Electromagnetically Coupled Multilayer Patch Antenna for 60 GHz Communications

Imran Aziz1,∗, Anders Rydberg1 and Dragos Dancila1
1Microwave group, Division of Solid-State Electronics, Uppsala University, SE-751 21 Uppsala, Sweden
∗imran.aziz@angstrom.uu.se

I. INTRODUCTION
Demand of gigabit data rates for wireless communications has been increasing exponentially for the last decade. Availability of 60 GHz license free band (57 - 66 GHz) has provided great opportunity to fulfill this demand. One of the essential requirements for high data rate compact solutions is the implementation of high gain planar antenna arrays for integration simplicity with other elements [1].

This work presents a two layer microstrip patch antenna where the top circular patch is electromagnetically coupled with bottom rectangular patch. The dimensions of both the patches are set to provide a broadband impedance matching. Layered layout of this antenna is shown in Fig. 1 (a). Antenna is fed at center layer (L2), by 50 Ω microstrip line. A 5 mil thick high quality millimeter wave substrate Rogers RO3003 with εr = 3 and tanδ = 0.0006 has been used as top (L1) and bottom (L3) layers, while 4 mil Taconic FR-27 has been used as prepreg between two layers. As shown in Fig. 1 (b), microstrip line (on L2) to GSG (on L1) transition has been designed for antenna measurement.

The same concept of electromagnetically coupled multilayer patches is used to design a centrally fed 4-element antenna array. A top view of the fabricated antenna array is shown in Fig. 1 (c) where each element is half wavelength apart. A similar 4-element antenna array is used to design a 4x16 array, shown in Fig. 1 (d). A 1:16 power divider is used to measure this array.

II. RESULTS
Measured return loss for single element, 4-elements centrally fed array and 4x16 antenna array is shown in Fig. 2. Return loss for single element antenna shows couple of peaks above -10 dB, while 4-element centrally fed array and 4x16 array have almost same < -10 dB impedance bandwidth of 8 GHz (57-65 GHz).

ACKNOWLEDGEMENT
This work has been funded by the Swedish agency, Vinnova for 60 GHz RF beam-steering solution with phased array antenna for Small Cell backhaul and wireless access points (Project No: 2016-01800).

REFERENCES