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ABSTRACT
Multiple comparisons for two or more mean vectors are consid-
ered when the dimension of the vectors may exceed the sample
size, the design may be unbalanced, populations need not be nor-
mal, and the true covariance matrices may be unequal. Pairwise
comparisons, including comparisons with a control, and their linear
combinations are considered. Under fairly general conditions, the
asymptotic multivariate distribution of the vector of test statistics is
derivedwhose quantiles can be used inmultiple testing. Simulations
are used to show the accuracy of the tests. Real data applications are
also demonstrated.
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1. Introduction

The objective of this work is to present multiple comparisons for mean vectors in a multi-
sample problem where the populations need not necessarily be normal, sample sizes and
covariancematricesmay be unequal, and the dimension of the vectorsmay exceed the sam-
ple sizes. Precisely, let Xik = (Xik1, . . . ,Xikp)

′ ∼ Fi, k = 1, . . . , ni, be iid random vectors
with E(Xik) = μi ∈ R

p, Cov(Xik) = �i ∈ R
p×p
>0 , i = 1, . . . , g ≥ 2, whereR

p×p
>0 denotes the

space of real, symmetric, positive-definite, p × pmatrices and Fi denotes the distribution
function for ith population.

We are interested to develop multiple comparison procedures (MCP) or, correspond-
ingly, simultaneous confidence intervals (SCI), for difference of mean vectors, by relaxing
the usual linear model assumptions, e.g. normality and homoscedasticity. Thus, Fi may
be non-normal and �i may be unequal which, along with ni also allowed to be unequal
(unbalanced design), implies a complete multi-sample Behrens-Fisher problem. Further,
we allow p to be large, even p � ni. These comparisons are of interest as a first post hoc
investigation after a globalMANOVAhypothesis of equality of all mean vectors is rejected;
see Seber [1] or Johnson and Wichern [2].

The multivariate theory offers a number of solutions to this problem for the classical
case, p < ni, particularly assuming normality and homoscedasticity. The globalMANOVA
hypotheses are mostly tested by the likelihood-ratio criterion such as Wikls’ � and its
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rejection follows by finding out the mean vectors responsible for the global rejection. It
commonly begins with a general strategy for a set of comparisons defined as linear combi-
nation, a′δij, a ∈ R

p, where δij = μi − μj, i �= j. A case of particular interest is of pairwise
differences δij themselves which includes all possible differences as well as special cases
such as comparisons with a control.

The classical case of such comparisons has been extensively investigated; see e.g. Krish-
naiah [3,4], Wijsman [5], Kropf [6], Kropf and Läuter [7], Westfall et al. [8], Läuter
et al. [9], Conneely and Boehnke [10], Westfall and Troendle [11], Bretz et al. [12],
Dickhaus [13], Goeman and Finos [14], Goeman and Solari [15], Guilbaud [16,17],
where Dickhaus [18] is a modern, comprehensive book length reference with exhaustive
bibliography.

The classical methods for MCP or SCI do not work when p � ni and need to be modi-
fied. The recent wave of high-dimensional data has motivated a thorough inquiry into new
avenues for simultaneous inference which, already complicated enough as compared to
global testing, is further exacerbated by the largeness of dimensionality. Of particular con-
cern are the fields like genetics, microarray, agriculture, fMRI, psychology where analysing
umpteen amounts of data has become a norm rather than exception; see e.g. Nichols and
Hayasaka [19] and Dickhaus [18].

The multiple comparisons introduced in this paper are applicable for such high-
dimensional data which, additionally, do not depend on usual assumptions such as nor-
mality and homoscedasticity. In fact, concerning normality, the tests can be used for any
distribution with finite fourth moment across p-dimensional vector. A distinguishing fea-
ture of the proposed tests is that we exclusively derive asymptotic joint distribution of the
entire vector of preliminary tests whose quantiles can be directly used to test any number
of comparisons of g man vectors. Under a few, mild assumptions, the asymptotic covari-
ance matrix turns out be of very simple form and particularly sparse, not only making the
derivation of the limit distribution convenient but also enhancing the applicability of the
proposed tests under fairly general conditions.

We begin in the next section with a concise notational set up, to be used throughout
the paper, followed by the main tests and their properties. A simulation based evaluation is
given in Section 3 and applications are given in Section 4. Section 5 summarizes the main
points.

2. Test statistics and their properties

2.1. Notations and preliminary set up

Let the vectors Xik ∈ R
p, k ∈ {1, . . . , ni}, i ∈ {1, . . . , g}, as defined above, be generated by

a probability space (X ,A, Pθ ) where the probability measure Pθ is indexed with param-
eter θ ∈ � and� is the parameter space, not necessarily finite. Then Xi = (X′

1 · · ·X′
ni) ∈

R
ni×p is the datamatrix for ith sample andX = (X′

1, . . . ,X
′
ng )

′ ∈ R
n×p, n = ∑g

i=1 ni, with
parameter space {�,�}, where � = E(X) = (1′

n1 ⊗ μ1| · · · |1′
ng ⊗ μg)

′, � = Cov(X) =
⊕g

i=1(Ini ⊗ �i) with Cov(Xi) = Ini ⊗ �i using Cov(Xik) = �i ∀ i, where ⊕ and ⊗ are
the Kronecker sum and Kronecker product, respectively. Let X̄i = ∑n

k=1 Xik/ni and �̂i =∑n
k=1 X̃ikX̃′

jk/(ni − 1) be the usual unbiased estimators ofμi and�i with X̃ik = Xik − X̄i,
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or, using the ith data matrix, i = 1, . . . , g,

X̄i = 1
ni
X′
i1ni , �̂i = 1

ni − 1
X′
iCniXi, (1)

where Cni = Ini − Jni/ni is centering matrix, I is identity matrix, J = 11′ and 1 a vector of
1 s.

Let H = {HI : I ∈ I} be a family of hypotheses, finite or infinite, with card{I} = G,
corresponding to families of distributions {Pθ : θ ∈ �I} with parameter space �I bifur-
cated into�0,I and�1,I = �I\�0,I , according toHI being null ((H0,I) or alternative (H1,I)
hypothesis, where �0 ∪�1 = �, �0 ∩�1 = ∅. A (non-randomized) test for each HI is
carried out using a test statistic TI with its space TI , which similarly bifurcates the sample
space into X0,I and X1,I , with a binary decision φ: TI → {0, 1} where φ = 1 (0) when HI
is rejected (accepted).

As usual, the power function β(θI|�I) = α (size) if �I = �0,I and 1 − β (power)
if �I = �1,I . For a sample X ∈ X , pI = supθ∈�0,I

P(To ≥ cα) is the p-value of TI with
observed value To and critical value cα . The problem of MCP pertains to simultaneously
testing a set of G hypotheses

H0,I : θ ∈ �0,I vs. H1,I : θ ∈ �1,I , I ∈ I , card{I} = G.

For pairwise comparisons of μi, we have θ = δij = μi − μj, i �= j, with G = (g
2
) = g(g −

1)/2, and for comparisons with a control, θ = δ1j = μ1 − μj with G= g−1, j = 2, . . . , g,
assuming, without loss of generality, sample 1 as control. In either case, we essentially deal
with a vector of test statistics T ∈ R

G and corresponding vector of observed p-values, p ∈
(0, 1)⊗G.

With several tests being carried out simultaneously, the most serious issue in multi-
ple testing is to effectively control α, i.e. reduce the chance of false positives (FP). Let
I0 ⊂ I be the subset corresponding to the true null hypotheses, H0 = {H0,I : I ∈ I0},
with card{I0} = G0 ≤ G, and R ⊂ I be the subset for which H0,I is rejected. Then fm =
card{R ∩ I0} refers to the set of FPs (rejected true hypotheses or type I errors), so that rm =
card{R\I0} is the index of true positives or TPs (rightly rejected null hypotheses or power
of test). We, therefore, are interested to keep fm (rm) as small (large) as possible. Several
error control procedures can be adopted, subject to research questions. For details, see e.g.
Hochberg and Tamhane [20], Bretz et al. [12], Dickhaus [18], Goeman and Solari [15],
Hemerik and Goeman [21].

In practice, family-wise error control (in the strong sense), FWEs, is the most desired
error control and will be our main target in the sequel. It is the proportion of all FPs,
i.e. P(fm > 0). The simplest way to control FWEs is through Bonferroni inequality which
ensures P(fm > 0) ≤ G0α/G ≤ α, where equality holds in most cases since G0 = G, i.e.
each of G tests has α/G chance for FP. It offers an efficient control for small to moderate G
but is obviously conservative (or has less power) asG becomes large. An alternative option
is the false discovery rate, FDR = E[{fm/(fm + rm)}1{fm+rm≥1}] with 1{·} as indicator
function; see e.g. Dickhaus [18, Ch. 1].

Among other notations used in the sequel, a vector a ∈ R
p is a column vector with

norm ‖a‖2 = 〈a, a〉 and a matrix norm is Frobenius ‖A‖2 = tr(A2). The test statistics
are formulated as linear combinations of second-order U-statistics of symmetric (prod-
uct) kernels, h(·) : Rp �→ R, defined as bilinear forms of independent vectors. With h(·) a
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measurable, possibly degenerate, square-integrable,
∫
h2dP < ∞, function, the set up con-

forms to a Hilbert space L2(H) equipped with inner product 〈·, ·〉 : Rp → R, so that h(·),
with an orthonormal decomposition, is a Hilbert-Schmidt kernel; see van der Vaart [22]
or Lee [23]. This helps us study the properties of test statistics under flexible conditions,
the subject of next section.

2.2. Test statistics and their properties

For the data set up in Section 2.1, let TI = Tij be the test statistic for a (preliminary)
hypothesis H0,I = H0ij : δij = 0 with δG ∈ R

G the vector of all hypotheses to be simulta-
neously tested. Thus, for all pairwise differences, δij : μi − μj, i< j, with G = g(g − 1)/2,
δG = (δ11, . . . , δg−1,g)

′ where

TG = (T1, . . . ,Tg−1)
′ = (T12, . . . , T1g , T23, . . . , T2g , . . . , Tg−2,g , Tg−1,g)

′, (2)

is the vector of test statistics, a set of simultaneous tests for H0 : δG = 0, with Ti =
(Ti,i+1, . . . , Tig)

′, i = 1, . . . , g − 1. Our strategy begins by defining Tij, a test statistic for
H0ij, valid for p � ni where Fi may be non-normal and �i may be unequal. The limit of
Tij is derived under flexible conditions since the multiple tests heavily rest on the prop-
erties of Tij. Using these properties, we derive the joint distribution of TG to be used for
MCP for any G. The most salient feature is that the effect of high-dimensionality, p → ∞,
is taken care of in Tij, so that the limit of TG is mainly influenced by g or G. Now, to define
Tij, consider Qij0 = Ui + Uj − 2Uij where

Ui = 1
ni(ni − 1)

ni∑
k=1

ni∑
r=1

k �=r

h(Xik,Xir), Uij = 1
ninj

ni∑
k=1

nj∑
l=1

h(Xik,Xjl), (3)

are one- and two-sample U-statistics, respectively, with symmetric kernels h(Xik,Xir) =
X′
ikXir/p, h(Xik,Xjl) = X′

ikXjl/p, k, r = 1, . . . , ni, k �= r, l = 1, . . . , nj, i, j = 1, . . . , g, i �=
j, nij = ni + nj. Now E(Qij0) = ‖δij‖2 = 0 under H0ij, δij = μi − μj, so that Qij0 can
be used to test H0ij. For scaling and appropriate limit, also consider Qij1 = Qi1 + Qj1,
Qi1 = (Ei − Ui)/ni, Ei = ∑ni

k=1 X
′
ikXik/ni. Note that, Qi1 = tr(�̂i)/ni ⇒Qij1 = tr(�̂ij0),

�̂ij0 = �̂i/ni + �̂j/nj so that E(Qij1) = tr(�ij0), which is same underH0ij andH1ij, where
�ij0 = �i/ni + �/nj. Thus, writing Qij = Qij1 + Qij0, it follows that [see also 24]

E(Qij) = ‖δij‖2 + tr(�ij0) = tr(�ij0)underH0ij.

We thus define the two-sample test statistic for H0ij as

Tij = 1 + nijQij0

[nijQij1/p]
. (4)

Tij is location-invariant so that we can assume μi = 0 ∀i without loss of generality. Tij
is defined in Ahmad [25] as a modification of the Hotelling’s two-sample T2 statistic to
test H0ij for high-dimensional data under non-normality and heteroscedasticity. Recall
T2 = (ninj/nij)δ̂

′
ij�̂

−1
ij δ̂ij where δ̂ij = X̄i − X̄j and �̂ = [(ni − 1)�̂i + (nj − 1)�̂j]/(ni +
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nj − 2) is pooled estimator of �i = �j = � [1, see e.g.]. The modification pertains to
removing �̂

−1
, which does not exist when p > ni, and writing ‖δ̂ij‖2 = Qij1 + Qij0 = Qij

since ‖X̄i‖2 = ∑ni
k,r=1 X

′
ikXir/n2i = (Ei − Ui)/ni + Ui. Properties of Tij are studied under

the following assumptions.

Assumption 2.1: E(X4
iks) ≤ γ < ∞, i = 1, . . . , g, ∀ s = 1, . . . , p, γ ∈ R

+.

Assumption 2.2: As ni → ∞, ni/n → ρi ∈ (0,∞), i = 1, . . . , g.

Assumption 2.3: As p → ∞, tr(�i)/p = κi = O(1), i = 1, . . . , g.

Assumption 2.4: As p → ∞, μ′
i�kμj/p2 = ψij, 0 < ψij < ∞, i = 1, . . . , g, k= i or k= j.

The assumptions are stated for g samples for their further use in the sequel. Note that, by
Assumption 2.3, ‖�i‖2/p2 = O(1). If we let λi ∈ R

+ be the eigenvalues of�i, so that νi be
those of �i/p, i ∈ {1, . . . , g}, then Assumption 2.3 and its consequence uniformly bound
the first two moments of νi. Assumption 2.1 is inevitably needed to compute moments of
bilinear forms when normality is relaxed. Assumption 2.4 is only needed for distribution
under the alternative.

Assumptions 2.2 and 2.3 are mild and frequently used in high-dimensional testing
problems. In particular, Assumption 2.3 holds for many commonly used covariance struc-
tures. Consider, e.g.� as compound symmetric (CS),� = (1 − ρ)I + ρJwith I as identity
matrix, J = 11′, 1 a vector of 1s, −1/(p − 1) ≤ ρ ≤ 1. Then tr(�r) = O(pr), r = 1, 2.
Note that, unlike common practice in the literature, we need not assume similar bound
for higher moments of the eigenvalues of �, e.g. tr(�2)/p = O(1) which may collapse
for many useful structures, including CS. Note also that CS belongs to spiked structures
where a few eigenvalues dominate the rest, so that the proposed procedures hold for such
structures as well. See also discussion after Assumption 2.6 below.

Under these assumptions, the limit of Tij, for n,i , p → ∞, is given in Ahmad

[25]. First, nijQij1/p
P−→ ρ−1

i κi + ρ−1
j κj = ∑∞

s=1(ρ
−1
i νsi + ρ−1

j νsj) = Kij, as ni, p → ∞.
The limit obviously approximates E(Qij1) = tr(�ij0) and holds both under H0ij and
H1ij. As E(Qij0) = ‖δij‖2 = 0 under H0ij, the kernels of Ui and Uij are degenerate, so

that [22] niUi
D−→ ∑∞

s=1 νis(z
2
is − 1), √ninjUij

D−→ ∑∞
s=1 νisziszjs, where zis ∼ N(0, 1), iid.

Then nijQij0
D−→ ∑∞

s=1(ρ
−1
i νisz2is + ρ−1

j νisz2jm − 2ρ−1/2
i ρ

−1/2
j νijsziszjs)− Kij and, by Slut-

sky’s lemma,

Tij
D−→ 1

Kij

∞∑
m=1

(ρ
−1/2
i ν

1/2
im zim − ρ

−1/2
j ν

1/2
jm zjm)2, (5)

where the limiting moments, E(Tij) ≈ 1, Var(Tij) ≈ 2
∑∞

m=1(ρ
−1
1 ν1m + ρ−1

2 ν2m)
2/K2

ij ,
approximate the first two moments of χ2

fij/fij, fij = [tr(�0ij)]2/tr(�2
0ij), �0ij = n�ij0/p.

Thus Tij
D−→ χ2

fij/fij. The normal limit follows by an application of Hájek-Šidák Lemma
[26, p. 183]. The limit under H1ij follows by the projection theory of U-statistics. We
estimate Var(Tij) = σ 2

Tij by using unbiased, consistent estimators of traces in fij, i.e.
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tr(�2
i ), [tr(�i)]2, tr(�i�j), defined as E2i = ηi{(ni − 1)(ni − 2)tr(�̂

2
i ) + [tr(�̂i)]2 −

niQi}, E3i = ηi{2tr(�̂2
i )+ (n2i − 3ni + 1)[tr(�̂i)]2 − niQi} and tr(�̂1�̂2), where Qi =∑ni

k=1(X̃
′
ikX̃ik)

2/(ni − 1), X̃i = Xik − X̄i, ηi = (ni − 1)/[ni(ni − 2)(ni − 3)]. The consis-
tent estimator V̂ar(Tij) can replaceVar(Tij) in Tij. Following theorem summarizes the limit.
For proof and an extension to multi-sample case, see Ahmad [25].

Theorem2.5: ForTij in Equation (4), (Tij − E(Tij))/σTij
D−→ N(0, 1), ni, nj, p → ∞, under

Assumptions 2.1–2.4. The limit remains valid by replacing σ 2
Tij with its consistent estimator

defined above.

A few remarks concerning Theorem 2.5 will help us proceed further. First, the limit of
Tij holds for any distribution with finite fourth moment. Second, the composition of Tij in
terms of U-statistics helps us relax normality and obtain the limit conveniently as the ker-
nels are simple bilinear forms of independent components. The accuracy of Tij for small or
moderate ni and large p is shown through simulations inAhmad [25]. This also implies that
the dimension p is taken care of in the limit of Tij, so that the extension to multiple com-
parisons will not be much influenced by p. Finally, as Qij1 converges to E(Qij1) = tr(�ij0)

in probability, the limit of Tij mainly follows from Qij0. Thus, in extending the limit to TG,
we mainly focus on Qij0. For this, note that

Var(Qij0) = 2‖�ij0‖2 + 4δ′
ij�ij0δij (6)

Cov(Qij0,Qij′0) = 2
n2i

‖�i‖2 + 4
ni

δ′
ij�iδij′ (7)

Cov(Qij0,Qi′j0) = 2
n2j

‖�j‖2 + 4
nj

δ′
ij�jδi′j (8)

with Cov(Qij0,Qi′j′0) = 0 for i �= i′, j �= j′ (see Appendix) where, underH0ij,

Var(Qij0) = 2‖�ij0‖2, Cov(Qij0,Qij′0) = 2
n2i

‖�i‖2, Cov(Qij0,Qi′j0) = 2
n2j

‖�j‖2,
(9)

independent ofμi. Now, withQi0 = (Qij0, . . . ,Qig0)
′, i = 1, . . . , g − 1, consider the vector

Q0 = (Q′
10, . . . ,Q

′
g−1,0)

′, (10)

where E(Q0) = 0, Cov(Q0) = � = 2(�ij/p2)Gi,j=1 ∈ R
G×G, a partitioned matrix with

diagonal and off-diagonal blocks Cov(Qi0) = �ii/p2 ∈ R
(g−i)×(g−i), Cov(Qi0,Qj0) =

�ij/p2 ∈ R
(g−i)×(g−j), i.e.

�ii = 1
n2i

‖�i‖2(J − I)g−i + ⊕g
j=i+1‖�ij0‖2, �ij = 0′ 1

n2i
‖�i‖21′

g−i
1
n2j

⊕g
j=i+2 ‖�j‖2

(11)
i = 1, . . . , g − 1, j = i + 1, . . . , g, 1 is vector of 1s, J = 11′, I is identity matrix, ⊕ is Kro-
necker sum and 0 in �ij is of order (j − i − 1)× (g − j) with no zero row if j−i−1=0.
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A closer look at the structure of � reveals several aspects which will simplify the compu-
tations that follow. Ignoring p2 for simplicity, and denoting ai = ‖�i‖2/n2i , aij = ‖�ij0‖2,
we can write

�ii =

⎛
⎜⎜⎜⎝
ai,i+1 ai . . . ai
ai ai,i+2 . . . ai
...

...
. . .

...
ai ai . . . ai,g

⎞
⎟⎟⎟⎠ . (12)

For any given i, �ii has same off-diagonal element, ai, with diagonal elements aij, where
�ij0 = �i/ni + �j/nj = Cov(δ̂ij), j= i+1. For off-diagonal blocks �ij,

�12 =

⎛
⎜⎜⎜⎜⎜⎝

a2 a2 . . . a2
a3 0 . . . 0
0 a4 . . . 0
...

...
. . .

...
0 0 . . . ag

⎞
⎟⎟⎟⎟⎟⎠
, �13 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0
a3 a3 . . . a3
a4 0 . . . 0
...

...
. . .

...
0 0 . . . ag

⎞
⎟⎟⎟⎟⎟⎠
,

�1,g−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...
0 0

ag−2 ag−2
ag−1 0
0 ag

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, �1,g−1 =

⎛
⎜⎜⎜⎜⎜⎝

0
...
0

ag−1
ag

⎞
⎟⎟⎟⎟⎟⎠

�23 =

⎛
⎜⎜⎜⎜⎜⎝

a3 a3 . . . a3
a4 0 . . . 0
0 a5 . . . 0
...

...
. . .

...
0 0 . . . ag

⎞
⎟⎟⎟⎟⎟⎠
, �2,g−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
...

...
0 0

ag−2 ag−2
ag−1 0
0 ag

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

�2,g−1 =

⎛
⎜⎜⎜⎜⎜⎝

0
...
0

ag−1
ag

⎞
⎟⎟⎟⎟⎟⎠
, �g−2,g−1 =

(
ag−1 0
0 ag

)

The off-diagonal elements in �ij are mostly 0 and the number of (rows with) zeros
increases with increasing j for every i, making � an increasingly sparse matrix. However,
the distinct non-zero elements in � consist of a much smaller set

{
tr(�2

i ), tr(�i�j), i, j = 1, . . . , g, i < j
}
, (13)

with cardinality Ce = g(g + 1)/2. Thus, for any g, we only need to estimate Ce out of
CT = G(G + 1)/2 elements in order to estimate �. For example, for g = 6, 9, 12, 15, 20
samples, Ce = 21, 66, 78, 120, 210 whereas CT = 120, 1540, 2211, 5565, 18145, respec-
tively. The consistent estimators of these traces are given before Theorem 2.5. Used as
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plug-in estimators, they lead to a consistent estimator, �̂, of �. A further simplification
follows from weak (mostly zero) off-diagonal elements as compared to diagonal ones, so
that the following assumption holds trivially.

Assumption 2.6: limp→∞ ‖�i‖2/[{tr(�i + �j)}{tr(�i + �k)}] → γ ∈ [0, 1), i �= j �= k
= 1, . . . , g.

Although, Assumption 2.6 is kept flexible to adjust many covariance structures, it can be
shown that the ratio indeed vanishes formost covariance structures, so thatAssumption 2.6
encompasses many practical cases, including trivial ones e.g. � ∝ I; see also Section 4.
For the distribution of TG, consider the moments of Qij0 in Equations (6)–(9). Using the
projection theory of U-statistics (Appendix), the projection of Qij0 can be shown as

Q̂ij0 = 2δ′
ij

{
(X̄i − μi)− (X̄j − μj)

}
/p = 2δ′

ij
{
(X̄i − X̄j)− δij

}
/p,

see [25, Appendix B.2]. As Q̂ij0 is composed of independent components and holds for
any pair (i, j), the projection of Qi0, hence of Q0, consists of sums of these independent
components. Further, with Qij1 converging to a constant in probability, the limit for TG
follows conveniently by the Cramér-Wold device and Slutsky’s lemma [22]. Finally, using
the plug-in consistent estimators of the elements of�, the limit also extends to �̂. We have
the following theorem.

Theorem 2.7: For TG, the limit in Equation (14) holds under Assumptions 2.1–2.6, as
ni, p → ∞. Further, the limit remains valid by replacing � with its consistent estimator
defined above.

As mentioned above, the off-diagonal elements in � vanish under Assumption 2.6
for most covariance matrices, leaving � diagonal. This makes the limit in Theorem 2.7
much easier to prove and simpler to use. In particular, with f̂ij as the estimator of
fij, as discussed after Equation (5), we can use the Chi-square limit with Cov(TG) ≈
diag(2/f12, . . . , 2/fg−1,g) with fij estimated as f̂ij. Alternatively, the corresponding normal
limit may be used. In fact, given the structure of the test statistics, and also because the
normal limit follows through Chi-square limit, it has been observed that the Chi-square
approximation mostly performs relatively better that the normal limit, and is thus strongly
recommended for practical applications.

Note that, Theorem 2.7 implies that the limit also holds for any linear combination a′TG,
a ∈ R

G\{0}. With E(TG) ≈ 1G, we have, for ni, p → ∞,

a′TG
D−→ N(a′1, a′�a), (14)

so that we can also test any linear combination H0 : a′δG = 0, particularly including
any single δij = 0, using

√
2/fij(Tij − 1) D−→ N(0, 1). The corresponding 100(1 - α)%

simultaneous confidence interval (SCI) for a′δG follows as

a′T̂G ∓ zα/2
√
a′�̂a, (15)

where zα/2 is 100(α/2)% quantile of N(0, 1)-distribution. Note that, the observed length
of this confidence interval is L̂ = 2zα/2(a′�̂a)1/2. By the consistency of �̂ (Theorems
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2.5-2.7) and the continuous mapping theorem, E(L̂) converges to a′�a which, under the
assumptions, is a finite value, assuming ‖a‖2 < ∞ which holds conveniently.

The comparison of treatments with a control is a special case of all pairwise comparisons
presented above. Let Sample 1 be treated as control, and the interest is to test it against all
other samples, i.e. Hi0 : δ1i = 0, δ1i = μ1 − μi, i = 2, . . . g. The vector of tests is

T1 = (T12, . . . ,T1g)
′, (16)

which is the first sub-vector of TG in Equation (2). Using the related computations, we get
E(Q01) = 0g−1, Cov(Q01) = �11, the first diagonal block of �, so that under the assump-
tions, E(T1) ≈ 1g−1 and, assuming zero off-diagonals, Cov(T1) = diag(2/f12, . . . , 2/f1g).
The multiple tests and corresponding confidence intervals follows from those given forTG
above, without much changes.

3. Simulations

We do a simulation study to assess the performance of the proposed tests, in terms of their
size control and power, and also their robustness to the violation of assumptions. We con-
sider g = 3 and 6 samples and generate p-dimensional iid vectors from normal, uniform
and exponential distributions. For g=3, we use (n1, n2, n3) = (10, 15, 20), (20, 30, 40), (10,
30, 60) and (50, 75, 100), with p ∈ {50, 300, 500, 1000}, where the last sample size triplet
corresponds to large samples and penultimate triplet amounts to very unbalanced design.
The other two triplets are used to show the accuracy of the tests for small tomoderate sam-
ple sizes. We use three covariance structures, Compound Symmetry (CS), Autoregressive
of order 1, AR(1), and unstructured (UN), defined, respectively, as κI + ρJ, Cov(Xi,Xj) =
κρ|i−j|, ∀ k, l and � = (σij)

d
i,j=1 with σij = 1(1)d (i= j), ρij = (i − 1)/d (i> j), where I is

identity matrix and J = 11′ is matrix of 1 s.
To include violation of homoscedasticity assumption, we combine the structures as (CS,

AR(1, 0.5), AR(1, 0.7)), (AR(1, 0.5), AR(1, 0.7), UN), where 0.5 and 0.7 are ρ values used.
We use κ = 1 for all cases. For g=6, we use (n1, n2, . . . , n6) = (10, 10, 10, 20, 20, 20), (30,
40, 50, 30, 40, 50), (30, 40, 50, 60, 70, 80), with same covariance matrix combinations as
used for g=3, repeated for first three andnext three populations.Due to the close similarity
of the results, we restrict the presentation of power to (CS, AR, AR) combination for g=3
and to normal and exponential distributions, with first two sample size sextuples, for g=6.

For both size and power, we useα = 0.05. For g=3, we test all (three) pairwise hypothe-
ses δij = 0, i< j, i,j=1, 2, 3, where for g=6, we do comparisons with (sample 1 as) control,
that is, H0 : δ1j = 0, j = 2, . . . , 6. Moreover, for power, we add non-centrality parame-
ter, defined as ϑ = 0.2(0.2)1q with q = (1/p, . . . , p/p), to population 1 for both g = 3
and 6. This, for g = 3, affects tests for δ12 and δ13, whereas for g = 6 and comparisons
with control, it affects all tests. The p-values and power are estimated using the asymptotic
distribution in Theorem 2.7, averaged over 1000 simulation runs.

For comparison, we also compute, under the same set up, size and power for the most
commonly used multiple test procedure, namely max test, Tmax, with Bonferroni error
control. We thus compute Tmax = max{Tij : i, j = 1, . . .G, i < j} and use α/G as nominal
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Table 1. Estimated size of pairwise comparisons for g = 3: all distributions.

ND UD ED

� i n1, n2, n3 p T12 T13 T23 Tmax T12 T13 T23 Tmax T12 T13 T23 Tmax

CS,AR,AR 10,15,20 50 0.945 0.939 0.945 0.934 0.942 0.939 0.954 0.921 0.944 0.945 0.953 0.923
300 0.957 0.956 0.946 0.952 0.954 0.942 0.945 0.940 0.946 0.939 0.945 0.927
500 0.946 0.940 0.948 0.933 0.945 0.938 0.942 0.928 0.940 0.945 0.944 0.939
1000 0.940 0.951 0.947 0.947 0.942 0.939 0.944 0.931 0.938 0.945 0.947 0.925

20,30,40 50 0.945 0.944 0.951 0.920 0.943 0.949 0.948 0.930 0.946 0.949 0.951 0.927
300 0.953 0.954 0.959 0.945 0.962 0.960 0.958 0.954 0.950 0.949 0.955 0.933
500 0.953 0.947 0.955 0.953 0.945 0.944 0.949 0.944 0.955 0.957 0.950 0.956
1000 0.943 0.948 0.954 0.951 0.947 0.951 0.956 0.940 0.951 0.954 0.943 0.940

10,30,60 50 0.950 0.945 0.955 0.915 0.946 0.946 0.951 0.929 0.943 0.938 0.941 0.908
300 0.941 0.945 0.947 0.937 0.948 0.947 0.941 0.935 0.944 0.947 0.942 0.918
500 0.949 0.951 0.948 0.942 0.953 0.943 0.947 0.943 0.944 0.942 0.958 0.931
1000 0.953 0.945 0.948 0.937 0.955 0.949 0.946 0.938 0.959 0.953 0.944 0.912

50,75,100 50 0.949 0.944 0.948 0.925 0.950 0.952 0.954 0.928 0.943 0.944 0.947 0.926
300 0.942 0.948 0.951 0.932 0.958 0.954 0.945 0.949 0.947 0.952 0.962 0.949
500 0.940 0.944 0.957 0.952 0.952 0.948 0.943 0.951 0.947 0.949 0.941 0.926
1000 0.953 0.945 0.947 0.937 0.945 0.948 0.950 0.942 0.949 0.952 0.940 0.930

AR,AR,UN 10,15,20 50 0.959 0.940 0.941 0.921 0.948 0.944 0.949 0.920 0.946 0.935 0.940 0.917
300 0.944 0.948 0.943 0.928 0.947 0.940 0.949 0.932 0.948 0.943 0.953 0.935
500 0.943 0.941 0.946 0.927 0.950 0.940 0.960 0.939 0.938 0.940 0.944 0.925
1000 0.948 0.949 0.953 0.925 0.941 0.956 0.954 0.936 0.940 0.942 0.951 0.938

20,30,40 50 0.953 0.946 0.944 0.920 0.950 0.960 0.943 0.937 0.949 0.945 0.956 0.943
300 0.947 0.942 0.941 0.932 0.940 0.956 0.949 0.943 0.946 0.961 0.944 0.958
500 0.954 0.952 0.950 0.943 0.942 0.944 0.951 0.937 0.943 0.962 0.951 0.943
1000 0.951 0.950 0.947 0.940 0.944 0.940 0.953 0.939 0.945 0.955 0.946 0.941

10,30,60 50 0.940 0.941 ,.947 0.922 0.944 0.940 0.951 0.924 0.953 0.944 0.942 0.923
300 0.951 0.946 0.946 0.948 0.940 0.939 0.942 0.933 0.948 0.951 0.958 0.943
500 0.945 0.951 0.954 0.944 0.946 0.951 0.954 0.946 0.945 0.953 0.957 0.943
1000 0.950 0.956 0.948 0.947 0.945 0.942 0.956 0.936 0.951 0.947 0.960 0.941

50,75,100 50 0.942 0.945 0.948 0.924 0.951 0.957 0.946 0.936 0.947 0.957 0.956 0.942
300 0.950 0.963 0.956 0.952 0.948 0.953 0.944 0.943 0.944 0.951 0.953 0.926
500 0.957 0.945 0.947 0.948 0.956 0.948 0.947 0.933 0.952 0.942 0.945 0.938
1000 0.955 0.949 0.946 0.940 0.951 0.941 0.944 0.938 0.943 0.947 0.950 0.941

level to exercise Bonferroni control. Note that, both types of error control pertain to family-
wise in the strong sense (FWEs); see Section 1. The estimated quantiles, ˆ1 − α and power,

ˆ1 − β , are reported in Tables 1–4, respectively, for g=3 and 6.
We observe an accurate size control by the proposed tests for both 3 and 6 samples,

under all covariance structures and for all populations. The accuracy for exponential dis-
tribution as a serious non-normal case is particularly noticeable. Likewise is the case for
the covariance structures involving CS, being highly spiked covariance matrix, with only
two distinct eigenvalues. These results depict strong robustness of the tests against sev-
eral violations of usual assumptions. Similar situation appears for power which steadily
increases not only for increasing sample sizes but also for increasing dimension. Note the
power converging quickly to 1 for sample sizes as small as 10 or 20, even for exponential
distribution. Due to this, we reduce ϑ values for each p as soon as the power approaches
its maximum value. For example, for p=500, power was already observed 1 for ϑ = 0.4,
hence not reported. We also note, in comparison, that Tmax often moves between being
conservative to liberal and looses its stability, although it generally shows nice power.

To conclude, the proposed tests can be generally considered for most of practically used
distributions and covariance structures, where the dimension may far exceed the sam-
ple size, and for a moderate number of independent samples. Note that, theoretically, the
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Table 2. Estimated size of comparisons with a control for g= 6: All distributions.

� i : CS, AR, AR � i : AR, AR, UN

F n1, . . . , n6 p T12 T13 T14 T15 T16 Tmax T12 T13 T14 T15 T16 Tmax

ND (10,10,10 50 0.939 0.947 0.946 0.935 0.946 0.945 0.941 0.942 0.952 0.942 0.944 0.960
20,20,20) 300 0.938 0.936 0.945 0.941 0.947 0.966 0.947 0.941 0.940 0.944 0.942 0.963

500 0.941 0.943 0.957 0.944 0.946 0.974 0.953 0.940 0.944 0.940 0.945 0.971
1000 0.946 0.954 0.952 0.953 0.948 0.965 0.940 0.949 0.950 0.954 0.944 0.970

(30,40,50 50 0.944 0.943 0.943 0.939 0.946 0.947 0.940 0.943 0.942 0.946 0.947 0.953
30,40,50) 300 0.946 0.940 0.942 0.942 0.946 0.965 0.945 0.943 0.959 0.947 0.944 0.975

500 0.944 0.950 0.945 0.952 0.945 0.980 0.945 0.947 0.951 0.947 0.948 0.981
1000 0.951 0.946 0.953 0.949 0.941 0.961 0.947 0.949 0.950 0.961 0.945 0.973

(30,40,50 50 0.960 0.944 0.951 0.949 0.948 0.953 0.946 0.947 0.946 0.942 0.943 0.957
60,70,80) 300 0.953 0.954 0.955 0.940 0.943 0.981 0.954 0.948 0.963 0.948 0.940 0.975

500 0.940 0.944 0.942 0.948 0.945 0.976 0.941 0.944 0.946 0.942 0.946 0.965
100 0.947 0.948 0.958 0.951 0.944 0.948 0.945 0.951 0.941 0.949 0.947 0.941

UD (10,10,10 50 0.938 0.942 0.941 0.940 0.945 0.940 0.943 0.937 0.943 0.945 0.952 0.953
20,20,20) 300 0.943 0.944 0.942 0.952 0.945 0.974 0.943 0.940 0.946 0.943 0.950 0.981

500 0.941 0.944 0.942 0.943 0.942 0.962 0.941 0.947 0.944 0.949 0.940 0.973
1000 0.944 0.944 0.950 0.959 0.945 0.972 0.942 0.948 0.951 0.960 0.941 0.975

(30,40,50 50 0.952 0.946 0.947 0.944 0.949 0.963 0.961 0.947 0.941 0.948 0.948 0.971
30,40,50) 300 0.949 0.943 0.946 0.950 0.950 0.974 0.949 0.954 0.949 0.941 0.951 0.977

500 0.950 0.946 0.953 0.940 0.944 0.975 0.951 0.951 0.942 0.958 0.955 0.978
1000 0.948 0.959 0.952 0.944 0.941 0.991 0.942 0.950 0.956 0.942 0.955 0.988

(30,40,50 50 0.928 0.943 0.951 0.960 0.941 0.968 0.949 0.959 0.940 0.956 0.948 0.969
60,70,80) 300 0.953 0.942 0.949 0.945 0.950 0.982 0.940 0.956 0.954 0.949 0.944 0.973

500 0.953 0.950 0.950 0.948 0.944 0.973 0.948 0.940 0.952 0.940 0.946 0.985
1000 0.957 0.958 0.949 0.951 0.948 0.938 0.955 0.952 0.941 0.943 0.940 0.939

ED (10,10,10 50 0.943 0.945 0.931 0.936 0.938 0.958 0.950 0.956 0.949 0.960 0.958 0.957
20,20,20) 300 0.954 0.946 0.941 0.942 0.950 0.968 0.948 0.945 0.947 0.949 0.946 0.964

500 0.947 0.950 0.956 0.946 0.961 0.977 0.947 0.948 0.949 0.945 0.954 0.975
1000 0.953 0.946 0.953 0.959 0.955 0.972 0.950 0.948 0.958 0.958 0.946 0.977

(30,40,50 50 0.948 0.951 0.960 0.947 0.948 0.965 0.945 0.950 0.952 0.947 0.955 0.965
30,40,50) 300 0.943 0.943 0.945 0.946 0.951 0.972 0.946 0.963 0.942 0.956 0.946 0.974

500 0.956 0.950 0.955 0.947 0.956 0.980 0.949 0.946 0.941 0.948 0.945 0.973
1000 0.942 0.0.935 0.942 0.949 0.943 0.975 0.944 0.938 0.946 0.945 0.952 0.981

(30,40,50 50 0.951 0.946 0.945 0.949 0.952 0.963 0.952 0.946 0.945 0.941 0.945 0.958
60,70,80) 300 0.946 0.941 0.946 0.955 0.943 0.968 0.941 0.962 0.945 0.953 0.954 0.956

500 0.948 0.941 0.945 0.944 0.951 0.978 0.946 0.952 0.949 0.947 0.954 0.978
1000 0.956 0.948 0.961 0.953 0.950 0.985 0.954 0.951 0.953 0.947 0.944 0.982

asymptotic covariance matrix of the vector of tests, �, holds for any g, hence any G, but a
large g is practically a rare phenomenon. In most cases, g is a moderate values like g ≤ 6 or
7, as compared to pwhichmay run into thousands. In this context, the tests may find appli-
cability in a wide array of practical problems. On the other hand, the largeness of g may, at
least in a few special contexts, be of interest and is therefore being considered for a future
work. It indeed needs a different sort of asymptotics to allow for g → ∞ simultaneously
with p → ∞.

4. Applications

We apply the proposed procedures to two data sets, heretofore called SRBCT and Species
data, with g=4 and 5 samples, respectively. The first data set consists of small, round blue
cell tumors (SRBCT) observed over four independent groups, including a normal group,
with sizes n1 = 29, n2 = 25, n3 = 11, n4 = 18, with dimension p=2308 gene expressions.
The second, species, data set consists of p=809 species counts of macrobenthos, observed
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Table 3. Estimated power of pairwise comparisons for g= 3: All distributions.

ND UD ED

� i n1, n2, n3 p ϑ T12 T13 Tmax T12 T13 Tmax T12 T13 Tmax

CS,AR,AR 10,15,20 50 0.2 0.149 0.141 0.173 0.134 0.139 0.134 0.143 0.137 0.158
0.4 0.493 0.511 0.532 0.490 0.505 0.537 0.474 0.505 0.514
0.6 0.905 0.947 0.949 0.900 0.928 0.943 0.902 0.943 0.963
0.8 0.997 1.000 0.999 0.995 0.998 1.000 0.997 1.000 1.000
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.2 0.167 0.175 0.165 0.162 0.190 0.196 0.149 0.175 0.167
0.4 0.679 0.742 0.745 0.658 0.726 0.755 0.668 0.711 0.742
0.6 0.991 0.998 0.999 0.955 0.986 0.997 0.992 0.998 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 0.2 0.262 0.288 0.272 0.260 0.283 0.263 0.258 0.279 0.270
0.4 0.961 0.982 0.981 0.962 0.981 0.976 0.959 0.980 0.983
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10,30,60 50 0.2 0.138 0.179 0.165 0.157 0.168 0.155 0.132 0.168 0.162
0.4 0.596 0.675 0.617 0.614 0.670 0.619 0.587 0.648 0.613
0.6 0.968 0.975 0.970 0.967 0.990 0.984 0.970 0.974 0.992
0.8 0.999 1.000 1.000 0.998 0.999 0.999 0.999 0.998 1.000
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.2 0.195 0.212 0.179 0.185 0.215 0.186 0.178 0.208 0.203
0.4 0.811 0.875 0.835 0.809 0.879 0.848 0.800 0.896 0.816
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 0.2 0.339 0.406 0.367 0.335 0.409 0.371 0.337 0.410 0.368
0.4 0.996 0.996 0.999 0.995 0.997 0.998 0.996 0.998 0.999
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50,75,100 50 0.2 0.570 0.667 0.657 0.568 0.664 0.671 0.576 0.647 0.656
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.2 0.812 0.863 0.884 0.808 0.868 0.863 0.812 0.876 0.869
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

from n=101 independent sites in five different regions, with sample sizes n1 = 16, n2 =
21, n3 = 25, n4 = 19, n5 = 20, along a long transact of the Norwegian continental shelf.

We have X = (X′
1, . . . ,X

′
5)

′ ∈ R
n×p as complete data matrix with Xi = (X′

i1, . . . ,X
′
ini)

′
∈ R

ni×p for ith sample, where ni and p are given above. Both data sets represent unbal-
anced one-wayMANOVAdesigns with g=4 and 5 independent samples, with dimensions
p=2308 and 809, and total sample size n = ∑5

i=1 ni = 83 and 101, respectively.
We begin by testing global hypotheses, i.e. H0g : μ1 = . . . = μg vs H15 : μi �= μj for at

least one pair i �= j, i, j = 1, . . . , g, with g=4 and 5, respectively. We use MANOVA test
statistic proposed, under identical general conditions as used here, in Ahmad [25]. The
observed values of the test statistic, Tg (see Equation 8 in the reference), for SRBCT data
are 378.1604 and 45.7850, respectively, for Chi-square and normal approximations, with
p-value virtually zero in each case. A detailed analysis of species data is already provided
in Ahmad [25, Sec. 5], by which Tg = 180.4 and 40.61 for Chi-square and normal approx-
imations, respectively, with p-values again zero. With global hypotheses strongly rejected,
we expect to find vectors responsible for this rejection.

For multiple comparisons, we consider sample 1 as control and compare it with the
remaining samples for Species data, i.e. we test H01j : δ1j = 0, j=2, 3, 4, 5, with G = 4,
whereas we do all G=6 pairwise comparisons for SRBCT data, i.e. Hij0 : δij = 0, i,j=1,
2, 3, 4, i< j. The vectors of test statistics for Species and SRBCT data, respectively, are
computed as

T5 = (5.15, 12.24, 10.98, 10.36)′, T6 = (5.17, 3.76, 5.32, 6.25, 5.43, 5.07)′,
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Table 4. Estimated power of comparisons with a control for g= 6: All distributions.

� i : CS, AR, AR � i : AR, AR, UN

F n1, . . . , n6 p ϑ T12 T13 T14 T15 T16 Tmax T12 T13 T14 T15 T16 Tmax

ND (10,10,10 50 0.2 0.134 0.149 0.145 0.157 0.167 0.127 0.118 0.122 0.149 0.157 0.155 0.128
20,20,20) 0.4 0.425 0.416 0.536 0.571 0.545 0.538 0.396 0.420 0.533 0.542 0.540 0.521

0.6 0.844 0.848 0.936 0.950 0.932 0.955 0.815 0.837 0.947 0.943 0.950 0.952
0.8 0.989 0.989 0.999 1.000 0.999 1.000 0.993 0.991 1.000 0.999 0.999 1.000
1.0 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.2 0.144 0.144 0.182 0.213 0.183 0.123 0.145 0.161 0.184 0.187 0.198 0.132
0.4 0.581 0.567 0.759 0.765 0.758 0.750 0.573 0.565 0.720 0.738 0.743 0.730
0.6 0.974 0.972 0.999 0.997 0.996 0.998 0.969 0.966 0.997 0.997 0.998 0.995
0.8 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 0.2 0.24 0.248 0.289 0.305 0.312 0.217 0.221 0.224 0.315 0.334 0.301 0.226
0.4 0.913 0.909 0.990 0.989 0.991 0.990 0.899 0.909 0.984 0.988 0.989 0.989
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(30,40,50 50 0.2 0.340 0.383 0.303 0.327 0.360 0.341 0.340 0.381 0.308 0.342 0.367 0.341
30,40,50) 0.4 0.981 0.986 0.949 0.973 0.984 0.995 0.960 0.984 0.945 0.976 0.982 0.988

0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 0.2 0.473 0.546 0.400 0.496 0.527 0.502 0.496 0.543 0.425 0.494 0.562 0.519

0.4 1.000 1.000 0.998 1.000 1.000 1.000 0.998 1.000 0.999 1.000 1.000 1.000
ED (10,10,10 50 0.2 0.126 0.116 0.140 0.132 0.124 0.103 0.121 0.130 0.140 0.144 0.132 0.095

20,20,20) 0.4 0.404 0.373 0.521 0.535 0.540 0.496 0.399 0.403 0.536 0.512 0.513 0.512
0.6 0.851 0.826 0.951 0.945 0.941 0.974 0.823 0.815 0.942 0.950 0.956 0.974
0.8 0.989 0.985 1.000 1.000 0.999 1.000 0.989 0.990 1.000 0.999 1.000 1.000
1.0 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.2 0.141 0.149 0.189 0.172 0.155 0.119 0.151 0.148 0.166 0.169 0.195 0.113
0.4 0.557 0.562 0.746 0.742 0.744 0.729 0.558 0.585 0.736 0.746 0.747 0.755
0.6 0.965 0.976 0.997 0.998 1.000 0.999 0.961 0.965 0.998 0.998 0.999 0.999
0.8 0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000

300 0.2 0.220 0.222 0.287 0.287 0.322 0.218 0.210 0.204 0.304 0.289 0.283 0.202
0.4 0.902 0.906 0.986 0.985 0.988 0.991 0.913 0.907 0.992 0.986 0.991 0.996
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 v 1.000 1.000 1.000

(30,40,50 50 0.2 0.339 0.366 0.310 0.335 0.339 0.344 0.351 0.365 0.275 0.331 0.369 0.334
30,40,50) 0.4 0.975 0.987 0.954 0.977 0.995 0.999 0.977 0.979 0.935 0.978 0.987 0.989

0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 0.2 0.453 0.545 0.402 0.502 0.528 0.500 0.489 0.541 0.413 0.516 0.511 0.494

0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000

with the corresponding vectors of p-values (0.004, 0, 0, 0)′ and 06. The results indicate all
means, statistically, discernably different from each other at any reasonable nominal size.
For further assessment, we also compute the � matrix (see Equation 11) for the two data
sets, respectively, of order 4 × 4 and 5 × 5, shown in Equations (17) and (19). It may be
mentioned that the analysis reported above is based on Chi-square approximation which,
as already discussed, has relatively better performance than the normal one, and the ratio
in Assumption 2.6 is assumed to vanish, so that �̂ are used as diagonal matrices. This
can be easily witnessed from the matrices computed for the two data sets. It is clear that
ignoring the off-diagonal elements does not cause much loss of information concerning
the comparisons.

To expand more on this, and to highlight an additional important property of the pro-
posed tests, �̂

−1
is also reported in each case; Equations (18) and (20). First, we observe

that, estimated � is a non-singular matrix, hence can be inverted, something that in fact
can be shown for �̂G in general. Second, this in turn implies that the tests can be defined as
affine-invariant, using �̂

−1
. As we have not proved this inverse for the general case explic-

itly, it is left for a later work. Finally, we notice that the off-diagonal elements virtually
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vanish in the inverses. Thus, in affine-invariant form, the tests may be used even more
safely under Assumption 2.6.

�̂ =

⎛
⎜⎜⎝
2.326 0.032 0.068 0.055
0.032 3.459 0.163 0.131
0.068 0.163 2.846 0.275
0.055 0.131 0.275 4.177

⎞
⎟⎟⎠ (17)

�̂
−1 =

⎛
⎜⎜⎝

0.430 −0.003 −0.009 −0.005
−0.003 0.290 −0.016 −0.008
−0.009 −0.016 0.355 −0.023
−0.005 −0.008 −0.023 0.241

⎞
⎟⎟⎠ (18)

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

15.559 0.014 0.022 0.019 0.028 0.000
0.014 7.272 0.016 0.090 0.000 0.096
0.022 0.016 5.748 0.000 0.036 0.026
0.019 0.090 0.000 8.358 0.018 0.014
0.028 0.000 0.036 0.018 6.695 0.023
0.000 0.096 0.026 0.014 0.023 5.655

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

�̂
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.064 0.000 0.000 0.000 0.000 0.000
0.000 0.138 0.000 −0.002 0.000 −0.002
0.000 0.000 0.174 0.000 −0.001 −0.001
0.000 −0.002 0.000 0.120 0.000 0.000
0.000 0.000 −0.001 0.000 0.149 −0.001
0.000 −0.002 −0.001 0.000 −0.001 0.177

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

5. Discussion and conclusions

In the context of multi-sample multivariate problem, multiple comparisons of mean vec-
tors with very large dimension, possibly much larger than the number of vectors in any
sample, are considered. The case is of frequent interest, for example, as a first post hoc
assessment of mean vectors after a global MANOVA hypothesis is rejected. All possi-
ble pairwise differences and comparisons with a control are treated. In particular, the
joint asymptotic distribution, under ni, p → ∞, is derived whose tail probabilities can
be directly used to carry out the multiple tests. Simulations results are used to show the
accuracy of the tests, and a comparison with max test is also given.

Following the objectives of the present work, as stated in Section 1, the proposed tests
can be used in applied problems requiring simultaneous inference for two or more large
mean vectors which might have been sampled from a non-normal distribution and may
have unequal covariance matrices as well as the sample sizes. Whereas the test statis-
tics are asymptotically approximated with Chi-square and Normal distributions, it is
observed that the former provides relatively better accuracy than the later and is thus highly
recommended for practical use.

Disclosure statement

No potential conflict of interest was reported by the author.



1058 M. R. AHMAD

ORCID

M. Rauf Ahmad http://orcid.org/0000-0002-5362-5835

References

[1] Seber GAF. Multivariate observations. New York (NY): Wiley.
[2] JohnsonRA,DWWichern. Appliedmultivariate statistical analysis. 6th ed. Upper Saddle River

(NJ): Pearson Education; 2007.
[3] Krishnaiah PR. On the simultaneous ANOVA and MANOVA tests. Ann Inst Stat Math.

1965;17:35–53.
[4] Krishnaiah PR. Simultaneous test procedures under generalMANOVAmodels. In: Krishnaiah

PR, editor. Multivariate analysis. Vol II. New York (NY): Academic Press; 1969. p. 121–143.
[5] Wijsman RA. Constructing all smallest simultaneous confidence sets in a given class with

applications to MANOVA. An Stat. 1979;7(5):1003–1018.
[6] Kropf S. Hochdimensionale multivariate Verfahren in der medizinischen Statistik. Aachen:

Shaker; 2000.
[7] Kropf S, Läuter J. Multiple tests for different sets of variables using a data-driven ordering of

hypotheses, with an application to gene expression data. Biom J. 2002;44:789–800.
[8] Westfall P, Kropf S, Finos L. Weighted FWE-controlling methods in high-dimensional situa-

tions. In: Benjamini Y, Bretz F, Sarakr SK, editors. Recent developments inmultiple comparison
procedures. Vol. 47, IMS Lecture Notes and Monpgraph Series; 2004. p. 143–154.

[9] Läuter J, Glimm E, Eszlinger M. Search for relevant sets of variables in a high-dimensional
setup keeping the familywise error rate. Statist Neerl. 2005;59(3):298–312.

[10] Conneely KN, BoehnkeM. Somany correlated tests, so little time! Rapid adjustment of p values
for multiple correlated tests. Amer J Human Genet. 2007;81:1158–1168.

[11] Westfall P, Troendle JF. Multiple testing with minimal assumptions. Biom J. 2008;50:745–755.
[12] Bretz F, Hothorn T, Westfall P. Multiple comparisons using R. Boca Raton (FL): CRC Press;

2011.
[13] Dickhaus T. Simultaneous statistical inference in dynamic factor models. Berlin: Humboldt-

Universitätzu; 2012. (Discussion paper, 2012-033.).
[14] Goeman J, Finos L. The inheritance procedure: Multiple testing of tree-structured hypotheses.

Stat App Genet Molec Biol. 2012;11:1–18.
[15] Goeman J, Solari A. Multiple hypothesis testing in genomics. Stat Med. 2014;33:1946–1978.
[16] Guilbaud O. Simultaneous confidence regions for closed tests, including Holms-, Hochberg-,

and Hommel-related procedures. Biom J. 2012;54:317–342.
[17] Guilbaud O. Sharper Confidence Intervals for Hochberg- and Hommel-Related Multiple Tests

Based On an Extended Simes Inequality. Statist Biopharm Res. 2014;6:123–136.
[18] Dickhaus T. Simultaneous statistical inference: with applications in the life sciences. New York

(NY): Springer; 2014.
[19] Nichols T, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a

comparative review. Stat Methods Med Res. 2003;12:419–446.
[20] Hochberg Y, Tamhane AC. Multiple comparison procedures. New York (NY): Wiley; 1987.
[21] Hemerik J, Goeman J. False discovery proportion estimation by permutations: confidence for

significance analysis of microarrays. J R Statist Soc B. 2018;80:137–155.
[22] van der Vaart AW. Asymptotic statistics. Cambridge: Cambridge University Press; 1998.
[23] Lee AJ. U-statistics: theory and practice. Boca Raton (FL): CRC Press; 1990.
[24] Ahmad MR. Location-invariant multi-sample U-tests for covariance matrices with large

dimension. Scand J Stat. 2017;44:500–523.
[25] Ahmad MR. A unified approach to testing mean vectors with large dimension. AStA Adv Stat

Anal. 2018.
[26] Jiang J. Large sample techniques for statistics. New York (NY): Springer; 2010.
[27] Koroljuk VS, Borovskich YV. Theory ofU-statistics. Dordrecht: Kluwer Academic Press; 1994.

http://orcid.org/0000-0002-5362-5835


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1059

Appendix. Some basic moments

Consider Ui with symmetric kernel h(Xik,Xir) and conditional expectation (projection) hc(·) =
E[h(·)|X1k, . . .Xc), c= 1,2 so that h1(Xik) = E[h(·)|Xik], h2(·) = h(·) with Var[hi(·)] = ξi, i= 1,2.
For Uij with symmetric kernel h(Xik,Xjl) with m1 = 1 = m2 and with c1, c2 = 0, 1, the condi-
tional expectations are h10(Xik) = E[h(·)|Xik], h01(Xjl), h11(·) = h(·)with corresponding variances
ξ10, ξ01, ξ11. Here, h(·) is used when the arguments are evident from the context. Then, the moments
of U-statistics follow as given, e.g., in Koroljuk and Borovskich [27] or van der Vaart [22]; see also
Ahmad [25, Appendix A]

Using these notations, E(Ui) = μ′
iμi, E(Uij) = μ′

iμj, with h(Xik,Xir) = X′
ikXir , h1(Xik) = μ′

iXik,
ξ1 = Var[hi(·)] = μ′

i�iμi and ξ2 = Var[h(·)] = tr(�2
i )+ 2μ′

i�iμi. For Uij, h(Xik,Xjl) = X′
ikXjl,

with h10 = μ′
jXik, h01 = μ′

iXjl, ξ10 = Var[h10(·)] = μ′
j�iμj, ξ10 = Var[h10(·)] = μ′

i�jμi, h11(·) =
h(·), ξ11 = Var[h11(·)] = μ′

i�jμi + μ′
j�iμj + tr(�i�j). Now Var(Ui) = 2[2(ni − 1)μ′

i�iμi +
tr(�2

i )]/ni(ni − 1), Var(Uij) = [niμ′
i�jμi + njμ′

j�iμj + tr(�i�j)]/ninj, Cov(Ui,Uij) = 2μ′
j�iμi/

ni, Cov(Uj,Uij) = 2μ′
i�jμj/nj, Cov(Uij,Uij′) = μ′

j�iμj′/ni, Cov(Uij,Ui′j) = μ′
i�jμi′/nj, i �= j, i �=

j′, i′ �= j, where the remaining covariances vanish by independence.
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