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ABSTRACT

The growth of Internet video and over-the-top transmission tech-
niques has enabled online video service providers to deliver high
quality video content to viewers. To maintain and improve the
quality of experience, video providers need to detect unexpected
issues that can highly affect the viewers’ experience. This requires
analyzing massive amounts of video session data in order to find
unexpected sequences of events. In this paper we combine sequen-
tial pattern mining and clustering to discover such event sequences.
The proposed approach applies sequential pattern mining to find
frequent patterns by considering contextual and collective outliers.
In order to distinguish between the normal and abnormal behavior
of the system, we initially identify the most frequent patterns. Then
a clustering algorithm is applied on the most frequent patterns.
The generated clustering model together with Silhouette Index are
used for further analysis of less frequent patterns and detection
of potential outliers. Our results show that the proposed approach
can detect outliers at the system level.
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1 INTRODUCTION

The Internet has transformed almost every aspect of human so-
ciety by enabling a wide range of applications and services such
as online video streaming. Subscribers of such services spend a
substantial amount of time online to watch movies and TV shows.
This has required online video service providers (OVSPs) to contin-
uously improve their services and equipment to satisfy subscribers’
high expectation. According to a study performed by Krishnan
and Sitaraman [17], a 2-second delay in starting an online video
program causes the viewers to start abandoning the video. For each
extra second delay beyond that the viewers’ drop-off rate will be
increased by 5.8%. Thus, in order for OVSPs to address subscribers’
needs it is important to monitor, detect, and resolve any issues or
anomalies that can significantly affect the viewers when watching
requested video programs. Analyzing massive amounts of video
sessions for identifying such abnormal behaviors is like finding a
needle in a haystack.

In this study, we use sequential pattern mining in order to an-
alyze video data sequences from an over-the-top video service (a
delivery paradigm that uses Internet to deliver video). The video
session data has temporal order and contains detailed information
regarding which video is requested, what type of device (mobile
phone, PC, etc.) is used for watching the video, and the list of oc-
currences of all event types. The initial assumption with using
sequential pattern mining is that frequent patterns can be consid-
ered as normal system behavior, while the others can be potential
outliers. By applying a clustering method, most frequent patterns
can be grouped based on their similarities. Finally, non-most fre-
quent patterns can be evaluated by the created model and their
goodness-of-fit identified by applying an internal cluster validation
measure such as Silhouette Index [24].

The proposed approach is able to detect outliers by analyzing
video event sequences and finding specific patterns that do not
commonly occur. Investigating these unexpected patterns can assist
online video service providers to identify, diagnose, and resolve
possible system level issues. To the best of our knowledge, this is the
first study that combines sequential pattern mining and clustering
analysis for detecting outliers in online video streaming.
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2 BACKGROUND
2.1 Frequent Pattern Mining

The application of frequent itemset mining for market-basket analy-
sis was first introduced by Agrawal et al. in 1993 [1]. The aim of such
analysis is to reveal the customers’ shopping habits and to find out
which sets of products are frequently bought together. The frequent
itemset mining can be formulated as follows: let 7 = {i1, iz, ...,in}
be aset of all items and 7~ = {t1, 2, ..., tj, ..., tm } a transaction data-
base, where t; is a set of items that has been bought by a customer
(t; € I). The aim is to find those sets of items that occur frequently
in most of the shopping baskets considering s, the user-specified
support threshold.

The support for a k-itemset X, which consists of k items from
7, is the number of transactions that contain X as a subset, i.e.,
sT(X) = [{tj|1X C tj Atj € T}|. Note that the support of X can also
be defined as the relative support which is the ratio of the number
of transactions containing X to the total number of transactions in

the database 77, i.e., ge;s7(X) = 5|T7(.)|(), such X is frequent if and
only if its support is equal or greater than s.

Originally in frequent itemset mining, the order of items in the
itemsets is unimportant. Looking at the market-basket analysis, the
goal is to find frequent sets of items that are bought together. How-
ever, there are some situations in which the order of items inside
the itemset is important such as sequence databases. A sequence
database consists of ordered sequences of items listed with or with-
out a concrete notion of time [10]. Sequential pattern mining, the
problem of finding interesting frequent ordered patterns, was first
introduced in 1995 [2].

Let I = {i1,i2,...,im} be a set of all items. A sequence « defined
as (a1, az, ..., aj, ..., am), where a; is an itemset. Each itemset a;
represents a set of items that happened at the same time. A se-
quence a = (a1, a, ..., am) is a subsequence of f = (b1, by, ..., by)
if and only if there exist integers 1 < k1 < k2 < ... <k, < nand
a1 C by.az C by,,....am S by, [2]. Given a sequence database
T = {s1,52, ..., Sn }, the support for & is the number of sequences in
7 that contain & as a subsequence. Consequently, « is a frequent se-
quential pattern if its support is equal or greater than user-specified
support threshold.

Mining frequent patterns in a large database can lead to gen-
erating a huge number of patterns that satisfy the user-specified
support threshold. This is due to the fact that if a pattern is frequent,
its sub-patterns are also frequent. To mitigate this problem, closed
and maximal frequent pattern mining has been proposed [10]. A
frequent pattern « is called:

(1) a closed frequent pattern in the database 7" if and only if
none of its super-patterns have the same support as «,

(2) a maximal frequent pattern in the database 7~ if and only if
none of its super-patterns is frequent [5], [10].

2.2 Sequential Pattern Mining Algorithms

Since the introduction of frequent itemset mining and the Apriori
algorithm [1], several extensions of this algorithm were developed
for both frequent itemset mining and sequential pattern mining. In
general, there are two main categories of algorithms suitable for
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frequent pattern mining: 1) Apriori-based algorithms and 2) Pattern-
growth algorithms. Additionally, from a frequent pattern mining
point of view, a sequence database can represent the data either
in a horizontal data format or vertical data format [26]. Therefore,
based on these two data formats Apriori-based algorithms can ex-
pand to horizontal data format algorithms such as AprioriAll [2],
and GSP [27] and vertical data format algorithms such as SPADE
[30], and SPAM [3]. Apriori-based algorithms generate large sets of
candidates and repeatedly scan the database for mining sequential
patterns which require a lot of memory [13]. To solve this problem,
pattern-growth approach as an extension of FP-growth algorithm
[13] for frequent itemset mining without candidate generation was
proposed. Pattern-growth algorithms such as FreeSpan [12], and
PrefixSpan [21] work in a divide-and-conquer fashion and repeat-
edly divide the database into a set of smaller projected databases
and mine them recursively.

The most popular pattern-growth algorithm is PrefixSpan. Given
a sequence database, 7, and a user-specified threshold, min_sup,
PrefixSpan applies a prefix-projection method to mine sequential
patterns in 7 through 1) scanning the database once to find all
frequent items with a length one, 2) dividing search space into a
number of subsets according to the extracted frequent items in the
previous step, and 3) constructing projected databases that repre-
sent each subset of sequential patterns and mining them recursively.
This way, only local frequent sequences will be explored to create
sequential patterns in each projected database [21], [26].

In 2004, Pei et al. [22] showed that PrefixSpan has the best overall
performance compared to GSP and SPADE, and FreeSpan. There-
fore, in this study we choose to use PrefixSpan for extracting se-
quential patterns in video data sessions.

3 RELATED WORK

Barbar4 et al. [4] proposed an intrusion detection system that ap-
plies a frequent itemset technique to discover sets of items that
are available in most data chunks. Using a clustering algorithm,
these items that are considered as attack-free traffic, are divided
into different groups based on their similarities. After creating the
clusters, an outlier detection technique is applied to all the data
points checking each instance against the set of clusters. Instances
that do not belong to any clusters are presumed to be attacks. Re-
cently, Rossi et al. [23] proposed an anomaly detection system for
the smart grid domain similar to one considered in [4]. The method
proposed by Rossi et al. uses frequent itemset mining on different
event types collected from smart meters to separate normal and
potential anomalous data points. For further evaluation, a cluster-
ing technique with Silhouette Index analysis is applied to detect
anomalies.

Hoque et al. [14] developed an anomaly detection system for
monitoring daily in-home activities of elderly people called Holmes.
The proposed system learns a resident’s normal behavior by con-
sidering variability of daily activities based on their occurrence
time (e.g., day, weekdays, weekends) and applying a context-aware
hierarchical clustering algorithm. Moreover, Holmes learns tempo-
ral relationships between multiple activities with the help of both
sequential pattern mining and itemset mining algorithms. New
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scenarios can be added based on resident and expert’s feedback to
increase the accuracy of the system.

4 METHODS AND TECHNICAL SOLUTIONS
4.1 Problem Definition and a Use Case

Outlier detection refers to finding unexpected and abnormal pat-
terns in data. The challenge in detecting outliers comes from the
difficulty in defining a normal behavior, which includes the issue
of labeling data [6]. Therefore, unsupervised learning methods or
a combination of methods such as frequent pattern mining and
clustering can be applied to analyze, understand and detect outliers.
Finding unexpected patterns in video session data is challenging
due to the scarcity of the labeled data.

Table 1: Example of video sessions sorted by Session ID and
Date-time

Session ID VideoID  Date-time  Event type

1 002 Oct-01-16 22:44 client_roll

1 002 Oct-01-16 22:45 created

1 002 Oct-01-16 22:46 connectivity_changed
1 002 Oct-01-16 22:47 bitrate_switched

1 002 Oct-01-16 22:48 started

1 057  Oct-01-16 22:55 program_changed

1 057 Oct-01-16 23:22 pause

1 057  Oct-01-16 23:48 stopped

2 105 Oct-03-16 17:26 client_roll

2 105 Oct-03-16 17:27 created

2 105  Oct-03-16 17:28 connectivity_changed
2 105 Oct-03-16 17:29 bitrate_switched

2 105 Oct-03-16 17:30 bitrate_switched

2 105 Oct-03-16 17:31 bitrate_switched

2 105  Oct-03-16 17:32 stopped

We investigate a dataset of video sessions, where each video
session consists of session ID, video ID, date and time of an occur-
ring video event together with its type. The aim is to use frequent
sequential pattern mining on sequences of video events to find
unexpected or abnormal patterns of video events. Table 1 shows
two examples of video sessions. Every session starts with a viewer
logging into his/her account (client_roll), instantiating the video
player (created) and ending with stopped. We denote an itemset i by

Table 2: Event types and their corresponding IDs

Event ID Event type Event ID Event type

1 bitrate_switched 8 paused

2 buffering_started 9 play

3 buffering_stopped 10 program_changed
4 client_roll 11 scrubbed

5 connectivity_changed 12 started

6 created 13 stopped

7 error_occurred
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(i1, 12, ..., ij..., in), where each i; is an item. Table 2 shows all the
available event types that can appear in a video session together
with their unique ID. A sequence « is an ordered list of itemsets
and defined as (a1, az, ..., aj, ..., am), Where each a; is an itemset.
In our case each itemset, aj, is a singleton. Table 3 shows how the
information of Table 1 can be summarized as a sequence of events
for each viewer. Using the sequential pattern mining, we would
like to find frequent sequential patterns in our data, group them
into clusters based on their similarities, and then each infrequent
sequential pattern can be analyzed and matched to these clusters
to find normal and abnormal patterns.

Table 3: Example of video sessions with sequences of events

Session ID Video ID Date-time Event seq

1 002,057  Oct-01-16 22:44 (4,6,5,1,12,10,8,13)

Oct-03-16 17:26 (4,6,5,1,1,1,13)

2 105

Our use case relates to analyzing a sudden increase in the num-
ber of video streaming performance events during video sessions.
Performance changes in video streams are often reflected by the
re-buffering and quality adaptation events (buffering_stared, buffer-
ing_stopped, and bitrate_switched). A sudden increase in occurrence
of such events can be related to some kind of performance issues at
the system level. Considering only the total number of re-buffering
and bitrate adaptation events, however, may not be a true indicator
of a sudden change in overall performance of the video sessions. It
may happen that the number of initiated sessions surge during a cer-
tain time interval and that results in an increase in buffering_started,
buffering_stopped and bitrate_switched events. This is because ev-
ery session normally has some buffering and bitrate change events.
However, what is more important for the OVSPs is to identify if
such event types within sessions increase in number for many con-
current video sessions and for many users approximately at the
same time.

4.2 Clustering Analysis

Cluster analysis is a process of partitioning a set of objects into
groups of similar objects. That is, the objects within each cluster
are similar to each other but dissimilar to objects in neighboring
clusters [11].

In our experiment, we use two different clustering methods to
partition the data, namely k-means [19] and Affinity Propagation
(AP) [7]. The popular k-means algorithm begins by an initial set
of randomly selected centroids. It then iteratively revises this set
until the sum of squared errors are minimized. k-means requires
the value of k, i.e., the number of clusters, as an input.

Affinity Propagation, on the other hand simultaneously consid-
ers all data points as potential centroids and exchanges real-valued
messages between data points until a good set of centroids and
clusters appear. The exchanged messages represent either the suit-
ability of one data point in comparison to others being the centroid
(responsibility) or when one data point should choose a new cen-
troid (availability). AP adapts the number of clusters based on the
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data. In comparison with k-means, the AP algorithm uses actual
data points as the cluster’s centroids.

4.3 Cluster Validation Measures

The cluster validation techniques can be regarded as important
aids for interpreting partitioning solutions to find the one that
best fits the underlying data. Cluster validation measures can be
divided into two major categories: external and internal. External
validation measures require the ground truth labels for providing
an assessment of clustering quality. In case the ground truth labels
are not known, internal validation measures can be used. Internal
measures base their analysis on the same information used to cre-
ate the model itself. In general, internal measures can be used to
assess compactness, separation, connectedness, and stability of the
clustering results [15]. A detailed overview of different clustering
validation measures and their comparison can be found in [9, 29].

In this study we apply Silhouette Index (SI) [24] as an internal
validation measure due to unavailability of the ground truth labels.
SI can be applied to evaluate the tightness and separation of each
cluster and it measures how well an object fits the available cluster-
ing. For each i, let a(i) be the average dissimilarity of i to all other
objects in the same cluster. Let us now consider d(i, C) as an average
dissimilarity of i to all objects of a cluster C. After computing d(i, C)
for all clusters, the one with the smallest average dissimilarity is
denoted as b(i). Such cluster also refer to neighboring cluster of i.
The Silhouette Index score of i, s(i), is obtained by combing a(i)
and b(i) as follows:

b(i) — a(i)
max{a(i), b(i)}

The s(i) has values in a range of [-1, 1]. A score close to 1 im-
plies that the object is well clustered. When s(i) is about zero, this
indicates the object is on the decision boundary between two neigh-
boring clusters. The worst situation occurs when s(i) is close to -1.
This indicates that the object is misclassified and assigned to the
wrong cluster.

The average s(i) for all objects i belonging to the same cluster
shows how tightly those objects are grouped. The average s(i) for
all objects i in the whole dataset judges the quality of the generated
clustering solution.

s(i) =

4.4 Distance Measures

In order to calculate the similarity between the frequent patterns
with different lengths, we study two different distance measures,
namely Fast Dynamic Time Warping (FastDTW) algorithm [25] and
Levenshtein Distance (LD) [18].

The FastDTW algorithm is able to detect an accurate optimal
alignment between two time series and to find the corresponding
regions between them. FastDTW reduces the resolution of the time
series repeatedly with averaging adjacent pairs of points. Then it
takes a minimum-distance warp path at a lower resolution and
projects to a higher resolution. The projected warp path is refined
and repeatedly projected onto incrementally higher resolutions
until a full warp path is found.

The LD, also known as edit distance, is a string similarity metric
that measures the minimum number of editing operations (insertion,
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deletion and substitution) required to change one string into the
other.

As mentioned earlier, the video session data has a temporal
order, which means that events can only appear in a special set-
up. Therefore, FastDTW is chosen for comparison of the patterns.
On the other hand, LD as an edit distance considers the elements’
alignments of the patterns and the required changes to transform
one into other. As an example consider these two patterns, P; :
(1,1,1,1,1) and P : (1,1, 1). According to FastDTW, these two
patterns are 100% similar since the measure assumes that Py is
bent. However, LD would show that the similarity between the two
patterns are 60% since the insertion of 2 extra 1’s are needed to
transform P; to P;. From the point of view of time series analysis
these two patterns are similar. However, from the video streaming
performance point of view, repetition of re-buffering and quality
adaptation events may represent performance issues, which in this
scenario the result of the LD is more relevant. For this reason, in
this study we evaluate the proposed approach with both distance
measures (FastDTW and LD).

5 PROPOSED APPROACH

We combine frequent sequential pattern mining with clustering and
Silhouette Index based analysis to detect unexpected patterns in
online video data. Our approach can be found similar to Rossi et al.’s
proposed method that has been applied for smart grid data in the
district heating domain [23]. Both approaches deal with sequences
of event types. However, instead of itemset mining we use sequential
pattern mining due to the fact that the temporal order of occurrence
of the video events is important.

To analyze video sessions for finding unexpected patterns at the
system level the following steps are carried out:
1. Data segmentation. The video sessions are first divided into
equal-sized segments based on the time period they are instanti-
ated in order to identify sequential patterns. Data segmentation
can be performed hourly, daily, and even weekly with different
set-ups. For example, daily video sessions can be divided into four
6-hour period segments. Due to availability of daily patterns in the
data, similar segments of similar days can be compared. We have
conducted some initial experiments of our approach with bigger
segment sizes, such as 2-days and weekly. However, additional
evaluation and validation of these scenarios are needed to be able
to make an informed conclusion about their significance for the
approach performance. Therefore, in this paper, we have only con-
sidered a daily segment. One segment includes all video sessions
that are initiated at the same time period.
2. Frequent sequential patterns finding. The PrefixSpan algo-
rithm [21] is used to find frequent sequential patterns in each seg-
ment. The extracted patterns are stored in a list corresponding to
each segment. These patterns can lead us to find collective outliers'.
Note that we only use sequences of video events as inputs for the
algorithm. Moreover, each video session has only one event se-
quence, such as (4, 6,5, 1,12, 10, 8, 13) (see Session ID 1 in Table 3).
Those sequential patterns that satisfy the user-specified support

!Collective outlier is a collection (sequence) of related data points that deviate signifi-
cantly from the entire data set. Note that the individual data points in the sequence
may or may not be outliers by themselves[6, 11].
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will be stored as frequent patterns. In this study, the user-specified
support threshold is set to be 0.15, which means any pattern that
appears more than (0.15 = size_of _the_segment) times will be con-
sidered. The support threshold is tested with different sizes ranging
between 0.1 to 0.2. By choosing values close to 0.1 many patterns
are extracted which affects the execution time dramatically. On the
other hand, choosing values close to 0.2 ends up extracting very
few patterns. However, by setting the support threshold to 0.15 we
both decrease the execution time and gain a reasonable amount
of patterns. Additionally, in order to decrease the computational
time of the proposed approach, patterns with lengths less than 3
are omitted.

3. Frequent sequential patterns mapping. The list of extracted
frequent sequential patterns is created for each segment in Step 2.
Now, for each segment, the following steps will be carried out:

(1) Select a pattern, one at a time, from the list of frequent se-
quential patterns and mark those video sessions that contain
the pattern. Note that a video session can be matched with
different patterns.

(2) Store the date, the pattern(s) and its related length and fre-
quency in the selected_patterns list (if the pattern does not
match any video sessions its frequency will be set to 0). We
can also add additional information here such as whether
the pattern happened during working days, weekends or
irregular days (e.g., public holidays), and what day-of-week,
that can be helpful for finding a contextual outlier®.

(3) If not all patterns are selected, go back to 1 and select the
next pattern.

After Step 3 the selected_patterns list contains the following
details: 1) date, 2) pattern, 3) length of the pattern, 4) frequency of
the pattern in the segment, 5) date-time information (e.g., day-of-
week (Mon = 0, Tue = 2, ..., Sun = 6), and type-of-day (irregular day =
2, workday = 1, and weekend = 0)). Therefore, the selected_patterns
list can represent one element according to Table 3 as [date: Oct-01-
2016, sequence: (4, 6,5, 1), length: 4, frequency in segment: 1, day-of-
week: 6, type-of-day: 0].

4. Most frequent and non-most frequent patterns finding.
At this step, we look for those sequential patterns that occurred in
more than one segment, i.e., the Most Frequent Sequential Patterns
(MFSPs). The initial assumption is that frequent patterns that appear
in more than one segment can be considered as normal. Non-most
Frequent Sequential Patterns (NMFSPs) on the other hand can be
assumed as potentially unexpected at this stage.

5. MFSPs clustering. The selected_patterns list summarizes de-
tailed information regarding all video sessions. Then a clustering
algorithm (e.g., k-means) can be used to group MFSPs into clus-
ters. Note that since every video event has an ID (see Table 2), a
sequential pattern such as {client_roll, created,connectivity_changed,
bitrate_switched] can be transformed to (4, 6,5, 1).

6. Analysis of NMFSPs and outlier detection. The clustering
model built in the previous step can be used to analyze the NMFSPs,
i.e., by matching each NMFSP into the MFSPs clustering model we
can evaluate how well it fits into the model. The goodness-of-fit of

2Contextual or conditional outlier is a data point that deviates significantly with
respect to a specific context or condition [6, 11].
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a NMFSP can be identified by applying some internal cluster vali-
dation measures such as Silhouette Index. That is, those NMFSPs
with Silhouette scores, s(i), less than the average s(i) for the whole
clustering solution can be defined as outliers. Note that s(i) mea-
sures how well an object i, a NMFSP in our case, fits the available
clustering and ranges from -1 to 1. The Silhouette score close to
1 implies that the pattern is well clustered. When s; is about zero,
this indicates the NMFSP is on the decision boundary between two
neighboring clusters. An s(i) close to -1 indicates that the NMFSP is
misclassified and assigned to an erroneous cluster, i.e., such NMFSP
can be identified as an outlier.

6 EMPIRICAL EVALUATION

6.1 Data Collection

We used two months of data (October-November 2016) for initial
evaluation of sequential pattern mining to find unexpected pat-
terns in video sessions. The data is obtained from a large European
telecommunication company and contains 202,312 unique video
session IDs, 2,213,330 events, 13 event types and 47,938 videos.
Table 4 summarizes detailed information about the data for each
month.

Table 4: Summary of the data used in the experiment

October 2016 November 2016

No. of video session IDs 114,407 87,905
No. of events 1,327,679 885,651
No. of video IDs 26,266 21,672
No. of Event types 13 13

6.2 Experimental Design

The proposed approach is implemented in Python version 3.6. The
Python implementation of PrefixSpan, LD and FastDTW algorithms
are fetched from [8, 16, 28] respectively. The clustering algorithms
are adopted from the scikit-learn module [20]. The implemented
code and the experimental results are available at GitHub?.

In this study, we have investigated the usage of two different
distance measures namely, LD and FastDTW together with two
clustering methods and sequential pattern mining for detecting
outliers. The motivation behind this is due to the fact that these
distance measures are able to capture different similarity charac-
teristics between the two compared patterns (see the discussion in
Section 4.4 for more details).

We use SI to determine the optimal number of clusters on the set
of MFSPs. Namely, we have run k-means algorithm with a different
number of clusters. Then we have used the SI as a validity index to
identify the best partitioning scheme. Figure 1 shows the average
Silhouette scores for all k in the range between 2 and 35 using the
LD (red color line) and FastDTW (blue color line) measures for data
belongs to October 2016. The selected range is based on the number
of clusters chosen by AP. We search for a local maximum of each
plot that has a sudden change in order to identify the optimal k.

Shttps://github.com/shahrooz-abghari/Outlier-Detection-for-Video-Session-Data-
Using-Sequential-Pattern-Mining
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Table 5: The results of the experiment

Affinity Propagation k-means
LD FastDTW LD FastDTW
No. of MFSPs 384
No. of NMFSPs 60
o SI 0.149 0.170 0.182 0.203
& No. of clusters 32 33 22 22
8 No. of detected outliers 33 31 40 36
No. of days 2 (31) 2 (31) 2 (31) 2 (31)
No. of matched video sessions / day 143 (4,359) 144 (4,359) 144 (4,359) 402 (4,359)
372(2,390)  372(2,390) 336 (2,390) 336 (2,390)
No. of MFSPs 109
No. of NMFSPs 258
O
§ SI 0.175 0.192 0.194 0.207
2 No. of clusters 14 14 12 12
Z  No. of detected outliers 120 144 137 160
No. of days 1(30) 1(30) 1(30) 1(30)
No. of matched video sessions / day 1,068 (3,705) 1,078 (3,705) 1,068 (3,705) 1,078 (3,705)

Note. Numbers inside the parentheses represent the total for both days and video sessions.

The black box in Figure 1 shows the selected optimal k = 22, which
is the same for both measures in October 2016. The optimal k for
data belongs to November 2016, is 12. In addition, SI is also applied
to analyze the NMFSPs.

7 RESULTS AND ANALYSIS

The proposed approach is evaluated separately on data collected
from October and November 2016. Two different clustering algo-
rithms, AP and k-means together with LD and FastDTW are used
for partitioning the MFSPs. The Silhouette Index is used to analyze
NMFSPs on both clustering models. The results are presented in
Tables 5, 6 and 7. As shown in Table 5, the number of extracted
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Figure 1: Identifying the optimal number of clusters for k-means
using Silhouette Index for data belongs to October 2016
. The black box shows the selected optimal k for the studied
distance measures.

patterns, both MFSPs and NMFSPs, for October compared to No-
vember varies considerably. In October, the daily segments contain

higher number of MFSPs, i.e., 384 compared to November which
is 109. On the other hand, the number of NMFSPs for November
is 258, which is approximately 4 times larger than the extracted
patterns for October. This is mainly because the total number of
video sessions and the frequency of event types in October is larger
compared to November.

As presented in Table 5, during October and November both
clustering algorithms detect outliers. In October we identify out-
liers in two days and in November only in one day. The combina-
tion of k-means algorithm with either of LD or FastDTW detected
slightly more unexpected patterns compared to AP. The number
of video sessions that matched with the detected outliers by the
clustering algorithms are quite similar in both months except for
the combination of k-means and FastDTW, which hits 402 video
sessions in October. This perhaps relates to how each algorithm
selects centroids of the clusters and tries to minimize the sum of
squared errors. Table 5 also presents the number of video sessions
that match with detected outliers. Overall, k-means matched more
video sessions with the identified outliers during the months of
October and November.

The results of the top five most frequent sequential patterns
for both October and November 2016 are presented in Table 6.
These patterns relate to the daily segment. These patterns are
matched with the majority of the video sessions (101,996 out of
114,407 and 84,494 out of 87,905 matched video sessions for Oc-
tober and November 2016, respectively). Most of these patterns
begin with created (ID = 6) and client_roll (ID = 4) followed by
connectivity_changed (ID = 5), bitrate_switched (ID = 1) and
started (ID = 12) events. These sequences of the video events are
the most common ones. Moreover, three of these sequences contain
paused (ID = 8) and stopped (ID = 13), which represent a com-
plete video session that begins with a viewer’s login and ends with
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(a) Affinity Propagation and LD, (Oct 2016)

(c) Affinity Propagation and FastDTW, (Oct 2016)
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10
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(d) k-means and FastDTW, (Oct 2016)

Figure 2: The visualization of the data is preformed by applying Principal Component Analysis (PCA) to convert the multi-dimensional
dissimilarity matrices into 2-dimensional arrays. Therefore, no labels for axes are given. Each sphere represents one MFSP. The size of a
sphere shows the number of video sessions that have been matched with it. Spheres with the same color belong to one cluster. The NMFSPs
are shown with the blue pluses (" + ”) and those NMFSPs that are identified as outliers are the red pluses (" + ).

Table 6: Top 5 most frequent sequential patterns (MFSPs) re-
late to the daily segment

Pattern Oct 2016 Pattern Nov 2016
(6,4,5,1,12,8,13) 74,362 (6,4,5,1,12,8,13) 59,340
o, (6,4,5,1,12) 12,061 (6,4,5,1,12) 19,104
£ (6,4,5,1,12,1) 6,491 (6,4,5,1,12,8) 4,449
= (6,4,5,1,12,8) 5,057 (6,5,1,12,8,13) 1,098
(6,4,5,1,12,1,8,13) 4,025 (6,5,1,12) 503
Total matched patterns 101,996 84,494

Note. The bold patterns represent those that occur in both Oct and Nov 2016.

stopped. The bold patterns in Table 6 represent those patterns that
occur in both months and in the case of MFSPs they cover a high
proportion of the video sessions.

Table 7 shows the top 5 NMFSPs detected as outliers by clustering
algorithms. There are two patterns detected with both AP and k-
means in October. The first pattern contains bitrate_switched (ID =
1), buffering_started (ID = 2), followed by two bitrate_switched
(ID = 1) events. The second pattern contains client_roll (ID =
4) followed by connectivity_changed (ID = 5), bitrate_switched
(ID = 1), started (ID = 12) and program_changed (ID = 10)
events. There are three bold patterns, only one detected by AP and
two by k-means. The pattern (1,12, 10, 8), which is detected by k-
means is a sub-pattern of (1,12, 10, 8, 13) detected by AP and they
are quite similar. However, this pattern (1,2, 1, 1) detected by k-
means using FastDTW is interesting mostly because it has repetition
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of bitrate_switched (ID = 1) and matched with 256 video sessions.
In general, every video session contains a number of re-buffering
and bitrate switched. However, any increase in the quantity of such
event types for many viewers can be related to performance issues.
This follows the definition of a collective outlier, i.e., an unexpected
collection or sequence of related event types (data points) occurring
together. Nevertheless, more investigation needs to be performed
to find the reason of these issues. For November, both the clustering
algorithms detect the same number of patterns.

Table 7: Top 5 non-most frequent sequential patterns (NMF-
SPs) detected as outliers for each month

Affinity Propagation k-means
LD FastDTW LD FastDTW
(1,2,1,1) - - - 256
g (1,2,1,1,8,13) 101 101 101 101
S (1,12,10,8) - - 148 148
8 (1,12,10,8,13) 136 136 - -
(4,5,1,12,10) 152 152 140 140
Total matched patterns 389 389 389 645
(1,1,1,1,1) 513 513 513 513
= (1,2,1) 92 92 92 92
N (1,1,1,2) 67 67 67 67
2 (3,8,13) 66 66 66 66
(1,1,1,1,2) 53 53 53 53
Total matched patterns 791 791 791 791

Note. The bold patterns represent those that are detected by only one of the clus-
tering algorithms in Oct 2016. ’-’ means unavailable.

The results of applying the proposed approach on data belonging
to October are visualized in Figure 2. Both AP and k-means detect
outliers in two weekdays. In all plots each sphere represents one
MFSP. The size of a sphere shows the number of video sessions
that have been matched with it. The spheres with the same color
belongs to one cluster. The NMFSPs are shown with blue ” + ” and
the detected outliers displayed with red ” + ”. Principal Component
Analysis (PCA) is used to transform the multi-dimensional dissim-
ilarity matrices created by distance measures into 2-dimensional
arrays. Plot (a) shows the results of AP using LD measure. As it is
shown in Table 5, AP partitioned the MFSPs into 32 clusters. The
results of k-means using LD measure is shown in (b). The size of
k is set to be 22 and 40 NMFSPs out of 60 are marked as outliers.
The plots (c) and (d) present the results of AP (no. of clusters =
33) and k-means (no. of clusters = 22) using FastDTW measure,
respectively. Using FastDTW measure, AP and k-means identified
31 and 36 outliers, respectively.

Using LD measure, it appears the partitioned MFSPs especially
the bigger spheres, are condensed in clumps, surrounding the NMF-
SPs. However, with the FastDTW algorithm, MFSPs seem to be
stacked vertically and the NMFSPs extend across the 2D space
in a horizontal trend. These differences reflect how each distance
measure calculates the dissimilarity between two patterns. As we
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mentioned earlier in Section 4.4, LD is more sensitive when part
of one pattern is a sub-pattern of the other with different length.
Nevertheless, using different distance measures together with 3D
visualization techniques can provide a better understanding of the
underlying organization of the data for OVSPs.

8 DISCUSSION

Outlier detection approaches can assist the online video service
providers to monitor and improve the quality of their services.
In general, finding outliers in online video data without having a
clear definition of normal behavior is a challenging task. Hybrid
approaches combining sequential pattern mining and clustering
analysis, as it has been demonstrated in this study, can be useful
in detecting unexpected sequences of events. In this study, video
session data contains 13 unique event types (see Table 2 for more
details). These event types are quite general and most of them
can appear in both video sessions with good and bad quality. This
makes it hard to draw any conclusions about the detected outliers
without experts’ validation. However, looking at the ratio of the
quality related events can assist us to judge the quality of the video
sessions. For example, by being able to identify a sudden increase of
re-buffering and bitrate switch events, one may prevent users from
having an unsatisfactory experience. The proposed approach has
been evaluated with two months of data supplied by a large Euro-
pean telecommunication company. A number of outliers have been
identified and matched with the studied use case, which analyzes a
sudden increase of the video streaming performance events.

Perhaps it is worth to further study whether the different length
of segments (see the discussion in Section 5) can affect the perfor-
mance of the proposed outlier detection approach. In addition, it
will be interesting to take into account the time interval between
occurrences of the events in the evaluation set-up.

Furthermore, it is worthwhile to mention that not every pat-
tern created by the sequential pattern mining algorithms can be
useful. Although, sequential pattern mining searches for ordered
sequences of events that are frequently happening together, some
of the sequences might not be matched with any video sessions. The
reason is that some of the events of the sequence are not available
and pattern matching will not work. The importance of matching
the extracted patterns with video sessions is due to the fact that
we are trying to identify both the unexpected patterns and those
sessions that are affected. Therefore, to ensure that no information
will be lost, we plan to further study the combination of sequential
pattern mining with frequent itemset mining.

9 CONCLUSION AND FUTURE WORK

In this study, we have presented a hybrid approach for online video
streaming by combining sequential pattern mining and clustering
analysis to detect outliers at the system level. In addition, the usage
of two different distance measures have been evaluated. In com-
parison to other studies that often apply statistical analysis to find
outliers, we have looked for unexpected patterns that can have
impact on the video streaming performance.

By applying this approach, online video service providers can
easily monitor suspicious video sessions and capture a better un-
derstanding about the viewers’ experience.
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For future work, we aim to pursue further evaluation and vali-
dation of our approach on a variety of datasets by applying alter-
native clustering analysis techniques, e.g., graph-based clustering
approaches and different validation measures. Our future plans
also involve integrating additional information into the analysis
of non-most frequent sequential patterns supplied by the domain
experts.
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