The genetic algorithm used the configuration presented in Table 4.4.7. It was applied to the
training data described in Section 5.1. The genetic algorithm optimized on the error presented
in Section 4.1. In Figure 5.4 the error for each chromosome for every generation is presented.
The population consisted of 20 chromosome, which means that there is a great deal of overlap
present in the figure. The outliers are a result of crossover and mutation as the algorithm
explores the search space.

Figure 5.4: Plot of the error rate for each chromosome in each generation
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5.2. Weight Estimations using Genetic Algorithm

In Figure 5.5 the mean error rate for each generation can be seen. As in Figure 5.4 there
are generations that will have a significant increase in the error, a result of the algorithm
exploring. The algorithm converges rapidly in the beginning, but keeps converging through
out the generations.

Figure 5.5: Plot of the mean error for each generation

In Figure 5.6 the best chromosome from each generation is presented. Since the algorithm uses
an elitism of 1, meaning that the best chromosome always proceeds to the next generation
without modification, the error rate for the best chromosome can never increase. The rapid
convergence in the beginning can be seen here, as it could in Figure 5.4 and Figure 5.5.
However, Figure 5.6 show how the progress slows down and almost comes to a stop. From
the first generation to the 25th generation the error goes from 0.5624 to 0.4685, a decrease of
16.7 %. From the 175th generation to the 200th generation the error goes from 0.462318 to
0.46224, a decrease of 0.0169 %. While most of the progress occurs in the first generations,
the progress has not entirely stagnated in the final generations.

Figure 5.6: Plot of the chromosome with the lowest error for each generation

The weights of the best chromosome in the last generation can be seen in Table 5.1.
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5.3. Evaluation of A/B Test

Type Value
FAVORITE_TITLE_BASE 0
FAVORITE_TITLE_WEIGHT 1672
FAVORITE_URL_BASE 12
FAVORITE_URL_WEIGHT 1933
BOOKMARK_TITLE_BASE 33
BOOKMARK_TITLE_WEIGHT 1545
BOOKMARK_URL_BASE 31
BOOKMARK_URL_WEIGHT 2000
HISTORY_TITLE_BASE 144
HISTORY_TITLE_WEIGHT 444
HISTORY_URL_BASE 148
HISTORY_URL_WEIGHT 441
HISTORY_TYPED_TITLE_BASE 373
HISTORY_TYPED_TITLE_WEIGHT 278
HISTORY_TYPED_URL_BASE 590
HISTORY_TYPED_URL_WEIGHT 72

Table 5.1: Weights from the genetic algorithm, estimated using the training data

From the training data and the weights presented in Table 5.1, the performance metrics could
be calculated to show how the training data was affected by the weights. The average error was
calculated, this is the value that the GA optimized on. The average position was calculated,
similar to the error a lower value corresponds to a higher position. Lastly, MRR was calculated,
where a higher value is desired. The results can be seen in Table 5.2. ∆ is the change
when comparing the weighted against the unweighted. All metrics have been changed in the
desired direction, as the position and error has decreased and MRR has increased. The largest
improvement is the error, the metric that GA optimized on. Comparing position and MRR a
large difference between the metrics are present. The difference between the metrics is that
MRR values a change higher in the list more than a change further down the list.

Types Unweighted Weighted Δ
Average Position 0.880316 0.783344 -11.02 %
Average Error 0.536162 0.439188 -18.09 %
MRR 0.794116 0.799871 0.72 %

Table 5.2: Results from the genetic algorithm, evaluated on the training data

5.3 Evaluation of A/B Test

This section will present the statistical evaluation of the A/B test. Both Bootstrap and BEST
was performed on each metric, measuring and plotting if the results found in the A/B test is
statistically significant.

5.3.1 Written Characters
The mean number of written characters was a parameter evaluated in the A/B test. The
results were analyzed using BEST and Bootstrap. In Figure 5.7 the posterior distribution of
the mean can be seen, as a result of BEST. In Figure 5.8 the mean distribution can be seen,
as a result of Bootstrap. First thing to note is the similarity of distribution from the two
methods. For numerical comparison see Table 5.3. Bootstrap has a wider distribution of both
A and B. However, neither distributions have overlap between the two groups. Both test show
that the results are statistically significant, and not a result of noise in the data.
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5.3. Evaluation of A/B Test

Group BEST Bootstrap
A 3.9237 3.9241
B 3.7538 3.7536

Table 5.3: Table with the distribution means of written characters, from BEST and Bootstrap

Figure 5.7: Posterior distribution of the mean of the written characters

Figure 5.8: Histogram of the mean of written characters

In Figure 5.9 the posterior distribution of the relative decrease between the groups is presented.
This distribution is calculated using the distributions produced by BEST, as can be seen in
Figure 5.7. The mean of this distribution is 0.0433, which is the value that has the highest
probability of being the increase between the groups. This corresponds to a decrease of written
characters of 4.33 %.
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5.3. Evaluation of A/B Test

Figure 5.9: Posterior distribution of the relative decrease in written characters

5.3.2 Error Rate
The error rate, the number of suggestions above the correction suggestion of a different type,
was measured during the A/B test. In Figure 5.10 the posterior distributions from BEST
are presented. In Figure 5.11 the distributions from Bootstrap are presented. Comparing the
means of the distributions in Table 5.4 it is clear that both approaches produce equivalent
results. Neither BEST or Bootstrap show overlap of the distributions of group A and B,
showing that the results are statistically significant.

Group BEST Bootstrap
A 0.5370 0.5371
B 0.2065 0.2065

Table 5.4: Table with the distribution means of error, from BEST and Bootstrap

Figure 5.10: Posterior distribution of the mean error of the correct suggestion
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5.3. Evaluation of A/B Test

Figure 5.11: Histogram from Bootstrap of the mean of the error for the correct suggestion

The distribution of the relative decrease of the error between group A and B, as calculated
using BEST, can be seen in Figure 5.12. The mean of the distributions is 0.6155, which is
the value that has the highest probability of being the increase between the groups. 0.6155
corresponds to a decrease of 61.55 % in the error between group A and B.

Figure 5.12: Posterior distribution of the relative decrease of the error

5.3.3 Index
Index, or position of the correct suggestion, was measured during the A/B test. The parameter
was analyzed using BEST and Bootstrap. The posterior distributions for group A and B from
BEST can be seen in Figure 5.13. The distributions for the same groups from Bootstrap can
be seen in Figure 5.14. To compare the results of the tests, the mean of each distribution are
presented in Table 5.5. With equivalent distributions mean between BEST and Bootstrap, the
tests are equivalent. No overlap is present in the distributions for A and B, for both BEST
and Bootstrap, resulting in the decrease being statistically significant.

Group BEST Bootstrap
A 0.8986 0.8986
B 0.6620 0.6619

Table 5.5: Table with the distribution means of index, from BEST and Bootstrap
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5.3. Evaluation of A/B Test

Figure 5.13: Posterior distribution of the mean index of the correct suggestion

Figure 5.14: Histogram from Bootstrap of the mean of the index for the correct suggestion

Using the posterior distributions for group A and B, calculated using BEST and presented in
Figure 5.13, the distribution of relative decrease was calculated. The distribution can be seen
in Figure 5.15. The mean of the distribution is 0.2633, which is the value with the highest
probability to correspond to the decrease between group A and B. 0.2633 corresponds to a
decrease of 26.33 %.

Figure 5.15: Posterior distribution of the relative decrease of index
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5.3. Evaluation of A/B Test

5.3.4 MRR
The Mean Reciprocal Rank was measured during the A/B test. Using both Bootstrap and
BEST, the parameter was analyzed. The posterior distributions for group A and B, analyzed
by BEST, can be seen in Figure 5.16. The distributions for the same groups, analyzed by
Bootstrap, can be seen in Figure 5.17. To compare the results of the tests, the mean of
each distribution are presented in Table 5.6. The comparison show that the distributions are
equivalent. No overlap is present in the distributions from A and B, for both tests, resulting
in the increase being statistically significant.

Group BEST Bootstrap
A 0.7887 0.7885
B 0.8270 0.8270

Table 5.6: Table with the distribution means of MRR, from BEST and Bootstrap

Figure 5.16: Posterior distribution of the MRR

Figure 5.17: Histogram from Bootstrap of MRR

Using the posterior distributions for group A and B, calculated using BEST, the distribution
of relative increase was calculated. The distribution is presented in Figure 5.18. The mean of
the distribution is 0.04651, which is the value with the highest probability to correspond to
the increase between group A and B. 0.04651 represents an increase of 4.65 %.
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5.3. Evaluation of A/B Test

Figure 5.18: Posterior distribution of the relative increase of MRR

5.3.5 Search
The portion of requests that were searches was a parameter that was measured during the
A/B test. The posterior distributions from group A and B, calculated using BEST, can be
seen in Figure 5.19. The distributions from group A and B, calculated using Boostrap, can be
seen in Figure 5.20. By comparing the means of the distributions in Table 5.7 for BEST and
Bootstrap it is clear that both approaches produce equivalent results. The distributions for
group A and B do not show any overlap, showing that the results are statistically significant.

Group BEST Bootstrap
A 0.7651 0.7606
B 0.7651 0.7606

Table 5.7: Table with the distributions of searches, from BEST and Bootstrap

Figure 5.19: Posterior distribution of the mean number of requests being searches
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5.3. Evaluation of A/B Test

Figure 5.20: Histogram from Bootstrap of the mean of number of requests being searches

Using the posterior distributions from BEST, a distribution of the relative decrease of searches
is calculated, a distribution that can be seen in Figure 5.21. The mean of the distribution is
0.00591, which is the value that has the highest probability of being the decrease between the
groups. 0.00591 would correspond to a decrease of 0.59 %.

Figure 5.21: Posterior distribution of the relative decrease of search

5.3.6 Enter Addresses
The portion of requests that were a full entered address without the help from the suggestions
was a parameter that was measured during the A/B test. The posterior distributions from
group A and B, calculated using BEST, can be seen in Figure 5.22. The distributions from
group A and B, calculated using Boostrap, can be seen in Figure 5.23. By comparing the
means of the distributions in Table 5.8 for BEST and Bootstrap it is clear that both approaches
produce equivalent results. The distributions show overlap, meaning that there is a possibility
that the results found are a results of the variance within the groups (noise in the data) and
not due to the weights.

Group BEST Bootstrap
A 0.1015 0.1017
B 0.1015 0.1017

Table 5.8: Table with the distributions of the enter adresses, from BEST and Bootstrap
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5.3. Evaluation of A/B Test

Figure 5.22: Posterior distribution of the mean number of requests being enter addresses

Figure 5.23: Histogram from Bootstrap of the mean of number of requests being entered
addresses

Using the posterior distributions from BEST, a distribution of the relative increase of enter
addresses is calculated, which can be seen in Figure 5.24. The mean of the distribution is
0.00258, which is the value that has the highest probability of being the decrease between the
groups. 0.00258 would correspond to an increase of 0.26 %.

Figure 5.24: Posterior distribution of the relative decrease of search

37



5.3. Evaluation of A/B Test

5.3.7 Summary
In this section, the parameters from the A/B test have been analyzed. In Table 5.9 a summary
of the analysis is presented. All metrics, except Search, showed an improvement in the test
group compared to the control group. However, search did not show statistical significance,
resulting in the metric being considered to be unchanged in the test group and control group.

Metric Increase
Written Characters -4.33 %
Error Rate -61.55 %
Index -26.33 %
MRR 4.65 %
Search Rate -0.59 %
Entered Addresses 0.26 %

Table 5.9: Summary of the statistical analysis of the metrics
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6 Discussion

6.1 Results

The result from the data collection was presented in Section 5.1. The training data consisted
of 500 000 requests, which was a fixed number of requests to ensure that the execution time
of the genetic algorithm was manageable. Data for the A/B test was collected during a fixed
number of days, resulting in over 15 million requests. This was considered beforehand to
be sufficient to draw conclusion about the groups. As the analysis and discussion about the
results from the A/B test will show, the size of the data seems sufficient.

When analyzing the distribution of the different suggestion types there are several things
worth discussing. Firstly, all three distributions (training data, control group and test group)
exhibit the same behavior when looking at the suggestion type distribution overall. History
is by far the most used suggestion type. Favorites and Bookmarks are a small part of the
overall distributions of requests. History is a suggestion type that does not require direct user
action to be saved, making it reasonable to assume that it could contain more sites than the
other suggestion types. Due to privacy and anonymization, it was not possible to log how
many suggestions existed in each suggestion provider. However, this suggests that different
suggestion types have different importance to the user.

History is the largest provider overall, but there are several types of History suggestions. The
two main types are: regular and typed history suggestions. The typed history suggestion
indicates that the user, at least once, has written the entire URL to visit the site. Examining
the distribution from the control group, presented in Figure 5.2, the regular history types are
shown much more than they are chosen. history_title and history_url are combined 61.0 %
of the visible suggestions, but only 25.3 % of the chosen suggestions. Examining the typed
history the opposite pattern emerges. history_typed_url and history_typed_title are 31.7 %
of the visible suggestions while they are 63.4 % of the chosen suggestions. This indicates that
the typed history entries are more important to the user than the regular history. Typing an
URL requires the user to know what site he/she wants to visit, while regular history can be
a result of searching or clicking a link, which could be the cause for typed history to be more
important.
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6.1. Results

Both the training data and the control group data are unweighted and collected on similar
population. The distribution of visible suggestion types and chosen types were almost identical,
which confirms that the population and the results from the training data are representative
for the control group. Since the population of the training data collection was split randomly
in half for the collection of A/B data, it can be assumed that the population and results are
also representative for the test group.

The estimation of new weights was performed on the training data. The new weights are
remarkably different from the unweighted system, suggesting that the genetic algorithm and
the user data do not consider the different types to be equally important to the user. Highest
weighted are favorites and bookmarks. Typed history is slightly higher weighted than regular
history. By just examining the weights, an increase of bookmarks and favorites is expected.
However, the distribution of visible and chosen suggestions for the test group indicates other-
wise. Compared to the control group, visible bookmarks have decreased from 1.2 % to 1.0 %
and favorites have decreased from 6.0 % to 3.4 %. Considering the weights, it is remarkable
that this does exist in the distribution.

Another observation in the distribution of the test group is the increase of history_typed_url.
46.8 % of all visible suggestions are of that type, which is nearly half of all visible suggestions.
The chosen suggestions are as high as 67.5 %, which was hard to predict from the weights
and the distributions of suggestion types in the training data. It is important to reason about
if the increase of a type is the direct result of the user data or if the genetic algorithms
skewed the weights incorrectly. The error used to optimize the weights were based on how
many suggestions of a different type were above the chosen suggestion. If only one type
of suggestion was present, it would drastically decrease the error. And if only one type of
suggestion was visible to the user, all chosen suggestions would be of that type. However, in
the control group it was noted that history_title and history_url are 61.0 % of the visible
suggestions, but only 25.3 % of the chosen suggestion type. This means that there is no
consistent correlation between visible suggestion type and chosen suggestion type. Hence,
46.8 % of the visible suggestions in the test group being history_typed_url resulting in 67.5 %
of the chosen suggestion could be an indication that a higher visibility leads more clicks, but
it could also indicate that that the suggestion type is more important to the user.

The evaluation of the A/B test was done using both Bootstrap and BEST. Bootstrap and
BEST presented distributions that were almost identical in all cases, indicating that the prior
distribution chosen for BEST was suitable for the observed data. There were few unclear
results from any of the parameters. Search and Entered Address showed little change, where
entered address even had overlap in the distributions making the results inconclusive. The
analysis indicated that the change of search and entered addresses are insignificant. However,
the analysis of the other parameters strongly indicated that the results measured between the
groups was the result of the change in the weights. There is a need to discuss what the results
imply and why those results were obtained.

The largest improvement can be seen in the error rate, with a decrease of 61.55 %. Considering
the genetic algorithm optimized only using the error, there is no surprise that this was the
metric that improved the most. However, it does indicate that the genetic algorithm has
optimized correctly. As discussed above, it is complicated to draw conclusions from the error
alone, since a long list of few suggestion types would produce a low error even if the chosen
suggestion was far from the top. But the position of the correct suggestion was also improved,
a decrease of 26.33 %. This implies that the decrease of the error affected the positioning of
the chosen suggestion.

MRR and position are both based on the same aspect of the suggestion list, but the results
show very different improvements. To understand why this occurs, we must first consider how
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MRR is calculated for a suggestion list:

MRR = 1

positionchosen + 1

Where positionchosen is the position of the chosen suggestion, and the addition in the deno-
miator is to compensate for the position being 0-indexed. If a change occurs higher in the
list MRR will be affected much more than a change further down the list. Since the position
improved more than MRR it can be assumed that the improvements of the positioning occurs
further down the suggestion list.

The number of written characters decreased by 4.33 %. The number of written characters
affect how much information the suggestion system receives from the user. With 4.33 %
decrease of written characters the suggestion system has 4.33 % less characters to match to
the suggestions. Hence, the improvements of the other metrics exists, even though the test
group had less information from the users than the control group. A decrease of the number
of characters shows that there is a relationship between when the user stops writing and the
position of the correct suggestion. But comparing the position improvement of 26.33 % to the
improvement in number of written characters of 4.33 %, it is clear that there exists no linear
relationship between the metrics. But the literature showed that a user only looks at the top
of the list. If the position is improved further down the list, then perhaps this improvement
is not considered by the user. However, MRR values changes higher in the list above those
occuring lower in the list. Comparing the improvement in MRR of 4.65 % to the improvement
in number of written characters of 4.33 %, a clearer relationship exists. Since the number
of written characters has been the main goal to improve, but cannot be optimized directly
throught offline simulation, a metric that best corresponds to it is of interest. MRR seems to
correspond better than both position and error, and it would be of interest to investigate if
this insight could be used to optimize the weights more efficiently. A combination of MRR
and Error could be calculated using:

MRRError =
1

Error + 1

Which would utilize the type consideration from the error and the prioritization of highly
placed suggestions from MRR. Further investigation on a metric utilizing both characteristics
is of interest.

If a user does not consider any of the suggestions to be correct he/she can do a search of the
input or enter the address manually. It could also be the case that the user did not consider the
suggestions and only wanted to do a search or enter an address. But an increase or decrease
of any of the two parameters could indicate how the suggestion system impacted the choice
of doing a search or entering a address. The results show little to no change in the number of
searches or entered addresses. The decrease of position and decrease of written characters did
not convert the user to chose a suggestion instead.

6.2 Method

This section will discuss and criticize interesting aspects of the method presented in Chapter
4.

6.2.1 Optimization Algorithm
The estimation of weights in the suggestion system was seen as an optimization problem. The
chosen algorithm to solve the problem was a genetic algorithm. It was noted that several
algorithms exists. There were three algorithms considered for this task: Linear Regression
(LR), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Before being able to
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compare and discuss the choice of optimization algorithm some theory regarding LR and PSO
needs to be presented.

Linear Regression

Linear regression is a linear approach to quantify the relationship between variables. In the
simplest case, where an input variable X is mapped to an output variable Y, the following
formula is used:

Y = b0 + b1X

Where b0 and b1 are the constants to be predicted. The linear regression approach will predict
the straight line that describes the relationship of X and Y most accurately. [41]

The simple linear regression with one input variable can be extended to a multiple linear
regression:

Y = b0 + b1x1 + b2x2

Where Y is described by multiple input variables. [48]

The difference between the observed value in the data and the value fitted by the straight line
is called residual. The residual is used when predicting the straight line. For simple regression
with one input variable and one output variable, residual sum of squares (RSS) is minimized.
RSS is defined as:

RSS =
n

∑
i=1
(Yi − Ŷi)2

Where n is the number of observed values, Yi is the observed value from the data and Ŷi is the
value predicted by the linear regression. For a multiple regression model root mean squared
error (RMSE) is used. RMSE is an extended version of RSS:

RMSE =

¿
ÁÁÀ 1

n

n

∑
i=1
(Yi − Ŷi)2 =

√
1

n
RSS

Multi-output regression predicts the relationship between multiple input variables and multiple
output variables. There is an excessive amount of approaches to achieve this. A state-of-the-
art study from 2015 [7] present different approaches as well as commonly used performance
evaluation measures.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is search-based metaheuristic. The algorithm is based
on the idea of swarm intelligence, where a swarm of particles cooperates and searches for a
solution. Each particle in the swarm consists of [6]:

• Position

• Velocity

• Personal best position

Each particle also has access to the best position found by the swarm, called the global best
position. To update the swarm to converge to a solution the following steps are performed [5]:

1. Evaluate fitness score of each particle

2. Update the individual and the global best position
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3. Update velocity for each particle

4. Update position for each particle

After a fitness function has been decided, step 1 and 2 are trivial to perform. The key part
of PSO lies within updating the velocity. The new velocity is based on the current velocity
(inertia), the best position for the particle and the best position for the entire swarm. A
randomness is also applied to the velocity calculation to increase exploration. Formally, the
velocity is described as [5]:

vi(t + 1) = wvi(t) + c1r1[x̂i(t) − xi(t)] + c2r2[g(t) − xi(t)]

Where vi is the velocity of particle i. w, c1 and c2 are chosen constants. r1 and r2 are random
values. xi is the position of the particle and x̂i is the position of the best position for the
particle. g is the best global position.

PSO is a widely used algorithm, with applications is multiples areas. [49] present a state-of-
the-art survey on PSO and its applications. A drawback compared to genetic algorithms is
the lack of a crossover operation prohibits the sharing of properties between candidates.

Choice of Optimization Algorithm

There were several factors to considered when choosing optimization algorithm. This section
will discuss and compare the different algorithms.

LR maps the linear relationship between output variables and input variables. In the case of
a suggestion system the weights are the input variables and the measurement of error is the
output variable. It is known that the relationship between the weights and the suggestion
score is linear, suggesting that a linear relationship between weights and the error would be
suitable. However, the data collected before weighting does not vary the weights. The base
weights, making up half of the weights, are set to 0 in the training data. If LR would be used
to optimize the problem with 16 weights the following formula could be used:

Y = b0 + b1X1 + ... + b16X16

It is obvious that if half of the weights X in the formula are set to 0 in all of the training data
and the other weights would not vary, information would be lost.

PSO and GA are both metaheuristics that uses different techniques to search the problem
space. PSO is a simpler algorithm with less steps, making the implementation lighter. PSO
also tries to explore the space close to the best solution, as the particles move towards the
solution. One drawback with PSO that the literature raises is that particles do not share
properties between each other, while GA uses crossover to achieve the sharing. GA consists
of several parts and for each part there are several approaches to choose from. Each part
should be chosen to suit the specific problem. However, it is only the fitness score that are
completely problem specific. In PSO the velocity and the fitness score are the parts that need
to be problem specific. PSO will always save the best global position of the particles, ensuring
that the best solution will never be lost during the algorithm. This can be achieved in GA
using elitism.

LR had several problems in this domain, and was therefore not chosen. Choosing between PSO
and GA was not trivial. Both algorithms are very similar, and there are no clear problems
or advantages with any of the algorithms. But GA had some characteristics that made it a
better choice. Firstly, the open source project DEAP had implementations of several different
approaches to each step of the GA. This opened the possibility to test several approaches on
the test data without requiring a substantial amount of work. Secondly, since GA had several
independent steps in the algorithm, compared to PSO which is only dependent only on the
velocity, it seemed like a less narrow algorithm.
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6.2.2 Genetic Algorithm
A discussion of why the genetic algorithm was chosen has already been made. This section
will focus on the discussion regarding the choices made within the algorithm.

One of the advantages of GA is that it does not require much adaptation to the specific
problem. The problem domain, especially the relationship between the weights and the error,
was unexplored and partly unknown. Therefore, making problem specific assumptions was not
desirable and thus avoided.

There are several selection methods that seemed suitable for this problem. After reviewing the
literature, tournament selection and roulette wheel selection were selected to be evaluated. The
literature pointed towards the roulette wheel to be the better of the two. But the evaluation,
as presented in Appendix A, saw that tournament selection performed better. Evaluating the
results from the appendix, it can be seen that roulette wheel exhibits much more randomness
(exploration) and converged poorly.

Several crossover methods were presented in the theory, several based on the k-point crossover.
When a crossover point exists, a positional bias also exists. The probability of the first gene
and last gene of a chromosome ending up in the same child is very low, but the probability
increases as the genes are closer to each other. This would cause the positioning of the weights
in a chromosome to affect the results. Since the main goal of the GA was to find the relationship
between the weights, an existing implicit relationship was not desired. To avoid the positional
bias the uniform crossover was selected.

The mutation probability for a gene was chosen through testing. Literature suggested a small
value, for a bit flip mutation operator the recommended interval would be between 0.001
and 1/16. A bit flip mutation operator is not possible for a numerical representation but its
recommended interval can serve as a guideline for mutation probability. Through testing of
different values of the mutation probability it was concluded that 0.01 gave best results on the
training data, and it also lies within the recommended interval.

The genetic algorithm did prove to be an effecient algorithm for this problem. However, there
are opportunities of improvement. The termination criteria was chosen so that each execution
had the same prerequisites and the duration of the execution was the same. The execution time
was several hours, restricting the number of executions. An interesting termination criteria
would be to wait until the algorithm had converged to some solution. That termination criteria
could potentially change the results in the configuration evaluation.

6.2.3 Error
The error rate measurement was the foundation for the genetic algorithm, since it was the
only parameter the algorithm was using to optimize the weights. These weights was later used
to investigate if the position of the chosen suggestion affects typing. Therefore, it was of high
importance that the error measurement correlated with the position of the chosen suggestion.
It was considered that a suitable measurement would be the position of the correct suggestion
or a well established measurement of error, such as the MRR. Since MRR did not consider the
types, and no other measurement found in the literature exhibited the desired behavior, the
error measurement was created.

As discussed in Section 6.1, MRR seems to correspond better to the number of written charac-
ters than both error and position. Since it was unknown before this study what optimization
measurement was going to prove most efficient, it would have been of interest to investigate
multiple measurements in the study. It would have been possible to run the GA several times
using different optimization measurement. To evaluate the results an A/B/C/D... test could
have been created with a suitable amount of groups. The results could have been evaluated
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similarly to the current evaluation, but conclusions regarding the best metric could have been
made. Unfortunately, the time constraint did not allow for this to be explored.

6.2.4 Evaluation of A/B Testing
Both BEST and Bootstrap were chosen to analyze the results from the A/B test. Bootstrap
does not assume the distribution of the observed data, it was chosen to validate if the as-
sumptions made when using BEST were correct. BEST was chosen since it provides several
advantages: it is intuitive to analyze if the posterior distributions show statistical signifi-
cance and the posterior distributions can be used to calculate the relative increase between
the groups. Using two different approaches was time consuming, requiring several hours for
each metric. But using two independent approaches to validate each other provided a higher
confidence in the results.

Bootstrap used 1000 samples during sampling. MCMC used 10 000 samples to converge and
then the following 15 000 samples as the result. It would have been of interest to run bootstrap
with a similar number of samples. This would have required much more execution time, but
the y-axis (density) would have been the same scale for both analysis, enabeling a better
comparison.

6.3 The work in a wider context

This study dealt with the collection and handling of user data. It was of critical importance
to not intrude on the users’ privacy. The collection of data was extended, meaning that more
data was collected. It was a challenge to collect more data without making the user less
anonymous. This also restricted how the data could be utilized. No user identification in any
form was logged with the request, making it impossible to map or track a specific user through
several requests. Only a stripped version of the URL was saved for the chosen suggestion, and
no URL was saved for the other suggestions in the list. Only the number of written characters
was logged, and not what the user actually typed. In the balancing of user experience and
user privacy this study would like to claim that it always favored privacy, only improving user
experience if privacy was not affected.

Basing behavior on user data of course means that the users affect the behavior, but it also
implies that a user could purposely generate data to alter the behavior for other users. This
behavior change could then have several other implications, something that the browser could
be held accountable for. Most recently, Facebook was heard in the supreme court concerning
if the content spread through their site, by users, are their liability or not1. If the suggestion
system would work on a site level, ranking individual sites based on requests, a user could
generate vast amount of requests to a certain site. But when the suggestion system uses the
user data on a type level, only sites from that certain user are presented. Therefore, it is
impossible to trick a user to a certain site by altering the user data. It could be possible to
send vast amount of a certain suggestion type, making its weight heavier. But this would not
enforce content to other users.

1https://www.cnbc.com/2018/10/16/supreme-court-case-could-decide-fb-twitter-power-to-regulate-
speech.html, accessed: 12-12-2018
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7 Conclusion

7.1 Research Questions

Research Question 1
How can the suggestion error rates be decreased by the introduction of weights in the system?
By optimizing on the error rate in the training data new weights were estimated. The A/B test
showed that by introducing weights in the system the error rate was substantially reduced, in
this study the error rate was reduced by 61.55 %. This study concludes that the introduction
of weights can provide a great improvement in the error.

Research Question 2
How will users’ typing be affected by improving the position of the correct suggestion?
As a result of the introduction of weights the position improved by 26.33 %. By improving
the position of the correct suggestion an improvement of the users’ typing occured, with a
decrease of 4.33 %. This study concludes that there is a correlation between how much a user
types and the position of the desired suggestion. This finding shows that the user values the
suggestions while typing, terminating earlier if the desired suggestion is presented.

Research Question 3
How can the position improvement of the correct suggestion increase the usage of suggestions,
as measured by the percentage of requests being an entered address or a search?
The introduction of weights to the suggestion system resulted in a decrease of typing and an
improvement in position. This means that the suggestion system is able to present the desired
suggestion higher in the suggestion list with less input. However, it can be concluded that the
percentage of searches and entered addresses was not affected by these improvements. This
study concludes that no correlation was found between improving the suggestion position and
how often the users searched or entered an address.

7.2 Future Work

In this study there are aspects which could be improved and explored in future work. MRR
was mentioned to correlate better to the reduction of typing than the position or the error. It
has been discussed if this could be the result of both MRR and the user prioritizing the top
suggestions. In Chapter 6 a proposal of a combination of MRR and the error was presented
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7.2. Future Work

and discussed. In terms of the weights optimization there are several algorithm to evaluate,
some mentioned in this thesis. This study did not aim to find the most efficient optimization
algorithm for this problem, rather to investigate how an improvement would affect the system.
Now that it is concluded that the weight optimization is of importance, there is a need to
evaluate which optimization algorithm yields the best results.
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A Test of Different Configurations
for Genetic Algorithm

To evaluate what configuration was best suitable for the specific problem, several configurations
was tested on the training data. The parameters that were tested was:

• Selection method (SM)

• The mutation probability (MUPB)

• The standard devation of the gaussian distribution, used by the mutation operator (σ)

Table A shows how the different configurations varies the parameters to evaluate which con-
figuration is best suited. All other parameters and data was the same for all configurations.

Configuration Selection Method MPB σ
1 Tournament 0.01 200
2 Tournament 0.01 400
3 Tournament 0.1 200
4 Tournament 0.1 400
5 Roulette Wheel 0.01 200
6 Roulette Wheel 0.01 400
7 Roulette Wheel 0.1 200
8 Roulette Wheel 0.1 400

Table A.1: Summary of the different configurations tested in the genetic algorithm
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A.1. Configuration 1

A.1 Configuration 1

Configuration 1 uses a tournament selection, a mutation probability of 0.01 and standard
deviation of 200. The results from the execution can be seen in Figure A.1. The fitness score
for the best chromosome in the last generation was 0.46223.

Figure A.1: Results from Configuration 1
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A.2. Configuration 2

A.2 Configuration 2

Configuration 2 uses a tournament selection, a mutation probability of 0.01 and standard
deviation of 400. The results from the execution can be seen in Figure A.2. The fitness score
for the best chromosome in the last generation was 0.438544.

Figure A.2: Results from Configuration 2
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A.3. Configuration 3

A.3 Configuration 3

Configuration 3 uses a tournament selection, a mutation probability of 0.1 and standard devi-
ation of 200. The results from the execution can be seen in Figure A.3. The fitness score for
the best chromosome in the last generation was 0.454238.

Figure A.3: Results from Configuration 3
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A.4. Configuration 4

A.4 Configuration 4

Configuration 4 uses a tournament selection, a mutation probability of 0.1 and standard devi-
ation of 400. The results from the execution can be seen in Figure A.4. The fitness score for
the best chromosome in the last generation was 0.442606.

Figure A.4: Results from Configuration 4
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A.5. Configuration 5

A.5 Configuration 5

Configuration 5 uses a roulette wheel selection, a mutation probability of 0.01 and standard
deviation of 200. The results from the execution can be seen in Figure A.5. The fitness score
for the best chromosome in the last generation was 0.472242.

Figure A.5: Results from Configuration 5
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A.6. Configuration 6

A.6 Configuration 6

Configuration 6 uses a roulette wheel selection, a mutation probability of 0.01 and standard
deviation of 400. The results from the execution can be seen in Figure A.6. The fitness score
for the best chromosome in the last generation was 0.454232.

Figure A.6: Results from Configuration 6
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A.7. Configuration 7

A.7 Configuration 7

Configuration 7 uses a roulette wheel selection, a mutation probability of 0.1 and standard
deviation of 200. The results from the execution can be seen in Figure A.7. The fitness score
for the best chromosome in the last generation was 0.452254.

Figure A.7: Results from Configuration 7
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A.8. Configuration 8

A.8 Configuration 8

Configuration 8 uses a roulette wheel selection, a mutation probability of 0.1 and standard
deviation of 400. The results from the execution can be seen in Figure A.8. The fitness score
for the best chromosome in the last generation was 0.475674.

Figure A.8: Results from Configuration 8
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