Hybrid Semantics in Equation-Based Modeling

OSCAR ERIKSSON
Hybrid Semantics in Equation-Based Modeling

OSCAR ERIKSSON
Abstract

Equation-based object-oriented modeling languages represent a highly composable class of modeling languages. In these languages models are expressed as differential-algebraic equations with no explicit causal relation between variables. Modeling of structurally varying systems in such languages is typically done by defining modes that describe the continuous evolution of the system, coupled with mode-switches describing structural changes. Specifically, structural changes can give rise to discontinuities and impulses, which can result in additional changes to the system. This thesis formalizes semantics for the treatment of structurally varying systems in such languages, including automatic handling of discontinuities and impulses from the theory of non-linear circuits. The semantics are implemented as part of an equation-based modeling language, where the treatment of impulses is based on backwards-Euler. The expressiveness of the implementation is evaluated on a number of structurally varying systems, both in the electrical and mechanical domains. We conclude that the semantics are expressive enough to describe some structurally varying systems, but are sensitive to numerical errors. Furthermore, more work is needed to allow the semantics to express inelastic collision in a satisfactory manner.
Sammanfattning

Contents

Glossary 1

Acronyms 5

1 Introduction 7
 1.1 Example of a Switched LR-Circuit 9
 1.2 Equation-Based Object-Oriented (EOO) Modeling Languages ... 11
 1.3 Differential-Algebraic Equations (DAE) 11
 1.4 Hybrid Models ... 13
 1.4.1 Ideal Diodes ... 16
 1.4.2 Example of a switched RLD-Circuit 17
 1.4.3 Impulse Analysis 19
 1.5 Background on EOO Languages 20
 1.5.1 Example of a EOO model 21
 1.5.2 Static or Dynamic Elaboration and Equation Transformation ... 22
 1.6 Related Work .. 23
 1.7 Research Problem ... 26
 1.8 Delimitations .. 27
 1.9 Research Method .. 27
 1.10 Contribution ... 27
 1.11 Sustainability, Ethical Aspects and Societal Relevance . 28

2 Design 29
 2.1 Primitive Semantic Domains 30
 2.2 Enriched λ-calculus 30
 2.3 Algebraic Data Types 31
 2.4 Modes .. 32
 2.4.1 Example: A Mode of The Switched RLD-Circuit 32
2.4.2 Differential Algebraic Equations with Conditions 33
2.4.3 State Variables 34
2.4.4 Expressions 35
2.4.5 Equations and Inequalities 36
2.4.6 CDAEs, States and Continuous Simulation Traces 36
2.4.7 Solving CIVPs 37
2.4.8 Model Topology 38
2.4.9 Data type Representing a Mode 38
2.4.10 Helper Functions 39

2.5 Hybrid Models 41
2.5.1 Left-Limits 41
2.5.2 Data Type Representing Hybrid Models 42
2.5.3 Overview of Simulation Procedure 44
2.5.4 Super Dense Time 46
2.5.5 Mode Switches 46
2.5.6 Elaboration 46
2.5.7 Impulse Solving 48
2.5.8 Evaluation of Initial Values on new State Variables 48
2.5.9 Stable Models 49
2.5.10 Simulation Trace 49
2.5.11 Simulation of Hybrid Models 49
2.5.12 Discussion on the Simulation Function 50

3 Implementation 55
3.1 DILL, a DSL in Modelyze 55
3.2 Connection Semantics 57
3.3 Impulse Solving 62
3.3.1 Solving Backwards Euler and Detecting Impulses 65
3.3.2 Undefined State Variables and Equations 65
3.3.3 High Index Problems & Backwards Euler 65

4 Evaluation 67
4.1 LCD-Circuit 70
4.2 Switched RLD-Circuit 73
4.3 Two Bodies Connected By a Clutch 76
4.4 Bouncing Ball 81
4.5 Summary 87
Glossary

λ_{DILL} The meta-modeling language defined in this thesis. 27–29, 32, 41, 43–45, 55–57, 89, 90

DILL The implementation of λ_{DILL}. vi, 28, 55, 56, 68–71, 74, 76, 79, 80, 83, 86

active mode The mode that is active at the current point in time. 13, 16, 18, 33, 44–47, 52

algebraic equation An equation that does not contain differentiated variables. 8, 9, 12, 13

algebraic variable A variable that does not appear differentiated. 12, 13

connection semantics Semantics relating a model topology to a set of topological equations. 20, 21, 24, 27, 28, 32, 33, 38, 55, 57, 58, 61

constitutive equation Equation describing a relationship between physical quantities. 9, 10, 21, 32, 39, 47, 58, 67, 68, 71, 77, 79

data type A synonym for algebraic data types. 31, 34–38, 41–43, 45, 49, 50, 55–57

dependent variable A function of the independent variable. 9, 12, 13, 16, 21, 30, 32–34, 38, 52, 56, 58, 59, 65, 73

differential equation An equation that contains differentiated variables. 8, 9, 12

differential variable A variable that appears differentiated. 12, 13
elaboration The procedure of transforming a model in equation-based object-oriented modeling language to a DAE or hybrid DAE. 20–27, 44, 46, 47, 52, 89

equation transformation The procedure of transforming a DAE or hybrid DAE to a form suitable for solving. 20, 22–27, 89

equation-based modeling language A modeling language based on a DAE representation. 9, 11, 25

hybrid model A model in a hybrid modeling language expressing a structurally varying system. 8, 10, 11, 13, 14, 16–18, 22–25, 27, 33, 39, 41–43, 45, 46, 49, 50, 56, 67, 76, 89

hybrid modeling language A modeling language capable of modeling structurally varying systems using modes and mode-switches. 8, 11, 24, 25, 29, 89

impulse analysis Determines the behavior of a model during a mode switch and directly after the mode switch. 26–28, 49, 66, 71, 84, 88, 90

impulse solving The procedure of finding the values on the state variables at a mode-switch and right after the mode-switch, consistent with the DEA of the successor mode, and given values on the state variables in the predecessor mode right before the mode-switch. 27, 28, 48, 55, 62, 64–66, 72, 84–86, 88, 89

independent variable A variable that is independent and usually represents time. 9, 12, 16, 32, 33, 37

index A measure of distance between a DAE and its corresponding ODE. 12–14, 23–25, 27, 55, 65, 66, 89, 90

index reduction The process of bringing a DAE closer to an ODE. 12–14, 20, 24–27, 37, 55, 65, 66

initial value Values on the state variables at a given value on the independent variable. 13, 14, 19–21, 34, 37, 43–45, 48, 49, 51, 53, 55, 62–64, 71, 76, 78–80, 85, 86, 88

invalid region The region where a switch is invalid. 43
micro-step One discrete step in superdense time. 46, 48, 51, 86

mode switch A transition between modes. 13–16, 19, 20, 22–26, 32, 35, 41, 43–46, 48, 51–53, 62–64, 71, 73, 86, 89

mode trace The simulation trace of a single mode. 37, 45, 49–51, 53

model time Time in the sense of real time. 46, 50, 51, 73, 74

modeling language A language table to express models of systems, which then can be simulated. 8, 9, 11, 12, 20, 22, 23, 26

mythical state A state in a model with multiple modes that do not have a correspondence in the physical system. 19, 51

predecessor mode The mode directly before a mode switch. 13–15, 41, 42, 48, 62, 65, 79, 80

stable A switch is stable if the solution to a model is inside its valid region. 43, 45, 46, 49, 51, 53, 64, 72

state The state of a model. 13, 19, 49–51

state variable A variable in a dynamic system that contains information needed to evolve the system. 13, 19, 20, 24, 25, 27, 30, 32, 34–37, 41–43, 45, 48, 50–53, 62–66, 71, 86, 89

structurally varying system Systems with varying structure resulting from switches, clutches, collisions or other events. 7, 8, 10, 17, 26, 67, 90

successor mode The mode directly after a mode switch. 13–15, 19, 41, 45, 48, 62, 63, 65, 79, 85, 86

superdense time A representation of time modeling both ordinary time and discrete events occurring at the same time. 46, 51

switch A syntactical construct use to define modes. 43, 44, 46, 47, 49, 63, 68–70, 73, 82, 84, 86
time-stamp A tuple \((t, n)\) representing a point in superdense time. 46, 51

topological equation An equation that is deduced from the topological description of a model. 10, 20–22, 26, 27, 32, 33, 38, 57, 58, 60, 61, 72, 77, 79

transient state A synonym to mythical state. 19, 33, 51, 82, 85

unstable A switch is unstable if the solution to a model is inside its invalid region. 43–46, 49, 50, 52

valid region The region where a switch is valid. 43, 63, 73, 85, 86, 89
Acronyms

CDAE Conditional Differential Algebraic Equations. 34–37, 46, 47, 52, 53, 64

CIVP Conditional Initial Value Problem. 34, 37, 44, 45, 52, 53

DAC Differential Algebraic Conditions. 34, 36, 37, 39, 53

DAE Differential Algebraic Equations. 8–14, 19, 20, 23–27, 32, 33, 36, 48, 55, 62, 65, 77

DSL Domain Specific Language. 25, 27, 28, 55

EOO Equation-Based Object-Oriented. 11, 20–26, 29, 55, 67, 75, 76, 89, 90

JIT Just in Time. 23, 24, 26

ODE System of Ordinary Differential Equations. 12, 19
Chapter 1

Introduction

Physical systems, or simply *systems*, range from simple analog electrical circuits to complex mechanical systems of multiple bodies. Some of these systems change their structure over time, either at a known time instant, or as a result of the time evolution of some physical properties in the system. An electrical circuit might contain a switch, which can effectively change the number of active component in the circuit, or the string of a pendulum might break if the tension in the string becomes too high. We call such systems *structurally varying systems*, also known as *hybrid systems* [39], and this thesis concerns the *modeling and simulation* of such systems.

Modeling and simulation are important methods in the analysis of physical systems. One could analyze a system, by observing it directly. However, such observations might not always be possible, for several reasons; It might be costly, dangerous, or some times not even physically possible. Instead, we can construct *models* of the system, and instead of analyzing the system directly, perform an analysis on the model.

We can construct models in several ways. A model can even be a physical system itself, but more commonly in natural sciences, a model comprises a *mathematical representation* of the system. Regardless of representation, a model is *always a simplification* of the underlying system, which is both a strength and a weakness. A model’s behavior does not mirror the behavior of the system under all conditions. However, abstractions of obscuring details in the system might ease the analysis of the system’s behavior.

One such *abstraction*, which we adopt in our discussion on mod-
els of structurally varying systems, is that structural changes occur as discrete changes in the model, which is otherwise described by continuous dynamics. This is an idealization of reality because the behavior of a structurally varying system is not truly discrete. One could try to model these events as detailed continuous dynamics, but as Lee [25] argues; “such detailed modeling rarely helps in developing insight about macroscopic system behavior”. A model of a structurally varying systems, where we model structural changes by discrete changes to the model, is called a hybrid model.

Even though we can learn a lot from a mathematical model by analytic methods, applying these methods to more complex models are generally not possible. Instead, we often have to resort to simulation. By observing a models dynamic behavior on different input, we are able to simulate how the underlying system behaves under similar conditions. In essence, we are able to experiment on the system without having to perform actual physical experiments.

At the core of simulation lies a computer program that given some input, interprets and solves a model. Because this computer program needs to understand our models, we need a syntax for defining models, and semantics giving meaning to this syntax. The syntax and semantics form a language, a modeling language. A model is then defined as a program in this modeling language, and a simulation is the evaluation or meaning of such a program. A modeling language should be able to express some appropriate subset of the language of mathematics, and might also contain other constructs for increased expressiveness. We call a modeling language able to express hybrid models a hybrid modeling language.

A limitation in defining modeling languages is the practical aspects of solving models defined in such languages. This restricts our choice of mathematical representations. We also have to consider how much details of this solving procedure we want to expose to the end-user (the modeler). Another important aspect of a modeling language, shared among programming languages in general, is the comosability and reusability of models. As we will see later on, this relates to the mathematical representation at the base of the modeling language.

This thesis considers hybrid modeling languages, where the underlying mathematical representation consist of systems of differential equations and algebraic equations, with no explicit causality between the unknowns in the equations. Differential Algebraic Equations
(DAE) is the term used for these systems of equations, and equation-based modeling languages is the name for modeling languages based on this mathematical representation. We now proceed with an example introducing some of these concepts.

1.1 Example of a Switched LR-Circuit

Consider the circuit depicted in Figure 1.1, which contains a voltage source, a resistor, and an inductor. To form a DAE of this system, we begin by defining equations for these components; these are the constitutive equations in (1.1).

\[
\begin{align*}
 u_V & = V \\
 u_R & = R \cdot i_R \\
 u_L & = L \cdot \frac{d i_L}{dt}
\end{align*}
\]

In (1.1), \(V \), \(R \), and \(L \) are constants, and \(u_x, i_x \), for \(x \in \{V, R, L\} \), are so called dependent variables, which we should see as functions of the independent variable, \(t \). The dependent variables represent quantities in the model we want to measure (or rather simulate), in this case, currents and voltages over the components. The independent variable is usually interpreted as time, and in this thesis we will interchangeably use time and independent variable to denote this variable.

The first two equations are algebraic equations, as they contain no differentiated dependent variables, and the last equation is a differential equation, as \(i_L \) appear differentiated. A system of equations, containing both differential equations and algebraic equations, is a DAE.

(1.1) contains three equations and six dependent variables. To find a unique solution on the dependent variables, as functions of the independent variable, we need an equal number of independent equations and dependent variables.
Fortunately, we can deduce the missing equations from the topology of the circuit. Because this circuit contains a switch, we have a structurally varying system and two cases.

Assuming a closed switch, and using Kirchhoff’s circuit-laws, we complement (1.1) with what we call topological equations, here consisting of:

\[
i_V = i_R \quad i_R = i_L \quad u_V = u_R + u_L
\]

(1.2)

An open switch would instead give the following topological equations:

\[
i_V = i_R \quad i_R = 0 \quad i_L = i_V
\]

(1.3)

A hybrid model of this circuit would allow the switch to change its state during the course of simulation, resulting in a change in the equations of the underlying DAE, describing the dynamics of the circuit. We call each such configuration of the model (and thus the DAE) a mode.

We make a few observations on this model. The constitutive equation in (1.1) remain unchanged, regardless of the circuit topology and the resulting topological equations. This is typical for many physical systems where the topological equations stem from energy conservation laws. Further, if we wanted to replace the resistor in this circuit, with a capacitor, thus creating a switched LC-circuit, it would be sufficient to replace the middle equations in (1.1) with:

\[
i_L = C \cdot \frac{du_L}{dt}
\]

Thus, the rest of the DAE is unchanged. This is an attractive feature of the DAE representation, which allows model composability and model re-use. Furthermore, analogies to Kirchhoff’s circuit laws lets us mix components from different physical domains. Moreover, methods exist for systematically deriving the topological equations, given an appropriate topological description of the system and generalizations of Kirchhoff’s circuit laws allowing us to apply these methods to multiple physical domains [37].
1.2 Equation-Based Object-Oriented (EOO) Modeling Languages

A subset of equation-based modeling languages, exploiting the features of DAEs [17], are the so-called Equation-Based Object-Oriented (EOO) modeling languages [8]. In these modeling languages, models typically consist of sub-models, modeling components of the system. These components are then connected together, forming a model topology, resulting in the final model definition. The components can model individual physical components like resistors, or inductors; or themselves consist of connected components. This component abstraction allows easy replacement of components and model re-use. In a sense, components are like objects in the object-oriented programming paradigm. Moreover, EOO languages offer an intuitive way of constructing models, which resembles the construction of the physical system. A graphical representation of a circuit model more or less maps one-to-one to the physical circuit modeled.

This thesis will discuss the formalization of a EOO hybrid modeling language. In the next section, we give a more formal definition of DAEs and discuss some of their properties. We then proceed to discuss hybrid models in Section 1.4, followed by some background on EOO languages in Section 1.5. In Section 1.6, we account for some related work in the field of hybrid modeling language within equation-based modeling languages. Finally, in Sections 1.7 to 1.10, we state the research problem, method, and contribution. In Section 1.11, we give a short discussion on sustainability, ethics, and societal aspects of this thesis.

1.3 Differential-Algebraic Equations (DAE)

A large class of physical systems are naturally expressed using DAEs. In (1.4) we define a first-order DAE. We can restrict ourselves to first-order DAEs, as we can always rewrite a higher-order DAE into a first-order.

\[
F(x, \frac{dx}{dt}, w, t) = 0
\]

(1.4)

where \(x \in \mathbb{R}^n, \frac{dx}{dt} \in \mathbb{R}^n, w \in \mathbb{R}^m, t \in \mathbb{R}, F : D \subseteq \mathbb{R}^{n+n+m+1} \rightarrow \mathbb{R}^{n+m}, \) and 0 is a vector of zeros of sufficient size. The vector \(x \) is the vector of
differential variables, and \(\mathbf{w} \) the vector of algebraic variables. Both are vectors of dependent variables, and \(t \) is the independent variable. The vector \(\frac{dx}{dt} \) is the element-wise derivative of \(x \), with respect to \(t \), and \(F \) is a vector-valued function containing both differential equations and algebraic equations. We generally seek the dependent variables as functions of the independent variable, consistent with (1.4) for all \(t \in \mathbb{R} \) in some interval.

\[
\frac{dx}{dt} = G(x, u, t)
\]
\[
y = H(x, u, t)
\]

(1.5)

DAEs are generalizations of Systems of Ordinary Differential Equations. Compare (1.4) to the state-space model of (1.5), where \(u \in \mathbb{R}^p \) is the input-vector and \(y \in \mathbb{R}^q \) the output-vector. In (1.5) we have a causal relation between \(u \) and \(y \), and restrict algebraic equations to the form \(y = H(x, u, t) \). In (1.4), however, the relation between the variables are acausal. Thus, these variables have no explicit input or output relations. Furthermore, Equation (1.4) may also have arbitrary algebraic equations of variables from \(x \) and \(\mathbf{w} \). Examples of modeling languages based on (1.5) are Simulink\(^1\) and Ptolemy II\(^2\).

As we illustrated in Section 1.1, problems on the form (1.4) naturally express physical systems, and allow model composability and model re-use. The composability and model re-use are not as easily achieved in models requiring a representation on the form (1.5) \([20, 27]\). However, there are advantages to (1.5). Analytic solutions are generally not within reach, and efficient numerical methods exist for solving these problems \([12]\). This is not generally the case for (1.4), and it might be necessary to transform the problem before moving on to the numerical solving \([22]\).

Solving DAEs typically involves symbolic transformations of (1.4), to a form closer to that of (1.5), before numerical solving proceeds. The (differentiation-) index of a DAE denotes a notion of distance between the DAE and its corresponding ODE. Consequently, an ODE has an index of zero. Index reduction \([14, 34, 36, 41]\) is the procedure of lowering the index of a DAE, by systematic differentiation of its individual equations.

\(^1\)https://www.mathworks.com/products/simulink.html
\(^2\)https://ptolemy.eecs.berkeley.edu/ptolemyII/
Moreover, a necessary condition for finding a unique solution to both (1.4) and (1.5), is a set of consistent initial values on the dependent variables. Additionally, in the former case, we generally also need to supply initial values for the vector $\frac{dx}{dt}$. In DAEs of higher index, the differential variables might be subject to so called latent-constraints. These constraints make it hard to find consistent initial values to DAEs. Index reduction was initially proposed as a method to reveal these latent-constraints and to help in finding consistent initial values. Due to the differentiation of the individual equations in (1.4) during the index reduction, new variables might surface in the form of differentiated algebraic variables, or differentiated differential variables [34].

Further, the algebraic equations constraining dependent variables in (1.4) become implicit under index reduction. Problems arise in the discretization of index-reduced DAEs, as these constraints are not generally preserved, which can lead to numerical drifting problems. However, both symbolic [29] and numeric [40] techniques exist for handling this drifting.

As finding consistent initial values for higher index DAEs is difficult in general, we typically have to resort to numerical methods, given a partial assignment of the initial values [4]. Numerical non-linear DAE-solvers, such as Sundials\footnote{https://computation.llnl.gov/projects/sundials}, can reliably find consistent initial values and solve DAEs with index less than two.

1.4 Hybrid Models

Returning to the switched RL-circuit depicted in Figure 1.1, we saw that a closed switch gave a different DAE compared to an open switch. In the former case, we have (1.1) and (1.2), and in the latter case, (1.1) and (1.3). In a hybrid model of the circuit, the switch defines two modes, and we call a transition between two modes a mode switch.

Given a mode switch, we denote the mode before the mode switch, the predecessor mode, and the mode after the mode switch, the successor mode. Further, we denote the mode describing the behavior of a model at the current point in time, as the active mode. We collectively refer to the dependent variables and their derivatives, as state variables, and the active mode together with the values on the state variables, as a state.
To ease our discussion, the solution of a mode refers to the solution of the DAE of this mode. Likewise, when referring to the initial values of a mode, we refer to the initial values of the DAE of that mode, if not stated otherwise.

Figure 1.2 displays a hybrid model of the switched RL-circuit, where \(t_s > 0 \), in a representation resembling that of hybrid automata \([2, 16]\). This model states the switch being closed at the start of simulation, and remaining closed until \(t = t_s \), when the switch opens.

Two concerns arise in the simulation of hybrid models. First, the index and the related index reduction, may differ between modes. Secondly, one has to relate the initial values of the successor mode, to the left-limit of the solution to the predecessor mode, in a way that is consistent with the successor mode, and the interpretation of the model at the mode switch.

Let us examine the hybrid model of Figure 1.2, when \(t = t_s \). At that time a mode switch occurs and in the successor mode, we have \(i_L = i_V = i_R = 0 \). If we assume that the mode switch takes place without time advancing, and that \(i_L \) is non-zero before the mode switch, we have a discontinuous jump on \(i_L \) at \(t = t_s \). We can model \(i_L \) using the Heaviside step function, defined as:

\[
\Theta(t - a) = \begin{cases}
0 & \text{if } t < a \\
1 & \text{if } t \geq a
\end{cases}
\]

(1.6)
Using (1.6) we can express the current over the inductor, over the mode switch as:

\[i_L(t) = [1 - \Theta(t - t_s)]i^p_L(t) + \Theta(t - t_s)i^s_L(t) \]

(1.7)

Where \(i^p_L(t) \) is the solution of \(i_L \) given by the predecessor mode, comprised of const. eqs. and closed, and \(i^s_L(t) \) the solution given by the successor mode, comprised of const. eqs., open. If \(i^p_L(t_s) \neq 0 \), we have a discontinuity on \(i_L \) at the mode switch, and consequently an undefined derivative on \(i_L \) at \(t = t_s \). To continue our analysis we introduce the Dirac delta function (which is a distribution rather than a function).

The definition in (1.8) tells us that the Dirac delta function is zero everywhere except at \(t = a \), but integrates to unity over \(\mathbb{R} \). The pointwise value of \(\delta(t - a) \) is not well defined at \(t = a \), but from (1.8), we can conclude that it should be positive and unbounded. We can envision the Dirac delta function, as a function, where the area under the function is finite, but squeezed into a single point, positioned at \(a \). This allows us to model impulses, and we can relate the derivative of the Heaviside function to the Dirac delta function as:

\[\frac{d\Theta}{dt}(t - a) = \delta(t - a) \]

(1.9)

We now use (1.8) and (1.9), to determine the derivative of (1.7) as:

\[\frac{di_L}{dt}(t) = [1 - \Theta(t - t_s)] \frac{di^p_L}{dt}(t) + \Theta(t - t_s) \frac{di^s_L}{dt}(t) + \delta(t - t_s)(i^s_L(t_s) - i^p_L(t_s)) \]

(1.10)

As \(i^p_L(t) = 0 \), (1.10) simplifies to:

\[\frac{di_L}{dt}(t) = [1 - \Theta(t - t_s)] \frac{di^p_L}{dt}(t) - \delta(t - t_s)i^p_L(t_s) \]

(1.11)

Equation (1.11) implies that the voltage \(u_L(t) \) over the inductor, will behave as \(L \frac{di^p_L}{dt} \) until right before the mode switch. At the mode switch, in the case where \(i^p_L(t_s) \neq 0 \), we get an impulse on the voltage, directed so that it would drive a current in the same direction as before the switch opened, in accordance with Lenz law. In the case of
$i_L(t_s) = 0$, (1.11) becomes zero and i_L is continuous. In both cases, the voltage is identically zero for $t > t_s$. This is the behavior we expect from an ideal inductor.

In the above analysis, we identified an impulse occurring on u_L when the switch opened. As we shall see in Section 1.4.2, in some systems, such impulses can affect other components that in turn trigger additional structural changes.

1.4.1 Ideal Diodes

In the hybrid model considered in the previous section, the mode switch depended on the value of the independent variable. However, to express more systems we want to be able to define mode switch that depend on the dependent variables.

A diodes is an electrical component that changes behavior depending on the value of its current and voltage. If the diode is ideal, we can draw its I-V characteristics as depicted in Figure 1.3. The diode’s I-V characteristics tell us that if the external voltage applied over the diode is less than β, the diode behaves as a perfect insulator. We say that the diode is reverse biased. On the other hand, if the external voltage across the diode is greater than β, the diode behaves as a one-way perfect conductor. We say that the diode is forward biased.

We can express a hybrid model of the diode as depicted in Figure 1.4. In this model, the mode switches depend on the values of u_D and i_D, which in turn depend on the solution to the active mode.
1.4.2 Example of a switched RLD-Circuit

To give an example of a structurally varying system, where impulses change the structure of the system, we once again consider the switched RL-circuit of Section 1.1. The voltage impulse, resulting from opening the switch, might disturb, and even cause damage to the rest of the circuit. To prevent possible damage, we can place a diode, known as a flyback-diode, in parallel with the inductor, resulting in the switched RLD-circuit shown in Figure 1.5. This circuit was considered by Mosterman and Biswas [31], and later Lee [25].

Initially, with a closed switch, the diode is reverse biased, as a result of the voltage applied from the voltage source, and no current passes through the diode. At this point, the circuit behaves like the RL-circuit. When the switch opens, the induced voltage from the inductor will instantly change the diode into forward biased. This has two consequences, first current can now flow through the diode-inductor loop. Secondly, the diode applies its small forward bias voltage over the inductor, making the rate of change of the current constant. Therefore, the inductor can release its energy in a controlled manner by driving a current through the inductor-diode loop. Let us examine this system expressed as a hybrid model of an ideal diode.

![Figure 1.4: Hybrid model of an ideal diode.](image)

![Figure 1.5: Switched RLD-circuit](image)
hybrid model.

\begin{align*}
\text{const. eqs.} \\
\begin{align*}
u_V &= V \\
u_R &= R \cdot i_R \\
u_L &= L \cdot \frac{di_L}{dt}
\end{align*}
\end{align*}

\begin{align*}
\text{closed} \\
\begin{align*}
i_V &= i_R \\
i_D &= i_L - i_R \\
u_V &= u_R + u_L \\
u_L &= -u_D \\
t &< t_s
\end{align*}
\end{align*}

\begin{align*}
\text{open} \\
\begin{align*}
i_V &= i_R \\
i_D &= i_L \\
i_R &= 0 \\
u_L &= -u_D \\
t &\geq t_s
\end{align*}
\end{align*}

\begin{align*}
\text{reverse bias} \\
\begin{align*}
i_D &= 0 \\
u_D &< \beta \\
i_D &\leq 0
\end{align*}
\end{align*}

\begin{align*}
\text{forward bias} \\
\begin{align*}
u_D &= \beta \\
i_D &> 0
\end{align*}
\end{align*}

Figure 1.6: Hybrid model of switched RLD-circuit.

We express a hybrid model of the switched RLD-circuit in Figure 1.6 and enumerate its modes as follows:

- **mode (1)** consists of const. eqs., closed, and reverse bias
- **mode (2)** consists of const. eqs., open, and reverse bias
- **mode (3)** consists of const. eqs., open, and forward bias
- **mode (4)** consists of const. eqs., closed, and forward bias

We assume an initially \(t = 0, i_L(0) = 0 \), and that the model is initially in **mode (1)**. **Mode (1)** will remain the active mode while \(t < t_s \). To see this, we can find \(u_D \) for \(t \in [0, t_s) \), by first solving **mode (1)** for \(i_L \).
\[V = R \cdot i_R + L \cdot \frac{di_L}{dt} \Leftrightarrow \frac{di_L}{dt} = \frac{1}{V - R \cdot i_R} \]

and as \(i_D = 0 \Rightarrow i_L = i_R \), the solution to this separable ODE with the initial value \(i_L(0) = 0 \) is:

\[i_L = \frac{V}{R} (1 - e^{-\frac{R}{L} t}) \] \hspace{1cm} (1.13)

using (1.13), we get:

\[u_L = V - R \cdot i_L = V \cdot e^{-\frac{R}{L} t} \geq 0 \Rightarrow u_D < \beta \quad \forall t \in [0, t_s) \] \hspace{1cm} (1.14)

At \(t = t_s \), a mode switch occurs and mode (2) becomes the successor mode. With a similar analysis as in the beginning of this section, we find that \(\frac{di_L}{dt} \) has a negative impulse at \(t_s \), which implies a positive impulse on \(u_D \), as \(\frac{di_L}{dt} = \frac{u_D}{L} \) and \(u_L = -u_D \). We say that the impulse propagates in the DAE (or mode), which essentially corresponds to solving the DAE in the presence of impulses.

This state is a transient state, denoted by Mosterman and Biswas [31] as a mythical state, as \(u_D > \beta \), which results in an immediate mode switch to mode (3). The model spends zero time in this state, and from the physical systems point of view, the transition occurs from the mode switch to mode (1) to mode (3) directly, and the state variables never acquires the values from the mode switch to mode (2). The diode-inductor loop appears instantly, and consequently the inductor does not induce an impulse voltage. Thus, when calculating consistent initial values for the state variables in mode (3), we should base these calculations on the values on the state variables right before the mode switch in mode (1) [31].

1.4.3 Impulse Analysis

We saw in the previous section (1.4.2) how impulses can be an integral part of the behavior of a system. Methods for handling discontinuities and impulses on the state variable exist for non-linear circuits (see for example Yuan and Opal [44]).

Algorithm 1 outlines the key steps in their treatment of impulses in response to mode switch. In accordance with the discussion by Mosterman and Biswas [31], this algorithm does not update the state variables when a mode is transient (mythical), as seen at step 1.
Algorithm 1: Impulse Analysis

1. Generate impulses (and propagate these impulses) in response to a mode switch, based on values on the state variables right before the mode switch from last non-transient mode;
2. If the impulses in 1 result in a new mode switch, go to 1;
3. Calculate consistent initial values for current mode based on impulses in 1;
4. If initial values in 3 result in a new mode switch, go to 1, otherwise continue continuous-time simulation of current mode;

1.5 Background on EOO Languages

We introduced EOO modeling languages in Section 1.1, a class of modeling languages constructing models from smaller connected sub-models, somewhat analogous to objects in the objects-oriented programming paradigm. Some EOO languages support parametrized models, inheritance, and re-definitions [27, 45]. Another class of EOO languages are instead functional languages, supporting these features through higher-order functions [8, 10, 23].

The elaboration is the procedure of transforming the EOO model into a global set of equations representing a DAE. This procedure typically includes type-checking and collapsing of the instance hierarchy. Furthermore, the topological equations are deduced from the connection semantics [9, 21], as part of the elaboration. In practice, the output from the elaboration can be a sort of hybrid DAE, which in addition to equations contains other constructs such as if then else expressions, to govern non-continuous behavior.

After the elaboration, index reduction is typically performed and possibly other symbolical transformations on the DAE (or hybrid DAE), to bring it to a form suitable for numerical solving. We use the term equation transformation to denote this procedure. The final step before numerical solving is to find consistent initial values on all state variables [8].
1.5.1 Example of a EOO model

In Listing 1.1, we define a EOO model of the switched RL-circuit we discussed in Section 1.1, omitting the electrical switch, in the language Modelyze [10, 11]. We define the inductor in Listing 1.2, where the last two arguments of type Electrical on line 1, represent nodes in the topology of the model. On line 2, and line 3, we create two new fresh symbols for the dependent variables representing the current and voltage over the inductor. On line 4, Branch associates the current and voltage of the inductor with a position in the topology of the model. On line 5, init assigns an initial value to the current, and on line 6, we state the constitutive equation of the inductor.

On line 2 in Listing 1.1, we define nodes in the model topology, and on line 3 to line 5, we connect models of the electrical components to these nodes.

```
1 def LR = {
2   def n1, n2, n3: Electrical;
3   VoltageSource 1. n1 n3;
4   Resistor 1. n1 n2;
5   Inductor 1. 0. n2 n3
6 }
```

Listing 1.1: EOO model of an RL-circuit in Modelyze.

```
1 def Inductor(L: Real, i0: Real, p: Electrical, n: Electrical) = {
2   def i_L: Current;
3   def u_L: Voltage;
4   Branch i_L u_L p n;
5   init i_L i0;
6   L * (der i_L) = u_L
7 }
```

Listing 1.2: EOO model of an inductor in Modelyze.

Note how each individual component hides its definition from the complete circuit. Note also that we do not explicitly state any topological equation, as we derived these equations from the model topology and the connection semantics during the elaboration.
1.5.2 Static or Dynamic Elaboration and Equation Transformation

Both the elaboration, and the equation transformation are generally not invariant with respect to structural changes [45]. If we add or remove equations, or change the model topology, we might have to redo these two steps. Two main strategies exists to address this problem in EOO modeling languages.

The Static approach, outlined in Figure 1.7, performs elaboration, and equation transformation once, before numerical solving. The benefit of this approach is that it allows compilation of the computationally expensive numerical solving procedure, which in turn, must handle all mode switches.

Explicitly exploring all mode, prior to solving, can lead to a combinatorial explosion. As an example, a hybrid model with n diodes has a minimum of 2^n modes. Instead, current research focuses on generalizing the equation transformation, and to a lesser extent the elaboration, to include hybrid models [5, 6, 18, 28].
Even though there have been progress in generalizing elaboration and equation transformation, the static approach does not offer as much flexibility when defining hybrid models, as the dynamic approach, outlined in Figure 1.8, which performs elaboration and equation transformation after each mode switch. The strength of this approach is flexibility. In theory we can dynamically create all modes expressible in the modeling language. Its weakness is performance, as we generally have to run the simulation using an interpreter. Research on the dynamic approach includes incorporating Just in Time (JIT) compilation [23], and reducing the extent of equation transformation after each mode switch [45].

1.6 Related Work

Modelica [20, 27] is an EOO modeling language for a wide range of complex physical systems, including electrical systems, thermal systems, and mechanical systems. The Modelica Association\(^4\) maintains a freely available standard library and language specification. Modelica is widely used in the industry, and there exist several open source implementations such as OpenModelica\(^5\) and JModelica\(^6\), as well as commercial implementations, such as Dymola\(^7\) and MapleSim\(^8\).

Modelica employs static elaboration and equation transformation, and has some, but limited support for hybrid systems [6, 25, 28, 32, 45]. Most notably, Modelica does not handle impulses resulting from mode switches. Moreover, the number of equations and the index of DAEs

\(^4\)www.modelica.org
\(^5\)www.openmodelica.org
\(^6\)jmodelica.org
\(^7\)www.dymola.com
\(^8\)www.maplesim.com
between modes cannot differ [6].

Mattsson, Otter, and Elmquist [28] proposes an extension to Modelica, where one can define multi-mode components using state machines, which involves modifications to the index reduction procedure, and connection semantics [18], allowing support for a larger class of hybrid systems, with varying index. This modification maintains Modelica static treatment of elaboration and index reduction.

Their approach allows successful modeling of e.g., ideal diodes, but impulses do not propagated through the DAE [28]. Moreover, the approach does not handle impulses resulting from mode switches [6].

Sol [45] is a research EOO hybrid modeling language accompanied by the interpreter Solsim, employing dynamic elaboration and equation transformation. Sol intentionally resembles Modelica, but the use of an interpreter allows for a higher flexibility in the creation of modes, where modes can have varying index.

The main contribution, as we see it, of Sol and Solsim, is what the author denotes as Dynamic DAE Processing (DPP). By maintaining a causality graph, one can confine the extent of index reduction, after each mode switch, to the parts of a DAE affected by a change of equations. In other words, the complete DAE of each mode does not have to be index reduced after each mode switch.

Sol allows modeling of impulse events, occurring between modes, where the model defines the impulse behavior explicitly. Impulse generation and propagation, resulting from steps on the state variables are not automatic.

Hydra [23], a research EOO hybrid modeling language of the Functional Hybrid Modeling (FHM) paradigm [33] is an interpreted language with dynamic elaboration, which together with the FHM paradigm, gives large flexibility in the definition of hybrid models. Hydra includes JIT-compilation of the simulation procedure. It attempts to combine the best of two worlds, the flexibility of an interpreter, and the performance of a compiler, by dynamically compiling the simulation code prior to numerical solving. To our knowledge, there has not yet been any attempt to evaluate its performance compared to purely compiled EOO languages.

The implementation does not handle high index problems, and impulses resulting from steps on the state variable, and impulse propagation are not considered. Nevertheless, the formalization in this thesis is much inspired by Hydra.
Modelyze [10, 11] is a gradually typed language, designed to serve as a host language for Domain Specific Languages (DSLs) in the field of equation-based modeling. Modelyze is a functional, interpreted language, and a continuation of the language MKL [8]. Part of the evaluation of Modelyze includes a prototype EOO hybrid modeling language, implemented as a DSL, and based on hierarchical state machines [43]. The DSL does not include any treatment of impulses, but similar to Hydra, it allows flexible definition of modes, due to the functional nature of the host language, and dynamic elaboration and equation transformation.

However, the main focus of the authors has been on formalization and implementation of the host language, and the adoption of gradual typing in equation-based modeling language. Thus, Modelyze has served as good base for the implementation in this thesis.

Benveniste et al. [5, 6] proposes a constructive semantics [7] based on nonstandard analysis [26] that, if successful, produces a simulation execution scheme, of what the authors denote as a multi-mode DAE (mDAE). Informally, a mDAE is a DAE where a predicate guard each individual equation. These predicates are functions of the state variables and modes corresponds to the DAEs, resulting from the equations where the predicates are true. The predicates will generally change values as the state variables change values during simulation, thus giving rise to hybrid models. The authors take a formal mathematical approach in their treatment of mDAEs, which includes a generalization of index reduction to encompass mDAEs, treatment of impulses resulting from mode switches, and their propagation in the mDAE.

To our knowledge there exists no implementation of their semantics. Further, it is not clear to us how to apply the authors work to a EOO language, without first exploring all modes during the elaboration.

SPICE [1] is a circuit simulation software, that has grown into a de facto standard when it comes to integrated circuit simulation, originally developed in the early 1970s at the University of California, Berkeley. The modeling approach in SPICE handles ideal components such electrical switches by numerical approximations.

Hybrid χ [38] is a highly formal modeling and simulation language, capable of expressing hybrid models. The language translates into a hybrid process algebra, and can model both continuous-time behavior, discrete behavior, or an intermix of both. Hybrid χ models continuous-time behavior using DAEs, which can be of high index. The language
bear resemblance to *Hybrid Automata* [2, 16], although more expressive. Hybrid χ is more geared towards formal verification, and consequently more transparent in its model definitions, compared to EOO languages. Therefor, it does not include automatic generation of topological equation, and index reduction requires intervention from the modeler [19].

1.7 Research Problem

EOO modeling languages stands out for their strong composability and model re-use. They are also intuitive in that physical systems are naturally expressed using DAEs, and the graphical representation of EOO models bear close resemblance to the modeled system in many domains.

Static handling of elaboration and equation transformation certainly has its advantages, as it allows compilation. However, in our opinion, for structurally varying systems, the static approach to EOO languages is still too restrictive. Furthermore, the possibility of JIT-compile further advocates a dynamic approach to elaboration, and equation transformation.

As we saw in the previous section (1.4.2), impulses can be an integral part of the behavior of a system. This is certainly true for electrical circuits, but also in the mechanical domain, e.g. modeling of collisions and friction between rigid bodies [25].

Despite this and to the best of our knowledge, automatic generation, propagation, and handling of impulses due to mode switches is not incorporated into any EOO modeling languages. One could argue that impulses should be treated explicitly, but it weakens the composability and model re-use features of EOO languages. As we discussed in Section 1.4.2, methods for handling discontinuities and impulses due to mode switches already exists for non-linear circuits.

This thesis considers the problem of formalizing a semantics for hybrid modeling in a *dynamic* EOO modeling language, including automatic impulse analysis.

Note that the term *dynamic* refers to dynamic elaboration and equation transformation, and the impulse analysis is according to Algorithm 1.
1.8 Delimitations

We make the following delimitations:

- We assume the existence of functions performing step 1 and step 3 in Algorithm 1, given appropriate inputs, if at all possible. We collectively refer to these two functions as impulse solving.
- We assume the possibility of index reduction of DAEs, of arbitrary index, to an index appropriate for solving, if at all possible.
- We assume we can find a unique solution to an DAE, of appropriate index, if such a solution exists.
- We assume the existence of a connection semantics, that can deduce the topological equations, given an appropriate description of a model topology.

1.9 Research Method

We formalize a meta-modeling language (Chapter 2), fulfilling the criterion’s stated in the research problem in Section 1.7. We then implement this meta-modeling language as a DSL in the host language Modelize (Chapter 3). Finally, we evaluate the expressiveness of the implementation, on a set of hybrid models, that represents corner-cases in the electrical, and mechanical domain (Chapter 4). This includes the switched RLD-circuit defined in Figure 1.2. Moreover, we model other systems exhibiting discontinuities and impulses on the state variables due to structural changes. In other words, we want to evaluate if we can model these systems and attain physically sensible simulation results in our implementation, and thus if our proposed semantics are capable of expressing such systems.

1.10 Contribution

- We formalize a meta-modeling language, named λ_{DILL}, with dynamic elaboration and equation transformation. λ_{DILL} includes an impulse analysis capable of modeling several electrical circuits and circuit like systems, exhibiting discontinuities and impulses.
Moreover, we discuss an extension to this impulse analysis to allow modeling of inelastic collisions.

- We implemented λ_{DILL} as a DSL named DILL, in the host language Modelyze. This implementation includes an connection semantics, based on linear graph theory, and impulse solving, based on backwards Euler.

1.11 Sustainability, Ethical Aspects and Societal Relevance

Modeling and simulation, considered in a broad sense are relevant in regards to sustainability and society. Computer aided simulations generally have a smaller environmental footprint than physical experiments. Further, modeling and simulation provide a tool for researchers and engineers to analyze and draw conclusions about physical systems, conclusion which might impact society.

This thesis contribute to an increased use of computer aided simulation, as we try to extend the application of modeling and simulation to larger class of systems, and make it more accessible. However, we estimate this contribution to be minimal. We see no ethical aspects to this thesis.
Chapter 2
Design

In this chapter we formalize our hybrid EOO language. Our formalization will take the form of a meta-modeling language named λ_{DILL}, consisting of two parts:

1. We represent the main building blocks of our hybrid modeling language such as equations, modes, and the topology using algebraic data types. We choose to base our formalization on algebraic data types as it allows us to map the implementation close to the formalization, increasing the confidence in our evaluation.

2. An enriched λ-calculus modeling the rest of the EOO language such as if then else expressions, function definitions, and function application. This enriched λ-calculus will also be the language we use to define the semantics of our algebraic data types, together with some basic mathematical operations.

In Section 2.1, we define some primitive semantic domains. In Section 2.2, we define the syntax of the enriched λ-calculus. We assume the enriched λ-calculus has well defined semantics and only discuss the semantics briefly and informally. In Section 2.3, we give a brief introduction to algebraic data types. For a more complete introduction to both λ-calculus and algebraic data types, see for example Peyton Jones [35] (where algebraic data types are discussed under the name Structured Types). In Section 2.4, we formalize modes using algebraic data types, and in Section 2.5, we complete the formalization of λ_{DILL}.
2.1 Primitive Semantic Domains

We start by defining some primitive semantic domains. To represent the unbound values of impulses on the state variable, we extend the real numbers with the symbols for positive and negative infinity \(\pm \infty \). Thus we define \(\mathbb{R}^* = \mathbb{R} \cup \{-\infty, +\infty\} \).

Let \(X \) be the set of real-valued dependent variables and let \(\mathbb{B} \) be the set of Boolean values \{true, false\}.

We model undefined behavior and non-termination with the symbol \(\bot \). For a domain \(A \), \(A_\bot \) denotes \(A \cup \{\bot\} \). We also have to define operators over domains containing \(\bot \). For an operator \(op \), defined on the domain \(A \), let \(op_\bot \) be an operator defined on \(A_\bot \), such that \(op_\bot \) returns \(\bot \) if any of its arguments are \(\bot \), otherwise \(op_\bot \) returns the same value as \(op \).

2.2 Enriched \(\lambda \)-calculus

In formalizing our semantics, we make use of the enriched lambda calculus defined in Figure 2.1, where \(x \in X \) are variables, \(c \) are constants, including real numbers, natural numbers, Boolean values and primitive functions. Further, \(\lambda x. e \) is the lambda abstraction, and \(e_1 \ e_2 \) is function application. Moreover, \(b \in \mathbb{B}_\bot \) and \(p \) are patterns, and \((e_1, e_2, \ldots, e_n) \) and \((x_1, x_2, \ldots, x_n) \) are \(n \)-tuples. The expression \(\text{let } p = e_1 \ \text{in} \ e_2 \) binds \(e_1 \) to the variable or tuple given by \(p \) in \(e_2 \), and we interpret the if then else expression in the usual way.

To handle \(\bot \), we define \(\text{if } b \ \text{then} \ e_1 \ \text{else} \ e_2 \ = \bot \) if \(b = \bot \). Similarly, we define \(\text{let } p = e_1 \ \text{in} \ e_2 \ = \bot \) if \(e_1 = \bot \).

\[
e \rightarrow x \mid c \mid \lambda x. e \mid e_1 \ e_2 \mid \text{let } p = e_1 \ \text{in} \ e_2
\mid \text{if } b \ \text{then} \ e_1 \ \text{else} \ e_2 \mid (e_1, e_2, \ldots, e_n)
\]

\[
p \rightarrow x \mid (x_1, x_2, \ldots, x_n)
\]

Figure 2.1: Enriched \(\lambda \)-calculus.
2.3 Algebraic Data Types

We introduce algebraic data types, that we from here on will refer to as data types, through an example. In Listing 2.1, List A is the name of a data type encoding a list of items of type A, where A denotes a generic type variable and ::= denotes a definition. The right-hand side, $\text{nil} \mid \text{cons} A \ (\text{List} \ A)$, is the definition of the List A. We think of \mid as an or saying List A can be either nil or cons A (List A). We refer to each of these constructs as terms and call nil and cons constructors. The constructor nil has zero fields and cons has two fields, the first of type A, and the second of type List A. We write types in uppercase camelcase and constructors in lowercase. Sometimes we make use of infix constructors, which we denote by surrounding the constructor in parentheses.

\begin{verbatim}
List A ::= nil | cons A (List A)
\end{verbatim}

Listing 2.1: Data type representing a list.

To define a semantics for List A in 2.1, we define functions using pattern matching as shown in Listing 2.2. The first function returns the first element of a list, and the second function returns the list resulting from removing the first element of a list. We sometimes use the wildcard _ to denote match everything, and we evaluate the patterns in the order from top to bottom.

\begin{verbatim}
head : (List A) \rightarrow A _
head nil = _
head cons a as = a

tail : (List A) \rightarrow (List A) _
tail nil = _
tail cons a as = as
\end{verbatim}

Listing 2.2: Pattern matching on data types.

Sometimes we will use denotational semantics to define the meaning of a data type, by a meaning function denoted by \mathcal{M}. This meaning function maps the terms of the data type to some mathematical representation describing its meaning. As an example, Listing 2.3 shows the definition and meaning of the data type SimpleAdd. For a more thorough introduction on denotational semantics see for example Bruni and Montanari [13].
SimpleAdd ::= 0 | 1 | add SimpleAdd SimpleAdd

\[\mathcal{M}[0] = 0 \]
\[\mathcal{M}[1] = 1 \]
\[\mathcal{M}[\text{add } s_1 s_2] = \mathcal{M}[s_1] + \mathcal{M}[s_2] \]

Listing 2.3: Meaning function example.

2.4 Modes

We proceed with the formalization of \(\lambda_{\text{DILL}} \) by formalizing a mode. In essence, a mode will consists of a set of constitutive equations, a model topology, and some conditions on the state variables defining when a mode switch should occur. Associated to each mode is a DAE, resulting from combining the constitutive equation with the topological equation, resulting from the connection semantics and the model topology.

2.4.1 Example: A Mode of The Switched RLD-Circuit

As an example, we can define a mode for the switched RLD-circuit we discussed in Section 1.4.2, for the case when the electrical switch is closed and the diode is reverse biased. We show this circuit in Figure 2.2.

\[
\begin{align*}
 u_V &= V \\
 u_R &= R \cdot i_R \\
 u_L &= L \cdot \frac{dq_L}{dt} \\
 i_D &= 0 \\
 \frac{dt}{dt} &= 1 \\
 u_D &= \beta \\
 t &< t_s
\end{align*}
\]

In (2.1) and (2.2), \(V, R, L, \beta, \) and \(t_s \) are constants. We define the constitutive equations in (2.1). We also include the independent variable time as a dependent variable, as time governs the state of the electrical switch. We define conditions in (2.2), originating from the diode and the electrical switch and governing when the mode is valid. Figure 2.2 defines the model topology.
If this mode becomes the active mode during simulation, and the model is not in a transient state, we want to find the continuous-time solution to this mode. Let us denote the topological equations, resulting from Figure 2.2 and the connection semantics, as E_t. A solution to (2.1) together with E_t has to respect the inequalities in (2.2), because otherwise this mode, and consequently its DAE is no longer valid. We want this solution to be maximal in the sense that the solution should be defined over as large interval on the independent variable t as possible. We also need to let this solution evolve just enough to violate the first (or first few if they happen to occur at the same time) condition(s) in (2.2), to find the next mode if there is one.

2.4.2 Differential Algebraic Equations with Conditions

In this section, we give a more formal definition of what we mean by a solution to a mode.

$$F(x, \frac{dx}{dt}, w, t) = 0$$

We restate Equation (1.4) here for convenience. To make the notation a bit more compact we can form a new vector z, containing the elements of x, w, and a new dependent variable χ. Replacing all occurrences of t in (1.4) with χ and adding the equation $\frac{dz}{dt} = 1$, we can re-write (1.4) as:

$$F_c(z, \frac{dz}{dt}) = 0$$ \hspace{1cm} (2.3)

where, $z \in \mathbb{R}^{n+m+1}$, $\frac{dz}{dt} \in \mathbb{R}^{n+m+1}$, and $F_c: D_F \subseteq \mathbb{R}^{n+m+1} \times \mathbb{R}^{n+m+1} \rightarrow \mathbb{R}^{n+m+1}$. As we want to model hybrid models, we add conditions to the dependent variables and extend the definition of (2.3) into:
\[
F_c(z, \frac{dz}{dt}) = 0 \quad \text{(2.4a)}
\]
\[
G(z, \frac{dz}{dt}) > 0 \quad \text{(2.4b)}
\]

where, \(G : D_G \subseteq \mathbb{R}^{n+m+1} \times \mathbb{R}^{n+m+1} \rightarrow \mathbb{R}^{n+m+1} \). We call equations on the form (2.4) Conditional Differential Algebraic Equations (CDAE), and refer to \(G \) as a Differential Algebraic Conditions (DAC). We define a solution to (2.4) as follows:

\[
\dot{z} : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n+m+1}
\]

A function \(\dot{z} \) is a solution to (2.4) on the half open interval \(I = [t_0, t_f) \) if:

1. \(\dot{z} \) is differentiable on the open interval \((t_0, t_f)\) and right-differentiable on \(t_0 \).
2. \(\dot{z}(t) \) fulfills (2.4) for all \(t \in I \)

Given initial values \(\dot{z}_0 \) and \(\frac{d\dot{z}_0}{dt} \), we say that \(\dot{z} \) is a solution to the Conditional Initial Value Problem (CIVP), consisting of (2.4), \(z_0 \), and \(\frac{d\dot{z}_0}{dt} \), if \(\dot{z} \) is a solution to (2.4), \(\dot{z}_0 = \dot{z}(t_0) \), and \(\frac{d\dot{z}_0}{dt} = \frac{d\dot{z}}{dt}(t_0) \). Finally, we want to make sure that the interval \(I \) is as long as possible. We say that \(\dot{z} \) is a maximal solution to a CIVP, if for all solutions to this CIVP with intervals \(I' = [t_0, t'_f) \), it holds that \(t'_f \leq t_f \).

We also need to find the values on the dependent variables at \(t_f \) when the DAC is first violated. If \(\dot{z} \) is a maximal solution to a CIVP, the invalidating extension of \(\dot{z} \) is a function \(\dot{z}_e : [t_0, t_f] \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n+m+1} \) such that \(\dot{z}(t) = \dot{z}_e(t) \) for all \(t \in I \) and \(\dot{z}_e \) is left-differentiable and fulfills (2.4a) on \([t_0, t_f]\).

2.4.3 State Variables

We define a data type representing state variables. As we discussed in Section 1.5, the state variables include the dependent variables, either differentiated in the first order or in the zeroth order (equivalent to no differentiation). We defined this data type in Listing 2.4 and its meaning in Listing 2.5.
2.4.4 Expressions

In Listing 2.6 we define expressions \(\text{Expr} \), parameterized by type variable \(V \). For brevity, we use an infix type constructor on line 4, and we define the meaning of \(\text{Expr} \) in Listing 2.7. The constructors \(\text{uop} \) and \(\text{bop} \), on line 3 and 4, represents unary and binary operators over \(\mathbb{R} \). We require these operators to remain continuous and bounded on continuous and bounded input. This is to ensure that the solution to the CDAE of a mode is well-behaved and does not jump between mode switches. In Listing 2.7, \(\text{uop} \) and \(\text{bop} \), on line 3 and 4, are the appropriate mathematical operators of \(\text{uop} \) and \(\text{bop} \), respectively.

\[
\begin{align*}
\text{Expr} \ V & ::= \text{const} \ R \\
& \quad | \ \text{var} \ V \\
& \quad | \ \text{uop} \ (\text{Expr} \ V) \\
& \quad | \ (\text{bop}) \ (\text{Expr} \ V) \ (\text{Expr} \ V)
\end{align*}
\]

Listing 2.6: Data type representing expressions.

\[
\begin{align*}
\mathcal{M}[\text{d}_0 \ x] & = x \\
\mathcal{M}[\text{d}_1 \ x] & = \frac{dx}{dt}
\end{align*}
\]

Listing 2.5: Meaning function over state variables.
2.4.5 Equations and Inequalities

The data types in Listing 2.8 represents systems of equations and inequalities, where we have parameterized these data types with the variable type.

Eqs $V ::= (=) (Expr V) (Expr V)$
| nil
Ieqs $V ::= (>)(Expr V) (Expr V)$
| nil

Listing 2.8: Data type representing systems of equations and systems of inequalities.

In Listings 2.9 and 2.10, we define the meaning of the data types shown in Listing 2.8 as sets of equations and inequalities.

$M[e_1 = e_2] = \{M[e_1] = M[e_2]\}$
$M[\text{nil}] = \emptyset$
$M[e_1 ; e_2] = M[e_1] \cup M[e_2]$

Listing 2.9: Meaning function over systems of equations.

$M[e_1 > e_2] = \{M[e_1] > M[e_2]\}$
$M[\text{nil}] = \emptyset$
$M[e_1 ; e_2] = M[e_1] \cup M[e_2]$

Listing 2.10: Meaning function over systems of inequalities.

2.4.6 CDAEs, States and Continuous Simulation Traces

Using the definitions in 2.8, we define data types representing DAEs, DACs, and CDAEs, as shown in Listing 2.11.

DAE \equiv Eqs SVar
DAC \equiv Ieqs SVar
CDAE \equiv DAE \times DAC

Listing 2.11: Data types representing DAEs, DACs, and CDAEs.

To denote a particular assignment of values to the state variables, we define the type STATE in Listing 2.12. Here we include \(\bot \) to denote
an undefined value on a state variable. Further, we will possibly encounter unbound values on the state variables in the form of impulses and thus define a lifted version of State in LState.

\[
\text{State} \doteq \text{SVar} \rightarrow \mathbb{R}_+ \\
\text{LState} \doteq \text{SVar} \rightarrow \mathbb{R}_+^*
\]

Listing 2.12: State of state variables.

To represent the continuous time solution of a CIVP, we define CTrace in Listing 2.13. The first element of this tuple is a mapping from the independent variable to State, over some interval \([t_0, t_f]\), representing the continuous time evolution of the state variables up to, and including the time of the first violation of the DAC. In essence a representation of the invalidating extension (see Section 2.4.2). We refer to this element as a mode trace. The second element in the tuple is the time of the first violation of the DAC.

\[
\text{CTrace} \doteq (I \subseteq \mathbb{R} \rightarrow \text{State}_-) \times \mathbb{R}
\]

Listing 2.13: Data type representing a mode trace and its interval.

2.4.7 Solving CIVPs

We are now ready to define a function that solves a CIVP given an interval over the independent variable. The function solve takes a \((d, c) \in \text{CDAE}\) representing a CDAE and a state \(s \in \text{State}\), assigning initial values to the state variables.

The last argument to solve is the half open interval \(I = [t_0, t_f)\) over which we seek a solution to the state variables. The requested interval of simulation is encoded in the CDAE as, \(\chi < t_f\) and \(\frac{d\chi}{dt} = 1\), in addition to the initial value \(\chi_0 = t_0\).

\[
\text{solve} : \text{CDAE} \rightarrow \text{State} \rightarrow I \subseteq \mathbb{R} \rightarrow \text{CTrace}_-
\]

Listing 2.14: Function solving CIVPs.

The function solve performs index reduction as necessary. We do not require that \(s\) assigns an initial value to all state variable in \(d\), instead we try to finds consistent initial values with respect to \((d, c)\) on those state variables in \((d, c)\) with undefined initial values.

The function solve then finds the maximal solution and corresponding extended violation to the resulting CIVP, as defined in Section 2.4.2,
and maps these solutions to CTrace as appropriate. We include \(\bot\) in the co-domain of solve to model failure and non-termination.

2.4.8 Model Topology

In Listing 2.15, we defined a model topology as a directed graph where each edge \(e(t, a) \in E\) is associated with two dependent variables \(t, a \in X\). By \(e_{ij}(t, a)\), we denote an edge directed from node \(i\) to \(j\). We use this encoding of the topology in our implementation of the connection semantics but other encoding are of-course possible.

\[
\text{Topology} \equiv G(E, V)
\]

Listing 2.15: Definition of a model topology.

In Listing 2.16, we define the functionality of a function defining the connection semantics. This function should take the topology as input and return the resulting topological equation. We include \(\bot\) in its co-domain to model failure and non-termination.

\[
\text{elab_topology} : \text{Topology} \rightarrow (\text{Eqs_VAR})_
\]

Listing 2.16: Function defining connection semantics.

2.4.9 Data type Representing a Mode

Finally, In Listing 2.17, we define the data type of a mode. The term \(\text{edge } t \ a \ p \ n\) on line 3 represents an edge \(e(t, a)\) in the model topology, directed from \(n\) to \(p\), where nodes are enumerated by integers. The constructor \(\text{nil}\) on line 4 represents an empty mode or no mode, and the constructor \(;\) on line 5 represents a continuation.

```plaintext
1 Mode V ::= eqs (Eqs V)
2     | ieqs (Ieqs V)
3     | edge X X N N
4     | nil
5     | (;) (Mode V) (Mode V)
```

Listing 2.17: Data type representing a mode.

Example

Using \(\text{Mode}\), we can define the mode of the RLD-circuit discussed at the beginning of Section 2.4.1 as shown in Listing 2.18. Lines 2 to 6
represent the constitutive equation, line 9 and 10 represent the DAC of the mode, and lines 12 to 15 represent the model topology.

```
1 lrd_mode1 = eqs (  
2    (var (d_0 uV)) = (const V);  
3    (var (d_0 uR)) = ((const R) * (d_0 iR));  
4    (var (d_1 iL)) = ((var (d_0 uL)) / (const L));  
5    (var (d_0 iD)) = (const 1);  
6    (var (d_1 t)) = (const 1)  
7  );  
8  ieqs (  
9    (const β) > (var (d_0 uD));  
10   (const ls) > (var (d_0 t))  
11  );  
12   (edge iV uV 1 3);  
13   (edge iR uR 1 2);  
14   (edge iL uL 2 3);  
15   (edge iD uD 3 2);  
```

Listing 2.18: Example: A mode of the switched RLD-circuit.

2.4.10 Helper Functions

Before providing the semantics for hybrid models, we define some helper functions we will use later on. In Listing 2.19, we define a function `eval_expr` evaluating expressions to a value in \(\mathbb{R} \) given a \(s \in \text{LState} \).

```
eval_expr : (Expr SVar) \rightarrow \text{LState} \rightarrow \mathbb{R}  
eval_expr const r = \lambda s. r  
eval_expr var v = \lambda s. s v  
eval_expr uop e = \lambda s. uop^*_s (eval_expr e s)  
eval_expr e1 bop e2 = \lambda s. bop^*_s (eval_expr e1 s) (eval_expr e2 s)  
```

Listing 2.19: Function evaluating expressions.

The operators \(uop^*_s \) and \(bop^*_s \) denotes lifted versions of \(uop_s \) and \(bop_s \), respectively. We assume these operators treat \(\pm \infty \) appropriately, possibly returning \(\bot \) if an operation is undefined. As an example, we show the lifted addition operator in Table 2.1.

In some cases, we need to make sure that we have bounded values and therefore define the function `unlift` in Listing 2.20.
Table 2.1: Lifted addition operator (+), where \(a \in \mathbb{R}\) and \(b \in \mathbb{R}^*\).

<table>
<thead>
<tr>
<th>first arg</th>
<th>second arg</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm \infty)</td>
<td>(a)</td>
<td>(\pm \infty)</td>
</tr>
<tr>
<td>(a)</td>
<td>(\pm \infty)</td>
<td>(\pm \infty)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(-\infty)</td>
<td>(-\infty)</td>
<td>(-\infty)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(-\infty)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(-\infty)</td>
<td>(\infty)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(b)</td>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\bot)</td>
<td>(b)</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>

unlift : \(\mathbb{R}^*_1 \rightarrow \mathbb{R}_1\)
unlift \(\hat{=} \lambda r.\) if \(r = \pm \infty\) then \(\bot\) else \(r\)

Listing 2.20: Function unlifting expressions.

Further, we defined helper functions in Listings 2.21, 2.22, and 2.23, that retrieves equations, conditions, and the model topology from a mode, respectively. On line 3 in Listing 2.23, \(e\) is an edge.

get_eqs : (Mode V) \rightarrow (Eqs V)
get_eqs \(m_1\); \(m_2\) \(\hat{=}\) (get_eqs \(m_1\)); (get_eqs \(m_2\))
get_eqs Eqs \(e\) \(\hat{=}\) \(e\)
get_eqs _ \(\hat{=}\) nil

Listing 2.21: Function retrieving equations from a mode.

get_ieqs : (Mode V) \rightarrow (Ieqs V)
get_ieqs \(m_1\); \(m_2\) \(\hat{=}\) (get_ieqs \(m_1\)); (get_ieqs \(m_2\))
get_ieqs Ieqs \(e\) \(\hat{=}\) \(e\)
get_ieqs _ \(\hat{=}\) nil

Listing 2.22: Function retrieving conditions from a mode.

get_topology : (Mode V) \rightarrow \text{Topology}
get_topology \(m_1\); \(m_2\) \(\hat{=}\) (get_topology \(m_1\)) \cup (get_topology \(m_2\))
get_topology \(\text{edge} t a p n\) \(\hat{=}\) \(\epsilon_{np}(t, a)\)
get_topology _ \(\hat{=}\) \(\emptyset\)

Listing 2.23: Function retrieving the topology from a mode.
2.5 Hybrid Models

In this section we first introduce left-limits in Section 2.5.1 and then define a data type representing hybrid model in Section 2.5.2. In Section 2.5.3, we give an overview of the procedure of simulating such hybrid models and in Section 2.5.4, we introduce an alternative view on time, capable of modeling both continuous and discrete events. Finally, in Section 2.5.5 to 2.5.11, we formalize the semantics of the data type of Section 2.5.2, thus completing the formalization of λ_{DILL}.

2.5.1 Left-Limits

$$v_a = -ev_b$$ \hspace{1cm} (2.5)

We extend the representation of a state variable, we defined in Listing 2.4, with a representation of the left-limit of the state variables.

When defining equations in a mode we sometimes need the left-limit of a state variable in the predecessor mode. As an example, consider the model of inelastic collision between a body of finite mass (we call this body a ball) and a body of infinite mass and zero velocity (we call this body the ground) in (2.5). Here v_a denotes the velocity of the ball after the collision and v_b its velocity before the collision. The constant $0 < e < 1$ is the coefficient of restitution and governs the amount of kinetic energy lost in the collision. If $e = 0$, the ball loses all its kinetic energy and we have completely inelastic collision. If $e = 1$, the ball looses no kinetic energy and the collision is completely elastic.

In λ_{DILL} such a collision results in a mode switch because the state variables does not behave continuously at the time of collision. In this case, we need to be able to reference the left-limit of a state variable in predecessor mode. That is, the value the state variable had just before the mode switch occurred. In Listing 2.24, we define a data type extending state variables with the notion of left-limits. Here leftlim refers to the left-limit of the state variable in the predecessor mode, and curr refers to the state variable considered in the successor mode.

\[
\text{HSVar ::= leftlim SVar | curr SVar}
\]

Listing 2.24: Data type representing the left-limit and current value of state variables.
We sometimes need to evaluate expressions containing left-limits. To do this evaluation, we first reduce expressions containing left-limits to expressions without left-limits as defined by \texttt{eval_llimit_expr} in Listing 2.25. The second argument to \texttt{eval_llimit_expr}, \(s \in \text{State} \), holds the left-limits of the state variables in the predecessor mode. On line 4 the left-limit is evaluated and returned as a constant.

\begin{verbatim}
1 eval_llimit_expr : (Expr HSVar) \rightarrow State \rightarrow (Expr SVar) \bot
2 eval_llimit_expr const r \triangleq \lambda s. const r
3 eval_llimit_expr var (curr v) \triangleq \lambda s. var v
4 eval_llimit_expr var (leftlim v) \triangleq \lambda s. let r = s v in const r
5 eval_llimit_expr uop e \triangleq \lambda s. uop (eval_llimit_expr e s)
6 eval_llimit_expr e1 bop e2 \triangleq \lambda s.
 (eval_llimit_expr e1 s) bop (eval_llimit_expr e2 s)
\end{verbatim}

Listing 2.25: Function reducing expression containing left-limits to one without.

Using the functions defined in Listings 2.19 and 2.25, we define a function \texttt{eval_hexpr} in Listing 2.26, evaluating expressions containing left-limits to the extended real numbers.

\begin{verbatim}
1 eval_hexpr : (Expr HSVar) \rightarrow State \rightarrow LState \rightarrow R \bot
2 eval_hexpr e \triangleq \lambda s_. \lambda s_0.
3 let e’ = eval_llimit_expr e s in eval_expr e’ s_0
\end{verbatim}

Listing 2.26: Function evaluating expressions containing left-limits.

Example

Using \texttt{HSVar}, we can express the model in (2.5) as shown in Listing 2.27.

\begin{verbatim}
(var (curr (d_0 v))) = - (const e) * (var (leftlim (d_0 v)))
\end{verbatim}

Listing 2.27: Example: Model of inelastic collision.

2.5.2 Data Type Representing Hybrid Models

We define the data type representing hybrid models shown in Listing 2.28. We informally present this data type before moving on to the formal definition of its semantics.
The central term in this data type is the switch \(m_1 \ e \ m_2 \) term on line 1. Which we refer to simply as a switch. This switch is analogue to the one used in Hydra \([23]\). The interpretation of a switch is that \(m_1 \) defines the current active model (which might contain additional switches). The expression \(e \) defines an open region in the solution space of the state variables, where the model \(m_1 \) is valid. We call this region the valid region of the switch. The complement to the valid region is the invalid region.

Given a state \(s \in \text{LState} \), we say that a switch is in its valid region and is stable with respect to \(s \), if we evaluate \(e \) using \(s \) and find its value to be greater than zero. The opposite of stable is unstable. Similarly, we say that a model \(m \) is stable with respect to \(s \), if all switches in the active models \(m_1 \), considered recursive in the model, are stable with respect to \(s \). We say that we flip a switch when we replace the switch with \(m_2 \). The procedure of flipping all unstable switches of a model is equivalent to performing a mode switch.

The meaning of the term init \(v \ e \) (line 2) is to assign the initial value, resulting from evaluating the expression \(e \), to the state variable \(v \). We include this term as new state variables might appear dynamically during simulation.

The term on line 3 represents equations, and the term on line 4 represents edges in the model topology, both discussed in Section 2.4. Finally, we have a continuation on line 5.

Example

As an example on the use of switches, we show in Listing 2.29 part of a model of an ideal diode defined in \(\text{DILL} \), which we first considered in Section 1.4.1. The state variables \(u_D \) and \(i_D \) represents the voltage and current over the diode, respectively. The argument \(f \) on line 1 is a Boolean defining whether the diode is forward biased or reverse biased.
1 let $D = \lambda \beta \cdot \lambda f$.
2 if f then
3 switch
4 (eqs (var (curr (d_0 u_D))) = (const β))
5 (var (curr (d_0 i_D)))
6 ($D \beta (-f)$)
7 else
8 switch
9 (eqs (var (curr (d_0 i_D))) = (const 0))
10 (($const \beta$) - (var (curr (d_0 u_D))))
11 ($D \beta (-f)$)
12 in

Listing 2.29: Example: Part of a diode model in λ_{DILL}.

If we assume f to be true, the switch on line 3 defines the behavior of the diode. The semantics of switches interprets into the model behaving as $u_D = \beta$ (line 4) as long as the solution of i_D is greater than zero (line 5), otherwise we flip the switch. When we flip this switch we call D recursively (line 6), which replaces the switch with the model returned from the else branch in the if then else expression, modeling the diodes behavior when reverse biased (line 8 to 11).

Note that to allow recursive model definitions as in Listing 2.29, the evaluation of the last field in the switch constructor must be delayed and not evaluated when calling this constructor.

2.5.3 Overview of Simulation Procedure

Before we discuss the details of the semantics of H_{Model}, we give an overview of the procedure of simulating a model $m \in H_{Model}$ in Figure 2.3. Below follows a short description of each block in this overview. We discuss the formalization of the simulation procedure in Section 2.5.11.

Initializing Model This process can include elaboration and assignment of consistent initial values, but not treatment of impulses. We will not discuss this process in detail.

Mode switch We perform a mode switch, which is equivalent to flipping all unstable switches (Section 2.5.5).

Elaboration We retrieve the CIVP from the active mode (Section 2.5.6).
Impulse Solving We retrieve the value on the state variables during the mode switch as well as consistent initial values for the successor mode (Section 2.5.7).

Evaluation of Inits We evaluate assignments of initial values to new state variables, appearing after a mode switch (Section 2.5.8).

Unstable? We check if the model is stable or unstable (Section 2.5.9).

Solving CIVP We solve the CIVP of the active mode (Section 2.4.7).

End? If we have reached the end of our simulation interval, we end the simulation, otherwise we continue.

Returning Trace We return a simulation trace by combining the mode traces from the non-mythical modes. The data type representing a simulation trace is defined in (Section 2.5.10). We regard the simulation trace as the meaning of a model and thus it is returned by the simulation function defined in Section 2.5.11.
2.5.4 Super Dense Time

To help our discussion on the simulation of hybrid models that combine the continuous time behavior with discrete changes, we extend the notion of time into a time format called superdense time [25]. Superdense time is a representation of time in form of a tuple \((t, n) \in \mathbb{R} \times \mathbb{N}\) called a time-stamp, where \(t\) represents time in an ordinary sense, also called model time, and \(n\) enumerates discrete events occurring at same time instant \(t\). A step from \((t, n)\) to \((t, n + 1)\) is called a micro-step. Superdense time is lexicographically ordered by:

\[
(t_1, n_1) < (t_2, n_2) \iff t_1 < t_2 \lor (t_1 = t_2 \land n_1 < n_2)
\]

(2.6)

2.5.5 Mode Switches

As discussed previously, a mode switch amounts to flipping all unstable switches in a model. For this purpose we define the function \texttt{switch_mode} in Listing 2.30. On line 5 we match a \texttt{switch} pattern and then either recursively call \texttt{switch_mode} on \(m_1\), if the \texttt{switch} is stable, or flip the \texttt{switch} if unstable.

1. \texttt{switch_mode : HModel -> ((Expr MSVar) -> \mathbb{R}^*_1) -> HModel}.
2. \texttt{switch_mode m_1 ++ m_2 = \lambda s.}
3. \texttt{let m'_1 = (switch_mode m_1 s) in}
4. \texttt{let m'_2 = (switch_mode m_2 s) in m'_1 ++ m'_2}
5. \texttt{switch_mode switch m_1 e m_2 += \lambda s.}
6. \texttt{if (s e) > 0 then let m'_1 = switch_mode m_1 s in switch m'_1 e m_2}
7. \texttt{else m_2}
8. \texttt{switch_mode init v e += \lambda s. init v e}
9. \texttt{switch_mode eqs e += \lambda s. eqs e}
10. \texttt{switch_mode edge t a p n += \lambda s. edge t a p n}

Listing 2.30: Function performing a mode switch.

2.5.6 Elaboration

The elaboration consists of retrieving the active mode and then retrieving the CDAE related to this mode.

To retrieve the active mode, we first need to remove all switches. In Listing 2.31, we define a function \texttt{collapse_switches} that collapses the switches by recursively retrieving the first and second field of all switches (line 5), as these fields define the active mode.
collapse_switches : HModel → (Mode HSVar)
collapse_switches m₁ ++ m₂ =
 (collapse_switches m₁) ; (collapse_switches m₂)
collapse_switches switch m₁ e m₂ =
 (collapse_switches m₁) ; (e > (const 0))
collapse_switches eqs e = eqs e
collapse_switches edge t a p n = edge t a p n
collapse_switches _ = nil

Listing 2.31: Function collapsing switches.

The variables V in the mode retrieved from collapse_switches are of type HSVar. As CDAE consists of expressions of type SVar, we need to transform expressions of type Expr HSVar to expressions of type Expr SVar. This is the purpose of the function eval_left_limits, whose functionality we define in Listing 2.32.

eval_left_limits:
 (Mode HSVar) → ((Expr HSVar) → (Expr SVar)⊥) → (Mode SVar)⊥

Listing 2.32: Function reducing a mode containing left-limits to one without.

This function applies its second argument, the function
f : (Expr HSVar)→ (Expr SVar)⊥, to all expressions e ∈ Expr HSVar in the mode m ∈ Mode G HSVar. If any of these applications returns ⊥, then eval_left_limits returns ⊥, otherwise the expression is replaced by the returned value from f.

Using collapse_switches and eval_left_limits, we can perform elaboration a model m ∈ HModel as defined by the function elaborate in Listing 2.33.

This function first retrieves the active mode from the model on line 3. Thereafter, it retrieves the CDAE from this mode by elaborating the topology, combining this result with the constitutive equations, and conditions of the mode, on lines 4 to 5.

elaborate : (HModel G) → ((Expr HSVar) → (Expr SVar)⊥) → CDAE⊥
elaborate = λm. λs...
let m’ = eval_left_limits (collapse_switches m) s_ in
let eₜ = elab_topology (get_topology m’) in
eqs ((get_eqs m’) ; eₜ) ; ieqs (get_ieqs m’)

Listing 2.33: Function retrieving the CDAE from the active mode.
2.5.7 Impulse Solving

We abstract impulse solving into a common function `solve_impulses`. Based on the discussion by Vlach, Wojciechowski, and Opal [42], this function takes as input, the \(\text{DAE} \ d \in \text{DAE} \) of the successor mode and a state \(s_- \in \text{State} \), holding the left-limits of the state variables of the predecessor mode. This function should then return a tuple \((s_0, s_+) \in \text{LState} \times \text{State} \), where the first element \(s_0 \) holds the values of the state variable at the moment of the mode switch, which might be impulses, and the second element \(s_+ \) holds consistent initial values on the state variables for \(d \) right after the impulse has died out. Thus we assume \(s_+ \) occurs one micro-step after \(s_0 \).

We include \(\bot \) in the co-domain of this function to model failure and non-termination.

\[
\text{solve_impulses} : \text{DAE} \rightarrow \text{State} \rightarrow (\text{LState} \times \text{State})_{\bot}
\]

Listing 2.34: Function performing impulse solving.

2.5.8 Evaluation of Initial Values on new State Variables

In Listing 2.35, we define a function evaluating initial value assignments to state variables.

\[
\begin{align*}
1 \text{ eval_inits} &: \text{HModel} \rightarrow ((\text{Expr MSVar}) \rightarrow \mathbb{R}_{\bot}) \rightarrow \text{State} \rightarrow \text{State} \\
2 \text{ eval_inits } m_1 \cdot m_2 &= \lambda f. \lambda s. \text{eval_inits } m_2 \cdot f \cdot (\text{eval_inits } m_1 \cdot f \cdot s) \\
3 \text{ eval_inits } \text{switch} m_1 \cdot e \cdot m_2 &= \lambda f. \lambda s. \text{eval_inits } m_1 \cdot f \cdot s \\
4 \text{ eval_inits } \text{init} v \cdot e &= \lambda f. \lambda s. \\
5 &\quad \text{if } (s \cdot v) = \bot \text{ then let } r = f \cdot e \text{ in } s[v=r] \text{ else } s \\
6 \text{ eval_inits } _ &= \lambda f. \lambda s. _
\end{align*}
\]

Listing 2.35: Function evaluating initial value assignments.

On line 5, this function updates the state variables \(s \in \text{State} \), provided as an input to this function, by mapping the state variable of a init term to the result of evaluating the expression of this term on the condition that this state variable is previously undefined in \(s \). This is to ensure that we only assign the initial value to a state variable when first introduced into the model. We define the operator \([v = r] \) on \(s \in \text{State} \) in (2.7).
\[s[v = r] = \lambda v'. \begin{cases} r & \text{if } v' = v \\ s(v') & \text{otherwise} \end{cases} \quad (2.7) \]

We also define the functionality of a function, evaluating initial value assignment on lifted state \(s \in \text{LState} \), in Listing 2.36. The definition of this function is analogue to that of \(\text{eval_inits} \).

1 \[\text{eval_inits}_1 : (\text{HModel } G) \rightarrow ((\text{Expr } \text{MSVar}) \rightarrow \mathbb{R}_\downarrow) \rightarrow \text{LState} \rightarrow \text{LState} \]

Listing 2.36: Lifted version of function defined in Listing 2.35.

2.5.9 Stable Models

The function \(\text{unstable} \) that we define in listing 2.37, returns a Boolean saying whether a model is unstable or stable given a function mapping expressions to the extended reals. The switches are recursively checked as seen on line 3.

1 \[\text{unstable} : (\text{HModel } G) \rightarrow ((\text{Expr } \text{SVar}) \rightarrow \mathbb{R}_\uparrow) \rightarrow \mathbb{B}_\downarrow \]

2 \[\text{unstable } m_1 \rightarrow m_2 \equiv \lambda f. (\text{unstable } m_1 \ f) \lor_\downarrow (\text{unstable } m_2 \ f) \]

3 \[\text{unstable switch } m_1 \ e \ m_2 \rightarrow \lambda f. (f \ e) \leq 0 \lor_\downarrow (\text{unstable } m_1 \ f) \]

4 \[\text{unstable } _= \rightarrow \lambda f. \text{false} \]

Listing 2.37: Function determining if a model is unstable.

2.5.10 Simulation Trace

We want the simulation trace of a hybrid model to consist of the mode traces of each non-transient mode, as they appear during simulation. To represent such a simulation trace, we define a simulation trace as a list of mode traces as shown in Listing 2.38.

\[\text{Trace ::= nil | cons } (I \subset \mathbb{R} \rightarrow \text{State}_\downarrow) \text{ Trace} \]

Listing 2.38: Data type representing a simulation trace.

2.5.11 Simulation of Hybrid Models

We define a state for hybrid models in Listing 2.39. We include \(m \in \text{HModel} \) in this state as it encodes the switch configuration. For the sake of the impulse analysis, the second element of this tuple \(s_\downarrow \in \text{State} \) is
the left-limit on the state variables, and the third element \(s_0 \in \text{LState} \) the values on the state variables at the current time. Finally, we include an interval over the model time, which defines a maximum interval for the simulation.

\[
\text{HState} = \text{HModel} \times \text{State} \times \text{LState} \times I \subseteq \mathbb{R}
\]

Listing 2.39: Data type representing the state of a hybrid model.

We are now ready to define the function `simulate` in Listing 2.40, which produces a simulation trace \(\tau \in \text{Trace} \) given a hybrid model state \(s \in \text{HState} \) and an accumulator. In the next section we first give an informal discussion on this function and then workout an example where we apply this function to a hybrid model.

1. \texttt{simulate} : \texttt{HState} \rightarrow \texttt{Trace} \rightarrow \texttt{Trace}
2. \texttt{simulate} \(= \lambda (m, s_-, s_0, [t_0, t_f]) \). \(\lambda \tau \).
3. \texttt{if } \(t_0 = t_f \) \texttt{then } \(\tau \)
4. \texttt{else}
5. \texttt{let } \(m' = \text{switch_mode} (\lambda e. \text{eval_hexpr} e s_- s_0) \) \texttt{in}
6. \texttt{let } \((\text{dae}, \text{dac}) = \text{elaborate} m' s_- \) \texttt{in}
7. \texttt{let } \((s'_0, s_s) = \text{solve_impulses} \text{dae} s_- \) \texttt{in}
8. \texttt{let } \(s'_i = \text{eval_inits} \text{L} (\lambda e. \text{unlift} (\text{eval_hexpr} e s_- s'_0)) \) \texttt{in}
9. \texttt{let } \(s'_i = \text{eval_inits} \text{L} (\lambda e. \text{unlift} (\text{eval_hexpr} e s_- s_s)) \) \texttt{in}
10. \texttt{if (unstable } m' (\lambda e. \text{eval_hexpr} e s_- s'_0) \) \texttt{then}
11. \texttt{simulate } \((m', s_-, s'_0, [t_0, t_f]) \) \(\tau \)
12. \texttt{else if (unstable } m' (\lambda e. \text{eval_hexpr} e s_- s'_i) \) \texttt{then}
13. \texttt{simulate } \((m', s'_i, s'_i, [t_0, t_f]) \) \(\tau \)
14. \texttt{else}
15. \texttt{let } \((\tau', t'_{f}) = \text{solve} (\text{dae, dac}) s'_i [t_0, t_f] \) \texttt{in}
16. \texttt{simulate } \((m', \tau'(t'_{f}), \tau(t'_f), [t'_f, t_f]) \) (\text{cons} \(\tau' \) \(\tau \)).

Listing 2.40: Function simulating a hybrid model, where \(t'_{f}^- \) is the left-limit of \(t'_{f} \).

2.5.12 Discussion on the Simulation Function

When \(t_0 = t_f \) on line 3 in Listing 2.40, the interval in the state \(s \in \text{HState} \) provided as an argument to `simulate` is a single point which marks an end of simulation. Thus we have accumulated mode traces whose domains spans the interval given at the initial call to `simulate`. We refer to this initial interval as the simulation interval.

Otherwise, disregarding the initial call to `simulate`, we have a model \(m \in \text{HModel} \) in \(s \) that is unstable with respect to \(s_0 \in \text{LState} \) in \(s \), where \(s_0 \)
holds values of the state variables at time-stamp \((t_0, n)\) for some \(n \in \mathbb{N}\). Thus, we need to perform a mode switch as done on line 5. As discussed previously, a mode switch might introduce steps on the state variables, in turn resulting in impulses. Therefore, we call \texttt{solve_impulses} on line 7. We also have to handle new state variables introduced in the new mode, as done on line 8 and 9.

We check if \(s_0''\) should trigger a new mode switch (line 10). If true, we recursively call \texttt{simulate} without advancing model time \(t_0\). Because model time does not progress, we are in a transient state and we use the same left-limit \(s_- \in \text{State}\) in the recursive call to \texttt{simulate}. Superdense time advance to \((t_0, n + 1)\).

If instead the same is true for the initial values \(s'_+ \in \text{State}\) on line 12, we recursively call \texttt{simulate} but the choice of left-limit is not so clear. According to Algorithm 1 we are in a transient state and should treat the left-limit as in the previous case. Unfortunately, doing so would not enable us to model for example inelastic collision. The problem is that we need to define a mode that changes the physical system but where model time does not progress. This would make this state a mythical state, that according to the reasoning for electrical circuits should not affect the physical system, which to us seems like a contradiction. This might very well be a flaw in our semantics but how to solve this problem without weakening the notion of mythical states is not clear to us.

We decide to use \(s'_+\) as both left-limit and current value, which seems to be the best choice considering the model discussed in Section 4.4. Another option would be \(s_0''\), but \(s_0''\) might contain unbound values. Further investigation into this problem is needed. In any case the superdense time advances to \((t_0, n + 2)\) as \(s'_+\) and \(s_0''\) is separated by a micro-step in our definition of \texttt{solve_impulses}.

If \(m\) is stable with respect to both \(s_0''\) and \(s'_+\), no more mode switches should occur. Moreover, by construction, the initial values \(s'_+\) originating from \texttt{solve_impulses} are consistent with the new mode, assuming consistent initial values at line 9. Thus we can call \texttt{solve} at line 15 and advance the model time. From the solution to \texttt{solve} we retrieve the new left-limit \(\tau(t_f^-)\), where \(t_f^-\) is the left-limit of \(t_f\) and the current values on the state variable as \(\tau(t_f')\).

Because the initial time \(t_0\) at line 15 is always the end point of the domain for the previous mode trace, the domain of adjacent mode traces in the simulation trace will share end-points. Further, as we assume
the solutions of CIVPs for each non-transient mode to be continuous, we can construct a piecewise-continuous functions for the dependent variables over the modes where they are defined. We only need to decide on how to handle the overlapping points in the intervals.

In the above discussion we have assumed termination and defined behavior on all external function calls. Even under these assumptions its easy to construct models that gets stuck in a Zeno state [25]. We make no claims on termination and we leave this discussion as as future work.

Example

Now we continue with the example. Once again, consider the switched RLD-Circuit we analyzed in Section 1.4.2. We assume the initial mode (1), which have a closed electrical switch and the diode in reverse bias. Assume we enter simulate at line 2 with the following state $s \in \text{HState}$:

$$s = (m, \{\ldots, i_L \mapsto i^-_L, \ldots\}, \{t \mapsto t_s, \ldots\}, [t_s, t_f])$$

where $i^-_L > 0$. For brevity, we will not explicitly state the model m. The active mode has the electrical switch closed and the diode in reverse bias. We assume $t_f > t_s$, so the simulation will not end on line 3. The mode switch on line 5 will produce m', where the electrical switch is open as $t \mapsto t_s$ in s_0. The elaboration on line 6 will produce a CDAE given by const. eqs., open, and reverse bias in Figure 1.6.

The solve_impulses function on line 7 will produce s'_0, where

$$s'_0 = \{\ldots, u_L \mapsto \infty, u_D \mapsto -\infty, \ldots\}$$

because of the instant current drop over the inductor. We have not introduced any new state variables and the calls to eval_inits and eval_inits_l on line 8 and 9 will result in $s''_0 = s'_0$ and $s'_e = s_+.$

As $u_D \mapsto -\infty$ in s'_0 the condition in the if then else expression on line 10 evaluates to true and simulate is recursively called on line 11. Because the model m' is unstable at the mode switch, we use s_- as the left-limit in this call.

Next, we enter simulate at line 2 with the state $s' \in \text{HState}$, where:

$$s' = (m', \{\ldots, i_L \mapsto i^-_L, \ldots\}, \{\ldots, u_L \mapsto \infty, u_D \mapsto -\infty, \ldots\}, [t_s, t_f])$$
Now switch_mode will result in a model \((m')'\) with an open electrical switch and a forward biased diode. This in turn will make the call to solve_impulses result in:

\[
s'_0 = \{\ldots, i_D \mapsto i_L', \ldots\}
\]
\[
s_+ = \{\ldots, i_L', i_D \mapsto i_L', u_L \mapsto -\beta, u_D \mapsto \beta, \ldots\}
\]

As before, \(s''_0 = s'_0\) and \(s'_+ = s_+\). The model is stable at both line 10 and 12, and we proceed by solving the CDAE over the interval \([t_s, t_f]\) given the initial values \(s'_+\) at line 15. In the solution to this CIVP the current over the diode will decrease and we assume the current hits zero at time \(t_r\). Thus the function solve returns a mode trace \(\tau'\) representing the behavior of the state variables for the duration of this mode and a time \(t_r\), when the DAC is first violated.

Once again simulation is recursively called on line 16, now with the state \(s''_+ \in \text{HState}\), where:

\[
s' = ((m')', \{\ldots\}, \{\ldots, i_D \mapsto 0, u_D \mapsto \beta, \ldots\}, [t_r, t_f])
\]

As \(i_D \mapsto 0\) in \(s_0\) a mode switch will occur on the diode, which will switch to reverse bias once again. Thus switch_mode, elaborate, and solve_impulses results in:

\[
s'_0 = \{\ldots, i_D \mapsto 0, \ldots, u_D \mapsto 0, \ldots\}
\]
\[
s'_+ = \{\ldots, i_D \mapsto 0, \ldots, u_D \mapsto 0, \ldots\}
\]

As before, \(s''_0 = s'_0\) and \(s'_+ = s_+\), and the model \((m')'\) is stable at line 10 and 12. We once again call solve at line 15. The solution to all state variables except \(t\) are identically zero in the resulting mode trace. Now because we include \(\chi \leq t_f\), where \(\chi = t\) in the CIVP in the definition of solve (Listing 2.14), the returned time will be \(t_f\). This in turn makes the next recursive call to simulate return the accumulated simulation trace on line 3, and the simulation has ended.
Chapter 3

Implementation

In this chapter we discuss the more important details of the implementation of λ_{DILL}, we call this implementation DILL. In Section 3.1, we discuss the host language and syntactical differences between DILL and λ_{DILL}. In Section 3.2, we discuss the implementation of our connection semantics, and in Section 3.3, we discuss the implementation of impulse solving.

3.1 DILL, a DSL in Modelyze

We implement DILL in the host-language Modelyze [10, 11], which includes a DSL implementation of a EOO language. Below we list the main parts of this EOO language we re-use in our implementation.

- Index reduction using Pantelides algorithm.
- Finding consistent initial values and solving index 1 DAEs, which in turn makes use of the IDA1 solver suite.
- Real valued expressions, both numerical and symbolic

Modelyze provides symbolic types similar but not identical to data types for defining DSLs. Because of this, and because we use some of the existing functionality in Modelyze, the types in the implementation differs somewhat from the formalization. The types in the implementation are more general and we compensate for this by input validation.

1https://computation.llnl.gov/projects/sundials/ida
1 \texttt{HModel ::= switch HModel (Expr HSVar) HModel}
2 \hline
3 \texttt{| init SVar (Expr HSVar)}
4 \texttt{| eqs (Eqs HSVar)}
5 \texttt{| edge X X N N} \hline
6 \texttt{| (++) HModel HModel}

\textbf{Listing 3.1: Hybrid model in λ_{DILL}.}

1 \texttt{type HModel}
2 \texttt{def switch : HModel -> <Real> -> (() -> HModel) -> HModel}
3 \texttt{def init : <Real> -> <Real> -> HModel}
4 \texttt{def eande : Equations -> HModel}
5 \texttt{def (++) : HModel -> HModel -> HModel}

\textbf{Listing 3.2: Hybrid model in DILL.}

In Listing 3.2 we show our DILL implementation of the data type in Listing 3.1, representing hybrid models. On line 4 in Listing 3.2, \texttt{eande} represents both equations and edges. Otherwise it should be clear from the names which symbolic type corresponds to which constructor\(^2\). Moreover, the arguments to the symbolic types in Listing 3.2 relates to the fields of the types in Listing 3.1, by their ordering (except for \texttt{eande}). The type \texttt{<Real>} in Modelyze (DILL) corresponds to both \texttt{Expr SVar} and \texttt{Expr HSVar}, where \texttt{der} denotes the first order derivative and \texttt{pre} corresponds to \texttt{LeftLim}. The real numbers \texttt{Real} and operators over real number in Modelyze extends to \mathbb{R}^* by default.

\texttt{def x, y, z: <Real>;} \hline
\texttt{1 + x + der y - pre z}

\textbf{Listing 3.3: Expression in Modelyze (DILL).}

\texttt{((Const 1) + (Var (Curr (D_0 x)))) + (Var (Curr (D_1 y)))}
\texttt{= (Var (LeftLim (D_0 z)))}

\textbf{Listing 3.4: Corresponding expression in λ_{DILL}.}

Listing 3.3 shows an expression of type \texttt{<Real>} in DILL and Listing 3.4 shows the corresponding expression of type \texttt{Expr HSVar} in λ_{DILL}. The \texttt{def} expression in Listing 3.3 binds unique symbols, representing dependent variables, to the variables \texttt{x, y} and \texttt{z}.

\(^2\)We use a dynamic type for the return type in the thunk of the switch. This done to circumvent an issue with restrictive typechecking.
Because Modelyze uses an eager evaluation strategy, we use a thunk in the third argument to the switch type on line 2 in Listing 3.2, to prevent premature evaluation of the third argument of switch.

Thus we incorporate Modelyze’s existing representation of equations and topological elements into our implementation of a mode.

```
Mode V ::= eqs Eqs V
  | ieqs Ieqs V
  | edge X X N N
  | nil
  | (;) (Mode V) (Mode V)
```

Listing 3.5: A mode in λ_{DILL}.

```
def (=) : <Real> -> <Real> -> Equations
def (<) : <Real> -> <Real> -> Equations
def nmil : () -> Equations
def (;) : Equations -> Equations -> Equations

def nil = nmil ()
```

Listing 3.6: A mode in DILL.

We restate the data type representing a mode in λ_{DILL} in Listing 3.5. In Listing 3.6, we show its implementation in Modelyze. The symbolic types on line 1 to 5 are analogous to the terms on the corresponding lines in Listing 3.5. On line 7, we define an alias we will encounter in later examples.

3.2 Connection Semantics

In this section we present our implementation of the function `elab_topology`, whose functionality we defined in Listing 2.16. We convenience, we restate this functionality here in Listing 3.7.

```
elab_topology : Topology -> (Eqs SVar)⊥
```

Listing 3.7: Function defining connection semantics.

This function is responsible for associating a topological description of a model with a set of topological equations. We call this function as part of the elaboration (see Figure 2.3).
As discussed previously (Section 1.1 and 1.5), there exist several methods for deducing the topological equations. We choose a connection semantics based on linear graph theory [3, 30, 37]. We restrict ourselves to the domain of analog electric circuits and one-dimensional mechanical problems but this method generalizes to multi-domain problems in higher dimensions.

Table 3.1: Across and through variables for the electrical domain and the domain of rotational mechanics.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Across</th>
<th>Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Potential</td>
<td>Current</td>
</tr>
<tr>
<td>Rot. Mechanics</td>
<td>Rotation</td>
<td>Torque</td>
</tr>
</tbody>
</table>

In this connection semantics, we represent a topology by a directed graph, where we associate the dependent variable of each constitutive equation (e.g. component) with an edge. We identify physical quantities as being either across or through -variables. In Table 3.1 we define the choice of across and through variables of the Trent analogy, which we adopt in our model definitions in chapter 4. Across variables represent physical quantities measured in parallel, and through variables represent physical quantities measured in series, with a component.

The direction of the edge determines the polarity of such a measurement. The choice of across and through variables determines the graph representation of a system topology, and is usually chosen so that the two resembles each other. Using the choices of across and through variables defined by Table 3.1, we give the graph of the RLD-circuit (Figure 3.1) in Figure 3.2.

We state the in Algorithm 2, the algorithm defining the connection semantics. We explain this algorithm by discussing its application to...
Algorithm 2: Connection Semantics

Data: Directed graph $G = (E, V)$, of e edges and v nodes, describing the topology of the model, where we associated each edge $(t, a) \in E$ with a through (t) and across (a) variable.

Result: e topological equations

1. enumerate edges and vertices;
2. form incidence matrix I;
3. form A' by performing Gaussian elimination on I;
4. form $B' = [B_c, \text{Id}_{v-1}]$, t' and a' by removing zero-rows and switching columns;
5. form $B' = [B_c, \text{Id}_{v-1}]$, where $B_c = -A_T$;
6. form e topological equations from $A't' = 0$ and $B'a' = 0$;

The input to this algorithm is the graph G depicted in Figure 3.2. A proof on the correctness of this algorithm is out of scope for this thesis. For a more thorough discussion we refer to Andrews [3] and Chen [15].

The input to this algorithm is the graph G depicted in Figure 3.2.

$$I = \begin{pmatrix} L & D & R & V \\ 1 & 0 & 0 & 1 & 1 \\ 2 & 1 & -1 & -1 & 0 \\ 3 & -1 & 1 & 0 & -1 \end{pmatrix} \quad (3.1)$$

In step 1 and 2 in Algorithm 2, we enumerate the edges and nodes of G and forms the incidence matrix I in (3.1). We enumerate the nodes by their label and the edges by the subscript of their corresponding dependent variables.

![Graph of RLD-circuit depicted in Figure 3.1.](image-url)

Figure 3.2: Graph of RLD-circuit depicted in Figure 3.1.
An incidence matrix I has $I_{ij} = -1$, if edge j points away from vertex i, $I_{ij} = 1$, if edge j points into vertex i, and $I_{ij} = 0$ otherwise.

To deduce the topological equations from the graph of a system we use the vertex and circuit-postulates, which are generalizations of Kirchhoff’s circuit laws. Given a graph, where we associate each edge with an across and a through-variable, the following must hold \cite{37}:

Vertex postulate The oriented sum of through variables associated with edges connected to a vertex must be zero.

Circuit postulate For each closed loop of the graph, the oriented sum of across variables associated with the edges of the loop must be zero.

If we let t be a vector of through variables, enumerated as the columns of I, we can express the vertex postulate as:

\[
It = 0 \quad (3.2)
\]

Using I from (3.1), (3.2) gives:

\[
\begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & -1 & -1 & 0 \\
-1 & 1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
i_L \\
i_D \\
i_R \\
i_V
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \quad (3.3)
\]

By using results from linear graph theory, we can generate independent topological equations from I. We start by performing Gaussian elimination on I, forming the matrix A (step 3 in Algorithm 2).

\[
A = \begin{pmatrix}
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} \quad (3.4)
\]

In our example, the resulting A is that of (3.4). The elementary row operations preserves the relation in (3.3) thus $At = 0$ holds. So far we have managed to produce two linearly independent equations. In order to find the third, we arrange the columns of A to retrieve what is knows as the cutset and circuit-equations. We swap the 2:nd and 3:rd column as well as removing the last row (which only contains zeros and does not give any useful information). This is step 4 in Algorithm 2. In our example, these operations results in the following matrix:
\[A' = \begin{bmatrix} \text{Id}_2 & A_c \end{bmatrix} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \] (3.5)

where \(\text{Id}_2 \) is the \(2 \times 2 \) identity matrix. Swapping columns is equivalent to changing the enumeration of the corresponding edges. Thus we form \(t' = (i_L \ i_R \ i_D \ i_V)^T \) and it then holds that \(A't' = 0 \). We also form a vector \(a' = (u_L \ u_R \ u_D \ u_V)^T \), containing the across variables with the same enumeration as in \(t' \).

Swapping the columns of \(A \) to produce \(A' \) is equivalent to choosing a spanning tree of the corresponding graph (Theorem 2.2 in Chen [15]), where the edges corresponding to the columns of the identity matrix defines the spanning tree. In general there are multiple ways of forming \(A' \) given \(A \). Equivalently, we can choose multiple spanning trees of the graph of \(A \). The choice of spanning tree affects the form of the resulting topological equations and thus is a source for optimization. Here we will suffice to find some \(A' \), allowing us to find a sufficient number of topological equations (Corollary 2.9 in Chen [15]).

From \(A't' = 0 \) we get \(v - 1 \) linearly independent cutset-equations. The theory of linear graphs allows us to retrieve the \(e - v + 1 \) remaining, linearly independent circuit-equations, directly from \(A' \). From the circuit postulate and the principle of orthogonality [3], it holds that \(B'a' = 0 \), where \(B' = [B_c \ \text{Id}_{e-v+1}] \) and \(B_c = -A_c^T \), and we have \(e \) number of linearly independent equations.

\[B'a' = \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_L \\ u_R \\ u_D \\ u_V \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \] (3.6)

We form \(B' \) at step 5 in Algorithm 2, in our example resulting in \(B' \) given by (3.6).

\[i_L - i_D + i_V = 0 \]
\[i_R + i_V = 0 \]
\[u_L + u_D = 0 \]
\[-u_L - u_R + u_V = 0 \] (3.7)

In conclusion, the connection semantics results in the topological equations in (3.7), which is step 6 in Algorithm 2 and we can verify that (3.7) fulfills Kirchhoff’s circuit laws.
3.3 Impulse Solving

In Chapter 2 we defined the functionality of a function performing impulse solving, restated here in Listing 3.8. This function takes as arguments the DAE of the predecessor mode and the values on the state variable just before the mode switch. The function should return a tuple containing the values on the state variable at the time of the mode switch and consistent initial values for the DAE of the successor mode.

\[
\text{solve_impulses : DAE} \rightarrow \text{LState} \rightarrow (\text{LState} \times \text{State})
\]

Listing 3.8: Functionality of impulse solving function.

This function is called at the impulse solving step shown in Figure 2.3. We implement this function by adapting a numerical method based on backwards Euler, proposed by Yuan and Opal [44] for switched nonlinear circuits. We use backwards Euler as it handles impulses and finding subsequent consistent initial value [42]. We describe our implementation through an example.

We begin by stating the implicit Euler approximation for the time derivative in (3.8).

\[
\frac{dx_k}{dt} = \frac{x_k - x_{k-1}}{h}
\]

(3.8)

here \(h \in \mathbb{R} \) is a small positive step-size.

\[
\Theta^n_k = \begin{cases}
1 & \text{if } k = n \\
0 & \text{otherwise}
\end{cases}
\]

(3.9)

\[
\delta^n_k = \frac{d\Theta_k^n}{dt} = \frac{\Theta^n_k - \Theta^n_{k-1}}{h} = \frac{\Theta^n_k}{h}
\]

(3.10)

We can define the discrete version of the Heaviside function as in (3.9). Using (3.8) and (3.9) we can write the discrete Dirac delta function as shown in (3.10). We can observe that \(\delta^n_k = 0 \) if \(n \neq k \) and that \(\delta^n_k \to \infty \), if \(h \to 0 \) and \(k = n \) as we expect from the Dirac delta function. Note that to view \(\delta^n_k \) as a point-wise approximation of \(\delta(x-a) \) is not sensible, as approximating an unbound value with a bound value would lead to an unbound error. We should rather use \(\delta^n_k \) to determine if an impulse has occurred between the step \(k \) and \(k - 1 \). The condition of an impulse on a state variable \(x = x(h) \) is that \(x(h) \to \pm \infty \) when \(h \to 0 \).

For our example, we once again consider the switched RLD-circuit defined in Figure 1.5 in Section 1.4.2. Assume that the electrical switch...
opens at \(t = t_s \). For each state variable \(x \), let \(x^- \) denote the known left limit on the solution of \(x \) right before the mode switch occurs. Let \(x^0 \) denote the unknown value of \(x \) at the moment of the mode switch. Let \(x^+ \) denote the unknown value on the state variable right after the mode switch. We use \(x^+ \) as initial values for the successor mode.

After the mode switch, we see the resulting systems of equations, rewritten using backwards Euler with a small positive step \(h \) in Equation (3.11).

\[
\begin{align*}
 u_{V,h} &= V \\
 u_{R,h} &= R \cdot i_{R,h} \\
 i_{L,h} &= \frac{h}{L} \cdot u_{L,h} + i_{L}^- \\
 u_{L,h} &= -u_{D,h} \\
 i_{D,h} &= i_{V,h} = i_{R,h} = i_{L,h} = 0
\end{align*}
\] (3.11)

We can solve (3.11). Specifically, we get the result \(u_{L,h} = -\frac{L}{h} \cdot i_{L}^- \) which implies \(u_{D,h} = \frac{L}{h} \cdot i_{L}^- \). We can conclude that we have a positive impulse on \(u_{L,h} \) as \(u_{L,h} \to \infty \) when \(h \to 0 \). Similarly, we have a negative impulse on \(u_{D,h} \).

To find the consistent initial values, we could take another step forward. However, the error would be proportional to the step-size \(h \). To improve this proportion to \(h^2 \), we can instead take a step \(-h\) backwards, as shown by Yuan and Opal [44], to calculate \(x^+ \).

\[
\begin{align*}
 u_{V}^+ &= V \\
 u_{R}^+ &= R \cdot i_{R}^+ \\
 i_{L}^+ &= \frac{-h}{L} \cdot u_{L}^+ + i_{L,h} \\
 u_{L}^+ &= -u_{D}^+ \\
 i_{D}^+ &= i_{V}^+ = i_{R}^+ = i_{L}^+ = 0
\end{align*}
\] (3.12)

In (3.12) we show the system of equations of the backwards step. The solutions to (3.12) are:

\[
\begin{align*}
 u_{V}^+ &= V \\
 i_{V}^+ &= i_{R}^+ = i_{L}^+ = i_{D}^+ = u_{R}^+ = u_{L}^+ = u_{D}^+ = 0
\end{align*}
\]

Our semantics requires defined values for all state variables present in the boundaries defining the valid region of a switch. We use the
value of x^+ for any x not having an impulse at the mode switch. Thus we form x^0 as shown in (3.13).

$$x^0 = \begin{cases}
 x^+ + \infty & \text{if positive impulse} \\
 x^+ - \infty & \text{if negative impulse} \\
 x^+ & \text{otherwise}
\end{cases} \quad (3.13)$$

In our example we get the following values on the state variables at the mode switch:

$$u_V^0 = V$$
$$u_L^0 = \infty$$
$$u_D^0 = -\infty$$
$$i_V^0 = i_R^0 = i_L^0 = i_D^0 = u_R^0 = 0$$

The value $-\infty$ on u_D^0 will result in another mode switch, when the diode switches from reversed biased to forward biased. For completeness we show the impulse solving of this second mode switch. For brevity, we do not include the resistor and voltage source.

$$i_{L,h} = \frac{h}{L} \cdot u_{L,h} + i_L^- \quad u_{L,h} = -u_{D,h}$$
$$i_{L,h} = i_{D,h} \quad u_{D,h} = \beta \quad (3.14)$$

$$i_L^+ = -\frac{h}{L} \cdot u_L^+ + i_{L,h} \quad u_L^+ = -u_D^+$$
$$i_D^+ = i_C^+ \quad u_D^+ = \beta \quad (3.15)$$

The forward step results in the system of equations in (3.14), and the backwards step those in (3.15). From (3.14) and (3.15), we get the following solutions:

$$i_D^+ = i_L^+ = \frac{h}{L} \cdot \beta - \frac{h}{L} \cdot \beta + i_L^- = i_L^-$$
$$u_D^+ = \beta$$
$$u_L^+ = -\beta \quad (3.16)$$

As there are no impulses present, (3.16) are also the values on the state variables at the mode switch. Further, the model is now stable and solving of the appropriate CDAE can proceed with initial values given by (3.16).
3.3.1 Solving Backwards Euler and Detecting Impulses

In general we have to find a solution to a system of non-linear equations when finding solutions in the forward and backwards steps. In our implementation, we find the solution numerically using the KINSOL\(^3\) solver suite. Moreover the condition that an impulses occurs on a state variable \(x = x(h) \), if \(x(h) \to \pm\infty \) when \(h \to 0 \), cannot easily be treated by means of symbolic manipulation. In our implementation we try to find these impulses numerically.

3.3.2 Undefined State Variables and Equations

The successor mode might contain dependent variables, undefined in the predecessor mode. Any equation containing the derivative of such a dependent variables will also be undefined during the forward step in the impulse analysis. Thus we exclude these equations before we proceed with impulse solving.

3.3.3 High Index Problems & Backwards Euler

The backwards Euler discretization scheme applied in our impulse solving is not suitable for higher index DAEs [22, 29]. We could try to apply index reduction to our problem before the impulse solving. However, consider the following problem discussed by Benveniste et al. [6].

\[
\begin{align*}
\frac{d\omega_1}{dt} &= \alpha_1 \omega_1 + \beta_1 r_1 \\
\frac{d\omega_2}{dt} &= \alpha_2 \omega_2 + \beta_2 r_2 \\
\omega_1 &= \omega_2
\end{align*}
\] \hspace{1cm} (3.17)

where \(\alpha_{1,2} \) and \(\beta_{1,2} \) are constants. Applying index reduction to (3.17) using Pantelides algorithm yields (3.18).

\[
\begin{align*}
\frac{d\omega_1}{dt} &= \alpha_1 \omega_1 + \beta_1 r_1 \\
\frac{d\omega_2}{dt} &= \alpha_2 \omega_2 + \beta_2 r_2 \\
\frac{d\omega_1}{dt} &= \frac{d\omega_2}{dt}
\end{align*}
\] \hspace{1cm} (3.18)

\(^3\)https://computation.llnl.gov/projects/sundials/kinsol
Solving (3.18), after applying the backwards Euler scheme using KIN-SOL with $\alpha_1 = -0.1$, $\alpha_2 = -0.2$, $\beta_1 = 0.3$, and $\beta_2 = 0.4$; initial guesses $\omega_1 = 1$, $\omega_2 = 2$, and $\tau_1 = \tau_2 = 0$ gives the result in Table 3.2.

<table>
<thead>
<tr>
<th>ω_1</th>
<th>ω_2</th>
<th>τ_1</th>
<th>τ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>-4.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 3.2: An approximate solution to (3.18).

This result is clearly not consistent with (3.17) as $1 \neq 2$. The algebraic constraint $\omega_1 = \omega_2$ is not present in (3.18) but appending this constraint to (3.18) would make this system over-determined. Finding approximate solutions to over-determined systems could be attempted using for example Gauss-Newton methods [24]. Moreover, introduction of new state variables, in the form of higher order derivatives as a result of the index reduction, has to also be considered for high index problems.

We leave combining impulse solving and high index problems as future work and refrain from performing index reduction during the impulse solving in our implementation. In effect this limits us to index 1 problems when we want to apply impulse analysis. This is a severe limitation in the implementation but we deem our implementation sufficient to evaluate the semantics of Chapter 2.
Chapter 4

Evaluation

In this chapter, we evaluate our implementation by modeling and simulating a set of structurally varying system as hybrid models. In all simulations we have used at step-size $h = 0.01$.

We mainly define models in a EOOs manner, building the models from models of their individual components placed in a model topology. Later on we will also discuss two non EOO, one-dimensional, mechanical models, exposing some weaknesses in our semantics. However, we start with the good news.

Table 4.1: Across and through variables for the electrical domain and the domain of rotational mechanics.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Across</th>
<th>Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Potential</td>
<td>Current</td>
</tr>
<tr>
<td>Rot. Mechanics</td>
<td>Rotation</td>
<td>Torque</td>
</tr>
</tbody>
</table>

We will discuss hybrid EOO models from two different domains, the electrical domain and the domain of rotational mechanics. Table 4.1 shows the definitions of across and through variables, discussed in Section 3.2, for these two domains.

We start by defining a model of a dissipator in Listing 4.1. The last two arguments p and n, on line 1, are two nodes in the model topology. The `Branch` construct defines a directed edge from n to p and associates the through and across variables t and a to this edge. On line 4, we state the constitutive equations of the component.
def Dissipator(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 eande (Branch t a p n;
 C * a = t)
}

def Damper = Dissipator
def Resistor = (fun R: Real -> Dissipator (1. / R))

Listing 4.1: DILL model of a dissipator.

We defined the interpretation of the dissipator in our two domains on line 8 to 9; a damper, in the domain of rotational mechanics, and a resistor in the electrical domain. The anonymous function on line 9 is there to ensure that the constitutive equations of the resistor follows the convention $u = R \cdot i$. The dissipator is a single-mode component free from any switches. We define the signature of some additional components in Listing 4.2, which are all single-mode components. Their definitions should be clear from their naming, otherwise refer to Appendix A.

def AcrossGenerator(C: Real, t: Through, a: Across, p: Node, n: Node)
def VoltageSource = AcrossGenerator
def Motor = AcrossGenerator
def ThroughGenerator(C: Real, t: Through, a: Across, p: Node, n: Node)
def CurrentSource = ThroughGenerator
def ConstantForceSpring = ThroughGenerator
def AcrossStorage(C: Real, t: Through, a: Across, p: Node, n: Node)
def Capacitor = AcrossStorage
def Mass = AcrossStorage
def ThroughStorage(C: Real, t: Through, a: Across, p: Node, n: Node)
def Inductor = ThroughStorage
def Spring = ThroughStorage

Listing 4.2: Single-mode components in DILL.

In Listing 4.3 we define a onewaythroughstop, which in the electrical domain corresponds to an ideal diode. The onewaythroughstop does not
have a clear interpretation in the domain of rotational mechanics. In fluid mechanics it models a one-way valve.

The onewaythroughstop defines two modes. We will here describe this component interpreted as a diode. Assuming open is true, \(d \) returns the switch on line 6, acting like a voltage source (line 7) as long as the current is greater than zero. If the current becomes less than or equal to zero, \(d \) is recursively called with the negation of open, thus returning the switch on line 11. This switch acts as a current source outputting zero current, i.e. a perfect insulator (line 12), as long as the voltage is less than the bias voltage.

```python
1 def OneWayThroughStop(bias: Real, open: Bool, t: Through, a: Across,
2                                              p: Node, n: Node) = {
3
4   def d(open: Bool) -> HModel = {
5       if open then
6           switch
7           (AcrossGenerator bias t a p n)
8           (t)
9           (fun thnk: () -> d (!open))
10       else
11           switch
12           (ThroughGenerator 0. t a p n)
13           (bias - a)
14           (fun thnk: () -> d (!open))
15       );
16   d open
17  }
18
19 def Diode = OneWayThroughStop

Listing 4.3: DILL model of a onewaythroughstop (a Diode in the electrical domain).
```

Not to be mistaken by a switch, the Switch model defined in Listing 4.4 models an electrical switch in the electrical domain or a clutch in the domain of rotational mechanics. For simplicity, we will present it as an electrical switch. The AcrossGenerator on line 6 is an anonymous AcrossGenerator with across and through variables hidden from the outside. If open is false, then the switch on line 6 behaves as an voltage source outputting zero voltage, i.e. a perfect conductor. This is true as long as the signal \(s \) on line 8 is less than one. Otherwise the inner function, on line 2, is recursively called in the same manner as for the
One way through stop discussed earlier.

Given open evaluated to true, the inner function returns a switch (line 4), modeling the electrical switch as eande nil which is equivalent to no model at all. Specifically, removing the Branch between n and p. Thus closing and opening the electrical switch results in a change in the models topology. The electrical switch remains open as long as the signal s is greater than zero. It is possible to model the electrical switch by replacing the first field in the switch on line 4 with a perfect insulator. However, we choose the definition in Listing 4.4 to evaluate a changing topology during simulation.

```dill
1 def Switch(open: Bool, s: Signal, p: Node, n: Node) = {
2   def sw(open: Bool) -> HModel = {
3     if open then
4       switch (eande nil) (s) (fun thk: () -> sw (!open))
5     else
6       switch
7       (AcrossGenerator 0. p n)
8       (1. - s)
9       (fun thk: () -> sw (!open))
10    }; sw open
11  }
12  }
13  def ElectricalSwitch = Switch
14  def Clutch = Switch
```

Listing 4.4: Switch model in DILL.

4.1 LCD-Circuit

We start our set of example systems with the circuit discussed by Lee [25] and depicted in Figure 4.1. This circuit contains a diode, a resistor, and a capacitor. Given an initial positive current i, negative voltage u_C, and positive voltage u_L, the diode will initially be forward biased and the model will behave as an LC-circuit. In an LC-circuit the current oscillates around zero as the capacitor and inductor alternately stores and releases energy into the circuit.

In the LCD-Circuit, however, as the current reaches zero, the energy stored in the capacitor reaches its maximum. At the same time, the diode will change from forward biased to reverse biased, preventing any
current from flowing in the circuit. This will lock the charge built up in the capacitor, which will apply a constant positive voltage across the diode and inductor. This ensures that the diode remains reverse biased. As the current instantly stops flowing when it reaches zero, its rate of change will also instantly become zero, resulting in an instant drop in the voltage over the inductor. This simple model provides a basic evaluation of the mode switch semantics, as well as evaluation of the initial values returned from the impulse analysis.

In Listing 4.5 we define a model of the LCD-circuit. This model consists of two modes defined by the Diode component. On line 6 we define nodes in the model topology. Note that we only supply initial values for a subset of the state variable at line 7 to 9 and let the initialization procedure search for consistent initial values for all state variables.

```python
1  def L = 1.
2  def C = 1.
3  def bias = 0.
4
5  def LCD = {
6    def n1, n2, n3: Node;
7    init i_L 1. ++
8    init u_C (-1.) ++
9    init i_D 1. ++
10   Inductor L i_L u_L n1 n2 ++
11   Diode bias true i_D u_D n2 n3 ++
12   Capacitor C i_C u_C n3 n1
13  }
```

Listing 4.5: DILL model of LCD-circuit depicted in Figure 4.1.

We will analyze the expected behavior during the impulse analysis. When the current reaches zero, a mode switch should occur. As a result, the constitutive equation of the diode should change from \(u_D = 0 \) to \(i_D = 0 \).
\[u_{L,h} = L \frac{i_{L,h} - i_{L}}{h} \]
\[i_{C,h} = C \frac{u_{C,h} - u_{C}}{h} \]
\[i_{D,h} = 0 \]

\[i_{D,h} = i_{L,h} = i_{C,h} \]
\[u_{D,h} = -u_{C,h} - u_{L,h} \]

In (4.1) and (4.2), we state the expected system of equations of the forward step in the impulse solving, where \(h > 0 \) is the step-size. In (4.1) we list the constitutive equations and in (4.2) the topological equations. Solving (4.1) together with (4.2) gives us the solutions:

\[i_{D,h} = i_{L,h} = i_{C,h} \]
\[u_{D,h} = -u_{C,h} - u_{L,h} \]

Because \(i_{L} \) should be close to zero (ideally identical to zero), we should not have any impulse on \(u_{D,h} \), and the model should be stable. Note, however, in practice and for numerical reasons that \(i_{L} \) will have a small positive or negative value, depending on whether the simulation approaches zero from above or below. Problems can arise if \(h \ll i_{L} \), which might result in a false impulses on \(u_{D} \). Next we take a backwards step \(-h\).

\[u_{L} = L \frac{i_{L}^{+} - i_{L,h}}{-h} \]
\[i_{C}^{+} = C \frac{u_{C}^{+} - u_{L,h}}{-h} \]
\[i_{D}^{+} = 0 \]

\[i_{D}^{+} = i_{L}^{+} = i_{C}^{+} \]
\[u_{D}^{+} = -u_{C}^{+} - u_{L}^{+} \]

The solution to (4.4) together with (4.5) are:

\[i_{D}^{+} = i_{L}^{+} = i_{C}^{+} = 0 \]
\[u_{C}^{+} = u_{C} \]
\[u_{L}^{+} = 0 \]
\[u_{D}^{+} = u_{C} \]
which is within the valid region of the diodes switch and simulation should proceed in continuous time. We plot the simulation trace for relevant dependent variables in Figure 4.2. We can see that the simulation trace indeed behaves as expected.

4.2 Switched RLD-Circuit

Our next system to evaluate is the switched RLD-circuit (Figure 4.3), which we have discussed extensively throughout this thesis (in particular, see Section 1.4.2 and Section 3.3). This model is interesting to evaluate as it contains both a change in topology and a mode switch, resulting from an impulse during the same model time instant. Opening the electric switch at time 3 should result in a voltage impulse over the diode. This should change the diode from reverse biased to forward biased, in turn creating a circuit consisting of the inductor and the diode. Moreover, the diode should apply its constant forward bias voltage over the inductor, which should lead to a linear decrease in current as the inductor releases its energy into this newly formed circuit. Physically, as the inductor is an energy storing component, we expect the current over the inductor to be continuous over time.
We define our model of this system in Listing 4.6. The UnitStep component on line 12 makes the signal \(s \) remain zero until the model time is equal to \(t_s \), at which time \(s \) is instantly changed to one. The signal \(s \) in turn opens the ElectricalSwitch on line 15.

```plaintext
1 def L = 1.
2 def R = 1.
3 def V = 1.
4 def bias = 0.7
5 def t_0 = 0.
6 def t_s = 3.
7
8 def LRD = {
9    def n1, n2, n3, n4: Node;
10   init i_L 0. ++
11   init u_D (-1.) ++
12   UnitStep t_0 t_s s ++
13   VoltageSource V i_V u_V n1 n4 ++
14   Resistor R i_R u_R n1 n2 ++
15   ElectricalSwitch false s n2 n3 ++
16   Inductor L i_L u_L n3 n4 ++
17   Diode bias false i_D u_D n4 n3
18 }
```

Listing 4.6: DILL model RLD-circuit with inner LD-circuit depicted in Figure 4.3.

As we can see from the simulation trace in Figure 4.4, we indeed get a step on the voltage over the diode and inductor at model time 3 when the electrical switch opens. Thereafter, as expected, the current through the inductor decreases linearly to zero.

Finally, as we expect, the diode changes into reverse bias between time 4 and 5, resulting in all currents and voltages being identically
As a variant to the switched RLD-Circuit in Figure 4.3, we also evaluate the RLD-Circuit depicted in Figure 4.5. Here the resistor is part of the loop formed after the diode flips from reverse bias to forward bias. We define a model of this circuit in Listing 4.7. Note here that the nature of EOO language allows us to define this new model simply by changing the way we connect the components. We expect this model to behave similarly to the model in Figure 4.6, but instead of a linear decrease in the current after time 3, we should see an exponential decay. This

Figure 4.4: Simulation trace of switched RLD-circuit model with inner LD-circuit in Listing 4.6.

Figure 4.5: Switched RLD-circuit with inner RLD-circuit.
due to the voltage over the inductor decreasing rather than remaining constant. We can verify this behavior from the plot in Figure 4.6.

```python
1 def L = 1.
2 def R = 1.
3 def V = 1.
4 def bias = 0.7
5 def t_0 = 0.
6 def t_s = 3.
7
8 def LRD = {
9   def n1, n2, n3, n4: Node;
10   init i_L 0. ++
11   init u_D (-1.) ++
12   UnitStep t_0 t_s s ++
13   VoltageSource V i_V u_V n1 n4 ++
14   ElectricalSwitch false s n1 n2 ++
15   Resistor R i_R u_R n2 n3 ++
16   Inductor L i_L u_L n3 n4 ++
17   Diode bias false i_D u_D n4 n2
18 }
```

Listing 4.7: DILL model of switched RLD-circuit with inner RLD-circuit depicted in Figure 4.5.

4.3 Two Bodies Connected By a Clutch

Our second physical domain is the domain of rotational mechanics. We will evaluate a system in this domain that consists of two rotating bodies joined together by a clutch. A hybrid model of this system was first discussed by Benveniste et al. [6], although not modeled as an EOO model. The bodies have some mass and are also damped. Here we consider the model where the clutch is initially open and the two bodies rotate with different initial values on their angular velocities. At some time instant, the clutch will close and the two bodies will instantly have the same angular velocity. After some additional time the clutch once again opens. We depict this system in Figure 4.7. To show why this system is interesting to evaluate we will analytically analyze its behavior.
The constitutive equations in (4.7) and the topological equations in (4.8) makes up the DAE of the mode before the clutch closes. We can note, as expected, that the system of equations governing each damped body are independent of each other. Solving (4.7) together with (4.8) gives the solutions:
Figure 4.7: Two rotating damped bodies connected through a clutch. Components with subscript 1 represents the first damped body, and components with subscript 2 represents the second damped body.

\[\omega_{D_1}(t) = \omega_{I_1}(t) = \omega_1(t) = \omega_1(0) \cdot e^{-\frac{t}{\tau_1}} \]
\[\tau_{D_1} = -\tau_{I_1} = D_1 \omega_1(0) \cdot e^{-\frac{t}{\tau_1}} \]
\[\omega_{D_2}(t) = \omega_{I_2}(t) = \omega_2(t) = \omega_2(0) \cdot e^{-\frac{t}{\tau_2}} \]
\[\tau_{D_2} = -\tau_{I_2} = D_2 \omega_2(0) \cdot e^{-\frac{t}{\tau_2}} \] \hspace{1cm} (4.9)

where \(\omega_{1,2}(0) \) are the initial values on \(\omega_{1,2} \). We can get the external torque \(\tau_{1,2} \) on each body by the sum \(\tau_{D_{1,2}} + \tau_{I_{1,2}} \), which we can conclude is zero from (4.9). This is what we expect as no external forces act upon the bodies. More interesting is the scenario when we close the clutch. Assume the left-limit of the angular velocities \(\omega_{1,2} \), right before the clutch closes fulfills \(\omega_1^- \neq \omega_2^- \).

\[D_1 \cdot \omega_{D_1} = \tau_{D_1} \quad I_1 \cdot \frac{d\omega_1}{dt} = \tau_{I_1} \]
\[D_2 \cdot \omega_{D_2} = \tau_{D_2} \quad I_2 \cdot \frac{d\omega_2}{dt} = \tau_{I_2} \] \hspace{1cm} (4.10)
\[\omega_{D1} = \omega_1 \quad \tau_{D1} = -\tau_1 \]
\[\omega_{D2} = \omega_2 \quad \tau_{D2} = -\tau_2 \]
\[\omega_F = \omega_{D1} - \omega_{D2} \] (4.11)

We describe this new mode with the constitutive equations in (4.10) and the topological equations in (4.11). The equations involving \(\omega_F \) in (4.10) and (4.11) results from the now closed clutch. Combining these two equations gives us the equation \(\omega_{D1} = \omega_{D2} \), which is inconsistent with the left-limit from the predecessor mode, as we assumed \(\omega_1^- \neq \omega_2^- \). Thus the change in the model topology requires a step on \(\omega_{D1} \) and/or \(\omega_{D2} \) before simulation can proceed. The question is what value to assign to the initial values of \(\omega_{D1} = \omega_{D2} \) in the successor mode.

\[\omega_{1,2}^+ = \frac{I_1 \omega_1^- + I_2 \omega_2^-}{I_1 + I_2} \] (4.12)

Benveniste et al. [6], derived the result in (4.12), using nonstandard analysis and algebraic manipulation. This is the weighted mean of the left-limits of the angular velocities and the moments of inertia.

In Listing 4.8 we define a model of the two damped bodies and a clutch in DILL. On line 10 we define a model for the Bodies. We only need to know the angular velocity of either the Mass (line 20) or the Damper for each rotating body because they are parallel. However, we need both the torque from the Mass and the Damper (line 18) to get the resulting torque on the body as the sum of these torques. We also include the angular momentum on line 19, to examine the behavior of \(t_1 \) and \(t_2 \) when the clutch closes. The TwoUnitSteps model on line 28 controls the closing and opening of the Clutch model on line 31.

We depict the simulation trace of the model defined in Listing 4.8 in figure 4.8a, where \(\text{mean} \) is:

\[\frac{I_1 \omega_1 + I_2 \omega_2}{I_1 + I_2} \]
def o_1_0 = 3.
def o_2_0 = 5.
def I_1 = 2.5
def D_1 = 0.7
def I_2 = 1.5
def D_2 = 0.5
def t_0 = 0.
def t_s = 2.

def Body(I: Real, D: Real, o_0: Real, t: Torque, o: AngularVelocity, L: AngularMomentum, p: Node, n: Node) = {
 def t_m, t_d: Torque;
 def o_m, o_d: AngularVelocity;
 init o_m o_0 ++
 mode(
 t = t_m + t_d;
 der L = t;
 o = o_m
) ++
 Mass I t_m o_m p n ++
 Damper D t_d o_d p n
}

def ClutchModel = {
 def n1, n2, n3: Node;
 TwoUnitSteps t_0 t_s (2. * t_s) s ++
 Body I_1 D_1 o_1_0 t_1 o_1 L_1 n1 n2 ++
 Body I_2 D_2 o_2_0 t_2 o_2 L_2 n1 n3 ++
 Clutch true (1. - s) n2 n3
}

Listing 4.8: DILL model of the two damped bodies connected by a clutch depicted in Figure 4.7.

We can verify from the simulation trace that the initial values of the predecessor mode after the clutch closes initializes as given by (4.12). It is also possible to verify this behavior analytically by solving the impulse analysis procedure explicitly. We have also manually added impulse arrows for the torques, which we derived from the simulation trace of the angular momentum shown in Figure 4.8b. This trace also ensures us that energy is conserved in the system.
4.4 Bouncing Ball

Next we consider a simple one-dimensional mechanical problem, sometimes used as a “Hello World” problem in the field of Hybrid Systems modeling. This system consists of a body (we assume its mass is unity)
dropped from some height y, say y_0, and that is subject to the downwards gravitational force g. The body will begin to fall, accelerating because of the gravitational force. When the body reaches $y = 0$, we assume an inelastic collision with the floor, where the body loses a portion of its kinetic energy. This will result in the body bouncing back up, but at a lower magnitude of velocity, hence we call this model a bouncing ball. In Figure 4.9, the left-hand side depicts the body some time before it reaches the floor and the right-hand side depicts the body just after the collision has occurred.

In Listing 4.9 we define a first attempt to model this system. The constant e, called the coefficient of restitution, governs the amount of kinetic energy lost at collision. The model fall (line 4) models the behavior of the body when it falls and floor (line 12) models its behavior as it hits the floor.

The final model bouncing_ball on line 20 represents the complete system. Initially bouncing_ball behaves as fall, as defined on line 22. When y becomes less or equal to zero, the switch on line 21 switches to the switch on line 24 and bouncing_ball now behaves as floor, as given on line 25. This is true as long as the acceleration a is greater than zero. Because the velocity v will change sign, we expect an impulse on a. When this impulse has died out we want to immediately recursively call bouncing_ball once again to make it behave as fall, as given on line 22. Hence floor should never appear in continuous time and only ensure that the velocity gets set to its proper value. This an example of where we want to introduce a transient state that changes the physical system. However, simulating bouncing_ball fails.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{bouncing_ball.png}
\caption{Bouncing ball}
\end{figure}
def g = 9.81
def e = 0.7

def fall(y: Real, v: Real, a: Real) = {
ed_ande (der y = v;
der v = a;
a = -g)
}

def floor(y: Real, v: Real, a: Real) = {
ed_ande (v = -e * pre v;
der y = v;
der v = a)
}

def bouncing_ball(y: Real, v: Real, a: Real) -> HModel = {
switch
(y)
(fall y v a)

(fun t:() -> switch
(floor y v a)
(a)
(bouncing_ball y v a))

Listing 4.9: First attempt to model the bouncing ball system depicted in Figure 4.9 in DILL.
To see why, we look a bit closer on the impulse analysis for this model. In Equation (4.13) we state the forward step of the impulse solving, as we come from the free-falling mode to the floor mode, which has the following solution:

\[
v_h = -ev^-
\]

\[
a_h = \frac{v_h - v^-}{h}
\]

\[
v_h = \frac{y_h - y^-}{h}
\]

\[
v^+ = -ev^-
\]

\[
a^+ = \frac{v^+ - v_h}{-h}
\]

\[
v^+ = \frac{y^+ - y_h}{-h}
\]

(4.13)

(4.14)

We see that we have a positive impulse on \(a\) as \(a_h \to \infty\) if \(h \to 0\). Solving (4.14) gives us the solutions:

\[
v^+ = -ev^- \quad y^+ = y^- -hev^- \quad a^+ = \frac{-(1 + e)v^-}{h}
\]

which are the values we expect on \(v\) and \(y\). As \(a^+ = 0\), the switch on 24 flips and we set these values as left-limits during the next impulse analysis going from the floor mode to the free-falling mode. Let \(y^{++}, v^{++},\) and \(a^{++}\) denote the solution of \(y, v,\) and \(a\) during the forward step of the impulse solving.
\[
\begin{align*}
\dot{a}_h &= -g \\
\dot{a}_h &= \frac{v'_h - v^+}{h} \\
\dot{v}'_h &= \frac{y'_h - y^+}{h} \\
\end{align*}
\]
(4.15)

\[
\begin{align*}
a'^+ &= -g \\
a'^+ &= \frac{v'^+ - v'_h}{-h} \\
v'^+ &= \frac{y'^+ - y'_h}{-h} \\
\end{align*}
\]
(4.16)

(4.15) and (4.16) show the forward and backward step during the impulse solving. Together they give the solution to \(y'^+, v'^+, \text{ and } a'^+\) as:

\[
v'^+ = v^+ = -ev^- \quad y'^+ = y^+ - h^2 g = y^- - h^2 g \quad a'^+ = -g
\]

Thus, we can see that the backwards Euler approximation introduces an error on \(y'^+\), proportional to \(h^2\) that in this case makes the simulation enter a Zeno state of non-termination. This analysis also shows the importance of the left-limit being within the valid region, when coming from the continuous simulation. If \(y^-\) were not inside the valid region, the same problem would occur even if the error term \(-h^2 g\) were not present.

Moreover, if we would not allow this transient state to change the left-limit as defined on line 12 in Listing 2.40, \(v^+\) in Equation (4.15) would be \(v^-\) rather than \(-ev^-\), which in essence would make the collision disappear.

To side-step the problem of the impulse analysis we can reformulate the model in Listing 4.9 to the model defined in Listing 4.10. Here, we have introduced a new model construct \texttt{reinit} on line 5 to 7, which explicitly defines the initial values in the successor mode. In this model, the \texttt{reinit}'s are parameterized and assigned values on line 20. We are able to successfully simulate the bouncing ball model as shown in Figure 4.10.
A problem with this approach, however, is that it hides any impulses occurring as a result of jumps on the state variables. Moreover, in more complex models it might be difficult to determine consistent initial values for the successor mode. Another approach to reduce the sensitivity to numerical errors would be to disregard the notion of valid regions and instead considering directed zero-crossings as conditions for switches to flip. This would allow us to simulate the bouncing_ball model defined in Listing 4.9, because we could define the outermost switch to trigger when y crosses $y = 0$ from above. Then the error from the impulse solving would only put the ball slightly further below $y = 0$, which would not trigger an additional mode switch.

Moreover, the switch feels inconvenient when we want to include impulse events, as the choice of valid region on the switch on line 26 in Listing 4.9 is rather forced. A better approach would be something similar to the approach taken by Zimmer [45], where we include a construct that defines a mode active for just one micro-step.
4.5 Summary

We end this chapter with a summary of the evaluated hybrid systems we have discussed.

LCD-Circuit We model and simulate a circuit containing a diode, capacitor and inductor (Figure 4.1). The diode is initially forward biased and as the current through the diode reaches zero the diode becomes reverse biased resulting in a step on the voltage over the inductor. We define a model for this system in Listing 4.5 which results in a simulation trace (Figure 4.2) that behaves as expected.

Switched RLD-Circuit We model and simulate two circuits containing a voltage source, a resistor and an inductor, in addition to an electrical switch and a diode placed in parallel with the inductor (Figure 4.3 and 4.5). The electrical switch is initially closed and assumed to open at some point in time. The diode is initially reverse biased. The instant voltage drop resulting from opening the switch will induce a voltage over the inductor, which in turn...
will make the diode forward biased, allowing current to flow in the diode-inductor loop and preventing the occurrence of a voltage impulse over the inductor. We define models for these two systems in Listings 4.6 and 4.7. The simulation trace for these two models, shown in Figure 4.4 and 4.6, behaves as expected.

Two Bodies Connected by a Clutch We model and simulate a mechanical system consisting of two rotating damped bodies, shown in Figure 4.7. We assume that the clutch is initially open and closes at some point in time. We also assume that the two bodies have non-equal angular velocities right before the clutch closes. From previous results we expect an impulse on the external torques on the bodies and that the angular velocity of the bodies changes to the weighted mean given by Equation (4.12), as the clutch closes. The simulation traces shown in Figure 4.8 behaves as expected.

Bouncing Ball This mechanical system consists of a ball, initially dropped at some height above the ground and subject to inelastic collision when it reaches the ground, resulting in the ball bouncing back up in the air. A first model of this system, including impulse analysis, is defined in Listing 4.9. Simulation of this model fails due to approximation errors in the impulse solving implementation. For comparison, we define a model where the impulse analysis is ignored and consistent initial values are specified explicitly, in Listing 4.10. Simulation of this model results in a correct simulation trace as shown in Figure 4.10.
Chapter 5

Conclusion

5.1 Future Work

We propose the following research topics in no particular order, for future research on dynamic EOO hybrid modeling language.

- Investigating the replacement of valid regions, with mode switch conditions based on directed zero-crossings, to reduce sensitivity to numerical errors.

- Extending λ_{DILL}, with a construct for explicitly defining transient modes changing state variables, and further investigations on a sound theory of such behavior in hybrid models.

- Extending the impulse solving, discussed in Section 3.3, to problems of higher index.

- Extending λ_{DILL} with error handling, and analyzing the correctness of λ_{DILL}.

- Evaluation of the expressiveness of λ_{DILL} with regards to systems exhibiting impulsive friction.

5.2 Conclusion

This thesis has discussed hybrid semantics in equation-based modeling languages. In particular we have discussed hybrid EOO languages, with dynamic elaboration and dynamic equation transformation. We
have formalized a hybrid semantics and implemented it as part of a hybrid EOO language. This formalization includes the adaption of impulse analysis (Section 1.4.3), from the theory of non-linear circuits extended to allow models of inelastic collision. We evaluated the expressiveness of the implementation on a set of structurally varying systems in the electrical and mechanical domain. From the evaluation, we conclude that λ_{DILL} is able to express several circuits, or circuit like systems, where impulses and discontinuities are integral parts of the systems behavior. However, the semantics suffers from sensitivity to numerical errors and the implementation is not able to express inelastic collision in a satisfactory manner. The current implementation of impulse analysis cannot handle higher index problems.
Bibliography

Appendix A

Model Source

/*
Modeling Kernel Language (Modelyze) library
Copyright (C) 2010-2012 David Broman

Modelyze library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Modelyze library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with Modelyze library. If not, see <http://www.gnu.org/licenses/>.

written by Oscar Eriksson oerikss@kth.se
*/

#include DILL

type Through = <Real>
type Across = <Real>
type Time = <Real>
type Signal = <Real>
type Current = Through
type Voltage = Across
type Torque = Through
type AngularMomentum = Across
type AngularVelocity = Across

def Clock(t_0: Real, t: Time) = {
 init t t_0 ++
 eande (der t = 1.)
}

def UnitStep(t_0: Real, t_s: Real, s: Signal) = {
 def t: Time;
 Clock t_0 t ++
 switch
 (init s 0. ++ eande (s = 0.))
 (t_s - t)
 (fun thk: () -> (init s 1. ++ eande (s = 1.)))
}

def TwoUnitSteps(t_0: Real, t_s1: Real, t_s2: Real, s: Signal) = {
 def t: Time;
 Clock t_0 t ++
 switch
 (init s (-1.) ++ eande (s = -1.))
 (t_s1 - t)
 (fun thk: () -> switch
 (init s 1. ++ eande (s = 1.))
 (t_s2 - t)
 (fun thk: () -> (init s (-1.) ++ eande (s = -1.))))
}

def Dissipator(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 eande (Branch t a p n;
 C • a = t
)
}

def ADissipator(C: Real, p: Node, n:Node) = {
 def t: Through;
 def a: Across;
 Dissipator C t a p n
}
def Damper = Dissipator
def Resistor = (fun R: Real -> Dissipator (1. / R))
def ADamper = ADissipator
def AResistor = (fun R: Real -> ADissipator (1. / R))

def AcrossGenerator(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 init a C ++
 eande (
 Branch t a p n;
 a = C
)
}

def AAcrossGenerator(C: Real, p: Node, n: Node) = {
 def t_AG: Through;
 def a_AG: Across;
 AcrossGenerator C t_AG a_AG p n
}

def VoltageSource = AcrossGenerator
def Motor = AcrossGenerator
def Conductor = AcrossGenerator 0.
def FixedAxis = AcrossGenerator 0.
def AVoltageSource = AAcrossGenerator
def AMotor = AAcrossGenerator
def AConductor = AAcrossGenerator 0.
def AFixedAxis = AAcrossGenerator 0.

def ThroughSensor(t: Through, p: Node, n: Node) = {
 def a: Across;
 AcrossGenerator 0. t a p n
}

def CurrentSensor = ThroughSensor
def TorqueSensor = ThroughSensor

def ThroughGenerator(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 eande (
 Branch t a p n;
 t = C
)
}
def AThroughGenerator(C: Real, p: Node, n: Node) = {
 def t_TG: Through;
 def a_TG: Across;
 ThroughGenerator C t_TG a_TG p n
}

def CurrentSource = ThroughGenerator

def ConstantForceSpring = ThroughGenerator

def Insulator = ThroughGenerator 0.

def FreeAxis = ThroughGenerator 0.

def ACurrentSource = AThroughGenerator

def AConstantForceSpring = AThroughGenerator

def AInsulator = AThroughGenerator 0.

def AFreeAxis = AThroughGenerator 0.

def AcrossSensor(a: Across, p: Node, n: Node) = {
 def t: Through;
 ThroughGenerator 0. t a p n
}

def VoltageSensor = AcrossSensor
def AngularVelocitySensor = AcrossSensor

def AcrossStorage(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 eande (Branch t a p n;
 C * (der a) = t
)
}

def AAcrossStorage(C: Real, p: Node, n: Node) = {
 def t: Through;
 def a: Across;
 AcrossStorage C t a p n
}

def Mass = AcrossStorage

def Capacitor = AcrossStorage

def AMass = AAcrossStorage

def ACapacitor = AAcrossStorage

def ThroughStorage(C: Real, t: Through, a: Across, p: Node, n: Node) = {
 eande (
Branch t a p n;
C * (der t) = a
}
}

def AThroughStorage(C: Real, p: Node, n:Node) = {
 def t: Through;
 def a: Across;
 ThroughStorage C t a p n
}

def Spring = ThroughStorage
def Inductor = ThroughStorage
def ASpring = AThroughStorage
def AInductor = AThroughStorage
def OneWayThroughStop(bias: Real, open: Bool, t: Through, a: Across, p: Node, n: Node) = {
 def d(open: Bool) -> HModel = {
 if open then
 switch
 (AcrossGenerator bias t a p n) (t)
 (fun thnk: () -> d (!open))
 else
 switch
 (ThroughGenerator 0. t a p n) (bias - a)
 (fun thnk: () -> d (!open))
);
 d open
}

def AOneWayThroughStop(bias: Real, open: Bool, p: Node, n:Node) = {
 def t: Through;
 def a: Across;
 OneWayThroughStop bias open t a p n
}

def Diode = OneWayThroughStop
def ADiode = AOneWayThroughStop
def Switch(open: Bool, s: Signal, p: Node, n: Node) = {
def sw(open: Bool) -> HModel = {
 if open then
 {
 switch (eande nil) (s) (fun thk: () -> sw (!open))
 }
 else
 {
 switch (AAcrossGenerator 0. p n) (1. - s) (fun thk: () -> sw (!open))
 }
};
 sw open
}

def ElectricalSwitch = Switch
def Clutch = Switch