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Abstract

The introduction of particles and precipitates into a matrix material results in strength-

ening effects. The two main mechanisms involved in this matter are referred to as Orowan

and shearing. To numerically study this phenomenon is the motivation to the research

done, which is presented here in this thesis. The heterogeneous microscale state of defor-

mation in such materials brings in size scale effects into the picture. A strain gradient

plasticity (SGP) theory is used to include effects of small scale plasticity. In addition, a

new interface formulation is proposed which accounts for the particle-matrix interactions.

By changing a key parameter, this interface model can mimic the level of coherency of

particles, and hence is useful in studying different material systems.

The governing equations and formulations are then implemented into an in-house

SGP FEM program. The program is equipped with axi-symmetric and three-dimensional

modelling capabilities. Different distributions of particles are considered, from which

proper representative volume elements (RVEs) are constructed. These RVEs are then

analyzed under different loadings, and homogenization methods are utilized to evaluate

macroscopic response of the material. A quantity of interest is the increase in yield stress of

material due to presence of particles and precipitates. Comprehensive parametric studies

are carried out to study the effects of different parameters on the strengthening. A closed-

form solution is obtained, which suggests the strengthening increases by increasing the

surface area of particles per unit volume of material.

The work done is presented in four appended papers. Paper A uses an axi-symmetric

model to set the theoretical basis for the rest of the papers. Effects of different key

parameters on the strengthening are studied and presented in this paper. Since the axi-

symmetric model is numerically cheap, an extensive amount of analyses are carried out.

Paper B is about the expansion of the theory introduced in the first paper into 3D space.

The micromechanical model is composed of a cuboid RVE with eight different particles,

one at each corner. The inclusion of more than one particle is a key parameter in studying

the effects of size distribution.

The idea of having the most general micromechanical model is the theme of Paper C.

Here, a completely random distribution of particles in 3D space is taken into account.

In addition, the results of all carried out analyses are tested against experimental results

from different material systems. Last paper, Paper D, summarizes a successful effort to

include Shearing mechanism in the micromechanical model. The RVE is equipped with

an embedded slip plane, and yet has the features introduced in previous papers. Hence, it

has the ability to cover both strengthening mechanisms observed in precipitated materials.



 



Sammanfattning

Partiklar och utskiljningar i ett material ger materialet ökad styrka. Orsakerna till denna

effekt är relaterade till tv̊a mekanismer som brukar benämnas Orowan och skjuvning. Att

utveckla en kontinuummekanist baserad metod för att studera denna effekt numeriskt

har varit motivationen till forskningen utförd i denna avhandling. Det heterogena de-

formationstillst̊andet p̊a mikroskala i dessa material leder till att en längdskala kommer

in i bilden, och för att inkludera effekter av plastisk deformation p̊a denna skala har en

plastisk töjningsgradientteori använts. Dessutom, är en ny modell för gränsskiktet mellan

en partikel och omkringliggande material föreslagen för att inkludera denna växelverkan.

Partiklars koherens kontrolleras av en modellparameter, vilket innebär att modellen kan

användas till att studera olika materialsystem.

Modellen är implementerad i ett FEM-program för analys av tv̊a- och tre-dimensionella

problem. Representativa material volymer (RMV) har konstruerats genom att beakta

ett antal olika relevanta partikelfördelningar. Dessa RMV har sedan analyserats för olika

spänningstillst̊and och materialets makroskopiska respons har erh̊allits genom homogenis-

ering. Av speciellt intresse i dessa analyser är hur ökningen av sträckgräns beror av egen-

skaperna för de partiklarna som ing̊ar i en RMV, och omfattande parameterstudier har

utförts för att kartlägga detta. Baserat p̊a resultaten fr̊an dessa studier har ett slutet

uttryck för ökningen av sträckgräns som funktion av ett f̊atal relevanta modellparame-

trar formulerats, vilket är ett centralt resultat. Sträckgränsökningen är proportionell mot

den totala ytan av partiklarna i en RMV, där proportionalitetskonstanten bestäms av

gränsskiktets egenskaper.

Det utförda arbetet är presenterat i fyra bilagda artiklar. I artikel A används en ax-

isymmetrisk modell för att undersöka den föreslagna modellen egenskaper, vilket ocks̊a

lagt den teoretiska grunden för de resterande artiklarna. Identifiering av primära parame-

trar och dess inflytande p̊a ett materials styrka presenteras i denna artikel. D̊a beräkningstiden

för en axisymmetrisk analys är starkt begränsad utfördes omfattande numeriska studier

med denna modell. I artikel B utvidgas studien till tre dimensioner, där en RMV

best̊aende av ett rätblock inneh̊allande 8 periodiskt placerade partiklar av varierande

storlek.

Temat för artikel C är att utveckla en helt generell RMV i tre dimensioner som in-

neh̊aller en slumpartad fördelning av upp till 17 partiklar. Dessutom, jämförs modellen

framg̊angsrikt med experimentella resultat fr̊an ett antal olika materialsystem. I sista

artikeln, artikel D, utökas modelleringskonceptet med skjuvningsmekanismen genom att

införa ett diskret glidplan som även innefattar partikeln. Analyserna i D belyser p̊a ett

tydligt sätt när de tv̊a mekanismerna samverkar till att ge ökad styrka åt materialet

alternativt dominerar beteendet.
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Introduction

The macroscopic behavior of multi-phase metallic materials depends on their complex

micro-structures, since size scale effects will emerge if the state of deformation at the micro

scale is heterogeneous. Such micro-structures can be found in materials with fine particles

and precipitates in their matrix. These particles will interact with moving dislocations

–dominant carriers of plasticity– which result in a couple of strengthening mechanisms,

known as precipitation (particle) strengthening.

The work of research presented in this thesis is an endeavor to study the phenomenon

of precipitation strengthening. First, the following pages will give an introduction on

the underlying principles of the current study. These include the physical background

of the phenomenon, the theoretical framework of the analysis, the implementation of

such framework into computational tools, the definition of problem and modeling, and a

summary of results. Appended papers will come after, in which the details of research

are comprehensively discussed.

2



Physical background

Plastic deformation in metallic materials is initiated by introduction and movement of

lattice imperfections in form of dislocations. Figure 1 depicts two types of dislocations,

namely edge and screw dislocations. Dislocations move along specific ordered planes in

the crystal, called slip planes, with the motion being driven by a stress acting along

the slip plane called the resolved shear stress (RSS). Figure 2 shows an edge dislocation

movement.

 

Figure 1: Edge and screw dislocations. Figure taken from McNamara (2009).

If there were no obstacles to the movement of dislocations, a material crystal would

deform elastically under an applied stress. When RSS reaches its critical value on a slip

plane, a dislocation would have been activated and moved according to the applied stress.

After that, another slip plane would have been activated and this process would have

repeated itself, resulting in a step-like surface. Finally, a material crystal would have

sheared off completely. But in real material systems, a perfect slip plane rarely exists,

since there are many impurities and inclusions in the material which intersect with slip

planes. One notable example of these obstacles are second-phase particles.

As dislocations move, they hit the particles intersecting the slip plane. Depending on

particle properties (its size, coherency, shear modulus mismatch, and volume fraction),
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Figure 2: Movement of an edge dislocation. Figure taken from D Callister (2018).

four possible mechanisms may occur: i) dislocations shear (cut through) particles; ii)

dislocations loop around particles as in the so-called Orowan mechanism; iii) screw dis-

locations cross slip; iv) edge dislocations climb (Jonsson (2007)). Climb mechanism only

happens under high temperature creep conditions, and cross slip mechanism requires high

stress levels on secondary slip systems, which makes it occur less often, as the Orowan

mechanism would be invoked before reaching such high stress levels. Hence, the dominat-

ing mechanisms in presence of second-phase particles are shearing and Orowan.

Shearing mechanism occurs for small and coherent particles. Coherency means

that the slip plane continue through the particle, so the dislocation can enter the particle

and shear it. The shearing is done in the direction of Burgers vector. Coherent particles

normally posses ordered structures. As a dislocation passes through the particle, this

order gets broken. However, if a second dislocation follows, the order will be restored,

and part of the energy lost by the first dislocation will be refunded to the second one.

Hence, dislocations normally shear particles in pairs (see figure 3). Figure 4 shows a real

example of particle shearing. As can be seen, dislocations have cut through particles

using similar slip planes, since the cross section of particles reduce each time they are cut

through, and therefore it is easier for dislocations to shear through the same slip plane.

This fact makes the state of deformation highly localized (heterogeneous), which means

size scale effects will play a role in material’s response (see next section for further details).

Orowan mechanism occurs for large and incoherent particles. As particles become

incoherent, dislocations cannot pass through them anymore. So, when dislocations ap-

proach impenetrable particles, they expand towards the space between particles and en-

close sidewise. When two ends of dislocations meet each other, they annihilate and leave

a ring of dislocation around the particles, known as Orowan loops (see figure 5). The dis-
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Figure 3: Shearing of a particle with ordered structure. Figure taken from Jonsson (2007).

 

Figure 4: Shearing of Ni3Si particles in a Ni− 6%Si crystal. Figure taken from Rollett

et al. (2017).

location segment left behind the particle will continue its movement. It should be noted

that the area enclosed by Orowan loops has not been swept by dislocations, and hence,

has not been deformed plastically. Dislocations should first bend into a minimum curva-

ture before passing particles. As a simplified approximation, if the curvature is taken to

be L (the distance between two particles), the critical RSS for Orowan mechanism will be

τOrowan =
Gb

L
(1)

in which G is the shear modulus and b is the magnitude of Burgers vector. Figure 6

shows a real example of Orowan mechanism. As more loops are added around particles,

the looping requires higher levels of stress to occur (since the passageway between particles

becomes narrower to pass), and therefore, material demonstrates hardening.
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Figure 5: Schematic of Orowan mechanism. Figure taken from Jonsson (2007).

 

Figure 6: Orowan looping of Ni3Si particles in a Ni − 6%Si crystal. Figure taken from

Rollett et al. (2017).

The motivation of this work of research is to study these two mechanisms in a phe-

nomenological manner. The following chapters will briefly introduce the size scale effects,

the theory of strain gradient plasticity, the proposed interface modeling, and the im-

plementation of all these into a finite element method (FEM) scheme. The complete

discussion of these topics, however, are left for the appended papers.
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Small scale effects

The presence of particles in a matrix material makes the micro scale state of deformation

heterogeneous. Experimental works have shown that a heterogeneous state of deforma-

tion means that size scale effects are introduced in the material. In this section, these

experimental observations will be addressed very briefly, and then a brief introduction to

available modeling approaches to study this phenomenon is given. The well-established

strain gradient plasticity (SGP) approach, however, is explained separately in the next

section, as it is the approach utilized in this work to study precipitation strengthening.

Experimental observations

There are experimental evidence that proves the fact that in the presence of inhomo-

geneous plastic deformation, size effects appear, specifically in presence of gradients of

plastic strain. These gradients can be a natural consequence of boundary conditions or

even internal incompatibilities (like the mismatch between lattice structures of matrix ma-

terial and second-phase particles). It is shown that the dislocation density is correlated

to plastic strain and its gradient. If divided into two parts, the statistically stored density

(ρSSD) is related to the plastic strain, and the geometrically necessary density (ρGND) is

directly related to the gradient of plastic strain.

According to Fleck et al. (1994), the experimental observations of size scale effects

can be categorized in three groups. i) Size effects due to the microstructure. This cate-

gory concerns the effects of size and morphology of actual microstructures, such as size

of inclusions and second-phase particles. The Hall-Petch effect (Hall (1951) and Petch

(1953)) is a well-known example of this group. ii) Locally sharp plastic gradients. This

group of experiments deal with severe local plastic deformations with sharp gradients,

such as the deformation field around an indenter or a crack tip. The observations made

by Oliver et al. (1985) that the decrease in indentation depth results in increased hardness

measurement is an example of this group. iii) Imposed macroscopic gradients. This final
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group covers the experiments with a macroscopically applied deformation gradient. A

good example of this group is the work done by Fleck et al. (1994) where Cu wires with

different diameters were tested in tension and torsion. The tension test results in a ho-

mogenous strain distribution throughout the wire thickness and hence showed negligible

dependency on wire size, while the torsion test results in a gradient of strain (it varies

from zero on the neutral axis to a finite strain on the surface) and hence showed effects

of size scale.

Modeling approaches

The conventional continuum treatment of plasticity will not capture effects of size scale,

since its governing equations are devoid of any length scale parameter. Hence, there is

a need for more complex approaches to study problems with size scale effects. Three of

these approaches will be briefly introduced here.

Molecular dynamics: Molecular dynamics (MD) is the computer simulation of the

physical movements of particles. In the most common version, the dynamic evolution

equations of a system of interacting atoms and molecules are numerically solved over a

fixed period of time. In this method, forces between the particles and their potential

energies are often calculated using inter-atomic potentials or molecular mechanics force

fields. The method was originally developed within the field of theoretical physics in the

late 1950s, but is applied today mostly in chemical physics, materials science, and the

modeling of bio-molecules (Mattis (1993), Alder and Wainwright (1959), Rahman (1964)).

There are also restrictions with this approach. MD simulations are computationally

costly and generate cumulative errors in numerical integration. Even though the number

of possible particles in each simulation has reached to the order of 100 million thanks to

advancements in computational tools, it only encompasses a cube of material with 500

atoms in each direction, or equivalently, a cube with edge size of only 100 nm Schiotz

and Jacobsen (2003). Another obstacle with MD is the extremely small time increments

needed for the numerical integration. This is due to the fact that the time steps should

be smaller than the shortest movement time scale of atoms. This problems can be partly

solved by simulating atoms movements in very low temperatures. In order to get mean-

ingful macroscopic strain levels for simulations on such a short time and low temperature,

the loading should be applied on very high rates, namely in the order of 106 - 108 s−1. So,

MD simulations are normally carried out for extremely small specimens with extremely
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high loading rates and extremely low temperatures, and hence they are only useful to give

insight on the processes happening on the smallest possible scales, and in practice, they

are used as an input to other approaches that operate on larger scales with less numerical

constraints.

Discrete dislocation dynamics: In discrete dislocation dynamics (DD or DDD) ap-

proach, dislocation lines are represented explicitly. It treats the continuum as an elastic

medium with embedded dislocation lines as elastic inclusions. The plastic behavior is

then simulated by the collective evolution of a large number of interacting dislocations

under an external loading. Properties of dislocations, such as line mobility and junction

strength, can be derived from MD simulations. DD simulations are used both for eval-

uating the mechanical response of the material and analyzing the dislocation patterning

(Schwarz and Tersoff (1996), Hirth et al. (1996), Zbib et al. (1998), Van der Giessen and

Needleman (1995)).

The analytical description for stress and deformation state of an infinite, isotropic

medium with an embedded elastic, linear dislocation is known for many types of dislo-

cations. Hence, except in the core of dislocation that is a line singularity, this analytical

solution is valid and accurate. To account for the effects of dislocation singularity, DD

numerically solves a complementary field which, in addition to the analytical solution, re-

sults in equilibrium and compatibility in the medium. One restriction of the DD method is

that by increasing plastic deformation, the number of dislocation line segments increases,

and hence the computational cost increases gradually in each analysis. Nonetheless, DD

approaches have been proved very useful in capturing microscale stress concentrations

and failure processes which are not possible to be captured by other approaches.

Crystal plasticity: Crystal plasticity is based on the fact that crystals are mechanically

anisotropic, and hence they cannot be modeled using conventional constitutive equations.

This is due to the orientation dependence of the activation of the crystallographic deforma-

tion mechanisms (dislocations, twins, martensitic transformations). As a consequence of

this, the macroscopic mechanical behavior of the material becomes orientation dependent

(Roters et al. (2010), Uchic et al. (2004), Asaro (1983)).

The main application of crystal plasticity approach is to model the rotations of in-

dividual grains in a polycrystal, which will predict the evolution of texture, which, in

turn, will result in the development of anisotropy in the solid. The constitutive models

used in crystal plasticity are categorized as phenomenological and physics-based. In phe-
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nomenological models, all slip systems of the crystal are taken into account and then the

critical resolved shear stress in each of these systems are used as the state variables. In

physics-based models, however, the dislocation density is used as the internal variable,

since dislocations are the carriers of plastic strains. The density is then governed by

physically-based evolution laws. Figure 7 shows the time and space domain of application

of the aforementioned approaches.

Figure 7: Typical size and physical time covered by three approaches introduced in this

section. Figure taken from Fivel (2010).
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Strain gradient plasticity

As mentioned in the previous section, the approach used in this study to handle size

scale effects is strain gradient plasticity (SGP). The main idea in SGP methods is that

since strain is a dimensionless quantity, it cannot bring in any sense of size scale into the

constitutive equations, and hence, the solution to this shortcoming is to include spatial

gradients of strains to account for length scale effects. This is a similar fashion to rate

dependent problems, where time derivatives bring in a sense of time scale. In principle,

SGP models can be divided into two main categories: lower order theories, in which

only the incremental constitutive relation is different from conventional plasticity, and

higher order theories, which posses additional stress quantities and additional boundary

conditions (Niordson and Hutchinson (2003)).

In all higher order theories, a measure of plastic strain and its spatial gradient enters

the principle of virtual work (Fleck and Hutchinson (2001) and Gurtin (2000)). The work

of this thesis is in the SGP framework introduced by Gudmundson (2004) and further

developed in Fredriksson and Gudmundson (2005). For this isotropic, small strain theory,

the internal virtual work is expressed as∫
Ω

[
σijδεij + (qij − sij)δε

p
ij +mijkδε

p
ij,k

]
dV =

∫
∂Ω

[
Tiδui +Mijδε

p
ij

]
dS. (2)

In the above equation, σij is the Cauchy stress and sij is its deviatoric part. Moreover,

there are a couple of additional stress quantities; qij is the micro stress and mijk is the

moment stress, which are work conjugates to plastic strain tensor εpij and its spatial

gradient tensor εpij,k, respectively. Furthermore, Ti = σijnj is the standard force traction

and Mij = mijknk is the higher order moment traction. Finally, integration by parts of

(2) and enforcing the arbitrariness of the virtual fields, give the strong form of equilibrium

equations

σij,j = 0

mijk,k + sij − qij = 0.
(3)

In absence of moment stresses, the second equation above reduces to qij = sij and the

conventional theory is recovered.
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To make the formulation complete, constitutive equations have to be supplied. The

Cauchy stress is governed by isotropic linear elasticity via Hooke’s law

σij =
E

1 + ν

(
εeij +

ν

1− 2ν
εekkδij

)
. (4)

where E is Young’s modulus and ν is Poisson’s ratio. The constitutive equations for

the non-standard stress tensors can be established by considering the fact that the rate

of dissipation, which is the difference between the rate of internal work and the rate of

change of free energy (ψ), must be non-negative at every point in the domain

(qij − ∂ψ

εpij
) ˙εpij + (mijk − ∂ψ

εpij,k
)ε̇pij,k ≥ 0. (5)

In all appended papers, it is assumed that ψ is entirely associated with elastic strains.

Hence, Eq. 5 is reduced to

qij ˙εpij +mijk
˙εpij,k ≥ 0. (6)

If qij and mijk are collinear with εpij and εpij,k, respectively, Eq. 6 will be fulfilled (Gud-

mundson (2004)).

To construct effective measures of stress and strain, the rate of dissipation in Eq. 6 is

rewritten as

qij ˙εpij +mijk
˙εpij,k = ΣĖp, (7)

where Σ and E are effective measures of stress and strains, respectively. By an analogy

to standard J2-plasticity, the explicit form of these two parameters are suggested as

Σ =

√
3

2

(
qijqij +

mijkmijk


2

)
(8)

and

Ėp =

√
2

3

(
ε̇pij ε̇

p
ij + 
2ε̇pij,kε̇

p
ij,k

)
, (9)

where the intrinsic material length scale parameter 
 is introduced to make the dimensions

consistent. This parameter is related to the characteristic length of the microstructure.

There are analytical and experimental methods to measure the value of 
, for example,

see Gao and Huang (2003) and Abu Al-Rub and Voyiadjis (2004).

Taking the variation of Eq. 7 and using the definitions in Eq. 8 and 9, the constitutive

equations for non-standard stress quantities are obtained as

qij =
2

3

Σ

Ėp
ε̇pij and mijk =

2

3

Σ

Ėp

2ε̇pij,k. (10)

These constitutive equations can be rephrased in the inverted form as

ε̇pij = ε̇0
3qij
2Σ

(Ėp/ε̇0), (11)

12



ε̇pij,k = ε̇0
3mijk

2
2Σ
(Ėp/ε̇0), (12)

where ε̇0 is a reference strain rate. The Ėp/ε̇0 term represents a viscoplastic response that

depends on the effective stress and the inviscid flow stress σf

σf = σ0 +H(Ep) (13)

where σ0 is the yield stress for the matrix material, and H represents hardening.
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Energetic interfaces

If internal interfaces are introduced in the material (e.g. the separating surface between

matrix and second-phase particles), the SGP formulation given in previous section needs

to be enhanced by extra terms. Hence, the virtual work functional is complemented by

contributions from the work done on internal surfaces as∫
Ω

[
σijδεij + (qij − sij)δε

p
ij +mijkδε

p
ij,k

]
dV +

∫
Γ

[
Tiδūi +Mijδε̄

p
ij

]
dS =∫

∂Ω

[
Tiδui +Mijδε

p
ij

]
dS

(14)

in which ū and ε̄ are respectively some measures of displacement and plastic strain on the

interface surface. In most interface models, ū is chosen as the jump in displacement over

the interface layer, while the choice for ε̄ is more varied.

For barriers at which dislocations may pile up (such as the surface of second-phase

particles), it is common to assume the internal interfaces are energetic, i.e. processes at

the interface only change the energetic state and do not cause any dissipation (Aifantis

et al. (2006); Borg and Fleck (2007)). Hence, an interface potential ΨΓ can be considered

from which the higher order tractions at the interface can be evaluated as

Mij =
∂ΨΓ

∂εpij
. (15)

Here, ε(εpij) is defined as the norm of plastic strain at the interface, then

∂ε

∂εpij
=
εpij
ε
. (16)

Applying chain rule to Eq. 15 and inserting Eq. 16, the higher order traction components

can be described as

Mij =
∂ΨΓ

∂ε

∂ε

∂εpij
= ψΓ

εpij
ε

(17)

in which ψΓ is interface function.

Here, three interface models (including the model used in appended papers) are briefly

introduced. The first model is by Fredriksson and Gudmundson (Fredriksson and

14



Gudmundson (2007)), in which the potential function has the general power law form of

ΨΓ =
1

N

ΓE(

σy
E
)2−NεNe . (18)

Here, εe =

√
2

3
εpIij ε

pI
ij , and 
Γ is a material length scale parameter different from the bulk

length scale. If 
Γ = 0, the interface would allow dislocations to pass through freely, and

if 
Γ → ∞, the passage of dislocations is fully blocked and therefore εpIij = 0.

The second model is by Dahlberg and Faleskog (Dahlberg and Faleskog (2013)),

which is based on the work of Fleck and Willis (2009). In this model, two effective

measures for plastic strain at the interface are used as

ε+ =
√
ε̂ij ε̂ij and ε− =

√
ε̌ij ε̌ij, (19)

in whichˆandˇstand for the difference and the average of each quantity at the interface,

respectively. The interface energy function is given by

ψΓ(ε
�) =

G0L
� ε�(

1 +
(

ε�

ε0

)p)1/p
, (20)

where p is the shape parameter, ε0 is a reference strain, G0 is the interface stiffness, L� is

the interface length scale, and the superscript � should be substituted for either + or -.

The third interface model, which is proposed in the appended papers, is by As-

gharzadeh and Faleskog (Asgharzadeh and Faleskog (2018)). In this model, it is

assumed that one side of the interface is always occupied by elastic particles, and the

effective strain is calculated by εΓ =
√
εpijε

p
ij. An interface energy function that facilitates

increase in both macroscopic yield strength and hardening is proposed as

ψΓ(εΓ) = α0
σ0 ·
(
1 + α1

εΓGm

α0σ0

)
. (21)

Here, the shear modulus of the matrix material Gm is introduced for dimensional reasons.

This function contains two key parameters α0 and α1, and it should be interpreted as

follows: the first term defines the strength of the interface which results in the increase

in yield stress of the material, while the second term affects the increase in plastic work

hardening of the material. This model is described in more details in the first appended

paper.
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Finite element implementation

The theories briefly introduced in the previous sections were discretized and implemented

into a finite element method (FEM) framework. The work done for plane strain in

Dahlberg and Faleskog (2013) has been used as the basis to develop the formulation

further into axi-symmetric (first appended paper) and general 3D conditions (the rest of

appended papers). In the current higher order framework, in addition to displacement

as conventional degrees of freedom (DOF), plastic strains are also considered as DOF.

Hence, in the case of axi-symmetry, the DOF components are

dT
u = [ur uz], dT

p = [εprr ε
p
zz γ

p
rz], (22)

and the DOF components in 3D formulations are

dT
u = [ux uy uz], dT

p = [εpxx εpyy γpxy γpxz γpyz]. (23)

In both equations above, plastic incompressibility is assumed, i.e. εpφφ = −(εprr + εpzz) and

εpzz = −(εpxx + εpyy), respectively.

Displacements and plastic strains at any arbitrary point within elements can be found

by using shape functions and nodal values as[
u

εp

]
=

[
Nu O

O Np

][
du

dp

]
, (24)

in which Nu is the shape function matrix for displacements DOF, Np is the shape function

matrix for plastic strains DOF, and O is the zero matrix of appropriate size. The choice

of element type will decide the components of Nu and Np matrices.

Figures 8 and 9 show the type of elements developed and employed in the appended

papers. In the axi-symmetric case, the bulk is modeled by 8-node serendipity element

and the interface by quadratic line elements, while in the 3D case, the bulk is modeled by

10-node quadratic elements and the interface by quadratic triangle elements. It should

be noted that nodes with filled circles posses both displacement and plastic strain DOF,

while nodes with hollow circles posses only displacement DOF. So, Nu is quadratic while
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Figure 8: Elements used in axi-symmetric case.
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Figure 9: Elements used in 3D case.

Np is linear. The geometry is also interpolated using the quadratic shape functions, and

for numerical convenience, the quadratic Jacobian matrix is used in spatial description of

plastic strain DOF, because if two different geometry interpolations are used, the Gauss

points will not coincide. Figure 10 shows number of Gauss points used in this work.

 Bulk Element Interface Element 

Axisymmetric 4 2 

Three Dimensional 4 3 

 
Figure 10: Number of Gauss points used in each element.
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Strain Gradient Plasticity Modelling of Precipitation Strengthening

Initialize solution: t = 0, ft = 1.0, Δt = Δt0, d
(t) = 0 and Ep = 0

while solution is not done do
Initialize load step: e = 1.0, k = 0
Δdk

u = 0, Δdk
p = ftΔd

(t)
p and dk = d(t) +Δdk

while e > tol and k < maxiter do
k ← k + 1, Ktan = O, fint = 0, Etrial = 0
for all elements do

% Quantities in this loop refer to each element only

ε = Bd(t), Δε = B
(
dk − d(t)

)
, K = O, f = 0

for all Gauss points do
% Quantities in this loop refer to each Gauss point only

Calculate ΔEp from Δε and update σf(E
p +ΔEp)

Solve nonlinear equation for Σ and update s
Calculate the algorithmic D from the updated state
K ← K+BTDBJw and f ← f +BTsJw

end for
Etrial = Ep +ΔEp

Assemble: Ktan ← Ktan +K and fint ← fint + f
end for
Apply boundary conditions and Lagrange multiplier equations
Solve KtanΔdk = fext − fint for Δdk

dk ← dk +Δdk and calculate e = ‖Δdk‖/‖dk − d(t)‖
end while
if load step converged then

Update Δd(t+Δt) = dk − d(t), d(t+Δt) = dk and Ep = Etrial

t← t +Δt
Calculate new ft, Δt← ftΔt and check for end of solution

else
Δt← Δt/2, check for stop condition

end if
end while

Figure 11: Backward-Euler algorithm. Figure taken from Dahlberg (2011).

The implementation is done in a fully implicit backward-Euler scheme into an in-house

Fortran program, with the details of the algorithm shown in figure 11. Intel PARDISO is

utilized as the parallel direct sparse solver, which is a robust and efficient solver with great

memory handling features (see Schenk and Gartner (2004) and Gould et al. (2007)). In

addition, a set of programs in Fortran and Matlab are used for pre- and post-processing,

and Ansys is used in the meshing of 3D geometries. The analyses are executed in parallel

form by use of OpenMP application programming interface on a computer cluster with 8

nodes, each composed of 8 threads.
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Problem definition

Figure 12 depicts the schematic of a continuum with a distribution of small particles.

The average radius is shown as rp, which is found to be in the range of a few to several

hundreds of nanometers. Two other important parameters for the strengthening are also

mentioned in the figure, namely the average distance between particles Lp, and the length

scale characteristic of the matrix material 
. The plastic deformation processes –which

lead to strengthening– occur at the scale of 
. Hence, the effect of length parameters

characterizing the micro-structure, i.e. Lp and rp, should also be related to 
.

 

 

 

 

Figure 12: Schematic of a micro-structure containing a distribution of particles.

In this work, evaluating the increase in yield strength (strengthening) due to presence

of particles is the objective. To make a numerical study possible, some approximations

are made. First of all, both matrix and particle materials are considered to be isotropic.

Secondly, particles are assumed to deform only elastically. And thirdly, a globally periodic

distribution of particles is considered. This means, even if the distribution is locally ran-

dom, the global distribution can be reproduced by copying a unit cell in three dimensions.

Four of such unit cells are then chosen to build the microstructure. Each of the appended

papers is based on one of these microstructures, see next section, Summary of appended

papers.
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The microstructures are modeled in the FEM framework implemented from the higher

order SGP and the energetic interface theories introduced in previous sections. The

purpose of using SGP is to bring in a sense of length scale, and the purpose of using

the energetic interface is to –qualitatively– mimic the pile up of dislocations on particles

surfaces. Finally, the models are subjected to uniaxial tension (and simple shear for Paper

D). Since the components of each model are isotropic, the direction of loading does not

affect the behavior. A summary of obtained results are presented in the upcoming section

Key results.
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Modelling

The theoretical framework and numerical implementation briefly introduced in previous

sections are applied to four different micromechanical models to study the precipitation

strengthening, which are appended as four independent papers to this text. Here, a sum-

mary of these papers is given.

Paper A: Strengthening effects of particle-matrix interaction analyzed by an axi-symmetric

model based on strain gradient plasticity

The main purpose of the first paper is to introduce and elaborate on the new interface

model proposed by the authors, which is used in papers B-D as well. In order to make

it numerically affordable to have a vast range of parametric study, the micromechanical

model is chosen as simple as possible. Hence, an axi-symmetric model including one par-

ticle is used (Fig. 13). The effect of different parameters on the macroscopic response of

the RVE is analyzed, including, but not limited to, particle size, material length scale,

shear modulus mismatch between particle and matrix, and interface strength. It is con-

cluded that the strengthening observed in this model can be formulated in a closed-form

equation.

 

Figure 13: The axi-symmetric model used in paper A.
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Paper B: A model for precipitation strengthening accounting for variations of particle

size and spacing based on strain gradient plasticity in 3D

This paper is written with the main purpose of expanding the 2D framework intro-

duced in paper A to a 3D space. The micromechanical model is composed of an RVE

accommodating for eight different particles, as can be seen in Fig. 14. This RVE is the

result of the assumption of periodic distribution for particles. This 3D model makes it

possible to study the effects of particle size distribution, since it includes more than one

particle. In this paper, a set of parametric study is performed to complement what is

done in paper A, including, for example, the effects of coefficient of variation of particle

size distribution on the strengthening of the material. It is shown that the closed-form

formulation introduced in paper A is applicable to these 3D results, too.

 

 

 

 

 

  

Figure 14: The 3D ordered model used in paper B.

Paper C: A 3D model for the analysis of plastic flow properties of randomly-distributed

particles

For the sake of the generality of the model, a completely random distribution of parti-

cles is considered in paper C, resulting in the RVE depicted in Fig. 15. The new dimension

this model brings in is the possibility to have a realistic particle spacing distribution (dif-

ferent distance between different particles). As the final paper on the Orowan phase of

precipitation strengthening, a complementary set of parametric studies are carried out.

The proposed closed-form formulation is approved to be applicable in the general 3D

space, and the numerical results are compared with experimental data available in litera-

ture, for two main categories of particle-hardened materials, namely age-hardened alloys

and metal matrix composites (MMCs).
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Figure 15: The 3D random model used in paper C.

Paper D: A shearing/looping transition model for precipitation strengthening

In order to cover the whole range of precipitation strengthening, an RVE with an

embedded discrete slip plane is introduced in paper D, as can be seen in Fig. 16. The

idea here is that when the stress in the microstructure reaches to a specific level, the

sliding feature gets triggered and hence it will simulate the shearing of the particle. Since

this model is constructed based on what is done in papers A-C, in case that the shearing

mechanism does not get engaged, it still has the capability to mimic the Orowan response.

Effects of different parameters on the precipitation strengthening in the shearing mode

are studied, and by use of a Taylor homogenization scheme, consequences of having a size

distribution of particles is demonstrated.

 

 
 

 

 

Figure 16: The 3D shearing model used in paper D.
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Key results

Here, the most important observations made in the appended papers are briefly presented.

The macroscopic stress-strain curves are evaluated by volume averaging of strain and

stress fields within each RVE. Two key parameters controlling macroscopic behavior are

interface strength α0 and particle spacing Lp (normalized by material length scale 
).

Figure 17 shows such effects. Strengthening increases as α0 gets bigger (particle becomes

more incoherent) or Lp gets smaller (the distance between particles shrink).
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Figure 17: Effects of α0 and Lp on macroscopic stress-strain curves.

Another determining parameter is the volume fraction of particles f . The results

obtained from the appended papers (including Figure 18) show that the dependency of

strengthening on volume fraction of particles follows a power law. The mismatch between

shear moduli of particle and matrix materials are also found to influence the strengthening.

Figure 19 shows such an influence. The results from analyses carried out in appended

papers reveal how each model’s parameter affects the macroscopic response and hence the

strengthening.

Moreover, it has been shown that all these effects can be compacted into a closed-form
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Figure 18: The increase in yield strength as a function of particles volume fraction.
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Figure 19: The increase in yield onset as a function of particle shear modulus.

function as
σp
σ0

= Fσ

(
α0,

Lp



, f,

Gp

Gm

)
. (25)

The introduction of this formula has made it numerically convenient to compare the results

of this study with experiments. Figure 20 shows one example of comparing numerical

results of this work versus experimental results for magnesium reinforced with alumina

particles Mg − Al2O3 (data from Hassan and Gupta (2004); Wong et al. (2005); Wong

and Gupta (2007)). And finally, the model with an embedded slip plane which is used in

Paper D has made it possible to include the shearing mechanism in the covered spectrum

25



Strain Gradient Plasticity Modelling of Precipitation Strengthening

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized increase in yield strength - Predicted

N
o
rm

a
li
ze
d
in
cr
ea
se

in
y
ie
ld

st
re
n
g
th

-
E
x
p
er
im

en
ta
l

Mg − Al2O3

 

 

[1]
[2]
[3]

Figure 20: Comparison between predicted and measured strengths for Mg − Al2O3.
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Figure 21: The transition from shearing to Orowan mechanisms.

of this print. Figure 21 shows the transition between shearing and Orowan mechanisms.
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Concluding remarks

Numerical study of precipitation strengthening has been set as the goal of this work of

research. Different 2D- and 3D-micromechanical models have been proposed to fulfill this

matter. Comprehensive parametric studies have been carried out, with the results being

presented in the appended papers. To account for the effects of microstructure size scale,

an SGP theory has been used. The numerical results have been compared with available

experiments, and they have shown agreement both qualitatively and quantitatively. In

the Orowan regime, decreasing particle size leads to more strengthening, while in the

shearing regime, smaller particle sizes mean less strengthening. Furthermore, to bring in

the effects of particle coherency, a new interface formulation has been introduced.

In addition, effects of having distributions for particles size and spacing have been

studied. It has been shown that, for the Orowan regime, more homogenous size and more

heterogeneous spacing distributions will result in peak strengthening performance. Similar

findings have been observed for the shearing regime. Moreover, the increase in yield stress

in the Orowan regime has been found to follow a closed-form formulation. Based on this

formulation, effects of all parameters on the strengthening can be compacted in only two

key parameters; the volume fraction of particles, and their surface area per unit volume

of material. For a fixed volume fraction, the configuration with more surface area will be

stronger, i.e. having more smaller particles is better than having a large one.
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