Implementation of the NEAT Policy
Manager

Jan-Olof Andersson, Samuel Larsson, Tobias Sjoholm

The Faculty of Health, Science and Technology

"Computer Engineering Project” - Implementation of the NEAT Policy Manager

15 hp

Karl-John Grinnemo

Lothar Fritsch

2019-01-21

Implementation of the NEAT Policy Manager

Jan-Oror ANDERSSON, SAMUEL LArRSsSON AND TOBIAS SJOHOLM
Department of Mathematics and Computer Science

Abstract

The NEAT system was developed in 2017 to increase flexibility in the choice
of network transport protocol being used. One of the most important com-
ponents of the NEAT system is the Policy Manager (PM), which determines
what protocol is to be utilized by the application. The PM is written in
Python while the rest of the NEAT system is C-based, so a natural evolu-
tion of the PM is to perform a functional translation of it to C. While the
main goal was solely to develop a fully functional C-based PM, the difference
in programming languages in the end also brought a performance increase of
28 times compared with the Python-based PM. There are still a few improve-
ments left to do in the PM, but it is already a notable improvement for the
NEAT system as a whole.

Keywords: NEAT, policy manager, transport protocols, Python, C

111

Acknowledgements

Thanks to Zdravko Bozakov for his work on the Python-based Policy Man-
ager and to Karl-Johan Grinnemo for his guidance.

Karlstad, January 9, 2019 Jan-Olof Andersson, Samuel Larsson and Tobias
Sjoholm

Contents

1 Introduction
2 Background
3 Project plan

4 Design
4.1 Designdecisions

5 Implementation
5.1 Socket Handling withLibuv
5.2 Format for Representing NEAT Properties
53 TheNodeDataType
5.4 Request Path Through Policy Manager
55 PIB
56 CIB
57 RESTAPL.

6 Testing

7 Discussion

8 Future work
9 Conclusion
A Gantt Chart

Setup Instructions

B.1 Installdependencies.
B.2 Setup example policieso
B3 Buildthe PM
B4 Runasprocess.
B5 Runasdaemon

C Unit Test Instructions
Cl Install Unity oo o
C2 Setup

Vil

14

15

16

18

1 Introduction

Network programmers of today are faced with a limited option of transport
solutions for their applications. The choice stands in practice between a reli-
able protocol, TCP, and an unreliable protocol, UDP. This lack of choice is
due to the rigidity of the standard socket AP, forcing protocol specific applica-
tion code, and the interference by middleboxes when they encounter new pro-
tocols. This inflexibility in the use of transport protocols is what’s regarded as
the “ossification” of the transport layer. The NEAT AP is a proposed solution
to the ossification problem of the transport layer. NEAT enables new proto-
cols to be deployed over the internet thanks to its innovative use of features
such as happy-eyeballs [11], a new socket layer API, protocol specifications,
etc. One key component in the NEAT API is the Policy Manager (PM). The
PM lets the developer define which services that are needed by the applica-
tion. The PM, when given the desired services, will select the protocol which
is most suitable for the purpose.

The current PM in NEAT is written in the programming language Python.
With Python, it’s possible to write clear and concise code in a fast manner.
However, in system programming, it’s generally preferred to write applica-
tions in a low-level language. The C language is a typical low-level language
used in system programming and is the language used in the implementation
of the NEAT system, except for the PM. Given the fact that C is preferred in
system programming, and that the majority of the NEAT system is written
in G, it’s of interest to port the PM from Python to C. Porting the PM to C
will also enable the PM to integrate smoothly with the rest of the system.

The porting of NEAT’s PM from Python to C is the subject of this paper.
Section 1 begins by reviewing background information about the NEAT API
together with it’s PM component. Next, Section 3 presents the planning of
the project. Section 4 presents the design decisions made for the rewriting of
the PM. This includes the components relating to the PM, such as the Policy
Information Base (PIB) and the Characteristics Information Base (CIB). Sec-
tion 5 presents the implementation, which follows the design phase, and all
the technical details of the PM. The testing in Section 6 documents our test
suites and the results of the test runs.

2 Background

Most communication over the internet today uses either the TCP or the UDP
transport protocol. The reason is that the transport layer has become too
rigid, making any attempts to extend or add new transport protocols difhicult.
This is what’s known as the “ossification” of the transport layer [15]. The
two main culprits that have contributed to the ossification are middleboxes
and the standard socket API. Middleboxes are network layer devices that come
in many different flavors, each putting their own limitation on the overlying
transport layer. Not only do middleboxes place constraints on the protocols
on networks, they themselves also ossify the infrastructure of the networks.
As a result, networks end up with middleboxes that are optimized for TCP
and UDP traffic with no knowledge of any other potential transport solutions.
Deploymg new protocols in this kind of environment is unlikely to gain any
traction. The second contributor to the ossification of the transport layer is
the socket API[12]. The socket AP is strict about what kind of protocols that
can be used and requires details that are protocol specific. New features are
difficult to incorporate into the socket APIand in general poses a challenge for
new protocols and their configurations. A promising solution to the problem
of ossification is to deploy a framework for the transport layer, composed of
several components, to enable a flexible transport layer solution.

The New, Evolutive API and Transport-Layer Architecture for the Inter-
net (NEAT) is an implementation of such a framework, taking one step closer
solving the problems with the ossification of the transport layer. NEAT will
allow the transport protocol to be determined and verified at run-time instead
of at design time. This eases up the connection between the application layer
and the transport layer, where the developer no longer has to decide on a
transport protocol but only what properties that are desired for the protocol.
Then NEAT will at run-time find the most suitable protocol depending on
the properties and what protocols are supported over the used path on the in-
ternet. In Figure 2, an overview of the NEAT system is presented, this figure
is from Khademi et al. [12].

The PM is the "brain" of the NEAT system. The purpose of the PM is
to generate a list of suitable transport candidates for a given set of requested
properties, e.g., low-latency, ordered by suitability. The set of rules for how
to match certain properties to candidates is defined as files that are handled by
the PIB and CIB components of the PM. The policies add or update NEAT
properties to each potential candidate as defined by lookup algorithms in PIB,
CIB. These algorithms set the eventual score that will be used when sorting
the candidate list.

The communication between the NEAT Core and the PM is through a
Unix socket with libuv [1]. It’s event-driven and has support for multiple plat-
forms. Libuv provides the capability of asynchronous I/O operations based
on event loops [7]. The event loops establish the information from the I/0O
operations and it’s limited to one thread. Libuv have the capability to run mul-
tiple event loops assuming every loop run its own thread.[1] The Unix socket

Application
NEAT User Module

NEAT User API

8 Y
- _) H olicy
8 g 1 ¥ K . Information ..g
HE . Base)3
E,% H r~ H i Characteristics : B

i i |iSignaling & ; { Information | =
a g Transport i i handover | : Base &
User-space transport API
auic ‘ SCTP | . | new transport
Kernel-level transport APl
upp J TCP | SCTP ‘ ‘ new transport
IPv4 / IPvE

Figure 1: Overview of NEAT.

between the PM and NEAT Core is as an inter-process communication mech-
anism that allows the data to flow in both directions. Which is needed, the
NEAT Core will send requests in the form of a JSON object (JavaScript Ob-
ject Notation) and the PM will respond with a JSON object. A JSON object
is a lightweight data-interchange format. The JSON content consists of a key
and its value which can have multiple types.[10]

3 Project plan

The project started on the 3¢ of September 2018 and ran through the second
term of 2018 and finished on the 16™ of January 2019. It was planned into
four phases: planning, design, implementation, and conclusion. Evidently,
it follows a waterfall model which is not ideal for a software development
project. Because of the fact that the planning, design, and finalization phases
were expected to remain quite static throughout the course of the project, we
decided that this waterfall approach was not good enough and instead em-
ployed a more agile and Scrum-like [13] development model only during the
implementation phase. We split up the implementation phase into five sprints
a two weeks and received bi-weekly feedback from our advisor, Karl-Johan
Grinnemo, after every sprint planning meeting. In this way, priorities as well
as the course of the actual resulting product, could be modified much more

dynamically between sprints. We also used a Gantt-chart [8] to distribute re-
sources across the different tasks. The initial Gantt chart of the project can be
found in Appendix A.

4 Design

The NEAT documentation [11] defines the PM and its surrounding compo-
nents as tools for the NEAT system to adapt to a wide range of network re-
quirements and scenarios. It also defines the functionality of the PM and how
it communicates with other components, such as the NEAT Core module.
This results in a very specific requirements specification for the PM, which
ultimately affects the final design.

In this design, the input that the PM receives from NEAT Core is a request
that contains some requirements and the output is a list of ranked candidates
for transport protocols that NEAT Core then processes. To help identify
and evaluate possible candidates on the system, the PM makes use of the two
separate information repositories: CIB and PIB. However, the NEAT System
also needs the ability to add new information to these two repositories, which
requires two extra paths of communications. The initial interface requirement
is therefore to have a three-part socket interface towards NEAT Core.

However, the NEAT documentation also describes an external REST
API interface. This is required so that external hosts can add and read in-
formation in the CIB and PIB, for the purpose of awareness of the external
network.

PM Socket:
candidate request

NEAT core) Policy Manager
PIB/CIB Socket:
update policy

REST API

Figure 2: Diagram showing a high-level overview of the complete neat system
and Policy Manager.

The PM should, as follows from Khademi et al. [11], use available infor-
mation to evaluate and present possible transport candidates to the NEAT

Core. All data objects that are processed by the PM are JSON [10] objects, so
the PM will need to be able to parse and deparse JSON objects.

The PIB and CIB are very similar in the way that they are designed. The
PIB stores and processes NEAT profiles and NEAT policies while the CIB
stores and processes CIB nodes. However, profiles are used to map high-level
properties to a request, CIB nodes are used to fetch a list of possible transport
candidates and policies are used to ultimately filter out or extend these candi-
dates. Evidently, the ways policies, profiles, and CIB nodes are applied to an
incoming request are very different. Profiles, policies and CIB nodes are all
data objects stored locally in JSON format. Both the PIB and CIB have func-
tional responsibilities that require them to perform lookups on their stored
data objects to filter out or extend potential transport candidates for the PM.
The lookups are slightly varied in functionality, but they all get a JSON ob-
ject as input which they match against their stored data objects and map their
properties against the input. This modified JSON object is then returned by
the lookup function.

From the point-of-view of the PM, when a request arrives on the request
socket, the PM should follow the algorithm specified in Khademi et al. [11],
which is in short:

1. Profile lookup: A lookup is performed in the PIB to look for profiles
that match the incoming request.

2. CIB lookup: The CIB lookup looks for CIB nodes that fulfil the prop-
erties of the request and returns a list of CIB node candidates.

3. Policy lookup: For each of these candidates, NEAT policies are matched
against them to append more properties and possible filter away some
candidates.

4. Respond to the NEAT Core with the list of ranked candidates via the
request socket.

The main functions of the PM are thus to start up the CIB and PIB and then
perform the algorithm above when a request arrives on the request socket. It is
also responsible for delegating method calls to the CIB and PIB when data ob-
jects arrive on the two CIB and PIB sockets. The last functional requirement
of the PM is that it is responsible for starting up the REST APL

Khademi et al. [11] have defined six endpoints from which the REST
API[9] should be able to receive and handle requests:

e GET: /pib,
 GET: /pib/{uid},
® PUT: /pib/{uid},
® GET: /cib,

® GET: /cib/{uid},

® PUT: /cib/{uid}.

When one of these endpoints are requested, the REST API directly calls the
necessary methods in the CIB or PIB.

One of the main reasons behind this project is to improve efficiency of
the PM. Since the PM is now developed C, which is a lower-level language
compared to Python, a major benefit of the fact is the possible performance
improvement compared to the Python PM. Therefore, a performance require-
ment is that it has to be faster than the Python PM, both in function but also
in startup and initialization.

There is no requirement for the course of this project to develop the PM
with multi-platform support. However, as the PM is written in C, it will be
extensible to most relevant platforms. There is also a design constraint to keep
the number of dependencies, especially platform dependent dependencies, to
a minimum to preserve extensibility and maintainability.

4.1 Design decisions

It was decided during the initial part of the development process that the high-
level design of our C version of the PM should resemble, as closely as possible,
the original Python version so that the modifications around the PM i.e., the
NEAT Core interface and ultimately the NEAT documentation, is kept to a
minimum. The development of the PM would then be done independently
from the NEAT Core, which would facilitate the development process. The
idea was that the implementation of all internal components of the new PM
should work the same way as in the original Python version. It would then
be easy to switch between the C version of the PM and the Python version
in a black box fashion in such a way that the input to the black box could be
compared with the output, giving a guideline to how well certain functions
work in the new PM compared to the former Python ditto.

Since it was established early on in the planning phase that there was no
requirement for support for multiple platforms, the choice of platform just
fell on the most accessible platforms we had at the time, and the most stable
platform from a NEAT perspective. This led to the decision to implement
support for Ubuntu 18.04 and Debian GNU/Linux 9. Linux is a free and
open source platform, well established with a widespread usage and hence well
supported by a large community. With two Linux distributions, we could
expect to produce a PM that could to some extent support other different
Linux distributions as well, with no expectation of actually testing it. The
platform decision also led to the decision to try to keep libraries independent
from Linux distributions; not only for the sake of multi-platform support but
also for the sake of portability while developing on two different distros.

5 Implementation

When the PM starts up, it will go through the initialization procedure in
which the PM sets up all sockets, the REST server, and starts reading in all
policy file data from the infobase folder. infobase is a folder that stores
all policy files for both PIB and CIB in separate directories. The first step is
to read in all the PIB and CIB policy files. The PM calls the corresponding
initialization functions in the CIB and PIB components which reads in the
policy files and stores them as internal linked lists in memory. This is done
since keeping the policies in RAM gives a performance boost when the poli-
cies need to be accessed. This step is also crucial since the CIB initialization
procedure creates the CIB nodes based on available interfaces. The second
step is to start the REST server. The PM starts the REST server as a sep-
arate thread via the pthread API [3]. There’s no need, in this case, to use
libuv to create the thread since the REST server doesn’t perform any callback
functions to the PM. The REST service could also run in a separate process,
but since running the REST server without the PM would not be of much
use, it was integrated as a thread into the PM. Finally, the PM starts to cre-
ate all the sockets. The sockets created during the initialization process are
neat_pm_socket,neat_pib_socket, neat_cib_socket. These sockets are
created in the socket directory, which defaults to $HOME/ .neat/.

5.1 Socket Handling with Libuv

Socket creation is handled by the libuv library that provides asynchronous
functions for, among other things, listening on socket connections. Since
these sockets are for local use, the socket type is set to a UNIX domain socket
[6]. Each socket in libuv takes one callback function. The callback function
executes after a new event is triggered by a socket connection. Once the bind
and listen calls have been called for each socket, the main loop in libuv starts
and waits for any socket events.

Using callback functions have both benefits and drawbacks. Some draw-
backs include added debugging complexity and unwieldy callback chains. How-
ever, in the PM, the asynchronicity is limited to the socket communication.
Thus, the mentioned drawbacks pose a negligible impact. The benefits of an
event-based design, on the other hand, is simpler and intuitive code.

5.2 Format for Representing NEAT Properties

JSON [10] is the common format used for representing NEAT properties in
NEAT. The policy files are written in the [SON format, the REST API de-
pends on the requests being in JSON, and candidate requests to the PM con-
tain an array of [SON NEAT properties. All inputs to the PM are plain JSON
data. Preferably, the PM should store the JSON internally in an efficient data
structure with common operations available. The library provides a suitable
data structure for storing and manipulating JSON objects. The functional-

ity that libjansson provides is efficient since all keys in the JSON structure
are stored in hash tables. The library also defines common operations for
getting and adding JSON values, JSON array manipulation, iteration over
JSON key-value pairs, and many other operations as specified by the libjans-
son documentation [14]. The choice to represent NEAT properties as [SON
makes the PM basically independent from the core of NEAT. Since the PM
and NEAT Core share a common data structure to represent NEAT prop-
erties, the JSON format became the common format between them. There
is a greater potential to share data structures with the NEAT Core, since the
PM is implemented in the same language. However, keeping the JSON for-
mat and using libjansson to process it is a better option instead of creating a
specific data type for NEAT properties. The files in the infobase repository
would still be written in JSON and the REST API is also dependent upon
the JSON format. The JSON format and the chosen format for representing
NEAT properties would need to be converted from one to the other. The
trade-off between having a special internal format over a common format for
NEAT properties would therefore be less rewarding. It would require a lot of
refactoring of JSON dependent code in NEAT Core and the PM and require
conversion steps. The JSON data or its JSON data structure are therefore not
converted into any special NEAT property structure in C.

5.3 The Node Data Type

All information in the PM is saved in what is called a Node data structure.
The nodes are implemented as a linked list, where every node has a pointer to
another node. A linked list implementation was chosen since the nodes need
variable length lists. Additionally, a linked list implementation is not a perfor-
mance issue. The reason for using the node data type in the first place arises
from the fact that the PM requires extra internal housekeeping information
for each policy file. The complete structure definition is shown in Figure 3.

file name file name
last updated| next —+————|lastupdated| next —%
json json

Figure 3: The linked list implementation of PIB/CIB nodes.

The identifier of a node is a filename. This means that every single PIB
and CIB file will be parsed into a node structure. The content of the backend
file will be stored as a JSON pointer. The filename will be saved as a char
array to uniquely identify the node. The node data structure will also contain
a time stamp that is set when the node is last updated. For example, when the
PM receives a request and starts to perform the lookup algorithm. Updates
to the backend files might make the information in the nodes become out of

date. A comparison between the last time the backend file was updated and the
time stamp of the node is-therefore-made. The node is in this way ensured
to always contain the newest information.

5.4 Request Path Through Policy Manager

NEAT core PM PIB CiB

Request
candidates

Handle
request

Expand,
Process special
properties,
Add default
properties

Yes No

Pre-resolve?

Profile lookup

CIB lookup

Policy lookup

Sort & limit

Receive
candidates

Figure 4: Diagram showing the path taken by a request from NEAT Core
through the PM.

A simple illustration of how a request from the NEAT Core logic traverses
through the lookup process in the PM is shown in Figure 4. First, the NEAT
Core logic sends a request to the PM socket that contains a list of required
properties the PM uses to generate potential candidates. Socket requests are
handled by the PM, which in turn calls the lookup routine. The lookup rou-
tine has to do some pre-processing before the candidate match may take place:

1. Expand. In this step, each property array gets expanded into properties
by applying the product operation.

2. Process special properties. This processes all properties that are con-
sidered specml Examples of special propertles include expanding the
property “interface@ip” into separate properties.

3. Add default properties. If any property attributes are missing, then this
routine will add in the default values.

If the property __request_type is set to pre-resolve, it skips the rest of
the lookup process and the current candidate list is sent back to the NEAT
Core. This step is needed for DNS resolving. Otherwise, the lookup con-
tinues by first finding candidates based on PIB profiles. A lookup in CIB is
performed on each candidate. Finally, a PIB policy lookup is done. The re-
sulting candidate list is then sorted by score, limited to a maximum number
which is set to a constant value of ten, and sent back to the NEAT logic.

5.5 PIB

The PIB component contains all the implementation that concerns the han-
dling of PIB policy and profile files. These files are stored on disk in the
infobase/pib/{policy, profile} folders. Because disk access is slow and
cumbersome, the PIB files are loaded and stored into memory as a linked list
of nodes with one list for policy and profile.

PIB implements functionality for adding and reading PIB nodes. Adding
PIB nodes is required by the PM component and by REST PUT requests.
When the PIB component adds a node it will both add it to the internal linked
list and write it to a file on disk. Reading nodes is needed by the REST GET
requests. Reading is provided by returning a uniquely specified node.

PIB produces a set of candidates from given properties given by the main
PM component in the PIB lookup routine. The PIB lookup routine is used
when performing a lookup on profiles and policies. The lookup algorithm,
shown in Algorithm 1, goes through each profile or policy and tries to apply
them to each of the current potential candidates. If the match property in
the profile/policy matches any of the properties in a candidate, if the match
property is a subset to the properties of a candidate, then the properties of
the profile/policy should be added to the candidate. A subset check is con-
ducted by the subset function defined in the parse json component, which
compares each JSON key and attribute in both JSON objects. The new prop-
erties must be expanded before being added. The expand process simply looks
for attributes in the JSON object with arrays to produces a product that com-
bines all array properties into new separate profiles/policies. The next step is
to add the properties of each expanded node to the current candidate.

The function merge_properties adds the properties of the expanded pol-
icy to the current candidate by comparing each property. If the property
is not found, it is added to the candidate. If it does exist and it’s allowed
to overwrite it, it is overwritten. Otherwise the property will be added to
the candidate by a set of special rules applied to the property in the function
merge_update_property.

10

for policy in pib.policies do
updated_candidates := empty list
for candidate in candidates do
if policy.match C candidate then
for expanded_prop in expand(policy) do
updated_candidate : =
merge_properties(expanded_prop, candidate)

updated_candidates.append(updated_candidate)

end

end

else

| updated_candidates.append(candidate)
end

candidates := updated candidates

end
end

Algorithm 1: PIB

The rules for merge_properties:

e If the values of the two properties are equal, the first property will get
the sum of both properties scores as its own score and its precedence
becomes the max value of the precedence values of both properties.

e If the two properties values are unequal, and the policy’s property has
higher or equal precedence, then the candidate’s property gets the same
value and precedence of the policy’s property.

A description of the merge_properties algorithm is given in Algorithm
2. Once the lookup is done, the lookup returns an array with candidates.

5.6 CIB

When the CIB is instantiated by the PM, the CIB nodes that are stored in the
infobase/cib folder as .cib files are read into the linked list of the Node
data type, called cib_nodes. This linked list is the actual information base
where all of the CIB nodes reside and where all the operations on the CIB
are performed. As CIB nodes represent network characteristics, including the
local network interfaces, the CIB is responsible for generating CIB nodes from
them. The CIB creates CIB nodes from the local network interfaces on the
machine in the function generate_cib_from_ifaces. To implement this
efficiently, we used the standard UNIX and C libraries shown below.

Listing 1: Libraries used to fetch local network interfaces.
#include <net/if.h>

11

for key in policy do

if key ¢

end
else

/*

/*

else

end

end

candidate.keys OR overwrite = True then

| candidate.key.value : = policy.key.value

Decide if order should be reversed */

if policy.precedence = PRECEDENCE_BASE then

tmp := policy
policy := candidate
candidate : = tmp

end

Do update x/

if policy.key.value = candidate.key.value then

candidate.key.score := candidate.key.score +
policy.key.score

candidate.key.value := policy.key.value

candidate.key.precedence : =
max(candidate.key.precedence, policy.key.precedence)

end

if policy.key.precedence = candidate.key.precedence =
PRECEDENCE _IMMUTABLE then
| Error!
end
if policy.key.precedence > candidate.key.precedence then
candidate.key.value := policy.key.value
candidate.key.precedence := policy.key.precedence
end

end

Algorithm 2: Merge properties.

12

#include <ifaddrs.h>
#include <netinet/in.h>
#include <netdb.h>

Like the PIB implementation described in Section 5.5, the CIB adds the
new nodes to both the internal linked list and to a . cib file on the disk. As
with the PIB, the CIB has public read functions that are used by the REST API
to request a CIB node with a unique ID, and write functions that are used by
both the REST API and the CIB socket to add a new CIB node, provided that
the sufficient properties are included in the JSON object [11].

The main function and responsibility of the CIB is the candidate lookup it
performs for the PM. It receives the request that has been modified by the pro-
file lookup. The lookup routine then continues by attempting to match every
CIB node with any of the request properties. As in the PIB lookup algorithm,
a subset check is done with the subset function from the parse_json com-
ponent to determine if there is a match. If there is a match, the CIB node gets
added as a candidate. The algorithm of CIB lookup is shown in Algorithm 3.

for node in cib.nodes do
immutable_properties := empty list
for property in input_properties do
if property.precedence = IMMUTABLE then
| immutable properties.append(property)
end
end
if immutable_properties C node.properties then
| continue
end
candidate : = input_properties
merge_properties(node.properties, candidate)
candidates.append(candidate);
end

Algorithm 3: CIB lookup

5.7 REST API

The REST API is instantiated in a pthread [3] that is created by the PM at
initialization. It uses the library Ulfius [4] to implement the REST service
functionality. For the sake of simplicity, it uses the same port, 45888, as the
REST service in the Python PM. When one of the six endpoints is requested,
they, in turn, call an individual dedicated helper function that marshals the
request data and calls the proper function in the PIB or CIB. PIB/CIB nodes
are updated after every PUT request to the REST API, meaning that they do
not write the nodes to storage for the CIB or PIB to read or reload. Instead,
they get added directly into the node structure in the CIB or PIB. It’s better
this way to avoid explicit reload calls and to avoid any error related to missed

13

reload calls. Ulfius takes care of all the callback logic and thread handling, so
the REST service and its six endpoints are very lightweight.

6 Testing

To verify the functionality of the PM’s own data structures and algorithms
a second project was implemented. This test project contains unit tests that
are executed within the Unity test framework [5]. Unity is a framework that
uses assertions in order to evaluate if unit tests have succeeded. Assertions are
statements that are expected to be true. This is used in our unit test: call a
function and then compare it with the expected result with an assertion. For
more information about Unity see ref. [5]. The design of the test project is

presented in Figure 5.

test nodec test json_parserc

Figure 5: Block diagram of the test project.

The idea behind the design of the test project is that the file test_all.c
will be the central part of the project that starts executing all unit tests. All
constants shared among the blocks are placed in the test_constants.c. In
this way, consistency of the constants is guaranteed, and if constants need to
be changed, the change only has to be applied in a single place. The blocks in
the middle part of the diagram contain the unit tests. Every single file in PM
has its own test file, however, it’s renamed with the word “test” in front of
it, e.g., node.c -> test_node.c This makes the unit tests easy to locate in
the test project. If you know the location of the real function in PM, you will
also know where the function is in the test project. In total, the test project
contains 29 unit tests. These tests verify that the functionality of the logic
corresponds with the PM’s own data structures. For example, the nodes used
to store the information are a linked list. This linked list has some standard

14

operations such as add, remove, and update. The unit tests are performing a
check that these operations are executed correctly. The test project also verifies
the advanced expand algorithms used when the PM receives a request.

7 Discussion

There are multiple benefits with having the PM implemented in the program-
ing language C, compared to the old PM implemented in Python. Each and
every benefit will be described separately below.

One major benefit is that the whole NEAT logic is consistent. The same
programming language and the same code standards are used everywhere in
the NEAT system. This will be beneficial for future developers since they only
need to know the programming language C and not Python. The tools and
dependencies will also decrease since the PM is in the programming language
C.

The biggest benefit is the performance of the new PM. As we know, C is
a compiled programming language that is closer to the machine than Python,
while Python is a scripting language that is interpreted at runtime which slows
down the performance of the system. Python is by design much slower than
C. Having powerful OOP concepts like inheritance makes it easier to code but
at the cost of getting slower performance. In general, we can directly conclude
that a program in C will run faster than a Python program, even though these
two types of languages are often used in different contexts.

In order to find out how much faster the C version of the PM is, a Python
script was implemented that sends 1000 requests to the PM and measures how
long the PM on average takes to handle a request. Although the estimated
mean value is strongly dependent on what computer the PM is running, it
still gives us an overall feeling of how much faster our new C version of the
PM is in relation to the Python version.

The test script was performed first on the old PM implemented in Python.
The average time for a request was calculated to be 32.94 milliseconds. The
same test script was then executed with the new PM and the average time for
a request was calculated to be 1.16 milliseconds. This means that our C-based
PM is executing 28 times as fast as the Python-based ditto. The summary of
the time testing is presented in Figure 6. All the data from these tests can be
found in the docs/test_results folder on the NEAT git [2].

The C-based PM is executing so fast that the time taken to communicate
through the socket using libuv is the major contributor of the execution time.
In order to find out how long the socket communication takes and how long
the request is inside the PM, a timer clock was implemented inside the PM.
The time script was executed again, and the mean value of the clock inside
the PM was calculated to 0.3 milliseconds. As follows from Figure 6, the
mean value from the test script was calculated to be 1.16 milliseconds. This
means that the new PM only takes 0.3 milliseconds to handle a request. The
rest of the 1.16 milliseconds is due to the request being passed through the
socket. From these statistics, we conclude that in order for the PM to have

15

116

Figure 6: The mean value of the response time, Python-based PM and C-based
PM.

a response time less than one millisecond, removing the socket communica-
tion is required. This is possible if the PM is integrated into NEAT Core (cf.
Section 8).

Overall, our C-based PM is handling a request much faster than the Python-
based one. This is as expected. The biggest factor that slows down the PM
today is the use of socket communication. Reading and writing to/from a
socket takes for an average NEAT Core request around a half millisecond.
This, of course, depends on how much data is sent through the socket. If, in
the future, there is interest to optimize the response time of the PM further,
a deeper look into the socket should be done. From a performance point of
view, removing the socket would be the best choice.

8 Future work

According to Khademi et al. [11], it should be possible for the PM to extend
CIB nodes. There are two cases where the extend algorithm is used which has
not yet been implemented: extending existing CIB nodes and extending CIB
rows. In the first case the extending is based on a graph structure where all
the CIB nodes are generated by traversing the graph from the root node to the
connected nodes. The main purpose is for referencing existing CIB nodes to

create the graph based on network characteristics. There are three criteria to
be fulfilled for a CIB node A to be extended by a CIB node B.

16

e If A has the attribute root equal to true,
¢ The attribute 1ink in B equals true,

® The properties in the match attribute in B matches the set of properties
in A.

If these three criteria hold, A is extended with the properties in the prop-
erties attribute in B. In the second case, a CIB node A may extend a CIB row
B if

e The attribute 1ink in A is false,

® The match attribute in A matches the set of properties in B.

If this is the case, B is extended by the addition of the properties in the
properties attribute in A. For more details, see [11].

At the end of the project, the developers rushed to implement a lookup
algorithm that should have the capability to handle multiple requests from
NEAT. In this algorithm, a few memory leaks occur when memory is dy-
namically allocated but not freed. In order to free these memory cells, you
will need to understand how the Jansson library is allocating memory behind
the scenes and when it is the PMs responsibility to free the memory.

NEAT, at the time of writing, supports Linux, FreeBSD, NetBSD, and
macOS. The PM was developed on Ubuntu and Debian Linux and has only
been tested in these environments. Future work is therefore needed to port
the PM on different platforms.

The current PM is designed to be fully independent of the NEAT Core.
However, once the above-mentioned improvements and implementations have
been made, the PM will be ready to be fully integrated into NEAT. To inte-
grate the PM into NEAT Core, the PM should preferably run as a libuv thread
that is initialized concurrently with the NEAT Core. This means that the cur-
rent implemented socket communication in both the PM and NEAT Core
needs to be removed and replaced with asynchronous thread communication.

One possible issue with integrating the PM into the NEAT Core is the
problem of executing multiple instances of the PM. Today, the PM is designed
to be used by all NEAT instances running on a single machine. In order to
integrate the PM with the rest of the NEAT system, a design decision needs to
be made: either if NEAT should create a PM for every single NEAT instance,
or if all NEAT instances should share the same PM.

To run the PM with multiple instances, two changes have to be made: the
socket and the backend folder. Let’s begin with the socket. NEAT is sending
a JSON request to the PM through libuv. Libuv enforces an asynchronous,
event-driven style of programming. Its core job is to provide an event loop
and callback-based notifications of I/O and other activities. If you attempt to
start multiple instances of the PM, all these instances would still utilize the
same socket. This causes the instances to collide with each other. So, in order

17

to have multiple instances of the PM removing the socket communications on
both sides are necessary.

The second change that is needed in order to have multiple instances of
the PM is the backend folder. The PM creates a hidden backend folder in the
user’s home folder. In this folder, all the PIB and CIB files are stored during
the execution of NEAT. This folder can be moved to the executing folder and
receive a unique name for all instances of the PM. This would prevent different
instances of the PM to impact each other. This assumes that you don’t want
the different instances to impact and use the same PIB and CIB files.

In order to run the PM with one instance per computer, not many changes
have to be made to the PM itself. In fact, this is how it’s currently designed
to run. To integrate it into NEAT and prevent NEAT to start up multiple
instances of the PM, a clever design is needed. For example, NEAT could
create the PM in a separate process and give the process a special name. When
NEAT starts up, it can explicitly check if this process is running in the system.
If it does, the PM has been started by another instance of NEAT. If it does not,
NEAT will initialize the PM. This will guarantee that you will never have
more than one running instance of the PM on the same computer.

9 Conclusion

Rebuilding the PM in C from Python with the aim to get a more homogenous
NEAT system not only resulted in bringing the PM closer to the NEAT Core
from a design perspective, but also gaining a major performance improvement
that will further increase the performance for the rest of the NEAT system.
Since the PM is viewed as the "brain" of the NEAT system, it is a very im-
portant component of the NEAT system. There are still many improvements
left for future work. However, the current C version offers significant perfor-
mance gains.

18

References

[1] libuv documentation. http://docs.libuv.org/en/v1.x/. [Online;
accessed 16-Dec-2018].

[2] Neat-project/neat: A new, evolutive api and transport-layer architecture
for the internet. https://github.com/NEAT-project/neat. [Online; ac-
cessed 7-Jan-2019].

[3] pthreads(7) - linux manual page. http://man7.org/linux/
man-pages/man7/pthreads.7.html. [Online; accessed 4-Jan-2019].

[4] Ulfius api documentation | ulfius. https://babelouest.github.io/ulfius/ APLhtml.

[Online; accessed 7-Jan-2019].

[5] Unity — throw the switch. http://www.throwtheswitch.org/unity/.
[Online; accessed 7-Jan-2019].

[6] unix(7) - linux manual page. http://man7.org/linux/man-
pages/man7/unix.7.html. [Online; accessed 4-Jan-2019].

[7l]uv loopt - event loop - libuv documentation.
http://docs.libuv.org/en/v1.x/loop.html. [Online; accessed 7-Jan-
2019].

[8] What is a gantt chart? gantt chart software, information, and history.
https://www.gantt.com/. [Online; accessed 7-Jan-2019].

[9] What is rest - learn to create timeless restful apis. https://restfulapi.net/.
[Online; accessed 7-Jan-2019].

[10] D. Crockford. Introducing json. https://www.json.org/. [Online;
accessed 16-Dec-2018].

[11] N. Khademi. NEAT Deliverable 2.3, Sept. 2017.

[12] N.Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst,
K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, et al. Neat: a platform-
and protocol-independent internet transport api. IEEE Communications
Magazine, 55(6):46-54, 2017.

[13] H. Kniberg. Scrum and XP from the Trenches. Lulu. com, 2015.

[14] P. Lehtinen. Jansson documentation. https://jansson.
readthedocs.io/en/2.11/. [Online; accessed 16-Dec-2018].

[15] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,
P. Hurtig, N. Khademi, M. Tiixen, M. Welzl, D. Damjanovic, et al. De-
ossifying the internet transport layer: A survey and future perspectives.
IEEE Communications Surveys & Tutorials, 19(1):619-639, 2017.

19

|

A Gantt Chart

To/9T
T0/9T
zuse

61/10/9T

T8z
81/21/82

zu/Lo
zuLo
3734
/60
ot/9z
ot/zt

81/21/L0

81/21/L0

ot/so

ot/so

60/82
81/01/50

60/5Z
60/82
60/82
60/6T
81/60/82

T0/9T

zute

zug0
81/2U/£0

zug0
81/ZU/£0

zuLo
9T
Tzt
o6z
oSt
out0

8T/0T/10

8T/01/T0

ot/10

60/vZ

60T
81/60/vT

60T
60/02
60/2T
60/61
81/60/2T

yers

anp uonejuasaid pue uoday
uopejuasaid pue podal ysiul
6unyesp poday

aseyd uopesjje

6uIB6ngeq
aseyd Bunsal

paysiuly adA1030.4d
S unds
 Junds

T unds
2dA1030.d 35113 JuBWRIdw
@seyd uoneuswaidu

6unsa) auy ueld
2in3onns wesboud 3oensqe ubiseq
sjuawaunbai Ayads

aseyd ubiseq

uonensiuiwpe 193f01d dn 395
B0 R3] pue dn 135
aseq apo> uo dn peay
4ot

aseyd Bujuueld

W Adijod peieibaju) - 1vaN

Gantt chart.

Figure 7

20

B Setup Instructions

Below follows instructions to setup and run the PM. Note that these instruc-
tions may not be of the latest version. For an updated set of instructions, you
can refer to the official git page [2].

B.1 Install dependencies

apt-get install cmake libjansson-dev libuvl-dev
libmicrohttpd-dev libulfius-dev

B.2 Setup example policies

To begin, copy your PIB files to the backend folder. To copy the already
existing PIB files to backend, go to NEAT folder and run:

mkdir -p ~/.neat/infobase/pib/profile

mkdir -p ~/.neat/infobase/pib/policy

cp policy_manager/json_examples/pib/*.profile \
~/.neat/infobase/pib/profile

cp policy_manager/json_examples/pib/*.policy \
~/.neat/infobase/pib/policy

B.3 Build the PM
To build the PM, go into the NEAT folder then run:

cd policy_manager
mkdir build

cd build

cmake

make

You can either run the PM manually or as a process, or in the background as
a daemon.

B.4 Run as process

To run as a process, simply run the following command:
./pm

Possible arguments to PM:

-debug (Print debug messages in the console)
-log (Write all log messages to file: Log.txt)

21

B.5 Run as daemon
To run the PM as a daemon, first it needs to be installed:
sudo make install

This will install the PM in /usr/local/bin and create a new systemd service
neat_pm.service. To start the PM and enable the PM to start at system boot:

sudo systemctl start neat_pm
sudo systemctl enable neat_pm

22

C Unit Test Instructions

Below follows instructions to setup and run the test suite for the PM. Note
that these instructions may not be of the latest version. For an updated set of
instructions, you can refer to the official git [2].

C.1 Install Unity

The framework used to execute the unit tests is Unity [5]. Download Unity
by entering the NEAT folder and running:

cd ..
git clone https://github.com/ThrowTheSwitch/Unity

C.2 Setup
To build and run the unit tests to the PM, go into the NEAT folder and run:

cd policy_manager/unit_testing
mkdir build

cd build

cmake

make

./test_pm

23

	thesis_title_docx_20333-2
	Implementation of the NEAT Policy Manager final version

