Förbehandling av textil för en mer skonsam rivning

KATARINA LINDSTRÖM
DOKTORAND
TEXTILHÖGSKOLAN, BORÅS
PROJEKT TESTBÄDD TEXTILÅTERVINNING
Master thesis work

- Namuga, Catherine. (2017) Old To Become As Good As New

Hypotheses

- Friction between fibres and fibres & machine during shredding causes fibres to break and loose some of their original length.

- Lubrication of textile decrease friction during shredding, thereby decreasing fibre length loss.

- Prediction of friction during shredding with the use of a new method to measure inter fibre friction.
Fibre length

- Important factor in processability of fibres
 - Carding
 - Too short not possible to spin alone
 - Longer fibres results in wider usage; stronger yarn

- Shredding process shortens the fibres
 - Mix with new fibres
 - Low value products

- How to increase the value of shredded fibres?
 - Maximize fibre length
Fibre friction

- Friction
 - irregularities & adhesion
 - static & kinetic
 - cause deformation and heat

- Inter fibre friction test
Fibre friction

- Necessary in yarns and fabrics

- Managed parameter during fibre and yarn manufacturing
 - low fibre-to-fibre friction facilitate fibre separation during carding
 - too low friction during carding cause fibre slippage and uncontrolled process

- High fibre friction during textile shredding cause
 - fibre length loss
 - melting of polymeric fibres

Fibre friction: Lubricant treatment

- Decrease fibre friction

- Polyethylene glycole (PEG)
 - Lubrication, decreases friction
 - Water soluble
 - Non-toxic, eco-friendly
Research Questions

- Does treatment with polyethylene glycol (PEG) 4000 of fabric improve the shredding process?
- Decreased fibre length loss?
- Is it possible to spin yarn from 100% recycled fibres?
Friction test

- Carded web of fibres
- Pulled apart in tensile test
- Result shows static and kinetic friction
- PEG 4000
 - 0.1-1.0 %wof

Namuga (2017)
Result: Friction test

Namuga (2017)

Sjöblom (2018)
Shredded textiles

- **Cotton**
 - Untreated
 - Conditioned with PEG 4000
 - 0.1 %wof
 - 0.29 %wof

- **Polyester**
 - Untreated
 - Conditioned with PEG 4000
 - 0.2 %wof
 - 0.79 %wof
Cotton: shredded fibres

Untreated PEG 4000 0.1 %wof PEG 4000 0.29 %wof
Result: Neps & threads in shredded material

<table>
<thead>
<tr>
<th>Material</th>
<th>Pre-treatment</th>
<th>Neps and threads weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>Untreated</td>
<td>23.2 %</td>
</tr>
<tr>
<td></td>
<td>0.1 %wof PEG 4000</td>
<td>21.2 %, -9%</td>
</tr>
<tr>
<td></td>
<td>0.29 %wof PEG 4000</td>
<td>18.4 %, -21%</td>
</tr>
<tr>
<td>Polyester</td>
<td>Untreated</td>
<td>44.4 %</td>
</tr>
<tr>
<td></td>
<td>0.2 %wof PEG 4000</td>
<td>41.2 %, -7%</td>
</tr>
<tr>
<td></td>
<td>0.71 %wof PEG 4000</td>
<td>22 %, -50%</td>
</tr>
</tbody>
</table>

multifilament
Cotton: shredded fibres

- Untreated
- PEG 4000 0.1 %wof
- PEG 4000 0.29 %wof
Result:
Fibre length after shredding

<table>
<thead>
<tr>
<th>Material</th>
<th>Pre-treatment</th>
<th>Fibre length (mm)</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>Untreated</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 %wof PEG 4000</td>
<td>11.9</td>
<td>+31%</td>
</tr>
<tr>
<td></td>
<td>0.29 %wof PEG 4000</td>
<td>13.4</td>
<td>+47%</td>
</tr>
<tr>
<td>Polyester</td>
<td>Untreated</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2 %wof PEG 4000</td>
<td>15.1</td>
<td>+94%</td>
</tr>
<tr>
<td></td>
<td>0.71 %wof PEG 4000</td>
<td>17.2</td>
<td>+121%</td>
</tr>
</tbody>
</table>
Polyester: shredded fibres

- Untreated
- PEG 4000 0.2 %wof
- PEG 4000 0.79 %wof
Result:
Rotor spun yarn

- **Cotton**
 - Stronger with higher percentage treatment (when washed off)

- **Polyester**
 - Treatment needed for spinnability
 - Stronger yarn with higher percentage treatment

- Remove treatment after spinning for increased yarn strength
Result: Rotor spun yarn

- **Cotton**
 - Stronger with higher percentage treatment (when washed off)

- **Polyester**
 - Treatment needed for spinnability
 - Stronger yarn with higher percentage treatment

- Remove treatment after spinning for increased yarn strength
Conclusions

- PEG 4000 treatment made the shredding more efficient
 - Higher degree of shredded fibres
 - Increased fibre length, especially for polyester
 - Lower friction during shredding

- Multifilament yarn are more difficult to shred than staple fibre yarn

- It is possible to predict the fibre length reduction in shredding process by measuring friction between fibres
Future continuation

- Find lubricant for every textile material
 - Lubricant
 - Percentage

- Develop fibre friction measurement method

- Find value added applications
Förbehandling av textil för en mer skonsam rivning

KATARINA LINDSTRÖM
DOKTORAND
TEXTILHÖGSKOLAN, BORÅS
PROJEKT TESTBÄDD TEXTILÅTERVINNING