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Abstract
All herbivorous insects are specialized to some extent to their host plants, but the level of specialization varies greatly.
Insect-plant coevolution is often invoked to explain the large diversity of herbivorous insects, but the role of specialization
during diversification is still controversial. Although well-studied, our understanding of the evolution of species interactions
is still improving, and recent theoretical developments have highlighted the role of generalization (via colonization of
new hosts) on diversification. In this thesis, various approaches are combined for a detailed study of the origins of
macroevolutionary patterns of host use and butterfly diversity. Chapter I provides a mechanistic basis for such patterns
through simulations of lineages evolved in silico. By separating the effects of the number of hosts used by a parasite lineage
and the diversity of resources they encompass, we found that resource diversity, rather than host range per se, was the
main driver of parasite species richness in both simulated and empirical systems. In Chapter II, we combined network and
phylogenetic analyses to quantify support for the two main hypothesized drivers of diversification of herbivorous insects.
Based on analyses of two butterfly families, Nymphalidae and Pieridae, we found that variability in host use is essential
for diversification, while radiation following the colonization of a new host is rare but can produce high diversity. We then
reconciled the two alternative hypotheses into a unified process of host-associated diversification where continuous probing
of new hosts and retention of the ability to use hosts colonized in the past are the main factors shaping butterfly-plant
networks. While network analysis is a powerful tool for investigating patterns of interaction, other methods are necessary
to directly test the mechanisms generating the observed patterns. Therefore, in Chapter III we describe a model of host
repertoire evolution we developed for Bayesian inference of evolution of host-parasite interactions. The approach was
validated with both simulated and empirical data sets. Finally, in Chapter IV we used the method described in Chapter
III to explicitly test the predictions made in Chapter II about the evolution of butterfly-plant networks. We found direct
evidence for the role of expansion of fundamental host repertoire and phylogenetic conservatism as important drivers of
host repertoire evolution. Thus, using three different approaches, we found overall support for the idea that variation in
host use accumulated over evolutionary time is essential for butterfly diversification.
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INTRODUCTION 

All organisms are ecologically specialized to some extent. Herbivorous in-
sects have long served as models for the study of specialization (Futuyma and 
Moreno 1988) because of their impressive diversity and variation in plant 
resource use. This variation resulted in gradients of specialization among in-
dividuals, populations and species (Forister et al. 2015), and has been shown 
to mediate several ecological and evolutionary processes, such as the coex-
istence of competitors (Büchi and Vuilleumier 2014), persistence in face of 
environmental perturbation (Devictor et al. 2008), insect-plant network sta-
bility (Mougi and Kondoh 2012; Lever et al. 2014), and diversification (Janz 
et al. 2006; Hardy and Otto 2014). 

Host specialization - leading to monophagy - only represents one end of 
the gradient, ignoring a great part of the variation in host range and in actual 
shifts between host plants (Janz et al. 2001; Agosta et al. 2010). Individuals 
of several herbivorous insects (e.g. most lepidopterans and hymenopterans) 
complete all of their larval development on an individual host, and are there-
fore monophagous individuals, or parasites (Thompson 1994). Other insects 
can move between and feed on two or more host individuals and are called 
grazers (Thompson 1994). Although grazers can feed on individuals of a 
same species (for example, in monocultures), grazing and polyphagy are gen-
erally correlated. Among parasitic insects, a variety of ecological, chemical, 
and genetic factors may cause host preferences to change locally, producing 
specialists with restricted diets in local communities (Fox and Morrow 1981). 
Variation in host use along spatial and temporal gradients can take place at 
the population level, when individuals are monophagous but feed on different 
plants, or at the species level, when monophagous populations are specialized 
on different hosts. 

Due to the prevalence of host specificity and taxonomic conservatism 
among herbivorous insects, many studies have focused on the mechanisms 
and consequences of ecological specialization (Ehrlich and Raven 1964; Fu-
tuyma and Moreno 1988; Forister et al. 2012). This led to the generalization 
that host use by insects is both specialized and conservative (Ehrlich and 
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Raven 1964; Janz and Nylin 1998; Novotny and Basset 2005), which creates 
something of a paradox considering that insects have evidently colonized a 
good deal of the diversity of plants in a evolutionarily short time (Agosta et 
al. 2010). For instance, the ancestor of the butterflies probably colonized a 
relatively derived seed plant (Janz and Nylin 2008), hence the present pat-
terns of host use are better explained by colonizations from ancestral plants 
onto the already diverse group of seed plants. 

Even though a large-scale conservatism can be seen in most insect groups, 
rapid shifts and colonizations have been observed as a consequence of habitat 
change (Singer et al. 1993) and invasive or introduced plant species (Carroll 
and Boyd 1992; Fraser and Lawton 1994; Fox et al. 1997). In some cases, a 
complete shift in preferred host plant has occurred over a handful of genera-
tions (Singer et al. 1993), suggesting that under some circumstances adding 
new host plants might not be as difficult as one would expect. There is, there-
fore, strong evidence both at evolutionary and ecological time scales that host 
range expansions (i.e. increase in number of hosts used) are not rare. 

There is less consensus, however, about the importance of host range ex-
pansions for diversification (Hamm and Fordyce 2015; Janz et al. 2016; 
Hamm and Fordyce 2016). Novel statistical approaches to investigate trait-
dependent diversification have been developed recently (Maddison et al. 
2007; FitzJohn 2012), but so far have produced divergent results when used 
to study host-associated diversification in butterflies (Hardy and Otto 2014; 
Hamm and Fordyce 2015; Hardy et al. 2016). Part of this problem may lie in 
the classification of host range into two opposing states (monophagous vs. 
polyphagous), which precedes most analytical methods. Strictly speaking, 
host range is not an independently evolving trait in its own right, but an emer-
gent property of the underlying dynamics of gaining and losing host plants.  

The ideal method to investigate the role of hosts in diversification pro-
cesses should be able to deal with both the number of hosts used by each 
taxon and the identity of the plants in the repertoire. The trait that evolves 
across the insect evolutionary history is indeed the host repertoire, that is, the 
assemblage of hosts used by the insect, not just the number of hosts used (host 
range). Computational limitations still constrain the explicit modelling of 
host repertoire evolution in a statistical framework. Thus, in this thesis, I sug-
gest different ways to tackle this problem, using a combination of methods to 
investigate the coevolutionary dynamics between parasites and their hosts, 
with a special focus on butterfly-plant interactions.  
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MODELING EVOLUTION IN SILICO 

In Chapter I, we investigated the mechanistic basis for the origins of macro-
evolutionary patterns of parasite diversity and host use, by simulating parasite 
lineages evolved in silico. We were particularly interested in how the coloni-
zation of new hosts affects the phenotypic distribution and the fitness land-
scape of parasites, and whether it intensifies diversification.     

We described an individual-based model in which (i) parasites undergo 
sexual reproduction limited by genetic proximity, (ii) hosts are uniformly dis-
tributed along a one-dimensional resource gradient, and (iii) host use is de-
termined by the interaction between the phenotype of the parasite and a het-
erogeneous fitness landscape. The model comprises three hierarchical levels: 
individual, species, and fitness landscape. A species is a group of individuals 
connected by reproduction, which only occurs between individuals with a 
genetic distance smaller than the mate recognition threshold. The fitness 
landscape is composed of fitness peaks, which represent hosts for the para-
sites (Fig 1). The position of a given host in the fitness landscape represents 
the optimum phenotype to use that given host (the parasite phenotype that 
yields maximum survival). Survival decreases with increasing difference be-
tween the host optimum and the parasite phenotype.  

 

 
Figure 1 - Hypothetical fitness landscape with three hosts (peaks) and the re-
sulting 1-dimensional resource space, where white patches represent pheno-
types with positive fitness for each host. The solid vertical line is a projection 
of a given phenotype to show that the fitness of a parasite on a given host 
depends on where the line crosses the fitness curve (dots), and that this varies 
between hosts (this individual has a positive fitness in two hosts).  
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At each time step, three events happen in the following order: reproduc-
tion, host probing, and selection (Fig 2). The parasite population in a given 
host at a given time step is composed of the offspring of the parasites from 
the previous time step that did not attempt to colonize a new host and survived 
the selective pressure, in addition to the parasites that successfully colonized 
this given host. A complete description of model is given in Chapter I. 

 

Using this model, we performed simulations crossing parameter values, 
which resulted in 135 parameter combinations. Each combination was iter-
ated for 1000 generations and replicated three times. At the end of each sim-
ulation, we recorded the total number of hosts used by all parasites (host 
range), the difference between maximum and minimum parasite phenotypes 
(phenotypic amplitude), and the number of isolated reproductive units (spe-
cies richness). Then we estimated the effect of each model variable on para-
site species richness using a Poisson regression, and on phenotypic amplitude 
and host range using Gaussian regressions. Finally, to estimate the relation-
ships between model outcomes, we used partial correlations between species 
richness, phenotypic amplitude, and host range.  

We found two main effects of host use on the evolution of parasite line-
ages. First, the colonization of a novel host allowed parasites to explore new 
areas of the resource space, increasing phenotypic and genotypic variation. 
Second, hosts produced heterogeneity in the parasite fitness landscape, which 
led to reproductive isolation and therefore, speciation. Parasite species diver-
sity was maximized when hosts were at an intermediate distance in resource 
space, balancing the probabilities of colonization and divergent selection. 
Colonization happens quickly when hosts are very similar but divergent se-
lection is stronger when hosts are distant. 

In order to validate the results from our simulation study, we analyzed 
empirical data from butterfly-plant interactions. We used a metric of ordi-
nated diet breadth (ODB) as a measure of phenotypic amplitude. This method 
uses information on how often different host plant taxa are utilized by the 

 
Figure 2 - Changes in the amplitude of the parasite phenotypic distribution 
(shaded area) after colonization of a new host (expansion to the fitness peak on 
the right), and after speciation (population splits in two). 
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same butterfly taxon as a proxy for resource similarity. We calculated ODB 
for the repertoire of host plant orders utilized by 43 butterfly tribes of Nym-
phalidae butterflies. We also calculated Faith’s phylogenetic diversity of 
plant orders used by each tribe (phylogenetic host range) and the taxonomic 
host range as the number of orders used by each tribe. We then used phylo-
genetic path analysis to assess the direct and indirect effects of these variables 
on species richness (number of species in the tribe). 

 

 
On theoretical and empirical grounds, this study highlights the importance 

of the differentiation between host range and host diversity, with the latter 
having the main direct effect on diversification (Fig 3). Host range expan-
sions lead to diversification, as long as they increase heterogeneity in the re-
source space, and consequently, in the fitness landscape. We see this as an 
important step forward in our understanding of diversity patterns generated 
by host-associated diversification. 

In Chapter I we show that host use dynamics can drive diversification even 
in sympatry. In Chapter II we also investigate host-associated diversification, 
but focusing on the patterns of interaction generated by different processes. 
  

 
Figure 3 - Predictors of parasite species in simulated and empirical data sets. a) 
Relationships between model parameters and model outcomes. Arrows represent 
the effect of parameters on outcomes and associated numbers show the deviance 
explained by each parameter. Grey arrows show positive effects and the red arrow 
shows a negative effect. Lines connecting model outcomes indicate partial corre-
lations between the three variables. b) Summary of phylogenetic path analysis for 
butterfly-plant interactions showing that the effect of taxonomic host range on 
parasite species diversity is mediated by host diversity (heterogeneity) in Nym-
phalidae tribes. Arrow thickness is scaled approximately with the standardized 
path coefficients, which are shown for each path.  
 
 

a) Simulated data sets b) Empirical data set 
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PREDICTING PATTERNS OF INTERACTION 

Evolutionary ecologists have long been interested in the causes and con-
sequences of host shifts (Ehrlich and Raven 1964; Janz 2011). The various 
hypotheses of how colonization of new hosts leads to diversification can be 
placed along two main axes: (i) the relative prevalence of complete host shifts 
vs. expansion of the number of hosts, and (ii) the relative importance of key 
innovations vs. existing abilities (standing genetic variation and phenotypic 
plasticity) for colonization of new hosts. In Chapter II we compared two al-
ternative extremes among these hypotheses, the adaptive radiation scenario 
and the variability scenario, which are also the two most prominent explana-
tions for how changes in host use affect net diversification rates. 

The adaptive radiation scenario hypothesizes that herbivorous insects 
quickly radiate into many species following a shift from an old to a novel 
plant taxon, by overcoming their defenses against herbivory. Therefore, host 
shifting (i.e., complete change in host use) is considered the main driver of 
diversification (Ehrlich and Raven 1964; Fordyce 2010). In contrast, the var-
iability scenario predicts that diversification is maximized in insect taxa with 
the ability to use a wide range of potential hosts. The existence of such po-
tential hosts – remnants of past host colonizations – makes host repertoires 
unstable over evolutionary time, since insects can mix and match between 
them relatively easily. The resulting oscillations in host range increase the 
chance of population fragmentation and thereby speciation, via both adaptive 
and neutral processes (Janz and Nylin 2008). 

We first investigated whether signs of the above-mentioned scenarios of 
diversification can be seen in extant networks of interaction, by translating 
their predictions into network properties (Fig. 4). Radiations of herbivorous 
insects on new host plants should result in a modular network. Modularity 
emerges when the network contains recognizable subsets of taxa that interact 
more with each other than with other taxa in the network. Each radiation in a 
new host plant taxon should create a new module composed of closely related 
plants and insects, which descend from the ancestor that made the host shift. 
Alternatively, variability in host use should produce a nested network. Nest-
edness emerges if there is a specialist-generalist gradient in both trophic lev-
els and the interacting assemblage of a taxon is a subset of the interacting 
assemblages of taxa with more interactions. According to the variability sce-
nario, temporal variation in host range produces a specialist-generalist 
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gradient at any point in time, with ancestral hosts being used by both special-
ist and generalist insects, while novel/uncommon hosts are only used by gen-
eralists. 

To validate our verbal arguments, we simulated insect diversification as 
taking place according to either the radiation or the variability scenario and 
then measured modularity and nestedness in the resulting networks. As ex-
pected, radiations produced modular networks while variability in host use 
produced nested networks. 

The next step was to quantify the contribution of each scenario to empiri-
cal systems. We chose two butterfly families that were used as exemplars of 
each scenario: Pieridae, which is associated with adaptive radiations, and 
Nymphalidae, which is associated with the variability scenario. The Nym-
phalidae-plant network included 566 interactions between 295 Nymphalidae 
genera and 43 host-plant orders, and the Pieridae-plant network included 126 
interactions between 67 Pieridae genera and 34 host-plant families. Despite 
the general acceptance that coevolution with host plants resulted in diversifi-
cation in Nymphalidae and Pieridae in different ways, we found that the net-
work structures of the two families are very similar. Both networks are nested 
and modular (Fig. 5), which indicates that the diversification of both families 
was influenced by both scenarios. By comparing the structure of the empiri-
cal networks to that of simulated networks, we found that the high levels of 
nestedness found in Pieridae and Nymphalidae suggest that the variability 
scenario played an important role on the diversification of both butterfly fam-
ilies. The modularity levels, however, could have emerged from radiations or 

 
 

Figure 4 - Network structure predicted by the adaptive radiation (left) and the 
variability (right) scenarios. Both networks have insects in columns and hosts in 
rows. Black cells indicate insect-host interaction. 
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simply from phylogenetic conservatism in host repertoire, especially in Pie-
ridae, where modularity is low.  
 

We then performed additional analyzes in order to assess the contributions 
of each scenario. First, we estimated the effect of each host plant on network 
structure and found that, as predicted, ancestral hosts produce network nest-
edness while novel hosts produce modularity. Finally, we measured the phy-
logenetic diversity within each module. In both networks, most modules were 
composed of closely related butterflies and distantly related plants.  

Combining all results from Chapter II, we found that the modules in the 
studied networks are formed by grouping closely related butterflies that use 
a main host taxon (module hub). Several modules also include a number of 
other distantly related hosts that are used by a subset of the butterflies in the 
module, producing nestedness within modules. Hosts with a long coevolu-
tionary history with the butterflies connect the various modules, producing 
overall network nestedness. These results led us to argue that the variability 
and radiation scenarios can be reconciled into a unified view of evolution of 
butterfly-plant interactions in which the continuous probing of new hosts al-
lows both ongoing diversification through variability in host use and episodic 
radiations on new hosts.  

 
Figure 5 - Structure of butterfly-plant networks. (a-b) Nymphalidae genera in 
columns and host plant orders in rows. (c-d) Pieridae genera in columns and host 
plant families in rows. Colored cells are butterfly-plant interactions. Each color 
shows interactions within a module, and grey cells are interactions between mod-
ules. (a,c) Rows and columns sorted to emphasize modular affinity (order of 
modules is arbitrary). (b,d) Rows and columns sorted to emphasize nestedness, 
ordered from the upper right corner according to descending number of interac-
tions.  
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INFERENCE OF HOST REPERTOIRE EVOLUTION 

While Chapters I and II provide new insights into host-associated diversifi-
cation using different approaches, the explicit modeling of host repertoire 
evolution has been hindered by methodological and computational con-
straints. Recent developments in phylogenetic Bayesian inference of evolu-
tion of discrete traits (Landis et al. 2013) considerably reduced these con-
straints, allowing the development of models of host repertoire evolution that 
can deal with the inherent complexity of the trait.  

Inspired by the approach proposed by (Landis et al. 2013) for biogeo-
graphic inference, in Chapter III we describe a model of host repertoire evo-
lution where parasite lineages can gain and lose hosts over time. In addition 
to allowing parasites to use a large number of host taxa simultaneously, this 
method also allows the modeling of host colonization as a two-step process, 
where first the parasite gains the ability to use a host and then starts to use it 
in nature. We implemented this feature by adding an intermediate state to the 
model, such that each host could assume one of three states for each parasite: 
0 (non-host), 1 (potential host) or 2 (actual host). Thus, we could reconstruct 
not only realized host repertoires (composed by only actual hosts), but also 
fundamental host repertoires (composed of both potential and actual hosts). 
Another important feature of the model is the estimation of the effect of host 
phylogenetic relatedness on the likelihood of colonizing new hosts. 

The model is implemented in RevBayes (Höhna et al. 2016), allowing us 
to perform simulation as well as Bayesian Markov chain Monte Carlo 
(MCMC) inference under the model. In Chapter III, we explored the statisti-
cal behavior of our model by simulating evolution of host-parasite interac-
tions under a range of parameters. Overall, we were able to infer the true 
parameter values regardless of the level of phylogenetic conservatism in both 
parasites and hosts. We also compared the true coevolutionary history of each 
simulation to the corresponding posterior distribution of the sampled charac-
ter histories. Estimation error was calculated as the sum of squared differ-
ences between estimated and true coevolutionary histories. Accuracy in the 
estimation of coevolutionary history was highest when the degree of phylo-
genetic conservatism on both butterflies and plants was high. Overall, error 
was higher on the estimation of actual hosts (state 2) than potential hosts 
(state 1), but both were within acceptable levels. 
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We then demonstrated the empirical application of our approach with a 
Bayesian inference of the coevolutionary history between 34 Nymphalini 
butterflies and 25 angiosperm families (Fig 6). We estimated the rate of host 
repertoire evolution along the Nymphalini tree as being between 0.53 and 
1.22 events per million years. Bayes factors favored the independence model, 
where the probability of gaining a given hosts is not affected by the phyloge-
netic distance between hosts.  

Gain and loss rate estimates were not symmetric, and that also varied be-
tween states. The gain of the ability to use a host was estimated to be very 
rare (0.25% to 1% of overall rate), whereas loss was common (34% to 78% 
of overall rate). Transition rates between states 1 and 2 were more symmetric 
and gain was more common than loss (1®2 between 17% and 54%; 2®1 
between 3% and 15% of overall rate). These results support the idea that re-
colonization of hosts that were used by ancestors of extant butterflies might 
be more common than independent colonizations of the same host taxon by 
phylogenetically widespread butterflies (Janz et al. 2001). 

 
Figure 6 - Data set of interactions between Nymphalini butterflies (rows) and an-
giosperm host plants (columns). Black cells show actual hosts (interaction rec-
orded in nature) and grey cells show potential hosts (larvae were able to feed on 
host during establishment tests).     
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As the approach described in Chapter III was able to accurately infer co-
evolutionary histories in data sets simulated under a range of parameter com-
binations, we used it to cross-validate the network approach used in Chapter 
II and test the main conclusions from that study. For that, we reconstructed 
the historical interactions between Pieridae butterflies and their host plants 
(same data set as used in Chapter II). We modeled host repertoire evolution 
along a phylogenetic tree containing 66 genera of Pieridae. For the host tree, 
we pruned the phylogenetic tree for angiosperm families by keeping the 33 
families known to be hosts of pierid butterflies and then collapsing the re-
maining branches to more ancestral nodes until only 50 terminal branches 
were left. Host repertoires were, therefore, composed of 50 hosts. By doing 
this pruning, we ensured that all angiosperm lineages were represented in the 
analysis, at the same time as keeping the number of hosts within the limits of 
computational tractability.  

One of the main ideas we tested was that the evolution of butterfly-plant 
networks is mainly driven by the probing of potential hosts combined with 
phylogenetic conservatism in host-use abilities. We estimated the rate of rep-
ertoire evolution along the Pieridae tree as being between 0.055 and 0.11 
events per million years, which is ten times slower than the estimated rate for 
Nymphalini butterflies. The asymmetry between transition rates, however, 
was very similar to Nymphalini. The gain 0®1 was estimated to be very rare 
(0.6% of overall rate), whereas the loss 1®0 was common (66%). Con-
versely, transition between states 1 and 2 were similar (14% and 19% of over-
all rate), which means that recolonization of a host that was used in the past 
is easier than the colonization of a completely new host. Together, these re-
sults provide the basis for the observed phylogenetic conservatism in the host 
repertoires of pierid butterflies.  

We then reconstructed ancestral networks at two time slices during the 
diversification of Pieridae (Fig. 7). We selected seven internal nodes in the 
Pieridae tree between 60 and 50 Mya to reconstruct the first ancestral net-
work. For the second ancestral network, we selected 16 nodes between 40 
and 20 Mya. The two ancestral networks were composed of interactions be-
tween each selected node and the hosts that were in states 1 or 2 in at least 
95% of the sampled histories. This means that only interactions with more 
than 0.95 posterior probability were included. Figure 8 shows the posterior 
probability of every possible interaction in the ancestral network at 40-20 
Mya.  
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In Chapter II we suggest that the evolution of butterfly-plant interactions 

goes through three phases of change in network structure. The reconstructed 
evolutionary history of interactions between Pieridae and their host plants 
presented in Chapter IV exemplifies each one of them. The first ancestral 
network (60-50 Mya) shows the origin of a new module (green) when early 

 
 

Figure 8 - Posterior probabilities for interactions between ancestors of extant pie-
rid butterflies (internal nodes) and angiosperm families at 40-20 Mya. Squares are 
colored according to the module that the host belongs to in the extant network (see 
Figure 5c). Black dots mark the interactions with actual hosts (state 2). Opacity 
indicates interaction probability. Note that almost all interactions have been sam-
pled at least once.   

 
Figure 7 - Two ancestral networks and extant network of interactions between 
Pieridae and Angiosperms. Butterflies are represented by circles and plants by 
squares. Colors show network modules.  
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Pierinae switched to Capparaceae. At least until 50 Mya, those butterflies 
were specialized on the new host group, resulting in a network composed of 
two independent modules of closely related butterflies. Thus, this network 
exemplifies the first phase in the evolution of butterfly-plant interactions. 

In the second ancestral network (40-20 Mya), Pierinae butterflies started 
to expand their host repertoires, adding new potential and actual hosts. This 
expansion promoted the formation of new modules (pink and purple), but 
the retention of ancestral hosts (in this case, Capparaceae) kept these mod-
ules connected. Thus, this network exemplifies the second phase, when 
probing of new hosts increases network connectance. Interestingly, this 
network represents the origin of the four main modules in the extant net-
work, which are formed by butterflies associated to the module hubs identi-
fied in Chapter II (Fig. 9). 

Finally, the third phase, which is characterized by network nestedness, is 
exemplified by the network at present time, where the number of both but-
terflies and hosts increased in each module, as well as the number of con-
nections between modules. The colonization of new hosts combined with 
the recolonization of ancestral hosts (mainly Fabaceae and Capparaceae) 
resulted in the observed nestedness in the extant network.  

 

 
 

Figure 9 - Relative contribution of each taxon to the modular structure, defined 
by measures of connectivity with taxa within the same module (y-axis) and with 
taxa assigned to other modules (x-axis) of the network. Names of modules and 
network hubs are shown. Colors of modules are consistent with Figs. 7 and 8. 
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CONCLUSIONS 

Understanding how ecological interactions change is crucial to explain 
phenomena at various timescales, such as the emergence of infectious dis-
eases, community assembly, and parasite diversification (Hoberg and Brooks 
2015). By analyzing the same data set with completely independent ap-
proaches (Chapters II and IV), we validated the use of network analysis to 
test hypotheses about the evolution of ecological interactions and provided 
direct support for the unification proposed in Chapter II to explain the diver-
sification of herbivorous insects.  

The approach we describe in Chapter III was designed to reconstruct and 
quantify changes in host-parasite associations by modeling the process of 
gaining and losing hosts. Thus, it allowed us to explicitly model features that 
are intrinsic to the system, such as the existence of potential hosts and the 
effect of host phylogenetic relatedness on the colonization of new hosts. In 
this thesis, this approach was used to investigate host-associated diversifica-
tion in butterflies, but it has potential to address various questions in evolu-
tionary ecology. The implementation of the model in RevBayes facilitates 
future development to incorporate more of the complexity in species interac-
tions.  

As a whole, this thesis contains strong evidence for the role of host range 
expansions on the evolution of butterfly-plant interactions and on butterfly 
diversification. Even though closely related butterflies tend to use similar rep-
ertoires of host plants, that does not prevent the probing of new hosts. Part of 
the observed phylogenetic conservatism in host repertoires comes from the 
retention of the ability to use hosts used in the past, which facilitates recolo-
nization. Such ancestral abilities favors changes in host repertoires, which 
increase the diversity of hosts used by a clade. The resulting host diversity, 
in turn, promotes butterfly diversification.  
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SVENSK SAMMANFATTNING 

Alla växtätande insekter är i någon mån specialiserade på sina värdväxter, men spe-
cialiseringens omfattning är olika beroende på art. Samevolution mellan insekter (pa-
rasiter) och växter (värdorganismer) åberopas ofta som förklaringen till den stora art-
mångfald som uppvisas bland insekter, men det råder delade meningar om hur pass 
stor inverkan specialisering faktiskt har på artbildning. Trots att ämnet har utforskats 
under lång tid förbättras fortfarande vår förståelse av evolutionen bakom samspelet 
mellan värdväxter och parasiter, och nyare teoribildning understryker vikten av bredd-
ning (att kunna tillgodogöra sig nya värdväxter) för artbildning hos parasiter. I den 
här avhandlingen använder vi oss av olika perspektiv för att i detalj undersöka ur-
sprunget till makroevolutionära mönster mellan värdväxtutnyttjande och artbildning 
hos dagfjärilar. 

Kapitel I avhandlar, genom datorsimuleringar, mekanistiskt de processer som le-
der fram till de makroevolutionära mönstren. Genom att åtskilja effekten av antal ät-
bara värdväxter hos en grupp fjärilar från hur olika värdväxterna är sinsemellan kunde 
vi visa att olikhet, snarare än antal i sig, ligger bakom artmångfald hos parasiter, både 
i simulerade och verkliga system. 

I kapitel II kombinerade vi nätverks- och släktskapsanalyser för att jämföra stödet 
för de två olika drivkrafter som föreslagits som huvudorsaker till artbildning inom 
växtätande insekter. Utifrån två dagfjärilsfamiljer, Nymphalidae och Pieridae, drog vi 
slutsatsen att bredd i växtutnyttjande är avgörande för artbildning. Men det visade sig 
också att när insekter klarar att tillgodogöra sig en ny värdväxt så kan det ge upphov 
till snabb artbildning, även om det är förhållandevis ovanligt att det inträffar. Vi kunde 
på så vis förena de två olika föreslagna drivkrafterna och visa att artbildning kopplad 
till växtutnyttjande gynnas både av koloniseringar av nya värdväxter och av ett kon-
tinuerligt utforskande av de växter som använts historiskt, och som de alltså inte helt 
förlorat förmågan att äta. 

Trots att nätverksanalys är en utmärkt metod för att kartlägga mönster i samspel 
mellan arter så behövs det andra metoder för att uttryckligen testa vilka mekanismer 
som ger upphov till mönstren ifråga. I kapitel III utvecklade vi därför en evolutionär 
modell för värdväxtutnyttjande som vi kunde analysera med hjälp av bayesianska me-
toder. Tillvägagångssättet utvärderades med både simulerade och empiriska data. 

I kapitel IV använde vi oss slutligen av metoden ifrån kapitel III för att uttryckli-
gen testa förutsägelserna om evolution av fjäril-växt-nätverken i kapitel II. Vi hittade 
stöd för att den viktigaste drivkraften är ett kontinuerligt utforskande av den repertoar 
av potentiella värdväxter som de ärvt från sina förfäder. Därmed kunde vi, med hjälp 
av tre olika metoder, sluta oss till att skillnader i värdväxtutnyttjande som uppstått 
under evolutionära tidsrymder, är avgörande för artbildning bland fjärilar. 
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