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Abstract

Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet,
our knowledge about their biology is for the most part limited to the minority that has been successfully cultured.
Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-
depth analyses that may ultimately improve our understanding of these key organisms.

Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-
amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples
collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled
genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to
match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two
approaches were nearly identical (average 99.51% sequence identity; range 98.77–99.84%) across overlapping regions
(30–80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less
complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only
on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs.

Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes
that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that
the research questions and the available resources are allowed to determine the selection of genomics approach for
microbiome studies.
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Background
The genome is a fundamental resource for understand-
ing the physiology, ecology, and evolution of an organ-
ism. With the availability of high-throughput sequencing
technologies, we are witnessing a massive increase in the
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number of genomes in public repositories, with nearly a
doubling per year in the Genomes OnLine Database
(GOLD) [1, 2]. Reference genomes are important in both
medical and environmental microbiology for capturing
information on metabolic properties [3], phylogeny [4],
evolution and diseases [5, 6], population genetics [7],
functionality and biogeochemical cycles [8], and interac-
tions [9] and to establish links between genomes and
functionality of cells in organisms [10]. In fact, obtaining
good and relevant reference genomes is crucial for
current advances in many, if not all, branches of bio-
logical research [11].
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Prokaryotes dominate the biosphere in the context of
abundance and diversity [12] and hold key roles in bio-
geochemical processes essential to all life [13]. However,
only a small fraction of the bacterial diversity (< 1%) can
be isolated and cultivated in a standardized fashion [14].
Therefore, strategies for recovering genomes from sam-
ples without the need for cultivation have emerged as
important complements to traditional microbiological
techniques. In the single-amplified genome (SAG) strat-
egy, genomes of individual cells are sequenced. The first
step comprises partitioning of the cells [15–17] using
techniques such as fluorescent-activated cell sorting
(FACS) [18, 19] or microfluidics [20]. The next step in-
volves cell lysis and whole-genome amplification (WGA)
for which three methods are most commonly used:
PCR-based (e.g., degenerate oligonucleotide-primed PCR
(DOP-PCR)), isothermal (e.g., multiple displacement
amplification (MDA)), or hybrid methods (e.g., multiple
annealing and looping-based amplification cycles (MAL-
BAC)) [21] before applying shotgun sequencing and gen-
ome assembly [20, 22].
Genomes can also be recovered from metagenomes by

assembling short shotgun reads into longer contigs
which are then clustered into groups, or bins, of contigs
derived from the same organism, through a process
called binning. The resulting bins are quality filtered for
contamination and completeness, and the approved bins
are referred to as metagenome-assembled genomes
(MAGs), a term proposed by Hugerth et al. [23] and
later accepted by the Genomic Standards Consortium
(GSC) [24]. Metagenomic binning has been used for
some time [25], but a fairly recent development is to
perform the binning using a combination of sequence
composition and differential abundance information
[26–29]. Whereas it is possible to use as few as two sam-
ples for utilizing differential abundance information, the
quality of the binning results can be greatly improved by
increasing the number of samples [27, 28].
Although both the SAG and the MAG approaches

have proven powerful and contributed greatly to our
understanding of the physiology and evolution of organ-
isms [23, 30–35], a number of challenges are associated
with each approach. SAG sequencing is demanding in
terms of instrumentation and staff [36]. Starting with
only one genome copy makes DNA amplification neces-
sary but difficult, which often results in highly uneven
coverage depth and some regions being completely
missing from the sequencing output [21, 37]. The
commonly used method for DNA amplification, multiple
displacement amplification (MDA), has also been shown
to cause formation of chimeric molecules, mainly
through inversions [38]. Contamination is a common
problem with SAG sequencing, originating either from
reagent kits [39] or from free DNA in environmental
samples [20]. Furthermore, cell dispersion, which might
be necessary when cells are attached to particles or have
formed biofilms, can be problematic and hinder genome
recovery from some single cells [40]. Obtaining a large
number of high-quality MAGs, on the other hand, re-
quires extensive sequencing and ideally a large number
of samples that to some degree share the same organ-
isms in different abundances [28]. The quality of the
MAGs is also highly dependent on the quality of the
metagenome assembly; short contigs are not considered
by most binning algorithms since their coverage and com-
position information contain too much noise [28, 41, 42].
Another limitation is the computational demands, which
normally exceed those for SAG assembly [41]. Also, due
to intraspecies genetic variation in the community, ge-
nomes recovered from metagenomic data often represent
a population of closely related organisms (i.e., strains) ra-
ther than an individual organism [41].
Studies have successfully combined the SAG and

MAG approaches to reach conclusions about organisms
and ecosystems [43, 44]. The approaches have also been
combined to methodologically improve either the quality
of the single-cell assemblies [45] or the metagenome
binning performance [46]. However, with the exception
of a study that focused on a single phylum and that did
not use abundance patterns over multiple samples for
the MAG construction [43], the performance of the two
approaches have to our knowledge not been thoroughly
compared. The aim of this study was to do a compre-
hensive comparison between the SAG and MAG ap-
proaches for recovering prokaryotic genomes. We
investigated SAGs and MAGs from bacterioplankton
collected in the Baltic Sea Proper, where recent analyses
have provided a detailed picture of the spatio-temporal
distribution of microbial populations [23, 47–49] and
metabolic processes [50]. Thus, this ecosystem is well
suited for comparing different methodologies for investi-
gating the genomic content and functional potential of
dominant bacterial populations.

Results
Overview of SAGs and MAGs
In order to compare single-amplified genomes with
metagenome-assembled genomes from the same envir-
onment, we generated SAGs from the Linnaeus Micro-
bial Observatory (LMO), located 11 km off the coast of
Sweden in the Baltic Sea, and compared them with
MAGs generated earlier from the same station [23]. We
obtained 16 SAGs of a variety of taxa including Bacteroi-
detes, Cyanobacteria, Alphaproteobacteria, and Gamma-
proteobacteria (Additional file 1: Table S1). These were
compared to 83 MAGs from 30 phylogenetically distinct
Baltic Sea clusters (BACLs) [23] (Additional file 2: Figure
S1; Additional file 1: Table S1). The SAGs ranged in size
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from 0.14 to 2.15 Mbp and MAGs from 0.59 to
2.98 Mbp (Additional file 1: Table S1). The number of
contigs in SAGs ranged from 80 to 712 with a maximum
length of 107,141 bp, while the number of contigs in
MAGs ranged from 60 to 951 with the longest being
181,472 bp (Additional file 1: Table S1).
Using Mash [51] to cluster the 99 genomes from both

approaches, seven of the 16 SAGs were placed together
with 24 of the MAGs into six clusters (i.e., each of these
SAGs matching 1–14 MAGs and each of these MAGs
matching 1–2 SAGs; Table 1 and Additional file 2: Figure
S1). This was in agreement with the clustering of MAGs
in the analysis of Hugerth et al. [23]. These clusters
belonged to a diverse set of bacterial taxa, representing the
SAR86 and SAR92 clades (Gammaproteobacteria), Flavo-
bacteriaceae (2 taxa) and Cryomorphaceae (Bacteroidetes)
and Rhodobacteraceae (Alphaproteobacteria) (Table 1).
The following comparisons between SAGs and MAGs are
based on the genomes in these clusters.
The seasonal dynamics of the clusters at the LMO sta-

tion were determined in the original MAG study by
metagenome samples covering a single year (2012) [23].
By comparing the 16S rRNA gene sequences from the
genome clusters to 16S rRNA gene data from an
amplicon-based high-temporal-resolution study from the
same station from the previous year (2011) [49], we ob-
served five matches with a sequence identity of 100%. In
these cases, the seasonal dynamics of the genome
clusters and OTUs was similar between the years, with
representatives abundant in spring and late autumn
(2012) (BACL21, Flavobacteriaceae, OTU:000004 and
BACL7, Owenweeksia, OTU:000021); spring and early
summer (BACL16, SAR92 clade, OTU:000043); spring,
summer, and autumn (BACL10, Rhodobacteraceae,
OTU:000011); and all year round (BACL1, SAR86 clade,
OTU:000013) [23, 49] (Additional file 3: Figure S2). The
contigs representing the genomes of BACL22 lacked the
16S rRNA gene sequence and were not included in the
seasonality analysis.

Alignment and gene content
To verify the clustering and to achieve more detailed
statistics, each SAG-MAG pair was aligned using MUM-
mer (Table 1). Across the genome regions showing hom-
ology between SAGs and MAGs, the within-cluster
nucleotide sequence identity averaged 99.51%, with the
lowest sequence identity value recorded for BACL22
(98.77%; Table 1). A larger fraction of the SAGs’ bases
(average 78.9%) aligned compared to the MAGs’ (aver-
age 40.5%), in agreement with these SAGs being consist-
ently smaller than the corresponding MAGs, 0.5–
1.7 Mbp and 1.0–2.8 Mbp, respectively (Table 1)[23].
To further compare the SAGs and MAGs, the Anvi’o

pangenomic workflow [52] was run on each cluster
(Fig. 1, Additional file 4: Table S2). This analysis showed
that the completeness of the SAG genomes (average
46.6%) was lower than that of the MAG genomes (aver-
age 92.6%) (Table 1), as estimated by Anvi’o (by presence
of 139 bacterial single-copy genes [SCGs]). Redundancy in
gene content (measured as SCGs present more than once)
showed no systematic difference between SAGs and
MAGs (Additional file 4: Table S2); it was highest in SAG
A11 and in four MAGs of BACL1 (with 7.9% and 4.3%, re-
spectively). For details on contamination of SAGs, see the
Results section “SAG quality evaluation” below.
There was a substantial range in gene content overlaps

in different clusters (Fig. 1). For example, most MAGs in
BACL1 contained a large set of genes (~ 35% of genomes)
missing in the corresponding SAG (BS0038H10), whereas
the SAG in this cluster contained few genes (~ 5% of ge-
nomes) not present in the MAGs. In contrast, in BACL7,
similar portions of the genes (~ 20% of genomes) were
unique to the SAG or the MAGs. The case of BACL21 is
particularly interesting since it contained two SAGs (the
only cluster with more than one SAG) that differed sub-
stantially in size (1.0 Mb and 1.6 Mb; Table 1). The two
SAGs together covered nearly the entire gene content of
the corresponding MAG (Fig. 1).
For the genomes that were placed in the six clusters,

16S rRNA genes were found in four out of seven SAGs
(57%) and 19 out of 24 MAGs (79%), where the latter
proportion is notably high. In comparison, analysis of
16S rRNA genes in all genomes showed that 11 out of
16 SAGs (69%) and 38 out of 83 MAGs (46%) contained
16S rRNA gene sequences. It is worth noting that the
higher proportion of SAGs containing a 16S rRNA gene
sequence in the complete dataset could reflect that the
initial selection of SAGs for sequencing was mainly
based on them containing a PCR-amplifiable 16S rRNA
gene sequence. A lower proportion for MAGs could also
be due to known issues with metagenome assembly and
binning of sequences from 16S rRNA genes [53].

Analysis of functional gene data
Despite the differences in genome sizes, the distribution
of broad functional gene categories, as defined by Clusters
of Orthologous Groups (COGs), was largely consistent
within SAG and MAG clusters (Fig. 2a). Statistical analysis
of the COG category distributions showed that the ge-
nomes clustered according to BACL (ANOSIM R = 0.96;
P = 0.0001) but not significantly so according to genome
type (i.e., SAG vs. MAG; ANOSIM R = 0.21; P = 0.06;
Fig. 2b). The distribution of COG categories also appeared
to differ taxonomically (Fig. 2b). For instance, the COG
category “Amino acid metabolism and transport” was
more abundant in the cluster BACL10 (Rhodobacter)
compared to other clusters. The Flavobacteria (BACL7,
21, and 22) showed elevated proportions of the functions



Table 1 Overview of the matching SAGs and MAGs sorted by Baltic Sea cluster (BACL) number

Nucleotide
identity
in %
(standard
deviation)

Size
(in bp)

%
completeness

%
redundancy

%
MAG
aligned

% SAG
aligned

% SAG reads mapping

MAG contigs ≥ 1kb
contigs
outside
MAG

< 1 kb contigs Not
mapping to
metagenome

BACL1: Gammaproteobacteria; SAR86

BS0038H10 547073 30.22 0.72

120507-bin14 99.36 (1.71) 1482147 94.24 2.16 29.10 84.20 72.07 0.01 18 9.92

120619-bin26 99.62 (1.21) 1539140 92.81 0.72 28.06 82.49 73.96 0.25 17.57 8.22

120813-bin36 99.56 (0.81) 1264266 92.09 1.44 31.19 79.38 76.61 0.33 7.68 15.38

120820-bin45 99.48 (1.15) 1455539 92.81 0.72 29.10 82.30 74.03 0.01 15.3 10.66

120823-bin87 99.55 (1.04) 1451966 93.53 2.16 29.53 85.14 78.2 0.04 11.46 10.3

120828-bin5 99.58 (0.77) 1029940 85.61 0.72 32.47 68.11 71.16 5.53 9.48 13.83

120920-bin57 99.57 (1.26) 1450272 86.33 4.32 27.45 76.21 68.46 0.15 23.47 7.92

120924-bin88 99.61 (0.97) 1314100 91.37 0.72 30.30 79.59 72.71 0.01 15.61 11.67

121001-bin56 99.57 (1.19) 1509054 87.05 4.32 28.33 82.35 70.28 0.04 18.97 10.71

121004-bin11 99.68 (0.46) 1030921 78.42 0.00 32.44 68.15 66.78 10.84 11.58 10.8

121015-bin70 99.49 (1.44) 1495089 92.81 0.00 29.02 86.08 80.22 0.01 10 9.76

121022-bin58 99.58 (0.93) 1435343 93.53 0.72 29.37 84.33 78.28 0.01 10.77 10.94

121105-bin34 99.61 (0.73) 1306513 94.24 4.32 30.45 79.11 74.96 0.01 13.64 11.39

121128-bin56 99.54 (1.19) 1469346 94.24 4.32 29.37 85.59 76.36 0.01 13.33 10.3

BACL7: Bacteroidetes; Cryomorphaceae; Owenweeksia

A11 1656754 68.35 7.91

120322-bin74 99.84 (0.21) 1743356 97.84 0.00 75.05 83.52 87.6 0.42 2.25 9.73

120910-bin2 99.82 (0.31) 1746953 97.12 0.72 75.05 83.53 87.4 1.07 1.7 9.83

121220-bin83 99.82 (0.24) 1723929 95.68 0.00 75.13 82.22 85.79 3.22 2.62 8.37

BACL10: Alphaproteobacteria; Rhodobacter

BS0038D5 1732939 39.57 0.72

120419-bin15 99.18 (1.16) 2834045 96.40 2.88 42.11 68.10 53.62 2.53 22.67 21.18

120910-bin24 99.21 (1.02) 2763624 95.68 1.44 42.24 68.31 55.24 0.58 21.91 22.27

121220-bin24 99.07 (0.95) 2112289 84.89 1.44 46.50 58.12 45.37 1.79 24.68 28.16

BACL16: Gammaproteobacteria; SAR92

BS0038E9 1153566 41.73 1.44

120322-bin99 99.45 (0.74) 1997685 92.09 1.44 42.50 74.24 70.42 2.3 17.57 9.71

120619-bin48 99.20 (1.51) 2527476 99.28 0.72 40.23 89.12 86.03 2.77 1.81 9.39

BACL21: Bacteroidetes; Flavobacteriaceae

BS0038D11 1637880 74.82 2.16

121220-bin10 99.75 (0.38) 1915951 97.84 0.72 75.00 88.18 84.21 2.15 6.66 6.98

BS0038D2 1023978 37.41 2.16

121220-bin10 99.74 (0.46) 1915951 97.84 0.72 45.59 85.40 92.43 1.37 4.36 1.85

BACL22: Bacteroidetes; Flavobacteriaceae; Polaribacter

BS0038A11 1334036 33.81 2.88

120619-bin32 98.77 (2.13) 2408986 97.12 3.60 39.15 72.59 66.22 0.17 7.98 25.63

Average 99.51 (0.96) SAG:
1298032

SAG: 46.56 SAG: 2.57 40.59 79.05 73.94 1.42 12.44 12.20

MAG:
1716955

MAG:
92.83

MAG:
92.83
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Fig. 1 Gene homolog presence per genome cluster. Presence of gene homologs for each genome cluster by graphs produced by Anvi’o. Each
horizontal bar represents one genome, where blue bars are single-amplified genomes and black and grey bars are metagenome-assembled
genomes. Each vertical bar corresponds to one gene homolog where a dark vertical bar indicates presence of the gene homologs and a lighter
vertical bar indicates absence. The gene homologs are aligned between genomes within each genome cluster. The numbers assigned to the
genome clusters corresponds to the original MAG BACLs used in [23]
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“Cell wall/membrane/envelope-biogenesis” and “Transla-
tion.” “Lipid metabolism” was more frequent in the Gam-
maproteobacteria clusters (BACL1 and 16) compared to
other clusters (Fig. 2a).

Quantification of metagenome binning and assembly errors
Since the SAGs contained genome regions not present in the
MAGs (on average 78.9% of SAG genomes aligned with the
a

Fig. 2 Distribution of functional categories in SAGs and MAGs. a Distributio
and SAGs. The X-axis shows genomes grouped and ordered according to g
categories in each genome. b Non-metric multidimensional scaling (NMDS
corresponding MAG genomes), we investigated potential
reasons for these regions to be missing in the MAGs. Ac-
cordingly, we determined the distribution of SAG sequencing
reads mapping to different categories of metagenome con-
tigs. This quantification showed that a median of 74.0% of
the SAG reads mapped to the contigs in their corresponding
MAG (Fig. 3a). Other metagenome contigs which were in-
cluded in the binning due to their lengths (> 1 kb), but that
b

n of broad COG categories in the different genome clusters for MAGs
enome clusters. The Y-axis shows the percentage of genes in COG
) plot based on counts of COG categories in the SAGs and MAGs
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Fig. 3 Distribution of SAG reads mapped against metagenome assemblies. Boxplot of the distribution of SAG reads mapped against the corresponding
metagenome assemblies where each individual data point is jittered on top of each box. All reads for each SAG was mapped against the assembly
associated with each matching MAG and thus positioned in exactly one out of these four categories. Only contigs longer than 1 kb were included in
the binning, which is the reason to use it as a divider here
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had hence ended up in other bins, recruited far fewer reads
(median 0.33%) (Fig. 3b). These contigs were likely misplaced
in the binning procedure and can be used to calculate an es-
timate for the false negative error of the binning. This was
calculated as the number of nucleotide bases in these poten-
tially misplaced contigs covered by SAG reads divided by the
number of nucleotide bases covered by SAG reads in all con-
tigs that were subject to binning—this value averaged 3.6%
(Additional file 5: Table S3). The remaining SAG reads were
either mapping to small contigs (1 kb), not included in the
binning because they were too short (< 1 kb) (median 11.6%
of reads), or not mapping to metagenome contigs at all (me-
dian 10.3% of reads) (Fig. 3c, d) and were hence rather
reflecting insufficient metagenomic assembly or contamina-
tions in the SAGs.

SAG quality evaluation
A potential explanation for the SAG specific content could
be contaminating DNA in the SAGs [20, 39]. In order to
address this, we analyzed patterns of nucleotide compos-
ition and metagenome coverage for SAG contigs. A clear
difference in tetranucleotide pattern was observed between
the SAG contigs that were aligning and those that were
not aligning with MAG contigs. The set of SAG contigs
which did not align (< 5% of bases) contained many out-
liers in the tetranucleotide PCA (Additional file 6: Figure
S3, Additional file 7: Figure S4, Additional file 8: Figure S5,
Additional file 9: Figure S6, Additional file 10: Figure S7,
Additional file 11: Figure S8 and Additional file 12: Figure
S9). This could potentially be due to the use of tetranu-
cleotide patterns in the construction of MAGs and that
these regions are falsely missing in the MAGs due to their
atypical sequence composition. However, investigating the
mapping of metagenome reads against the SAG contigs
showed that the SAG contigs that were not aligning to
MAGs and that displayed atypical tetranucleotide patterns
also as a rule had significantly lower coverage in the meta-
genome (Additional file 6: Figure S3, Additional file 7: Fig-
ure S4, Additional file 8: Figure S5, Additional file 9:
Figure S6, Additional file 10: Figure S7, Additional file 11:
Figure S8 and Additional file 12: Figure S9). This substan-
tially strengthens the hypothesis that these SAG contigs
are due to contamination.
During MDA, chimeric sequences, in particular inver-

sions, can be generated [38]. Using the SAG reads map-
ping against the metagenome, such chimeric reads were
identified. Using conservative criteria, on average, 1.72% of
the reads were identified as chimeric (Additional file 13:
Table S4). The chimeric nature of these reads could poten-
tially affect the mapping to the metagenome (Fig. 3), par-
ticularly by inflating the number of reads which did not
map to any metagenome contig. However, the distribution
of these chimeric reads among the categories of Fig. 3 did
not differ from all reads (Additional file 13: Table S4).
Hence, chimeric SAG reads did not bias the distribution
of SAG reads mapping against the metagenome.
The chimeric reads could potentially negatively impact

the SAG assembly, because the chimeras could be
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propagated to the contigs formed in the assembly. Since a
large majority of the chimeric reads (on average 96.9%,
compared to 8.6% of other reads; Additional file 14: Table
S5) aligned with more than 20 bases soft-clipped against
the SAG contigs, this does not seem to generally be the
case. The chimeric reads could also result in a fragmented
assembly by introducing alternative, erroneous, paths in
the assembly graph, leading to truncated contigs. If this
would be the case, one would expect chimeric reads to be
overrepresented among reads overlapping the ends of
contigs. While chimeric reads were more often aligned
over an edge of a contig compared to other reads, these
reads only corresponded to on average 6.3% of the
chimeric reads. Thus, chimeric reads do not seem to have
had a substantial impact on the SAG assembly.
From visual inspection of genome alignments, we dis-

covered some MAG contigs aligning to multiple SAG
contigs. This was caused by erroneously duplicated con-
tig sequences within the SAGs, where the highest
amount was found within the A11 SAG assembly. How-
ever, this issue was resolved when using the most recent
version of the assembly software (Spades version 3.10.1
instead of version 3.5), tested on the A11 SAG (data not
shown).

Discussion
In this study, we compared the genome output from two
state-of-the-art approaches for obtaining prokaryotic ge-
nomes representing abundant populations in the natural
environment without cultivation. From a collection of
SAGs and MAGs, we found an overlap in six clusters,
representing a broad taxonomic range including Gam-
maproteobacteria, Bacteroidetes, and Alphaproteobac-
teria that were nearly identical between the two groups
(average 99.51% sequence identity), verifying previous
results with high average nucleotide identity between
SAGs and MAGs [43]. It is interesting to note that aver-
age nucleotide identity (ANI) is an important measure of
the genomic level of relatedness in the taxonomy of pro-
karyotes [54]. Moreover, Konstantinidis and Roselló--
Móra [55] state that “In general, two organisms sharing
ANI values above 94–96% may be considered as mem-
bers of the same genospecies” citing the articles [56] and
[57], and Varghese et al. [58] found intra-species iden-
tities to range between 96.5 and 100% ANI. Thus, it ap-
pears that the matching SAGs and MAGs in our study
are highly likely to represent the same genomic popula-
tions—yet, this remains to be explored in detail in future
phylogenomic analyses. Due to seasonal recurrence of
bacterial populations in the waters studied here [23, 49],
a very high nucleotide identity (> 98.7% in overlapping
regions) could be achieved despite samples used for
SAG sequencing and MAG construction were collected
1 year apart. From the relative abundance of matching
data on specific bacterial populations (OTUs), we con-
clude that both approaches provide genomic information
on abundant taxa in the natural environment.
There are, however, differences between the two

methods. When conducting sequencing of single-
amplified genomes, one of the benefits is that the cells
can be screened and the researcher can select particular
cells to sequence, perhaps targeting a specific taxon or
function. Furthermore, if one has only very few samples,
producing SAGs may be preferable since the efficiency
of the MAG approach improves with the number of
samples [28]. Similarly, the MAG approach has critical
difficulties assembling closely related strains [59] and the
presence of multiple strains also inhibits accurate bin-
ning [28]. Moreover, closely related strains that display a
wide variation in genetic content may obtain different
abundance patterns, since temporal dynamics may differ
between core- and strain-specific parts of the genomes.
SAGs also supply superior information on which nucleo-
tide variants that co-occur within a genome (haplo-
types), whereas for metagenomics, this information is
limited to the read length, although computational ap-
proaches for haplotype reconstruction are emerging [60].
Nevertheless, metagenome-assembled genomes do recover
a higher percentage of the genome compared to SAGs.
Also, since reads from many individuals of each population
are being sampled, population genomic analysis can be
performed using the metagenome data [61–63], and
additional information about the whole microbial commu-
nity is obtained from the metagenome dataset, which is
achieved with a more standard set of equipment compared
to that needed for single-cell sequencing. Multiple samples
are often beneficial for ecological investigations, making
such projects suitable for MAG construction. Nevertheless,
the fact that the genomes matched abundant OTUs with
representatives from different taxonomic groups shows that
both the SAG and the MAG approaches have a broad
generality when applied to environmental samples.

Size of SAGs compared to MAGs
The SAGs in this study were consistently smaller than
the corresponding MAGs. This could be caused by ei-
ther incomplete SAG assemblies or by metagenome con-
tigs erroneously placed in MAGs by the binning
algorithm. Looking closer at the case where two SAGs
aligned to the same single MAG (i.e., BACL21), there
was evidence that the smaller of the two SAGs
(BS0038D2) was incomplete, i.e., it lacked a large frac-
tion of genes that were shared by the second SAG and
the MAG (Fig. 1). Our results therefore support the first
explanation, which has been previously observed [39, 64,
65]. Combining the sections included in the SAGs would
also cover a higher proportion of the MAG than any of
the two SAGs did individually (Fig. 1). Furthermore,
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MAGs showed a low level of redundancy (i.e., measured
as duplicated SCGs) which would likely have been
higher if MAGs contained a high degree of erroneously
binned contigs. Finally, matching SAGs are also less
complete than MAGs as estimated by presence of SCGs.
The cause for incomplete SAGs could be either un-

even or incomplete amplification of parts of the, typic-
ally, single-genome copy [21]. The average sequencing
depth was, however, one order of magnitude higher for
the SAGs than the MAGs (Additional file 1: Table S1),
and in most cases, the sequencing reads used were lon-
ger. The formation of chimeric reads is an additional
problem potentially affecting the assembly quality of
SAGs. Our analysis shows, however, that while chimeric
reads are present, they are in most cases not aligning
over the edges of SAG contigs (Additional file 14: Table
S5). It therefore seems likely that the major causes for
incomplete SAGs are other problems related to
whole-genome amplification. Attempts to improve this
method are ongoing [66, 67], but alternatively, multiple
SAGs from the same population can be sequenced for
better coverage [31, 37]. Even though the SAGs were
smaller than MAGs, the analysis of COG categories
within each matching SAG and MAG demonstrated that
the two approaches capture the broad functional cat-
egories in a similar manner (Fig. 2). This essentially indi-
cates that a majority of functional genes in different
categories are fairly evenly distributed across the
genomes.

Unique SAG sequences—metagenome assembly problem
or contamination?
With the caveats that the whole-genome amplification
of single cells generates uneven depth of coverage for
different parts of the genome [21], mapping SAG reads
against the metagenomes allowed us to investigate how
well the MAGs and the remaining metagenomes
accounted for all SAG sequences (Fig. 3). SAG reads
mapping to contigs included in the corresponding MAG
accounted for the largest fraction for all pairs of MAGs
and SAGs, confirming the completeness of the MAGs
(Fig. 3a). In the MAG assembly, only contigs longer than
1 kb were used as input to the binning, because short
contigs are difficult to cluster correctly [28]. Therefore,
reads mapping to contigs which were longer than 1 kb,
and thus subject to binning, but not included in the
corresponding MAG (Fig. 3b), likely indicated wrongly
binned contigs or possibly indicated sequence variation
between strains of the same population. A high rate of
false negative binning errors would necessitate a high
percentage of reads in this category. However, this was
not observed (Fig. 3b). Instead, the estimated false nega-
tive rate of the binning was low—on average only 3.6%
measured as number of genomic bases.
In contrast, a significant portion of the SAG reads were
placed in either of the two remaining categories: reads
mapping to metagenome contigs shorter than 1 kb
(Fig. 3c) or reads not mapping to any metagenome contig
(Fig. 3d). This could potentially be due to that metagen-
ome assembly failed to assemble true MAG sequences
past the 1-kb cutoff used for binning. Improvements of
metagenome assembly strategies have recently been made
[68, 69], possibly reducing the influence of this issue. Al-
ternatively, these sequences could correspond to SAG
contamination. While not easily quantified, our analysis
showed clear presence of contaminating sequences within
the SAGs (Additional file 6: Figure S3, Additional file 7:
Figure S4, Additional file 8: Figure S5, Additional file 9:
Figure S6, Additional file 10: Figure S7, Additional file 11:
Figure S8 and Additional file 12: Figure S9). Contaminat-
ing sequences could either be introduced during the hand-
ling of samples in the lab [39] or be present in the
environmental samples as free DNA [20]. An additional
possibility is that some regions here identified as contam-
ination of SAGs are instead true SAG sequences which
are unique to the SAG genome in comparison to the
MAG. Genome regions recently acquired through hori-
zontal gene transfer are likely to have a different sequence
composition [70] which is also one of the criteria to iden-
tify SAG contamination.

No significant core genome enrichment in MAGs
A potential problem with binning using coverage varia-
tions over multiple samples is that strain-specific genes
can have different abundance profiles than the core gen-
ome if multiple strains of the same species are present
in the samples [28]. Therefore strain-specific and core
genes are at risk of being placed into different bins, and
the use of single-copy core genes as an estimate of com-
pleteness would result in an overly optimistic measure
for the core genome bin. If any of the MAGs would be
artificially core-genome-enriched in the binning proced-
ure, we would expect a large fraction of the SAG reads,
in particular those corresponding to the non-core gen-
ome, to map to the long contigs that were not in the
MAGs. This was however not the case, as only a very
small fraction was detected (Fig. 3b). These findings in-
dicate that core genome enrichment in the construction
of MAGs is a smaller problem than previously thought.
However, the severity of this problem is likely dependent
on the structure of the pangenome of the organism.

Conclusion
Individual MAGs in this study were found to be larger
and more complete than corresponding SAGs, although
there is reason to believe that analysis of multiple SAGs
from the same group of organisms could result in equal
or higher completeness if jointly assembled. The false
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negative rate in the binning process was generally low.
Single-cell technology offers the possibility of genome
recovery from a single sample whereas the reconstruc-
tion of MAGs often requires multiple samples. This, on
the other hand, provides ecological information based
on the MAG abundance variations across samples. The
strong agreement between the SAG and MAG method-
ologies emphasizes that both are accurate and that the
choice of approach should depend on the research ques-
tions and on available resources.

Methods
Generation of MAGs
The MAGs used in the current study were obtained as
previously described in Hugerth et al. [23]. Briefly, bac-
terial community DNA for MAG construction was ob-
tained from surface water (2 m) collected in the Baltic
Sea on 37 time points between March and December
2012 at the Linnaeus Microbial Observatory (LMO) lo-
cated ~ 11 km offshore Kårehamn, Sweden (56°
55′.51.24″ N 17°3′38.52″ E). Library preparation of the
bacterial community DNA was performed with the Ru-
bicon ThruPlex kit (Rubicon Genomics, Ann Arbor, MI,
USA) according to the instructions of the manufacturer,
and finished libraries were sequenced on a HiSeq 2500
(Illumina Inc., San Diego, CA, USA) with paired-end
reads of 2 × 100 bp at SciLifeLab/NGI (Solna, Sweden).
On average, 31.9 million paired-end reads per sample
were generated.
Quality-controlled reads were assembled separately for

each sample using a combination of Ray 2.1 (Ray Meta)
[71] and 454 Life Science’s software Newbler (v.29;
Roche, Basel, Switzerland). Bowtie2 [72] was used to
map all quality-controlled reads for each sample against
the contigs. Contigs from each sample were then binned
using CONCOCT [28], an algorithm that clusters con-
tigs into genomes across multiple samples, dependent
on sample coverage and sequence composition using
Gaussian mixture models. Bins were evaluated with a set
of 36 single-copy genes presented in [28] and approved
if they contained at least 30 unique SCGs with a max-
imum of 2 in more than a single copy. Bins meeting
these criteria were considered MAGs. It should be noted
that metagenome assembly and metagenome binning
softwares continuously evolve, which could potentially
influence MAG construction. However, the CONCOCT
algorithm has not changed since we applied it on these
data, and CONCOCT is regarded a highly successful
software for metagenome binning [59, 73]. Two MAGs
from different samples could correspond to the same or-
ganism, and therefore, the 83 MAGs were clustered
using MUMmer [74] into 30 Baltic Sea clusters (BACL).
Functional analysis of each BACL was made with the
PROKKA pipeline (v.1.7) [75] and extended with
annotation for COG categories [76]. Taxonomic assign-
ment for each MAG was firstly done with Phylosift [77]
and then complemented with complete or partial 16S
rRNA genes identified in the MAGs with webMGA [78].

SAG sampling and single-cell sorting
Samples for SAGs from the Baltic Sea were collected on
13 May 2013 at the Linnaeus Microbial Observatory and
cryopreserved in 1× TE, 5% glycerol (final concentra-
tion) before arriving to the Microbial Single Cell Gen-
omics facility, SciLifeLab, Uppsala University. Prior to
sorting, the cryopreserved samples were thawed and di-
luted, before being stained with 1× (final concentration)
SYBR Green I (Life Technologies, CA, USA) for approxi-
mately 30 min. The sorting was performed with a MoFlo
Astrios EQ (Beckman Coulter, USA) cell sorter using a
488-nm laser for excitation, 70-μm nozzle, sheath pres-
sure of 60 psi, and 1.3% sterile filtered NaCl as sheath
fluid. Individual cells were deposited into 96-well plates
(Bio-Rad, CA, USA) containing 1 μL of 1× TE using a
CyClone™ robotic arm and the most stringent single-cell
sort settings (single mode, 0.5 drop envelope). The sorter
was triggered on forward scatter at a threshold of 0.08%,
and sort regions were set on SYBR Green I fluorescence
detected at 513 nm using a 40-nm bandpass filter.

Whole-genome amplification using MDA with phi29
Deposited cells were lysed and neutralized followed by
whole-genome amplification using Phi29 and MDA as
described by [18]. In short, the cells were incubated in
an alkaline solution at RT for 5 min. Lysis reactions were
neutralized by adding 1 μL neutralization buffer (Qiagen,
Germany). MDA was performed using the RepliPHI™
Phi29 Reagent set (0.1 μg/μL, RH04210, Epicenter, WI,
USA) at 30 °C for 16 h in 15 μL reaction volumes with a
final concentration of 1× reaction buffer, 0.4 mM
dNTPs, 10 μM DTT, 5% DMSO, 50 μM hexamers with
3′-phosphorothioate modifications (IDT Integrated
DNA Technologies, IA, USA), 40 U Phi 29 enzyme,
0.5 μM SYTO13® (Life Technologies, CA, USA), and
water. All reagents except SYTO13 were UV decontami-
nated at 2 × 0.5 J in a Biolinker. The whole-genome
amplification was monitored in real time by detection of
SYTO13 fluorescence every 15 min for 16 h using a
Chromo4 real-time PCR instrument (Bio-Rad, CA,
USA). The single amplified genome DNA was stored at
− 20 °C until further PCR screening, library preparation,
and Illumina sequencing.

Screening of SAGs
Positive SAGs, defined by an early amplification curve
well separated from negative controls as well as a positive
PCR product targeting the 16S rRNA gene, were diluted
20-fold and screened using primer pair Bact_341 F:
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5′-CCTACGGGNGGCWGCAG-3′ and Bact_805 R: 5′-
GACTACHVGGGTATCTAATCC-3′ [47]. The reactions
were performed in 20 μL reaction volume with 2 U of Taq
DNA Polymerase recombinant (Thermo Fisher Scientific,
MA, USA), 1× reaction buffer, 0.2 mM dNTPs, 2 mM
MgCl2, and 0.25 μM of each primer. Following a 3-min de-
naturation at 95 °C, targets were amplified for 35 cycles of
95 °C for 30 s, 50 °C for 30 s, 72 °C for 60 s, and a final
10-min extension at 72 °C. PCR products were detected by
an approximate 450-bp fragment on a 1.5% agarose gel.
The products were purified using the NucleoSpin Gel and
PCR clean-up purification kit (Macherey-Nagel, Germany),
quantified using the Quant-iT ™ PicoGreen® dsDNA assay
kit (Invitrogen, MA, USA) in a FLUOstar® Omega micro-
plate reader (BMG Labtech, Germany) and submitted for
identification by Sanger sequencing at the Uppsala Gen-
ome Center.
Illumina MiSeq sequencing
Altogether, 15 SAGs were selected for genome sequen-
cing. Twelve of these generated a 16S rRNA sequence
identified by Sanger sequencing and were selected to
cover a broad range of phylogenetic groups. Three add-
itional SAGs did not generate any 16S rRNA amplicons
with the indicated primers but were nevertheless se-
lected to include also lineages not targeted by bacterial
primers.
The DNA content of the SAGs was quantified with the

Quant-iT ™ PicoGreen® dsDNA assay kit and subsequently
diluted to a concentration of 0.2 ng/μL as recommended
for the Nextera XT Library Preparation kit (Illumina, CA,
USA). Procedures were according to instructions from the
manufacturer except that normalization was performed
using the Kapa qPCR quantification method instead of
bead normalization. In short, the Nextera XT uses an en-
zymatic step for fragmentation of DNA which enables small
quantities of input DNA. The protocol involves a PCR
amplification step where indexes and additional required
nucleotide sequences are incorporated. After PCR cleanup,
the library for each SAG was quantified and handed in for
individual quality control at the SciLifeLab SNP&SEQ facil-
ity. The quality of the libraries was evaluated using the
TapeStation from Agilent Technologies with the D1000
ScreenTape. The sequencing libraries were quantified by
qPCR using the library quantification kit for Illumina
(KAPA Biosystems, MA, USA) on a StepOnePlus instru-
ment (Applied Biosystems, CA, USA) and pooled in equal
amounts prior to cluster generation and sequencing on a
single MiSeq run with V3 chemistry and 2 × 300 bp mode.
One additional SAG (A11) from the same sample but

from another sorted plate was purified using the
NucleoSpin Tissue purification kit (Macherey-Nagel,
Germany) and handed in directly to the SNPseq
sequencing facility for preparation using the TruSeq
Nano DNA library kit (Illumina, CA, USA) and there-
after sequenced in another MiSeq V3 2 × 300 bp run.

Data analysis of sequenced libraries
The global quality of raw and trimmed reads was
checked using Fastqc 0.11 [79], and low-quality data was
removed together with adapters using Cutadapt 1.7 [80],
requiring a minimal length of 75 nucleotides and using a
quality of 30 as the threshold. The trimmed reads were
assembled using the default values for single cell (--sc)
with SPAdes 3.5 [81] and the parameter careful, which,
according to the documentation, reduces the number of
mismatches and short indels in contigs. The quality of
each of the assemblies was assessed using the software
QUAST 2.3 [82].

Comparative genomics analyses
Mash version 1.0.1 [51] with 100,000 15-mers for each
SAG and MAG was used to calculate pairwise distances
between all genomes. Single-linkage clustering was then
performed using Scipy [83] and visualized using matplo-
tlib [84] (Additional file 2: Figure S1). Clustering cutoff
for each BACL was set at 0.1 (90% estimated similarity),
and in each cluster containing a combination of MAGs
and SAGs, they were pairwise aligned using the dnadiff
tool from the Mummer suite version 3.23 [74]. Since
Mash only gives an estimation of the nucleotide dis-
tance, we also subjected two additional clusters just over
the 10% dissimilarity limit (BACL24 and BACL30) for
alignment with MUMmer. Out of these, BACL30 re-
sulted in the best alignment at 96.5% identity and align-
ment rate of the SAG at 53.7%. However, none of these
two clusters were included in the comparison. The num-
bers assigned to the clusters correspond to the original
MAG BACLs used in [23]. None of the SAGs or MAGs
was closely related to complete genomes available
through the newly developed Genome Taxonomy Data-
base (http://gtdb.ecogenomic.org/). We only found some
matches to non-SAG/non-MAG genomes for BACL16.
The matches of the BACL16 120322 MAG to the ge-
nomes of the two bacterial strains MOLA455 and
HTCC2207 were less than 2% and 4% of the aligned
bases, respectively (determined using MUMmer/dna-
diff ); the sequence identity was < 83% across the aligned
regions.
Following the same procedure as [23], the SAGs were

gene annotated using the PROKKA pipeline [75] and com-
plemented with all significant (e value < 0.00001) COG an-
notations using rpsblast from BLAST+ version 2.2.28+
[85]. Non-metric multidimensional scaling (NMDS) and
ANOSIM analysis was based on counts of COG categories
in the genomes, running the ANOSIM with 99,999 per-
mutations. The pairwise genome distances for these

http://gtdb.ecogenomic.org/


Alneberg et al. Microbiome  (2018) 6:173 Page 11 of 14
analyses were calculated using Poisson dissimilarity [86]
with the PoiClaClu package, and NMDS and ANOSIM
were conducted with the Vegan package, in R (www.r-pro-
ject.org). Using the Anvi’o (Docker image with version
2.1.0) pangenomic workflow [52, 87] separately for each
genome cluster, gene homologs were identified and visual-
ized and estimates of completeness and redundancy were
obtained using the MCL algorithm [88], prodigal [89],
hmmer [90], and 139 bacterial single-copy genes (SCGs)
defined by [91]. The summary statistics produced by
Anvi’o are available in Additional file 4: Table S2.
SAG reads corrected during the assembly process [81]

that mapped to the SAG genome itself (minimum
99.55%) were mapped using Bowtie2 (version 2.2.6 with
the --local argument) [72] against the assembled meta-
genome samples from which the MAGs were obtained.
The resulting BAM-files were sorted using Samtools ver-
sion 1.3 [92], duplicates were removed with Picard ver-
sion 1.118, and the number of mapped reads per contig
was counted (Fig. 3). Metagenomic contigs were divided
into three groups: contigs included in the correct MAG,
long (≥ 1 kb) contigs included in the binning but not be-
longing to the correct MAG, and short (< 1 kb) contigs
not included in the binning. Additionally, there were
those reads that did not map to the metagenome assem-
bly at all. The counts were summarized and visualized
using Pandas [93] and Seaborn [94].
Duplicated elements in the genomes were identified

with BLASTN version 2.2.28+ [85] as alignments longer
than 0.1 kb between contigs longer than 1 kb and with
100% nucleotide identity. Reassembly of A11 was done
using the corrected reads from existing assembly as in-
put to Spades version 3.10.1 run in single-cell mode.

Prevalence of 16S rRNA gene sequences in SAGs and
MAGs and seasonal occurrence
Twelve out of the 16 single-amplified genomes had 16S
rRNA genes identified through Sanger sequencing as de-
scribed above. However, four SAGs (A11, BS0038A02,
BS0038A08, and BS0038A11) seemed to lack 16S rRNA
gene sequence data and were therefore investigated with
Barrnap (version 0.8) [95]. Barrnap identified the 16S
rRNA gene in SAG A11 and this sequence was taxonom-
ically investigated using the SINA/SILVA database [96].
Barrnap was also applied to all SAGs and MAGs to com-
pare the presence of 16S rRNA genes in the genomes.
To obtain a taxonomic annotation for the three

remaining SAGs without 16S rRNA genes (BS0038A02,
BS0038A08, and BS0038A11), we investigated their good
quality contigs with a minimum length of 1 kb and kmer
coverage (provided by Spades) of at least 11. Prodigal
2.6.1 [89] was then used to predict coding regions in the
selected contigs and predicted proteins were aligned
against NCBI nucleotide and NCBI non-redundant
database using BLAST (standalone BLAST + package
version 2.2.30) [85].
To investigate the presence in the Baltic Sea of the 13

SAGs having a 16S rRNA gene, we individually blasted
the sequences to a 16S rRNA gene amplicon dataset from
a field study at the LMO station [49] using online
BLASTN [97]. The seasonal dynamics were then explored
by comparing the matching SAG/MAG clusters from
2012 (i.e., BACLs from Hugerth et al. 2015 [23]) to the
corresponding OTU in 2011 (i.e., Lindh et al. 2015 [49]).

Analysis of contamination of SAGs and chimeric reads
The presence of contamination within SAGs was visually
estimated through a tetranucleotide nucleotide compos-
ition PCA. The PCA was performed on all contigs from
each individual SAG, but for visualization, the contigs
were separated into two sets. One set contained contigs
which aligned with less than 5% of their lengths to their
corresponding MAG and the other set contained all
other contigs (which did align to the corresponding
MAG). When more than one MAG were in the same
cluster, the union of all aligning SAG bases was used. To
make the contamination detection less dependent of the
MAGs, the contigs were also colored according to the
number of metagenome reads mapping to them. The
average metagenome coverage was estimated by assum-
ing a length of 100 bases for each metagenome read. For
a clearer visualization, the high coverage values were ad-
justed so that the maximum value was only three times
the median value. The density plots were constructed
using Pandas [93].
To identify chimeric SAG reads that contain inver-

sions, the SAG read mappings against the metagenomes
were investigated. Reads were first flagged as potentially
chimeric if they mapped with at least 20 soft-clipped
bases (as marked with S in the SAM-file cigar string)
against any of the metagenome samples where matching
MAGs had been obtained. Furthermore, the remaining
matching region of the read was required to correspond
to at least half of the read length and contain no more
than two mismatches. This rather strict requirement was
enforced to minimize the risk that the mapping was not
to the intended organism. Finally, the list of potentially
chimeric reads from all matching metagenome samples
was combined, deduplicated, and filtered to remove
reads which mapped in a non-chimeric fashion in any
sample. We defined a non-chimeric mapping to contain
alignment of at least 95% of the read length and to con-
tain less than five mismatches within this region.
The effect of chimeric reads was evaluated on both SAG

assembly and on statistics for mapping SAG reads against
metagenome. For all mapping files, the distribution of the
chimeric reads was evaluated based on whether they were
soft clipped and whether their alignment was overlapping

https://www.r-project.org/
https://www.r-project.org/
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a contig edge. A soft-clipped alignment was defined as
containing at least 20 clipped bases. Furthermore, for
mapping files of SAG reads against the metagenome sam-
ples, categories were defined based on the metagenome
contigs in analogy to Fig. 3. A metagenomic contig was ei-
ther shorter than 1 kb, longer than 1 kb but not contained
within the focal MAG, or part of the MAG in question.
These categories were used to investigate the distribution
of mapping SAG reads based on the metagenome contig
they mapped against.
Additional files

Additional file 1: Table S1. Assembly statistics and taxonomy for all
MAGs and SAGs. For MAGs, “Coverage within sample” indicates that
coverage was calculated based on the sample from where it was
assembled. (XLSX 14 kb)

Additional file 2: Figure S1. Hierarchical single-linkage clustering of
SAGs and MAGs based on distances generated by MASH. Genome names
starting with “BACL” indicate MAGs and the number following indicates
the Baltic Sea cluster. Leaves joined by nodes within a distance of 0.10
are grouped by color of their leftmost branches. (PDF 71 kb)

Additional file 3: Figure S2. Abundances over the years 2011 and 2012
for OTUs matching clusters of SAGs and MAGs. Redrawn from references
Hugerth et al. and Lindh et al. [23, 49]. (PDF 188 kb)

Additional file 4: Table S2. Summary statistics as given by Anvi’o for all
MAGs and SAGs found by both approaches. (XLSX 23 kb)

Additional file 5: Table S3. Distribution of metagenome bases covered
by SAG reads mapped against the corresponding metagenome assemblies.
“Estimated False Negative Rate in Binning (%)” was calculated by dividing the
number of “Bases covered within long (≥ 1 kb) non-MAG contigs” with the
number of “Nucleotide bases covered within MAG contigs.” (XLSX 10 kb)

Additional file 6: Figure S3. Tetranucleotide frequency plots of SAG
BS0038H10 in BACL1. Nucleotide composition PCAs (a,b) and metagenome
coverage estimate density plots (c,d) for contigs separated on alignment
rate (< 5% of bases: a,c; ≥5% of bases: b,d) against the corresponding MAG.
The color of the circles in panels a and b corresponds to the average
metagenome coverage and the size of the circles corresponds to the contig
sizes. Metagenome average coverage depth was estimated by assuming all
mapping reads were 100 bases long. Furthermore, for clarity, the maximum
value for the average coverage depth has been set to three times the
median. (PDF 144 kb)

Additional file 7: Figure S4. Tetranucleotide frequency plots of SAG
A11 in BACL7. Other figure legend information same as in Additional file 6:
Figure S3. (PDF 192 kb)

Additional file 8: Figure S5. Tetranucleotide frequency plots of SAG
BS0038D5 in BACL10. Other figure legend information same as in
Additional file 6: Figure S3. (PDF 236 kb)

Additional file 9: Figure S6. Tetranucleotide frequency plots of SAG
BS0038E9 in BACL16. Other figure legend information same as in
Additional file 6: Figure S3. (PDF 100 kb)

Additional file 10: Figure S7. Tetranucleotide frequency plots of SAG
BS0038D2 in BACL21. Other figure legend information same as in
Additional file 6: Figure S3. (PDF 158 kb)

Additional file 11: Figure S8. Tetranucleotide frequency plots of SAG
BS0038D11 in BACL21. Other figure legend information same as in
Additional file 6: Figure S3. (PDF 87 kb)

Additional file 12: Figure S9. Tetranucleotide frequency plots of SAG
BS0038A11 in BACL22. Other figure legend information same as in
Additional file 6: Figure S3. (PDF 141 kb)

Additional file 13: Table S4. Statistics for chimeric SAG reads mapping
against metagenome contigs. (XLSX 14 kb)
Additional file 14: Table S5. Statistics for chimeric SAG reads and other
SAG reads mapping against SAG contigs. (XLSX 11 kb)

Abbreviations
BACL: Baltic Sea cluster; COG: Clusters of Orthologous Groups; LMO: Linnaeus
Microbial Observatory; MAG: Metagenome-assembled genome; Mbp: Million
base pairs; OTU: Operational taxonomic unit; SAG: Single-amplified genome

Acknowledgements
We thankfully acknowledge Anders Månsson and Kristofer Bergström for their
sampling at sea and Sabina Arnautovic for the skillful support in the laboratory.
We thank the National Genomics Infrastructure sequencing platforms at the
Science for Life Laboratory at Uppsala University, a national infrastructure
supported by the Swedish Research Council (VR-RFI) and the Knut and Alice
Wallenberg Foundation. We would also like to thank the SciLifeLab Microbial
Single Cell Genomics Facility at Uppsala University where the single cell
genomics efforts were carried out. Computational resources, including support,
were supplied through UPPMAX: Uppsala Multidisciplinary Center for Advanced
Computational Science, for which we are very grateful.

Funding
This work was supported by grants from the Swedish Research Council VR to
J.P. (grant no. 2011-4369 and 2015-04254) and to A.F.A. (grant no. 2011-5689).
This research was also funded by the BONUS BLUEPRINT project that was sup-
ported by BONUS (Art 185); funded jointly by the EU and the Swedish Research
Council FORMAS (to J.P. and A.F.A.); funded by grants of the European Research
Council (ERC Starting grant 310039-PUZZLE_CELL), the Swedish Foundation for
Strategic Research (SSF-FFL5), and the Swedish Research Council VR (grant
2015-04959) to T.J.G.E.; and funded by Uppsala University SciLifeLab SFO funds.

Availability of data and materials
The single-amplified genome sequence dataset generated during the current
study is available in the EMBL-EBI European Nucleotide Archive repository,
under the primary accession PRJEB21451. The metagenomic reads dataset
analyzed in the current study are previously published [23] and are avail-
able on the sequence read archive under the accession SRP058493,
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA273799.

Authors’ contributions
AFA and JP conceived the study. JA, CMGK, AFA, and JP designed the
research, analyzed data, and wrote the paper. JA, CMGK, A-MD, CB, FH, MVL,
LWH, TJGE, and SB performed the research. All authors read and approved
the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1School of Engineering Sciences in Chemistry, Biotechnology and Health,
Department of Gene Technology, Science for Life Laboratory, KTH Royal
Institute of Technology, Stockholm, Sweden. 2Centre for Ecology and
Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar,
Sweden. 3Department of Cell and Molecular Biology, SciLifeLab, Uppsala
University, Uppsala, Sweden. 4Present address: Science for Life Laboratory,
Department of Molecular, Tumour and Cell Biology, Centre for Translational
Microbiome Research, Karolinska Institutet, Solna, Sweden. 5Present address:
Department of Biology, Lund University, Lund, Sweden. 6Department of
Ecology and Genetics, Limnology, Science for Life Laboratory, Uppsala
University, Uppsala, Sweden.

https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s40168-018-0550-0
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA273799


Alneberg et al. Microbiome  (2018) 6:173 Page 13 of 14
Received: 3 August 2017 Accepted: 5 September 2018

References
1. Reddy T, Thomas AD, Stamatis D. The Genomes OnLine Database (GOLD) v. 5:

a metadata management system based on a four level (meta) genome project
classification. Nucleic acids Res. 2014;43(Database issue):D1099–106.

2. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi
M, et al. Genomes OnLine Database (GOLD) v.6: data updates and feature
enhancements. Nucleic Acids Res. 2016;45:gkw992.

3. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, et al.
Complete genome sequence of the methanogenic archaeon, Methanococcus
jannaschii. Science. 1996;273:1058–73.

4. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, et al. A
phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature.
2009;462:1056–60.

5. Craig Venter J, Adams MD, Myers EW, Li PW, Mural RJ, Sutton Granger G,
et al. The sequence of the human genome. Science. 2001;291:1304–51.

6. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI.
The human microbiome project. Nature. 2007;449:804–10.

7. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK,
et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol.
2011;13:135–44.

8. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.
Ocean plankton. Structure and function of the global ocean microbiome.
Science. 2015;348:1261359.

9. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic
carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad
Sci USA. 2015;112:453–7.

10. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2016;44:D457–62.

11. Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, et al.
Strategies to improve reference databases for soil microbiomes. ISME J.
2016;11:829–34.

12. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority.
Proc Natl Acad Sci USA. 1998;95:6578–83.

13. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s
biogeochemical cycles. Science. 2008;320:1034–9.

14. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ
detection of individual microbial cells without cultivation. Microbiol Rev.
1995;59:143–69.

15. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al.
Sequencing genomes from single cells by polymerase cloning. Nat
Biotechnol. 2006;24:680–6.

16. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, et al.
One bacterial cell, one complete genome. PLoS One. 2010;5:e10314.

17. Landry ZC, Giovanonni SJ, Quake SR, Blainey PC. Optofluidic cell selection
from complex microbial communities for single-genome analysis. Methods
Enzymol. 2013;531:61–90.

18. Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, et al. Obtaining
genomes from uncultivated environmental microorganisms using FACS-
based single-cell genomics. Nat Protoc. 2014;9:1038–48.

19. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour
evolution inferred by single-cell sequencing. Nature. 2011;472:90–4.

20. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, et al.
Dissecting biological “dark matter” with single-cell genetic analysis of rare
and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci
USA. 2007;104:11889–94.

21. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state
of the science. Nat Rev Genet. 2016;17:175–88.

22. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al.
Single-cell genomics reveals hundreds of coexisting subpopulations in wild
Prochlorococcus. Science. 2014;344:416–20.

23. Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, et al.
Metagenome-assembled genomes uncover a global brackish microbiome.
Genome Biol. 2015;16:279.

24. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
TBK, et al. Minimum information about a single amplified genome (MISAG)
and a metagenome-assembled genome (MIMAG) of bacteria and archaea.
Nat Biotechnol. 2017;35:725–31.
25. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM,
et al. Community structure and metabolism through reconstruction of
microbial genomes from the environment. Nature. 2004;428:37–43.

26. Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF.
Time series community genomics analysis reveals rapid shifts in bacterial
species, strains, and phage during infant gut colonization. Genome Res.
2013;23:111–20.

27. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen
PH. Genome sequences of rare, uncultured bacteria obtained by
differential coverage binning of multiple metagenomes. Nature
Biotechnol. 2013;31:533–8.

28. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al.
Binning metagenomic contigs by coverage and composition. Nat Methods.
2014;11:1144–6.

29. Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW.
GroopM: an automated tool for the recovery of population genomes from
related metagenomes. PeerJ. 2014;2:e603.

30. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al.
Potential for chemolithoautotrophy among ubiquitous bacteria lineages in
the dark ocean. Science. 2011;333:1296–300.

31. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al.
Insights into the phylogeny and coding potential of microbial dark matter.
Nature. 2013;499:431–7.

32. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE,
et al. Complex archaea that bridge the gap between prokaryotes and
eukaryotes. Nature. 2015;521:173–9.

33. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L,
Vancaester E, et al. Metagenomic exploration of Asgard archaea illuminates
the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.

34. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al.
Assembly of 913 microbial genomes from metagenomic sequencing of the
cow rumen. Nat Commun. 2018;9:870.

35. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN,
Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-
assembled genomes substantially expands the tree of life. Nature
Microbiol. 2017;2:1533–42.

36. Stepanauskas R. Single cell genomics: an individual look at microbes. Curr
Opin Microbiol. 2012;15:613–20.

37. Troell K, Hallström B, Divne A-M, Alsmark C, Arrighi R, Huss M, et al.
Cryptosporidium as a testbed for single cell genome characterization of
unicellular eukaryotes. BMC Genomics. 2016;17:471.

38. Lasken RS, Stockwell TB. Mechanism of chimera formation during the
multiple displacement amplification reaction. BMC Biotechnol. 2007;7:19.

39. Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, et al. Decontamination
of MDA reagents for single cell whole genome amplification. PLoS One.
2011;6:e26161.

40. Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. Reconstructing
each cell’s genome within complex microbial communities-dream or reality?
Front Microbiol. 2015;6:1–6.

41. Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population
genomes from metagenome datasets. Microbiome. 2016;4:8.

42. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately
reconstructing single genomes from complex microbial communities. PeerJ.
2015;3:e1165.

43. Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G,
et al. Phylogeny and physiology of candidate phylum “Atribacteria”
(OP9/JS1) inferred from cultivation-independent genomics. ISME J.
2016;10:273–86.

44. Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, et al.
Metagenome, metatranscriptome and single-cell sequencing reveal
microbial response to Deepwater Horizon oil spill. ISME J. 2012;6:1715–27.

45. Mende DR, Aylward FO, Eppley JM, Nielsen TN, DeLong EF. Improved
environmental genomes via integration of metagenomic and single-cell
assemblies. Front Microbiol. 2016;7:1–9.

46. Becraft ED, Dodsworth JA, Murugapiran SK, Ohlsson JI, Briggs BR, Kanbar J,
et al. Single-cell-genomics-facilitated read binning of candidate phylum
EM19 genomes from geothermal spring metagenomes. Appl Environ
Microbiol. 2015;82:992–1003.

47. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF.
Transitions in bacterial communities along the 2000 km salinity gradient of
the Baltic Sea. ISME J. 2011;5:1571–9.



Alneberg et al. Microbiome  (2018) 6:173 Page 14 of 14
48. Andersson AF, Riemann L, Bertilsson S. Pyrosequencing reveals contrasting
seasonal dynamics of taxa within Baltic Sea bacterioplankton communities.
ISME J. 2010;4:171–81.

49. Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al.
Disentangling seasonal bacterioplankton population dynamics by high-
frequency sampling. Environ Microbiol. 2015;17:2459–76.

50. Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J, Asplund-Samuelsson J,
et al. Functional tradeoffs underpin salinity-driven divergence in microbial
community composition. PLoS One. 2014;9:e89549.

51. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
et al. Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 2016;17:132.

52. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an
advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.

53. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al.
Community-wide analysis of microbial genome sequence signatures. Genome
Biol. 2009;10:R85.

54. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species
definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.

55. Konstantinidis KT, Rosselló-Móra R. Classifying the uncultivated microbial
majority: a place for metagenomic data in the candidatus proposal. Syst
Appl Microbiol. 2015;38:223–30.

56. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje
JM. DNA–DNA hybridization values and their relationship to whole-genome
sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the
prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.

58. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K,
Kyrpides NC, et al. Microbial species delineation using whole genome
sequences. Nucleic Acids Res. 2015;43:6761–71.

59. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al.
Critical assessment of metagenome interpretation - a benchmark of
metagenomics software. Nat Methods. 2017;14:1063–71.

60. Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, Eren
AM. DESMAN: a new tool for de novo extraction of strains from metagenomes.
Genome Biol. 2017;18:181.

61. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al.
Genomic variation landscape of the human gut microbiome. Nature.
2012;493:45–50.

62. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated
metagenomics pipeline for strain profiling reveals novel patterns of bacterial
transmission and biogeography. Genome Res. 2016;26:1612–25.

63. Andersson AF, Sjöqvist C. POGENOM. POGENOM: population genomics
from metagenomes. 2017. Available from: https://github.com/EnvGen/
POGENOM

64. Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al.
Comparative single-cell genomics reveals potential ecological niches for the
freshwater acI Actinobacteria lineage. ISME J. 2014;8:2503–16.

65. Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG, Schwientek P,
et al. Tuning fresh: radiation through rewiring of central metabolism in
streamlined bacteria. ISME J. 2016;10:1902–14.

66. Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, et al. Single-cell whole-
genome analyses by Linear Amplification via Transposon Insertion
(LIANTI). Science. 2017;356:189–94.

67. Leung K, Klaus A, Lin BK, Laks E, Biele J, Lai D, et al. Robust high-performance
nanoliter-volume single-cell multiple displacement amplification on planar
substrates. Proc Natl Acad Sci USA. 2016;113:8484–9.

68. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31:1674–6.

69. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new
versatile metagenomic assembler. Genome Res. 2017;27:824–34.

70. Sandberg R, Winberg G, Bränden CI, Kaske A, Ernberg I, Cöster J. Capturing
whole-genome characteristics in short sequences using a naïve Bayesian
classifier. Genome Res. 2001;11:1404–9.

71. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta: scalable
de novo metagenome assembly and profiling. Genome Biol. 2012;13:R122.

72. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357–9.

73. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun
metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35:833–44.
74. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al.
Versatile and open software for comparing large genomes. Genome Biol.
2004;5:R12.

75. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;30:2068–9.

76. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic Acids
Res. 2000;28:33–6.

77. Darling AE, Jospin G, Lowe E, Matsen FA 4th, Bik HM, Eisen JA. PhyloSift:
phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.

78. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast
metagenomic sequence analysis. BMC Genomics. 2011;12:444.

79. Andrews S. FastQC: a quality control tool for high throughput sequence
data. 2010. Available from: http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

80. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. J. 2011;17:10–2.

81. Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, et al.
SPAdes: a new genome assembly algorithm and its applications to single-
cell sequencing. J Comput Biol. 2012;19:455–77.

82. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29:1072–5.

83. van d WS, Colbert SC, Varoquaux G. The NumPy array: a structure for
efficient numerical computation. Comput Sci Eng. 2011;13:22–30.

84. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5.
85. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215:403–10.
86. Witten DM. Classification and clustering of sequencing data using a Poisson

model. Ann Appl Stat. 2011;5:2493–518.
87. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using

DIAMOND. Nat Methods. 2015;12:59–60.
88. van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from

networks. Methods Mol Biol. 2012;804:281–95.
89. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:

prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010;11:119.

90. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:
e1002195.

91. Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke
T, et al. UGA is an additional glycine codon in uncultured SR1 bacteria from
the human microbiota. Proc Natl Acad Sci USA. 2013;110:5540–5.

92. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

93. McKinney W, et al. Data structures for statistical computing in python. In:
van der Voort S, Millman J, editors. Proceedings of the 9th Python in
Science Conference; 2010. p. 51–6.

94. Waskom M, Botvinnik O, Hobson P, Warmenhoven J, Cole JB, Halchenko Y,
et al. Seaborn: statistical data visualization. Seaborn: Statistical Data Visualization
Seaborn 0 5, vol. 1; 2014.

95. Seemann T. Barrnap: rapid ribosomal RNA prediction. 2015 [cited 2016 Jul
21]. Available from: https://github.com/tseemann/barrnap

96. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple
sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

97. BLASTN: Standard Nucleotide BLAST. [cited 2017 Apr 21]. Available from:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

https://github.com/EnvGen/POGENOM
https://github.com/EnvGen/POGENOM
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/tseemann/barrnap
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Overview of SAGs and MAGs
	Alignment and gene content
	Analysis of functional gene data
	Quantification of metagenome binning and assembly errors
	SAG quality evaluation

	Discussion
	Size of SAGs compared to MAGs
	Unique SAG sequences—metagenome assembly problem or contamination?
	No significant core genome enrichment in MAGs

	Conclusion
	Methods
	Generation of MAGs
	SAG sampling and single-cell sorting
	Whole-genome amplification using MDA with phi29
	Screening of SAGs
	Illumina MiSeq sequencing
	Data analysis of sequenced libraries
	Comparative genomics analyses
	Prevalence of 16S rRNA gene sequences in SAGs and MAGs and seasonal occurrence
	Analysis of contamination of SAGs and chimeric reads

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

