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Current trends in tendinopathy: consensus
of the ESSKA basic science committee. Part
II: treatment options
F. Abat1* , H. Alfredson2,3,4, M. Cucchiarini5, H. Madry6, A. Marmotti7, C. Mouton8, J. M. Oliveira9,10,11,
H. Pereira9,12,13, G. M. Peretti14, C. Spang15, J. Stephen16,17, C. J. A. van Bergen18 and L. de Girolamo19

Abstract

The treatment of painful chronic tendinopathy is challenging. Multiple non-invasive and tendon-invasive methods
are used. When traditional non-invasive treatments fail, the injections of platelet-rich plasma autologous blood or
cortisone have become increasingly favored. However, there is little scientific evidence from human studies supporting
injection treatment. As the last resort, intra- or peritendinous open or endoscopic surgery are employed even though
these also show varying results. This ESSKA basic science committee current concepts review follows the first part on
the biology, biomechanics and anatomy of tendinopathies, to provide a comprehensive overview of the latest treatment
options for tendinopathy as reported in the literature.

Introduction
The great incidence of tendon injuries in the population
as well as the failure rate of up to 25% (Lohrer et al. 2016)
of the available conservative treatments has made this
field one of the most interesting for alternative biological
approaches. The study of the microenvironment of tendi-
nopathy is a key factor in improving tendon healing.
There is still debate around the true role of inflammation
and of overload in the activation of the processes. They
are both factors that gradually produce degenerative
changes of the tendon structure due to qualitative and
quantitative alterations of tenocytes (Abate et al. 2009).
Historically, tendinopathy has primarily been considered a
degenerative pathological process of a non-inflammatory
nature as the presence of acute inflammatory cells in
chronic tendinopathy has never been confirmed. However,
thanks to the newer research tools, convincing evidence
that includes an increasing number of inflammatory cells
in pathological tendons (Dean et al. 2016) has started to
appear showing that the inflammatory response is a key
component of chronic tendinopathy (Rees et al. 2014). For
example, an increase in terms of cytokines, inflammatory

prostaglandins, and metalloproteinases (MMPs) along
with tendon cell apoptosis seem to be provoked by con-
tinuing mechanical stimuli (Andres and Murrell, 2008;
Rodriguez et al. 2015). In this context, an alternative
anti-inflammatory and immunomodulatory approach that
replaces the traditional anti-inflammatory modalities (i.e.
NSAIDs) may provide another potential opportunity in
the treatment of chronic tendinopathies. In a previous re-
port, biology, biomechanics, anatomy and an exercise-
based approach were discussed (Abat et al. 2017). The
current concepts review here provides an overview of the
some treatment options for tendinopathy as reported in
the literature.

Treatment options
Platelet RICH plasma (PRP)
The use of Platelet Rich Plasma (PRP) for the treatment
of tendinopathy is a greatly debated topic in literature.
The common perception that it “may” be useful in clin-
ical settings has led to the wide spread use of PRP to
treat acute and chronic tendon injuries in both Europe
and the United States although conflicting evidence still
exists as to its efficacy and the form in which PRP
should be used.
A recent systematic review (Filardo et al. 2016) has

highlighted the controversial results of PRP applications
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for different pathologies. The authors affirm that, follow-
ing the current evidence, patellar and lateral elbow ten-
dinopathy showed improvement from PRP treatment
while the Achilles tendon and rotator cuff do seem not
to benefit from PRP application with either conservative
treatment or surgery. Conversely, the recent meta-ana-
lysis by Fitzpatrick (Fitzpatrick et al. 2017) has shown
good clinical evidence that favors the use leukocyte-rich
PRP (LR-PRP) under ultrasound guidance for the treat-
ment of patellar tendinopathy, lateral epicondylitis and
Achilles and rotator cuff tendinopathy. Similarly, the
study by Pandey (Pandey et al. 2016) showed a positive
result from the application of a moderately concentrated
leukocyte-poor PRP (LP-PRP) above the repair site dur-
ing single-row arthroscopic repair of large degenerative
cuff tears. On the other hand, a prior study by Zumstein
(Zumstein et al. 2016) failed to show any benefit from
the application of PRP in the form of a leucocyte and
platelet-rich fibrin matrix during arthroscopic rotator
cuff repair.
The fact is that there is no consensus. This is mainly

due to the lack of standard PRP preparation procedures
or methods of application. This, at present, suggests cau-
tion in the indiscriminate first-line application of PRP in
tendon disorders. Nevertheless, basic science studies
may be the key to bringing the biological rationale for
PRP into safe clinical usage. Indeed, the most recent in
vitro and preclinical studies have shown some important
clues as to the action of PRP and the proper compos-
ition to be used on tendon cells. Even if it seems that
animal derived PRP has less favorable properties than
human PRP, as has been observed in different settings
like that of bone formation (Plachokova et al. 2009), pre-
clinical observations may give well-defined evidence of
the mechanism of PRP.
Firstly, the in-vitro study by Hudgens (Hudgens et al.

2016) with rat fibroblasts has demonstrated that one of
the early responses to PRP application in rats is intermit-
tent bouts of inflammation. They used a manually pre-
pared PRP with leukocytes and a 4-fold elevation in the
platelet concentration. Similarly to cartilage-like tissue,
in which the connection between a transient early in-
flammatory process and the expression of inflammation
related NF-ĸB subunit p65 and chondrogenic differenti-
ation (Caron et al. 2012; Caron et al. 2014), Hudgens
(Hudgens et al. 2016) has observed the activation of
pro-inflammatory Tumor Necrosis Factor TNF-alpha
and NFkB pathways after PRP exposure as well as the
expression of genes related to cellular proliferation and
tendon collagen remodeling. This explains an initial
transient inflammatory response to PRP that may be
more pronounced if it is in the presence of leukocytes.
In chronic tendinopathies, inducing an acute bout of in-
flammation may represent a key element in triggering a

subsequent regenerative response. It may also partially
sustain the positive result of PRP in chronic tendon
degeneration.
The control of the inflammatory process by PRP seems

to derive from a key element in PRP, namely the hepato-
cyte growth factor (HGF). HGF is not simply a trophic
factor and an anti-fibrotic regulator. It has been previ-
ously recognized as the main factor responsible for the
PRP anti-inflammatory effect on human chondrocytes
through inhibition of NF-kB transactivating activity
(Bendinelli et al. 2010). A recent study by Zhang (Zhang
et al. 2013) has suggested a similar effect in rabbit and
mouse LR-PRP with a four-fold platelets concentration
than in whole animal blood in an in vitro rabbit teno-
cytes culture and in a preclinical mouse model of an
acute Achilles tendon lesion. It is likely that HGF is not
only delivered by the platelets but also produced by cells
following exposure to PRP. This presence of HGF may
partially explain the secondary reduction of the first ini-
tial PRP-induced inflammatory phase.
A parallel and transient increased expression of trans-

forming growth factor (TGF)-beta following PRP expos-
ure has been recently described by Lyras (Lyras et al.
2010) as a key factor in accelerating tendon healing. The
authors set up a patellar tendon defect model in rabbits
treated with intralesional PRP gel. TGF-beta has been
shown to increase during the first 2 weeks, consistent
with an anabolic stimulus, and then decrease after this
initial phase. That likely leads to a reduction in adhesion
and scar formation. The same authors described this
PRP-driven angiogenesis during tendon healing (Lyras et
al. 2010) as likely being driven by the expression of vas-
cular endothelial growth factor (VEGF) and other angio-
genetic factors. PRP has been shown to temporally
increase the angiogenetic phase and subsequently lead to
a prompt reduction of this phenomenon, thus accelerat-
ing the whole tendon healing process.
These different anabolic mechanisms of PRP seem to

be impaired by the presence of leukocytes. Indeed, the
recent works of Fortier and co-workers (Boswell et al.
2014; Cross et al. 2015; McCarrel et al. 2012) have
shown that a high white blood cell concentration leads
to a predominant expression of inflammatory and de-
gradative factors like Interleukine (IL-1) beta and
MMP-9, while LP-PRP was related to a greater content
in IL-6 that is associated with anti-inflammatory and re-
generative effects in the healing tendon. This is in ac-
cord with the recent study by the Andia’s group
(Rubio-Azpeitia et al. 2016). It demonstrates enhanced
COL1A1, COL3A1, decorin, fibronectin, aggrecan and
connective tissue growth factor (CTGF) expression and
reduced MMP-1 expression after exposure to LP-PRP.
Similarly, the recent in vitro study by Zhang (Zhang et
al. 2016) showed that the exposure of rabbit tendon
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stem cells to LR-PRP decreased expression of VEGF, epi-
dermal growth factor (EGF), Transforming Growth Fac-
tor Beta − 1 (TGF-β1) and platelet-derived growth factor
(PDGF). Moreover, it reduced the production of collagen
when compared to LP-PRP.
However, there may still be a role for leukocytes in PRP.

A recent rabbit study by Zhou (Zhou et al. 2015) suggests
that a PRP preparation with a small number of leukocytes
may be beneficial in treating acute tendon lesions and
early stage healing. In these situations, the marked ana-
bolic effects of PRP without white blood cells may induce
an excessive amount of collagen and matrix production
that likely leads to scar formation. Conversely, the pres-
ence of a small number of white blood cells may counter-
balance this anabolic effect and lead to controlled
inflammation and a more physiological tendon healing
(Pandey et al. 2016). It has been suggested that the use of
PRP with a moderate leukocyte concentration improves
arthroscopic repair of rotator cuff tears. On the other
hand, Zhou et al. (Zhou et al. 2015) suggested that high
levels of leukocytes are harmful in any case because they
have been seen to induce a catabolic environment as well
as predominant collagen type III production that may lead
to scar formation and impaired tendon healing. Moreover,
the authors recommend the use of a PRP without leuko-
cytes in treating already-inflamed tendinopathic tendons
and in late stage healing. This is the case in which the ana-
bolic actions and low inflammatory effects of PRP should
be prevalent and the persistence of the inflammatory
phase driven by the leukocytes, conversely, would impair
the healing process.
In addition, a recent work has introduced a new per-

spective on the use of leukocytes (Yoshida and Murray
2013). They observed a significant improvement in colla-
gen production by fibroblasts using a neutrophil
depleted-monocyte enriched PRP. This new solution
would make it possible to preserve the anabolic proper-
ties of monocytes while reducing the catabolic effect of
cytokines produced by neutrophils. Although it is a very
interesting perspective, only future studies will clarify
the possible clinical relevance of this approach.
Furthermore, two different pieces of evidence were

also laid out in very recent in-vitro observations.
First, the concept of “the more, the better” does not

seem to be beneficial during the preparation of PRP for
tendon disease (Boswell et al. 2014). Indeed, increasing
the number of platelets over 1x10E6/ul may paradoxic-
ally reduce cell proliferation (Giusti et al. 2014).
Second, a remarkably reduced response to PRP was

observed in degenerated tendons. In terms of the
in-vitro setting of the “diseases-in-a-dish”, both Cross
(Cross et al. 2015) and Zhang (Zhang and Wang 2014)
have described a lack of response to PRP in explants or
tendon stem cells from late-stage tendinopathy. This

may partially explain some of the conflicting data com-
ing from trials and meta-analyses and it may justify the
in vivo application of PRP in a clinical setting in which a
biological response is the aim. Indeed, PRP is not able to
reverse the degenerative conditions of late-stage tendi-
nopathy in which the infiltration of mononuclear cells,
permanent neovascularization, the metaplastic non-
tenocyte differentiation of tendon cells and the non-ten-
dinous tissues are predominant. In these cases, only the
surgical debridement of tendon degenerated areas
followed by PRP application may improve tendon quality
(Zhou and Wang 2016).
All the evidence suggests that PRP may have an effect-

ive role in treating tendon pathology if careful “attention
to the details” of PRP preparation goes together with a
thorough knowledge of the clinical setting in which the
specific PRP will be used. The “one size fit all” approach
is not sustainable due to the complexity of tendon path-
ology and the variability of the PRP preparation steps.
Indeed, not only the number of leukocytes and platelets
should be known, but many other factors in the whole
application process may influence the final results (Jova-
ni-Sancho et al. 2016). Some examples are cited below.
I) The anticoagulant used during blood extraction: It is

known that the common ethylene-diaminetetraacetic acid
(EDTA) causes platelet inhibition and fragmentation.
II) The activation method: It is included because bo-

vine thrombin may lead to a reduction in total growth
factor concentrations and a faster release of growth fac-
tors due to the very short coagulation time. On the other
hand, there is local PRP activation by means of collagen
type I in a damaged tissue leads to less clot retraction
than those formed with bovine thrombin.
III) The administration method: Ultrasound guidance is

an emerging feature for a clinical use of PRP. It leads to bet-
ter results in terms of the precision of intratendinous PRP
delivery into the affected area. Indeed, recent studies by
Fitzpatrick (Fitzpatrick et al., 2017), Jacobson (Jacobson et al.
2016), Dallaudière (Dallaudière et al. 2014) and Wesner
(Wesner et al. 2016) have shown that ultrasound-guided
intratendinous PRP injection may lead to both clinical and
MRI improvements in tendon pathology.
IV) The number of injections: Some studies have

shown the superiority of multiple injections of PRP (one
or two weeks apart) over the single injection in different
clinical settings like chronic patellar tendinopathy (Zayni
et al. 2015; Charousset et al. 2014) and Achilles tendinopathy
(Filardo et al. 2014).
V) The use of local anesthetics during PRP injections:

A study by Bausset (Bausset et al. 2014) has shown that
there is a possible detrimental effect on platelet
aggregation.
VI) The rehabilitation program after PRP treatment:

The biological stimulation of PRP leads to better results
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in combination with patient adherence to the rehabilita-
tion protocols (Filardo et al. 2018).
So, the future of PRP for tendon pathology is still open

and basic science studies continue to support its role in
facilitating tendon healing, at least in the early phases.
The connection between the preclinical premise and
specific standardized clinical protocols for PRP prepar-
ation for acute and chronic lesions is the key element in
allowing for the front-line clinical application of PRP in
the treatment of tendon diseases and tendinopathy.

Ultrasound guided galvanic electrolysis technique
(USGET)
In recent years, the UltraSound-guided Galvanic Electroly-
sis Technique (USGET) has emerged in the scientific lit-
erature (Abat et al. 2014; Abat et al. 2015; Moreno et al.
2017), given the good results yielded in the treatment of
refractory tendon injuries in comparison to other previous
conservative treatments (Abat et al. 2016).
USGET is non-thermal electrochemical ablation with a

cathodic flow to the clinical focus of tendon degener-
ation (Fig. 1). This treatment produces a dissociation of
water, salts and amino acids in the extracellular matrix
that creates new molecules through ionic instability. The
organic reaction, which occurs in the tissue around the
cathodic needle, causes a localized inflammation in the
region dealt with (Abat et al. 2014). It produces an im-
mediate activation of an inflammatory response and
overexpression of the activated gamma receptor for per-
oxisome proliferation (PPAR-gamma). Furthermore, it
acts to inhibit the action of IL-1, TNF and COX-2,
mechanisms of tendon degeneration through the direct
inhibitory action of factor NFKB that facilitates phago-
cytosis and tendon regeneration (Abat et al. 2014). The
effectiveness of USGET in combination with eccentric

exercises has been demonstrated in recent studies (Abat
et al. 2015, Abat et al. 2016; Mattiussi and Moreno,
2016; Moreno et al. 2017).
The application of USGET leads to the production of

new immature collagen fibers that become mature by
means of eccentric stimulus (Abat et al. 2015), thereby
obtaining excellent results in the short and long-term in
terms of pain and function. It should be stated that the
use of this techniques without the combination with
mechanical stimuli results in a significant decrease in
the biological effect.
The application of USGET should be limited to trained

professionals and under ultrasound guidance. The applica-
tion of local anesthesia is strongly recommended to avoid
pain during the procedure. Nowadays, the application of
USGET is indicated every 15 days so that a complete in-
flammatory period is fulfilled between treatments.
There are different electrolysis application methods in

the existing literature. Some authors use a dosage ranging
from 1 to 8 milliAmps (Abat et al. 2014) while other au-
thors use a microAmps range (Arias-Buría et al. 2015).
That fact creates big differences in the treatment intensity
applied to patients and probably in the healing response,
too. USGET at between 2 to 8 milliamps every 15 days is
suggested. Other electrolysis techniques use a weekly dose
of 2 to 4 milliamps (Moreno et al., 2017) or 350 micro-
Amps (Arias-Buría et al. 2015) with different results.
The lack of sufficient Level 1 studies and meta-analyses

makes more high-quality studies necessary to establish the
indisputable efficacy of this technique.

Mesenchymal stem cells
Although attention was mainly focused on their ability
to differentiate and to directly participate to the regener-
ation process in the past, mesenchymal stem cells

Fig. 1 US image with 6-15MhZ linear probe showing patellar tendinopathy (*) with thickening and hipoecogenic areas. USGET through 0.3 mm
needle (arrow) was applied
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(MSCs) have more recently been demonstrated to have
further and probably more important therapeutic func-
tions in response to injury like immune modulation and
trophic activities. That is why that they have been de-
fined as “drugstores” (Caplan and Correa 2011). Indeed,
they can home in on sites of inflammation or tissue in-
jury and they start to secrete immunomodulatory and
trophic agents such as cytokines and growth factors
aimed to re-establish physiological homeostasis in re-
sponse to that environment (Caplan and Correa 2011).
So, either as direct player in the process or/and bioactive
molecules “drugstores”, MSCs may enhance tissue repair
and regeneration and thereby restore normal joint
homeostasis. All these features, combined with the rela-
tive easy process of isolation and expansion have made
MSCs potentially very useful in recent years for many
clinical applications.
It is now clear that the ubiquity of MSCs is due to

their origin as they derive from perivascular cells called
pericytes and are thus located in all vascularized tissues.
Both microvascular pericytes (Crisan et al. 2008) and ad-
ventitial cells (Corselli et al. 2012) are immunophenoti-
pically indistinguishable from MSCs, hence the term
pericytes to describe these cells. Despite their ubiquity,
only specific sites have been identified as points to ob-
tain the considerable number of cells needed for regen-
eration purposes (Marmotti et al. 2014). Among adult
stem cells, those isolated from bone marrow (BMSCs)
are the most commonly used and studied. Used alone or
in association with scaffolds, BMSCs have shown to be
effective for the regeneration of different tissues, includ-
ing the tendon (Marmotti et al. 2014; Omi et al. 2015).
Another smart option is subcutaneous adipose tissue.

It is possible to isolate MSCs, named adipose-derived
mesenchymal stem cells (ASCs) from there with a sim-
ple and scarcely invasive method (Sacerdote et al. 2013).
If compared to bone- and cartilage-related pathologies,
the use of MSCs in tendon related disorders has been in-
vestigated very little, so far. Few animal models with dif-
ferent recipient and pathological conditions have been
tested to date. In a study performed on surgically de-
tached and repaired rat supraspinatus tendons, ASCs
seeded on a collagen carrier were unable to increase the
biomechanical parameters in comparison to the control
group (Valencia Mora et al. 2014). On the other hand, a
rabbit model of complete deep digital flexor tendon
transection treated with suture and intratendinous injec-
tion of allogeneic uncultured rabbit ASCs showed im-
provements in biomechanical parameters such as
stiffness and energy absorption in comparison to saline
and BMSCs injected controls (Behfar et al. 2014). In a
similar rabbit model, after Achilles tendon transection
and suture, PRP alone or PRP with rabbit ASCs were ap-
plied to the injury site. The addition of ASCs resulted in

a significant increase in tensile strength and collagen 1,
VEGF and FGF production whereas TGF-beta levels di-
minished in comparison to using PRP alone. It confirms
the effectiveness of ASCs in enhancing tissue healing
but raises questions about the complex interaction of
the molecular pathways induced by the treatment
(Uysal et al. 2012).
Tendinopathy of the superficial digital flexor tendon

was chemically induced in horses and the animals were
then treated with the injection of autologous ASCs and
PRP. The results showed that progression of the pathology
was prevented. Additionally, there was a decrease in in-
flammatory infiltrate and greater organization of collagen
fibers in ASC-treated tendons with respect to control ani-
mals treated with saline solution (Carvalho Ade et al.
2013). Many of the findings come from the equine clinical
veterinary literature, which is often a good basis for infor-
mation on the use of MSCs in humans. Especially in
horses, good clinical evidence is shown for combination of
PRP/MSCs (Ricco et al. 2013, Smith et al., 2013). The
BMSC treated animals showed statistically significant im-
provements in structural stiffness, histological scoring,
vascularity, water content, GAG’s content and MMP-13
activity (Smith et al. 2013). The promising data acquired
from previous studies together with the lack of adverse
findings support the use of this treatment option for hu-
man tendon injuries. Nevertheless, only few studies have
investigated the effect of MSCs in clinical application
(Wang et al. 2013; Pascual-Garrido et al. 2012; Singh,
2014; Ellera Gomes et al. 2012). A recent pilot study
showed the results of the injection of allogenic ASCs
mixed with fibrin glue into the common extensor tendon
lesions of 12 patients with chronic lateral epicondylitis. At
the one-year follow up, no significant adverse events were
observed and there was a significant improvement of pain
and elbow performance scores (Lee et al. 2015). The use
of allogenic cells is feasible as MSCs have been demon-
strated not to be very immunogenic due to the low
expression of MHC class I molecules and the lack of
MHC class II molecules (Prockop 2009). In another study,
patients who were refractory to conservative treatment
were injected with autologous BMSCs in the patellar ten-
don lesion. At the 5-year follow-up, a statistically signifi-
cant improvement was seen for most clinical scores
(Pascual-Garrido et al. 2012). In a recent randomized con-
trolled study comparing the efficacy of adipose-derived
stromal vasculat fraction and PRP, 23 patients were
assigned to the PRP group and 21 to the SVF group,
treated unilaterally or bilaterally for a total of 28 tendons
per group. All patients (age 18-55 years) were clinically
and radiologically assessed up to 6 months from the treat-
ment. Both treatments allowed for a significant improve-
ment with respect to baseline at the last follow-up, but
comparing the two groups, the patients treated with SVF
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obtained faster results, with significant imporvements
already after 15 days from the treatment, thus suggesting
that this treatment should be taken into consideration
mainly for those patients who require an earlier return to
daily activities or sport (Usuelli et al. 2018). These clinical
findings together with the huge amount of data derived
from both in vitro and pre-clinical investigations lead to
hypothesizing a role for MSCs in the treatment of tendi-
nopathy. It is something that is also supported by the high
safety profile of this procedure.
However, many issues around their application have

not been completely addressed, such as the timing of
MSC delivery at the injury site. Some evidence seems to
suggest not delivering MSCs during the first phases of
the injury process as it could result in undesired
pro-inflammatory effects. Then again, doing it later may
promote a desired immunosuppression process leading
to injury resolution.

Gene therapy
The concept of using gene transfer procedures to ad-
dress such issues is based on the concept of providing
therapeutic gene sequences that may durably enhance
the healing responses and restore the original functions
of the injured tendon. Based on critical advances in the
understanding of tendon biology, physio- and patho-
physiology as well as the mechanisms underlying tendon
repair, active experimental and translational research has
provided evidence of the benefits of gene therapy to ad-
dress such disorders, especially by applying gene coding
for diverse tenogenic factors that may promote neo-ten-
don formation and tendon healing over sustained pe-
riods of time relative to the injection of recombinant
molecules with very short pharmacological half-life
(Madry et al. 2011).

Principles of gene therapy
Gene therapy is the procedure to deliver gene sequences
to a target cell or tissue to promote the expression of a
therapeutic protein (regenerative medicine) or to correct
mutated genes (monogenic disorders) (Madry et al.
2011). The administration of therapeutic sequences to
treat tendinopathies has been performed using non-viral
and viral (adenoviruses, retro−/lentiviruses, recombinant

adeno-associated virus (rAAV) that utilize natural cellu-
lar entry pathways) gene vehicles (Table 1). Upon vector
uptake at the target cell membrane, the transgene trans-
locates towards the nucleus where it is expressed via the
host cell machinery. It may then either become inte-
grated as a part of the cellular genome or remain extra-
chromosomal as an episome. Enough cells need to be
modified by gene transfer to permit expression of
adapted levels of a transgene product.
Non-viral vehicles (Chen et al. 2014, Goomer et al.

2000, Jayankura et al. 2003, Jiang et al. 2016, Nakamura
et al. 1996, 1998, Özkan et al. 1999, Tian et al. 2015,
Wang et al. 2004, 2005, Yuan et al. 2004, Zhu et al.
2006) are simple to produce and show no immunogen-
icity a packaging limit. However, they are less effective
than viral vectors and mediate only short-term expres-
sion of the foreign material being carried because of
their maintenance as unstable episomes. They are gener-
ally employed in ex vivo settings that allow for the selec-
tion of the modified cells.
Adenoviral vectors (Cai et al. 2013, Dai et al. 2003,

Gerich et al. 1996, 1997, Lou et al. 1996, 2000, 2001,
Majewski et al. 2008, 2012, Otabe et al. 2015, Otabe et al.
2015, Rickert et al. 2005, Schnabel et al. 2009, Zhu et al.
2006) promote very high transduction efficiencies (espe-
cially in vivo) but they are highly immunogenic while per-
mitting only very brief levels of transgene expression due
to their episomal genome (no more than 1–2 weeks).
Retro−/lentiviruses (Chen et al. 2015, Gao et al. 2016,

Gerich et al. 1996, 1997, Noack et al. 2014) are integra-
tive vectors that mediate long-term transgene expres-
sion, but they may activate the expression of tumour
genes upon insertional mutagenesis. Moreover, retroviral
vectors are only capable of targeting dividing cells,
showing high cell specificity. On the other side, lentiviral
vectors may also modify quiescent cells, but they carry
deleterious sequences derived from the pathogenic hu-
man immunodeficiency virus (HIV).
Vectors based on the adeno-associated virus (AAV, a

replication-defective human parvovirus) (Basile et al. 2008,
Hasslund et al. 2014, Tang et al. 2008, 2014, 2016, Wang et
al. 2005, 2007, Zhu et al. 2006) are safer. They exhibit low
immunogenicity (no viral coding sequences are present in
the recombinant genome) and mediate sustained transgene

Table 1 Gene therapy vectors

Class Main advantages Key limitations

Non-viral not infectious, not toxic low efficacy, short-term transgene expression

Adenoviral high efficacy immunogenic, short-term transgene expression

Retro−/lentiviral long-term transgene expression risk of insertional mutagenesis, restricted host-range,
only for dividing cells (retroviral vectors), HIV-based
material (lentiviral vectors)

rAAV high efficacy, long-term transgene
expression, also for quiescent cells

complex to prepare, size limitation
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expression in a stable episomal form (months to years) in
both quiescent and dividing cells, but they are relatively
complex to produce and are still limited in size.

Gene-based approaches for tendinopathies
Strategies to manage tendon injuries via gene transfer
protocols have thus far been based on the administration
of sequences coding for (Fig. 2 and Table 2):

* Matrix molecules (tenomodulin - Tnmd, periostin)
(Jiang et al. 2016, Noack et al. 2014).
* Growth factors (platelet-derived growth factor
B - PDGF-B, vascular endothelial growth factor - VEGF,
basic fibroblast growth factor - FGF-2, growth and
differentiation factor 5 - GDF-5, insulin-like grwoth
factor I - IGF-I, TGF-βeta, bone morphogenetic protein
12 - BMP-12) (Basile et al. 2008, Cai et al. 2013, Hasslund
et al. 2014, Lou et al. 2001, Majewski et al. 2008, 2012,
Nakamura et al. 1998, Rickert et al. 2005, Schnabel et al.
2009, Tang et al. 2008, 2014, 2016, Wang et al., 2004,
2005, 2007).
* Anti-inflammatory molecules (peroxiredoxin - PRDX5)
(Yuan et al. 2004) and chemokines (CXC chemokine
ligand 13 - CXCL13) (Tian et al. 2015).
* Transcription factors (scleraxis - SCX, Mohawk - MKX)
(Chen et al. 2014, Otabe et al. 2015).
* Signaling molecules (short hairpin RNA against the
transducer of ERB2,1 - shRNA TOB1, microRNA
against Rho-associated coiled-coil protein kinase 1 -
miR-135a ROCK1) (Chen et al. 2015, Gao et al. 2016).

The following experimental approaches have been de-
veloped to achieve these goals:

* Gene transfer in vitro in differentiated tenocytes and
progenitor cells to promote cell survival and

tenogenesis with expression of collagen (I/III) markers
(Tnmd, periostin, PDGF-B, VEGF, FGF-2, GDF-5,
PRDX5, CXCL13, SCX, MKX, shRNA TOB1, miR-135a
ROCK1) (Cai et al. 2013, Chen et al. 2014, 2015, Gao
et al. 2016, Jiang et al. 2016, Noack et al. 2014, Otabe et
al. 2015, Rickert et al. 2005, Tian et al. 2015, Wang et
al. 2004, 2005, 2007, Yuan et al. 2004).
* Gene transfer in vivo in various animal models,
promoting neotendon formation and tendon healing
(Tnmd, periostin, PDGF-B, VEGF, FGF-2, GDF-5, IGF-I,
TGF-β, BMP-12, CXCL13, SCX, MKX, shRNA TOB1)
(Basile et al. 2008, Chen et al. 2014, Gao et al. 2016,
Hasslund et al. 2014, Jiang et al. 2016, Lou et al. 2001,
Majewski et al. 2008, 2012, Nakamura et al. 1998, Noack
et al. 2014, Otabe et al. 2015, Rickert et al. 2005, Schnabel
et al. 2009, Tang et al. 2008, 2014, 2016, Tian et al. 2015).

In summary, gene therapy is an attractive strategy for
tendinopathies by providing candidate sequences that
mediate neotendon formation and tendon healing over
durable periods of time. Studies in adapted preclinical
animal models demonstrated the feasibility of applying
such gene-based protocols to treat such tendon injuries,
providing reasonable hope for translation to the patients
soon.

Biomaterials
Tendon healing and bioengineering-based regeneration
can include cytokine modulation, growth factors and PRP
administration, biomaterials implantation, gene and
cell-based therapies, and tissue engineering strategies
(Müller et al. 2015; Bagnaninchi et al. 2007). However, ten-
don injuries can vary from a tear to chronic tendinopathy,
which makes the development of an optimal treatment
very difficult either from clinical and engineering/biological
point of views. Biomaterial technological platforms offer

Fig. 2 Gene transfer strategies for tendon injuries. Experimental approaches towards neotendon formation and tendon healing. Tnmd,
tenomodulin; PDGF-B, platelet-derived growth factor B; VEGF, vascular endothelial growth factor; FGF-2, basic fibroblast growth factor; GDF-5,
growth and differentiation factor 5; IGF-I, insulin-like growth factor I; TGF-βeta, transforming growth factor beta; BMP-12, bone morphogenetic
protein 12; PRDX5, peroxiredoxin; CXCL13, CXC chemokine ligand 13; SCX, scleraxis; MKX, Mohawk; shRNA TOB1, short hairpin RNA against the
transducer of ERB2,1; miR-135a ROCK1, microRNA against Rho-associated coiled-coil protein kinase 1
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the opportunity to address tendon injuries in a unique
manner as they can be made to resemble the natural ten-
don extracellular matrix (ECM). Biomaterials of a natural
and synthetic origin have been used for the treatment of
clinical syndromes affecting tendons in substitutive, healing
and regenerative approaches (Liu and Cao 2015). To suc-
cessfully achieve their function, biomaterials should be able
to form strong and stable fibres and must integrate with
the surrounding tissue when implanted in the body. In
addition, the biomaterials need to have an adequate
architecture and demonstrate good biomechanical
performance. In addition, they must be biocompatible,
biomimetic, bioresorbable/biodegradable, while pre-
senting low antigenicity.
Natural-based polymers originate from natural sources

and are being evaluated in tendon regeneration due to
their high availability and low cost. These include silk fi-
broin (Yao et al. 2016) collagen (Purcel, 2016), gelatin
(Selle et al. 2015), and hyaluronan (Liang et al. 2014).
They have shown promising results in vitro and in vivo.
Decellularized matrices have also been developed for
Achilles tendon repair. The clinical outcomes observed
with acellular human dermal matrix (AHDM) suggest
that it is biocompatible, supports revascularization and
repopulation with non-inflammatory host cells and is
well integrated by the surrounding tendon tissue at
6 months post-implantation (Liden and Simmons 2009).

Synthetic polymers such as poly lactic acid (PLA), poly
caprolactone (PCL) (Banik et al. 2016), and poly ureth-
ane (PU) (Evrova et al. 2016) have also been proposed
due to their tailorability, reproducibility and the low im-
munogenicity risk they present.
The formulation of biomaterials is also being attempted

in order to improve the mechanical properties of biomate-
rials. Cellulose nanocrystals were used to reinforce natural/
synthetic polymer blend matrices of poly-ε-caprolactone/
chitosan (PCL/CHT) (Domingues et al. 2016).
Similarly, PLA based copolymers blended with colla-

gen and chondroitine sulfate showed good tissue inte-
gration and have made for neotissue synthesis after
12 weeks of subcutaneous implantation in rats. Those
outcomes provide encouraging results that suggest them
being used as scaffolds for tendon and ligament regener-
ation (Pinese et al. 2017).
The processing of biomaterials as scaffolds has been

extensively and interestingly reviewed by others (Francois
et al. 2015; Lomas et al. 2015). Moreover, the processing
of scaffolds with a multiscale structure and hierarchical
organisation has attracted a great deal of interest as it
mimics best native tissue organisation and properties
(Domingues et al. 2016; Kew et al. 2011).
A study by Wang et al. reported the development of a

composite tendon scaffold with a continuous and hetero-
geneous transition region mimicking a native ligament

Table 2 Gene therapy applications for tendinopathies

Systems Genes Applications References

Non-viral vectors Tnmd tenogenesis in vitro and in vivo Jiang et al. 2016

PDGF-B tendon repair in vitro and in vivo Nakamura et al. 1998, Wang et al. 2004

VEGF tendon repair in vitro Wang et al., 2005

PRDX5 tenogenesis in vitro Yuan et al. 2004

CXCL13 tendon-bone healing in vivo Tian et al. 2015

SCX tenogenesis in vitro, tendon repair in vivo Chen et al. 2014

AdV vectors FGF-2 tenogenesis in vitro Cai et al. 2013

GDF-5 tendon repair in vivo Rickert et al. 2005

IGF-I tendon repair in vivo Schnabel et al. 2009

TGF-β tendon repair in vivo Majewski et al. 2012

BMP-12 tenogenesis in vitro, tendon repair in vivo Lou et al. 2001, Majewski et al. 2008

MKX tenogenesis in vitro, tendon repair in vivo Otabe et al. 2015

RV/LV vectors Periostin tenogenesis in vitro, tendon repair in vivo Noack et al. 2014

shRNA TOB1 tendon-bone healing in vivo Gao et al. 2016

miR-135a ROCK1 tenogenesis in vitro Chen et al. 2015

rAAV vectors VEGF tendon repair in vivo Tang et al. 2016

FGF-2 tenogenesis in vitro, tendon repair in vivo Tang et al. 2008, 2014, 2016, Wang et al., 2005, 2007

GDF-5 tendon reconstruction in vivo Basile et al. 2008, Hasslund et al. 2014

AdV adenoviruses, RV retroviruses, LV lentiviruses, rAAV recombinant adeno-associated virus vectors, Tnmd tenomodulin, PDGF-B platelet-derived growth factor B,
VEGF vascular endothelial growth factor, PRDX5 peroxiredoxin, CXCL13 CXC chemokine ligand 13, SCX scleraxis, FGF-2 basic fibroblast growth factor, GDF-5 growth
and differentiation factor 5, IGF-I insulin-like growth factor I, TGF-β transforming growth factor beta, BMP-12 bone morphogenetic protein 12, MKX Mohawk, shRNA
TOB1 short hairpin RNA against the transducer of ERB2,1, miR-135a ROCK1 microRNA against Rho-associated coiled-coil protein kinase 1
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insertion site (Wang et al. 2015). Decellularized rabbits’
Achilles tendons were used in combination with cells that
have been genetically modified to fabricate a stratified
scaffold containing three biofunctional regions supporting
fibrogenesis, chondrogenesis, and osteogenesis. The
in-vitro study showed that a transitional interface could
be replicated on the bioengineered tendon.
Silk fibroin has been processed as textiles and cord by

using knitting and twisting methods for utilization in tis-
sue engineering of anterior cruciate ligaments (Woods
and Holland 2015; Altman et al. 2002).
Electrospinning is a low cost technique that has been

explored for tendon nanoscaffolding development
(Velasco et al. 2016). That technique is very versatile
and allows envisioning the encapsulation of relevant
growth factors (e.g. PDGF-BB) from an electrospun
polyesther urethane scaffold for tendon rupture repair
(Evrova et al. 2016).
3D bio-printing is starting to emerge as a advanced

technique that addresses the great challenges in tis-
sue interface regeneration. Merceron and coworkers
(Merceron et al. 2015) reported on thermoplastic
polyurethane (PU) co-printed on one side with a
cell-laden hydrogel-based bioink for muscle develop-
ment, and poly(−caprolactone) (PCL) co-printed on the
other with cell-laden hydrogel-based bioink for tendon de-
velopment. An in vitro study demonstrated the versatility
of this dual system for adequately addressing the
challenges of muscle-tendon tissue engineering. 3D
bio-printing technology has been used as a possible strat-
egy to generate customizable fiber arrays and reinforce
the strength of scaffolds (Mozdzen et al. 2016).
MRI is an accurate technique used in the evaluation of

tendinopathies (Yablon and Jacobson 2015) By combining
MRI data with reverse engineering, we can look forward
to boosting the performance of biomaterials from the
architectural and anatomical points of view. The commer-
cial exploitation of such patient-specific implants,that can
respect patient anatomy is still an undetermined but their
effective production will contribute to improving clinical
outcomes and patient quality of life.

Surgical approach
Based on recent research using immune-histochemical
analysis of tissue biopsies from patients with midpor-
tion and insertional Achilles tendinopathy and prox-
imal patellar tendinopathy, new non-tendon-invasive
treatment methods have been invented. These
methods have shown good clinical results, few com-
plications and decreased tendon thickness together
with improved tendon structure over time. Surgical
treatment should be considered when more conserva-
tive treatments fail.

Ultrasound and Doppler guided mini surgical scraping and
plantaris tendon removal for chronic painful midportion
Achilles tendinopathy
Using Ultrasound (US) and color Doppler power (CD), a
localized high blood flow was found outside and inside
(in close relation to regions with structural changes) the
ventral side of the tendon in midportion tendinopathy
tendons, but not in normal Achilles tendons (Ohberg et
al. 2001). Immune-histochemical analysis of tissue speci-
mens, taken with US and CD-guidance, outside and in-
side the region with tendon changes showed multiple
sympathetic but also sensory nerves outside (ventral side
of the tendon). Despite that, there are very few nerves
inside the Achilles tendon midportion (Andersson et al.
2007). The nerves were found in close relation to blood
vessels. The production of pain substances in tenocytes
has been demonstrated (Andersson et al. 2008; Bjur et
al. 2008) and a theory about a possible cordless commu-
nication between the production of pain substances in-
side the tendon and nerves outside the tendon has been
introduced.
Two studies found amount of type I collagen decreased,

increase of type III collagen and GAG. The fibroblasts are
remodelled to so-called “myofibroblasts” with (now) con-
tractile properties and there are also small nerves into the
tendon, similar to neo-vascularisation (van Sterkenburg
and van Dijk CN 2011; Järvinen et al. 1997). Ultrasound
and Doppler-guided injections of small volumes of a local
anesthetic, targeting the region with high blood flow
(blood vessels and nerves) outside the ventral tendon,
temporarily cured the pain (Alfredson et al. 2003). These
findings led to the invention of a new treatment approach
targeting the region with high blood flow and nerves out-
side the ventral tendon. First, sclerosing polidocanol injec-
tions were used and showed promising clinical results in
scientific studies (Alfredson and Ohberg, 2005a, b). How-
ever, this injection treatment was operator dependent (a
long learning curve), multiple injection treatments were
often needed and results were not predictable. Therefore,
a one-stage mini surgical approach, US and CD-guided
mini-surgical scraping, was invented.
Over the last 6 years of research, knowledge has been

growing about the plantaris tendon and its possible in-
volvement in midportion Achilles tendinopathy (Alfredson,
2011a, b; van Sterkenburg et al. 2011; Spang et al. 2013;
Masci et al. 2015). The role of the plantaris tendon in mid-
portion Achilles tendinopathy is still unclear, but it is
tempting to believe that the plantaris is involved in at least
a subgroup of patients, especially the ones where the plan-
taris is located close to the Achilles, sometimes even invag-
inated into the medial side of the Achilles or inserting into
the Achilles (Masci et al. 2015; Alfredson, 2011a, b). In a
recent Thesis by Spang, it was shown that the plantaris
tendons showed tendinosis features (Spang et al. 2013) and
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that the connective tissues between the plantaris and
Achilles were richly innervated (Spang et al. 2015). Fur-
thermore, 2/3 of all excised plantaris tendons were inner-
vated with sensory nerves. This contrasts with the Achilles
midportion where there are few nerves. For patients with
tendinopathy and medial side pain, these new findings
strengthen the indication to remove the plantaris tendon
together with the connective tissue in between the ten-
dons, thereby removing possible compressive forces and
nerve rich tissues. The newly invented surgical procedure
is presented below.

Ultrasound and Doppler-guided mini surgical scraping and
plantaris tendon removal
In all patients, after painful tendon loading activity, the
clinical diagnosis was confirmed with ultrasound (US)
and Colour Doppler (CD) examination that evidenced a
thickened Achilles midportion with irregular tendon
structure and locally high blood flow outside and inside
the regions with structural tendon changes on the ven-
tral (deep) side of the Achilles. The surgical procedure
was guided by the US+CD findings.

Surgical procedure After washing, 5-10 ml of a local
anesthetic (Xylocain+Adrenaline, 5 mg/ml) was injected
on the medial and ventral side of the Achilles midpor-
tion. The skin was draped with a sterile paper-cover, ex-
posing only the midportion of the Achilles tendon. A
longitudinal skin incision (1–1,5 cm) was made on the
medial side of the Achilles midportion, and the Achilles
tendon was carefully identified. If the plantaris tendon
was found to be positioned close to the medial side of
the Achilles, it was carefully released (Fig. 3). The plan-
taris was followed proximally and cut slightly above the
level for the lower medial soleus insertion, followed

distally and cut as close as possible to the distal inser-
tion. Most often, 5 to 8 cm of the plantaris tendon was
removed. There was often richly vascularized fatty tissue
interposed between the Achilles and the plantaris ten-
don. After removing the plantaris tendon and the fatty
tissue between the plantaris and Achilles tendon, the
traditional scraping procedure was performed (Alfredson
2011a, b). Outside (ventral side) the regions with struc-
tural tendon changes (US) where the CD showed high
blood flow, the tendon was completely released from the
ventral soft tissue (staying close to the ventral side of the
tendon) by dissection with a scalpel. This was followed
by hemostasis using diatermia. The skin was closed with
single non-resorbable sutures.

Postoperative rehabilitation

� Day 1 (Surgery day): Rest, elevated foot.
� Day 2: ROM (Range of movement), light stretching,

and short walks.
� Day 3–7: Gradually increased walking activity.
� Day 8–14: Light bicycling.
� After 2 weeks: Sutures out, gradually increased load

up to free activity.

Follow-up studies on patients treated with this method
have been presented (Ruergard and Alfredson 2014) that
show a high success rate and few complications. There
are on-going studies following up with larger materials
at different activity levels.

Ultrasound and color Doppler-guided surgery for insertional
Achilles tendinopathy
There is more knowledge about the pathogenesis of the
painful midportion Achilles tendon than about its

Fig. 3 US+CD picture showing plantaris tendon (arrow) placed close to the medial side of a thickened Achilles midportion (doble head-arrow)
with high blood flow (*) in between the tendons
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insertion. In both conditions, ultrasound (US) with color
Doppler (CD) have shown high blood flow in the painful
tendons in contrast to the tendons of pain-free individ-
uals (Knobloch et al. 2006).
Apart from the pathological distal Achilles tendon it-

self, other tissues have been associated with insertional
pain. Bursitis in the retrocalcaneal (van Dijk et al. 2011)
and subcutaneous bursae, a skeletal prominence located
postero-superior at the calcaneal tuberosity (Haglund’s
deformity) causing a tendon-calcaneal impingement
(Myerson and McGarvey 1998) and the presence of
bone formations and calcifications in the Achilles tendon
insertion have all been associated with posterior heel
pain. The plantaris tendon could also be potentially as-
sociated with this condition (Lintz et al. 2011).
When conservative treatment fails, surgery is indicated.

Many different surgical techniques have been described
such as extirpation of the retrocalcaneal bursa and a resec-
tion of the upper calcaneus (Wiegerinck et al. 2013) and de-
tachment of the Achilles tendon at its insertion followed by
removal of intra-tendinous bone formations and calcifica-
tions. For intra-tendinous bone formations and calcifica-
tions, most surgical methods described include tendon
invasive procedures and require long postoperative rehabili-
tation periods. There is no consensus regarding the most
efficient surgical treatment for insertional Achilles tendino-
pathy (Wiegerinck et al. 2013).
Recent results from histochemically examined tissue

samples from the subcutaneous and retrocalcaneal bursa,
the upper calcaneus, fatty and fibrous tissue ventral to the
distal Achilles tendon collected during insertional Achilles
tendon surgery show rich innervation patterns, especially
in the subcutaneous bursae (Alfredson and Isaksson
2014). These findings have led to the invention of a new
treatment approach for patients having a combination of
pathology in the subcutaneous (superficial) bursa, the ret-
rocalcaneal bursa, Haglund deformity and distal Achilles
Tendinopathy. Patients with bone spurs, bone bridges and
loose bone fragments in the insertion are not included. A
description of the treatment method follows.

Ultrasound and color Doppler-guided surgery for insertional
Achilles tendinopathy
A pre-operative high-resolution grey scale US and CD
examination with a linear multi-frequency (8-13 MHz)
probe was used during the surgery. Examination of the
Achilles insertion showed enlarged subcutaneous and
retro-calcaneal bursae with high blood flow inside and
outside the bursa walls. There was a prominent upper
calcaneus (Haglund deformity) and the distal Achilles
tendon was thickened with structural tendon changes lo-
cated in the ventral and central parts of the tendon.
There was also high blood flow inside and outside the
ventral part of the distal tendon.

Surgical procedure The operation was carried out with
the patient under local anesthesia (5-10 ml of Xylocaine
10 mg/ml with adrenaline 5 μg/ml) infiltrated into the
subcutaneous tissues, inside and around the superficial
and deep bursae, towards the periosteum of the upper
calcaneus, and on the ventral side of the distal Achilles
tendon. After 10–15 min, the surgical procedure was
started. Through a lateral or laterodorsal longitudinal
skin incision about 4–6 cm in length, the subcutaneous
tissues were visualized. The first step was to locate the
subcutaneous bursa between the skin and the insertion
of the Achilles tendon. First, the posterior part of the
bursa was carefully dissected from the skin. Then the
anterior part was separated from the tendon. The whole
bursa was removed. The second step was removal of the
retrocalcaneal bursa. This bursa is located between the
posterior smooth surface of the superior calcaneal tuber-
osity and the ventral side of the distal Achilles tendon.
The bursa was visible by lifting the Achilles tendon pos-
teriorly, and the bursa was then carefully dissected from
the ventral tendon and removed. The third step was
scraping the ventral side of the distal Achilles tendon.
The infiltrative fatty tissue (including the blood vessels
and accompanying nerves) outside the ventral Achilles
was carefully scraped loose with a scalpel. The fourth
step was to remove the prominent upper calcaneus
(Haglund’s deformity). This was done by using an osteo-
tome. By placing the index finger between the tendon
and upper calcaneus while a dorsiflexion the ankle joint
is produced, the remaining impingement was eliminated.
Finally, the cavities were flushed with 4 to 5 ml of Mar-
cain and loose bone ossicles were removed. Hemostasis
was carefully established. The skin incision was sutured
with non-resorbable sutures.

Postoperative rehabilitation

� Day 1: Rest with elevated foot.
� Weeks 1–6: Range of motion exercises and partial

weight bearing (up to 50% of full body weight)
during slow walking the first 2 weeks. Then full
weight-bearing loading and gradually increased
walking distances at a slow pace. Light bicycling
with the pedal centered under the foot starting
4 weeks after the operation.

� 3 weeks: Suture removal.
� Weeks 7–12: Free walking and high-intensity bicycling.

Start with balance and coordination exercises, isometric,
concentric and eccentric strength training.

� After 12 weeks: Start slow jogging for short
distances, mixed with walking (50-m jog followed by
100-m walk etc.) After 16 weeks: Full tendon loading
sport activities.
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Ultrasound and color Doppler-guided arthroscopic shaving
for proximal patellar tendinopathy (Jumper’s knee)
Proximal patellar Tendinopathy-Jumper’s knee is
well-known to be a troublesome to treat (Fig. 4). The con-
servative treatment of chronic patellar tendon pain-tendi-
nopathy/jumper’s knee using painful eccentric quadriceps
training has shown some good results (Purdam et al.
2004). However, this treatment has been less successful
among athletes involved in jumping sports. Traditional
surgical treatment most often includes open or arthro-
scopic patellar tenotomy and excision of the region with
tendon changes. Sometimes, ultrasound-guided percutan-
eous longitudinal tenotomy, curettage, multiple drilling of
the inferior patellar pole or excision of the distal patellar
tip is used (Testa et al. 1999). After these intra-tendinous
treatments, there is a relatively long rehabilitation period.
The clinical results of these types of intra-tendinous sur-
geries have been shown to be varying (Coleman et al.
2000). In a randomised study comparing treatment with
eccentric quadriceps training and traditional open tenot-
omy plus excision, there were similar but only 50% good
clinical results in the groups (Bahr et al. 2006).
Over recent years, where the pain comes from in this

and other chronic painful tendinopathies has been de-
bated (Khan et al. 2000). Recent studies using US+CD
and immuno-histochemical analyses of tendon biopsies
have shown high blood flow (Alfredson and Ohberg
2005a, b) and nerves (Danielson et al. 2008) outside the
tendon (on the dorsal side of the proximal patellar ten-
don). There were very few, if any, nerves inside the ten-
dons. Local anesthetic injections targeting the region
with high blood flow and nerves outside the dorsal side
of the tendon temporarily cured the pain. These findings
have led to research on new treatment methods like
sclerosing polidocanol injections (Hoksrud et al. 2006)
and ultrasound-guided arthroscopic shaving (Willberg et
al. 2007), focusing the treatment outside the dorsal pa-
tellar tendon, i.e. where the high blood flow and nerves
have been demonstrated. Below the newly invented sur-
gical treatment method is presented.

Surgical procedure The US and CD examination guides
the arthroscopic surgical procedure (US examination
together with arthroscopy in the operating room) that
aims to be minimally invasive outside (dorsal side) the
proximal patellar tendon (Fig. 5).
Arthroscopy is performed under local anaesthesia. The

patients are in the supine position with the knee straight
and quadriceps relaxed. Standard antero-medial and
antero-lateral portals and a pressure controlled pump
were used. No tourniquet is used. Initially, a standard
arthroscopic evaluation of the whole knee joint is per-
formed. Then, the patellar tendon insertion into the pa-
tella is identified. For shaving, a 4.5 mm full radius blade
shaver is used. Simultaneous ultrasound examination (lon-
gitudinal and transversal views) guides the procedure.
Careful shaving, aiming to destroy only the region
with high blood flow (neovessels) and nerves adjacent
to the tendinosis changes on the dorsal side of the
tendon, is performed (i.e. separating the Hoffa fat pad
from the patellar tendon). No tendon tissue is
resected and the Hoffa fat pad is touched as little as
possible. The portals are closed with sutures or tape
and a bandage is used for 24 h.

Postoperative rehabilitation
The patients are allowed full weight-bearing walking im-
mediately after the treatment. Because no intra-tendinous
surgery is performed, the following rehabilitation can start
immediately and be relatively aggressive and quick. Range
of motion exercises and enhancement training, immediate
weight-bearing loading, biking and low-load strength
training begin within the first 3 weeks. Then, there is a
gradual increase in loading and start of more sport specific
training depending on swelling and pain. Isometric, con-
centric and eccentric exercises should be tolerated before
plyometric training is instituted.
The rehabilitation periods needed varies from 2 to

4 months before returning to full tendon loading sports
activity.

Fig. 4 US+Doppler picture (Longitudinal (a) and transversal (b) view) from a patient suffering from proximal patellar tendinopathy-Jumper’s knee,
showing a thickened patellar tendon (doble head-arrow) with structural changes and hypo-echoic regions (#) together with high blood flow (*)
inside and outside the dorsal side of the tendon
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This new method has been evaluated in several scientific
studies and in a doctoral thesis (Sunding et al. 2015). The
method has been shown to be safe. The results have been
shown to be very good and stable with more than 85%
satisfied athletes returning to full sport activity within 3–
4 months. Altogether, we have operated more than 700
athletes with this method. They include rugby (Alfredson
and Masci 2015), football, volleyball and track and field
athletes. The results have been good and stable.
In patients that have previously been treated with ten-

otomy and revision, the US+DP-guided procedure has
been less successful.
Intra-tendinous surgical approaches reported poor

clinical results. This fact in combination with the innerv-
ation patterns makes this surgical approach question-
able. Surgical treatment outside the tendon, such as US
and CD-guided arthroscopic shaving, has been shown to
have a high potential for allowing for a pain-free return
to high-level patellar tendon demanding sports after a
relatively short rehabilitation period.

Conclusions
In the present review different therapeutic options are
shown. It is recommended to start with the less invasive
ones, moving towards more invasive options if the
conservative treatment fails.
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