HALMSTAD
UNIVERSITY

On the Design and Testing of
Dependable Autonomous Systems

Benjamin Vedder

DOCTORAL THESIS | Halmstad University Dissertations no. 52

mailto:benjamin.vedder@ri.se

On the Design and Testing of Dependable Autonomous Systems
© Benjamin Vedder

Halmstad University Dissertations no. 52

ISBN 978-91-88749-10-9 (printed)

ISBN 978-91-88749-11-6 (pdf)

Publisher: Halmstad University Press, 2018 | www.hh.se/hup
Printer: Media-Tryck, Lund

www.hh.se/hup

Abstract

Designing software-intensive embedded systems for dependable autonomous
applications is challenging. In addition to fulfilling complex functional require-
ments, the system must be safe under all operating conditions, even in the
presence of faults. The key to achieving this is by simulating and testing the
system enough, including possible faults that can be expected, to be confident
that it reaches an acceptable level of performance with preserved safety. How-
ever, as the complexity of an autonomous system and its application grows, it
becomes exponentially more difficult to perform exhaustive testing and explore
the full state space, which makes the task a significant challenge.

Property-Based Testing (PBT) is a software testing technique where tests
and input stimuli for a system are automatically generated based on specified
properties of the system, and it is normally used for testing software libraries.
PBT is not a formal proof that the system fulfills the specified properties, but
an effective way to find deviations from them. Safety-critical systems that must
be able to deal with hardware faults are often tested using Fault Injection (FI)
at several abstraction levels. The purpose of FI is to inject faults into a system
in order to exercise and evaluate fault handling mechanisms. In this thesis, we
utilize techniques from PBT and FI, for automatically testing functional and
safety requirements of autonomous system simultaneously. We have done this
on both simulations of hardware, and on real-time hardware for autonomous
systems. This has been done in the process of developing a quadcopter system
with collision avoidance, as well as when developing a self-driving model car.
With this work we explore how tests can be auto-generated with techniques
from PBT and FI, and how this approach can be used at several abstraction
levels during the development of these systems. We also explore which details
and design choices have to be considered while developing our simulators and
embedded software, to ease testing with our proposed methods.

Acknowledgements

I would like to express my gratitude to my supervisor Magnus Jonsson and my
co-supervisor Jonny Vinter for supporting me in the work with this thesis. I
would also like to thank my family and friends for being there for me during
the period I worked with this thesis. Further, I would like to thank my col-
leagues at RISE Research Institutes of Sweden and Halmstad University, the
members of the PROWESS, KARYON and PRoPART EU Projects, and the
members of the CHRONOS step 1 and 2 Vinnova projects. Finally, I would like
to thank all co-authors of the included papers for their contribution and support.

This research has been funded through the PROWESS EU project (Grant agree-
ment no: 317820), the KARYON EU project (Grant agreement no: 288195), by
VINNOVA via the FFI projects Chronos step 1 and Chronos step 2, through
the PROPART EU project (Grant agreement no: 776307) and through EISIGS
(grants from the Knowledge Foundation).

iii

List of Included Papers

The following papers, referred to in the text by their Roman numerals, are
included in this thesis. The layout of the papers has been reformatted to comply
with the rest of the thesis, but the content has not been altered.

PAPER I: Combining Fault-Injection with Property-Based Testing
Benjamin Vedder, Thomas Arts, Jonny Vinter and Magnus Jon-
sson. In Proc. of Engineering Simulations for Cyber-Physical
Systems (ES4CPS), Dresden, Germany (2014).

DOTI: 10.1145/2559627.2559629

Contribution: This paper presents a research prototype tool named
FaultCheck that enables property-based testing tools to use common
fault injection techniques directly on C and C++ source code. Ben-
jamin has proposed and developed the tool FaultCheck, performed
the experiments, and written most of the paper.

PAPER II: Towards Collision Avoidance for Commodity Hardware
Quadcopters with Ultrasound Localization
Benjamin Vedder, Henrik Eriksson, Daniel Skarin, Jonny Vinter
and Magnus Jonsson. In Proc. of the International Conference on
Unmanned Aircraft Systems (ICUAS), Denver, Colorado, USA,
(2015).

Contribution: This paper presents a custom quadcopter hardware
platform with a novel approach on indoor localization. Benjamin has
proposed the idea for the localization method, developed most of the
electronics and software, and written most of the paper.

PAPER III: Using Simulation, Fault Injection and Property-Based
Testing to Evaluate Collision Avoidance of a Quadcopter
System
Benjamin Vedder, Jonny Vinter and Magnus Jonsson. In Proc.
of Safety and Security of Intelligent Vehicles (SSIV), Rio de
Janeiro, Brazil (2015).

Contribution: This paper presents more details about the simulator
for the hardware quadcopters presented in Paper II. Benjamin has
derived fault models from the hardware, applied the testing platform
presented in Paper I on the simulator and written the whole paper
with comments from his supervisors.

PAPER 1V:

PAPER V:

PAPER VI

Accurate Positioning of Bicycles for Improved Safety
Benjamin Vedder, Jonny Vinter and Magnus Jonsson. In Proc. of
IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, USA (2018).

Contribution: This paper presents an accurate positioning system
for bicycles to improve their safety. Benjamin has written the whole
paper with comments from his supervisors. He has also developed and
tested the positioning system and compared it to other solutions.

A Low-Cost Model Vehicle Testbed with Accurate Po-
sitioning for Autonomous Driving

Benjamin Vedder, Jonny Vinter and Magnus Jonsson. Accepted
for Publication in Hindawi Journal of Robotics (2018).

Contribution: This paper presents our self-driving model car plat-
form, compares it to other platforms and evaluates its performance.
Benjamin has written the whole paper with comments from his su-
pervisors. He has also developed the model car, its algorithms and
compared it to other solutions.

Automated Testing of Ultra-Wideband Positioning for
Autonomous Driving

Benjamin Vedder, Joel Svensson, Jonny Vinter and Magnus
Jonsson. To be submitted (2018)

Contribution: This paper shows how our self-driving model car can
be used to test our ultra-wideband positioning system by extending
techniques introduced in our previous work. Benjamin has written the
majority of the paper with comments from his supervisors. He has also
developed the majority of the test setup, performed the experiments
and analyzed the results. Joel helped writing about the test setup
and performing the experiments.

List of Other Publications

The following papers are related but not included in this thesis.

PAPER VII: Composable Safety-Critical Systems Based on Pre-Certified
Software Components
Andreas Soderberg and Benjamin Vedder, Proc. of ISSREW
(2012).

PAPER VIII: A Fault-Injection Prototype for Safety Assessment of
V2X Communication
Daniel Skarin, Benjamin Vedder, Rolf Johansson and Henrik
Eriksson, Proc. of DEPEND (2014).

PAPER IX: SafetyADD: A Tool for Safety-Contract Based Design
Fredrik Warg, Benjamin Vedder, Martin Skoglund and Andreas
Soderberg, Proc. of WoSoCer (2014).

PAPER X: Static and dynamic performance evaluation of low-cost
RTK GPS receivers
Martin Skoglund, Thomas Petig, Benjamin Vedder, Henrik Eriks-
son and Elad M. Schiller, Proc. IEEE Intelligent Vehicles Sym-
posium (IV) (2016).

vii

Contents

Abstract i
Acknowledgements iii
List of Included Papers v
List of Other Publications vii
Glossary xiv
1 Introduction 1
1.1 Research Questions 1
1.2 Research Approach 2
1.3 Research Contributions 3
1.4 Thesis Structure 4

2 Background 5
2.1 Property-Based Testing 5
2.1.1 Testing Stateful Software 5

2.1.2 Shrinking o 6

2.2 Fault Injection o 7
221 GoldenRun 0. 8

2.2.2 Characteristics of Fault Injection 8

2.3 Accurate Positioningo oL 9
2.3.1 Real-Time Kinematic Satellite Navigation (RTK-SN) . . 9

2.3.2 Ultra-Wide Band (UWB) Ranging 10

3 Summary of Papers 11

3.1 Paper I: Combining Fault-Injection with Property-Based Testing 11
3.2 Paper II: Towards Collision Avoidance for Commodity Hardware
Quadcopters with Ultrasound Localization 15
3.3 Paper I1I: Using Simulation, Fault Injection and Property-Based
Testing to Evaluate Collision Avoidance of a Quadcopter System 15
3.4 Paper IV: Accurate Positioning of Bicycles for Improved Safety 16
3.5 Paper V: A Low-Cost Model Vehicle Testbed with Accurate
Positioning for Autonomous Driving 16

ix

3.6 Paper VI: Automated Testing of Ultra-Wideband Positioning for
Autonomous Driving oo oL

References

Paper 1

1 Introduction
2 Fault Injection,
3 Property-Based Testing

3.1 Combing Property-Based Testing and Fault Injection . .

4 FaultCheck
4.1 Fault Models
4.2 Supported Fault Models
4.3 Probing C-Code
4.4 Communication Channel Emulation
4.5 Integration with other Tools
4.6 Temporal Triggers for Faults
5 An example: AUTOSARE2E
5.1 Experiment Set-up L.
5.2 Experiment Results
6 Conclusions e
7 Acknowledgemento Lo
Referenceso
Paper 11
1 Introductiono
2 Related Work
3 Hardware Setup
4 Ultrasound Distance Measurement
) Position Estimation 0000,
6 Collision Avoidance L.
7 Simulation and Fault Injection
7.1 Experimental Performance and Stability Analysis
8 Conclusions e
9 Acknowledgement o
References
Paper II1
1 Introduction
2 Quadcopter System
2.1 Collision Avoidance
2.2 Realistic Fault Models
3 Quadcopter Simulator oL
3.1 QuadcopterTool
3.2 CopterSImGUT
4 Testing CopterSim with our Testing Platform

4.1 QuickCheck Model

4.2 FaultCheck Integration
5 Visualizing Test Sequences and Improving the System
5.1 Handling Faults in the Quadcopter System
6 Conclusions
7 Acknowledgement L
References
Paper IV
1 Introduction
2 Related Work
3 Proposed Implementation
3.1 Real-Time Kinematic Satellite Navigation
3.2 Dead Reckoningo
4 Evaluation Setup
5 Results.
6 Conclusion e
References
Paper V
1 Introduction
2 Architecture Overview
3 Positioning
3.1 Challenges
3.2 Performance Evaluation
4 Trajectory Following
4.1 Lateral Control
5 Conclusion
References
Paper VI
1 Introduction
2 System Setup
2.1 Hardware-In-the-Loop (HIL) Simulation Mode
2.2 UWB Positioning
3 Test-Case Generation
3.1 Fault Injection
3.2 Trajectory Generation
3.3 Return Trajectory Generation
4 Results.
5 Conclusion

References

85
87
88
89
90
93
94
95
100
100

103
105
106
111
112
114
116
117
122
123

Glossary

ADC
AHRS
API

AR
ASIL

CAN
Dead reckoning

E2E

FFT
FI
FOC

GNSS

GUI

HIL

IMU

Analog to Digital Converter. 49

Attitude and Heading Reference System. 50, 70
Application Programming Interface. 27, 136,
137

Augumented Reality. 87, 89

Automotive Safety Integrity Level. 34

Controller Area Network. A communication bus
standard for indistrial and automotive applica-
tions. 89, 90, 94, 106, 109, 110, 131, 133, 134

The process of estimating the current position by
advancing a previously determined position using
inertial or speed measurements. 110, 112-115

End-to-End. 2, 12-15, 26, 30, 31, 34, 35, 38, 39,
130

Fast Fourier Transform. 49

Fault Injection. i, 1-4, 7, 8, 11, 16, 25-27, 29,
32, 39, 67, 69, 77, 80, 129-131, 139-141, 147-153
Field Oriented Control. See [1]. 110

Global Navigation Satellite System. xiv, 9,
45-47, 58, 88, 90, 100, 106, 107, 109-111, 113,
116, 133

Graphical User Interface. 17, 55, 75-78, 107, 110

Hardware-In-the-Loop. xi, 3, 11, 18, 106, 110,
129, 130, 133, 140, 147

Inertial Measurement Unit. A chip that can
measure acceleration and angular velocity with
three axes each. 10, 16, 17, 4648, 58, 89, 93, 97,
109, 113, 131, 133-135, 140

xiii

ITS

LDM

MAV
MPC

Odometry

PBT
PCB
PID
PMSM

PPM
PPS

RFID
RTK-SN

SLAM
SUT

SVM
SWD

TMR
ToF
TWR

UWB

Intelligent Transportation System. 55, 56, 74,
75

Local Dynamic Map. 53, 54, 72, 74

Micro Air Vehicle. 45, 47
Model Predictive Control. See [2]. 105

Tracking the rotation of the wheels. In our case
this is done by tracking the rotation of the motor.
10, 113, 122

Property-Based Testing. i, 1-6, 8, 11-13, 16, 18,
25-29, 32, 39, 67, 129, 130, 140, 153

Printed Circuit Board. 17, 88-91, 94, 95,
105-107, 109, 110, 112, 120, 123, 133
Proportional-Integral-Derivative. 50, 52, 70
Permanent Magnet Synchronous Motor. A three-
phase motor without brushes, often referred to
as BLDC motor. 107, 109, 110

Pulse-Position Modulation. 48

Pulse Per Second. A pulse that is emitted with
accurate timing in the beginning of each sec-
ond, synchronized to Global Navigation Satellite
System (GNSS) time. 113

Radio-frequency identification. 88

Real-Time Kinematic Satellite Navigation. See
[3, 4]. ix, 9-11, 16-18, 87-90, 92-98, 105,
107-109, 111-115, 122, 129-131, 133, 139, 148,
149, 151, 153, 154

Simultaneous Localization and Mapping. 47
System Under Test. 2, 10, 27, 67, 69, 74, 77, 79,
82, 129-131, 136, 137, 139, 153

Space Vector Modulation. See [5]. 110

Serial Wire Debug. A programming and debug-
ging interface. 109

Triple Modular Redundancy. 7
Time of Flight. 10, 47, 49, 94
Two-Way Ranging. See [6]. 10, 94

Ultra-Wide Band. ix, 3, 9-11, 16-18, 87, 89, 91,
94-96, 100, 129-136, 139, 141, 147-154

1. Introduction

During the development of software-intensive systems, the aim is to ensure that
the software specification is fulfilled. Formally proving that software fulfills its
requirements under all conditions can be time consuming and difficult, which is
why that is not done for the majority of software. A common way to evaluate
software is to test specific corner cases to test whether certain requirements
are not fulfilled. When these tests pass it is not a proof that the software is
correct, but when a test fails it proves that not all requirements under test are
not fulfilled.

While the focus of software testing is to make sure that functional require-
ments are fulfilled, safety-critical systems also have to deal with non-functional
requirements such as fault tolerance. For example, an airbag system has strong
requirements that it should not inflate the airbag when there is no collision.
For such systems, it is important to ensure that they are safe even when cer-
tain faults are present in the system. This can be done with fault handling
mechanisms implemented in hardware and/or in software. The purpose of fault
handling mechanisms is to detect when something is wrong and, for example,
compensate for that fault or bring the system to a safe state.

Dependable mobile systems, such as autonomous cars, are challenging to
develop. It is desirable to keep the safety-critical parts as simple as possible
to make the required testing manageable, but with more sophisticated active
safety functions and autonomous driving the complexity of the safety-critical
parts grows significantly. We aim at addressing the challenge of managing this
complexity by using techniques commonly found in Property-Based Testing
(PBT) [7] and Fault Injection (FI) [8], combining them, and applying them across
several abstraction levels during the development of complex mobile systems.
To evaluate our approach, we have developed an autonomous quadcopter system
with indoor positioning together with a simulator for it, as well as a self-driving
model car platform with accurate outdoor positioning. During the development,
we investigate how automatic test case generation with techniques from PBT
and FI can be applied, both for evaluating functional and non-functional
requirements.

1.1 Research Questions
As described above, we focus on developing and testing of complex dependable

autonomous systems. We want to automate testing and verification as much as
possible, from simulation to testing on real-time hardware. For doing so, we

utilize techniques from PBT and FI. This gives rise to the following questions,
which we try to answer in this thesis:

Q1 How can knowledge from FI and PBT be combined in a practical auto-
mated testing platform?

Q2 How does this testing platform scale when the System Under Test (SUT)
becomes more complex?

Q3 What is required, both from the testing platform and from the SUT, to
use the same approach with software components and simulations, as well
as with tests on real-time hardware?

Q4 How can realistic fault models be derived for a complex, simulated or
real-time, SUT, and how can they be injected while performing automated
testing?

Q5 What are the challenges when automatically testing moving real-time
hardware, and how to deal with them?

1.2 Research Approach

We addressed Q1 by first investigating how PBT and FI can be carried out
simultaneously. For doing so, we have developed a tool named FaultCheck, that
can be used from PBT tools to utilize common FI techniques while performing
PBT. We demonstrate this approach by evaluating a simple End-to-End (E2E)
library. To address Q2, Q3 and Q4, we focused on our quadcopter simulator.
We have developed the simulator together with the hardware quadcopter system,
in order to make it an accurate representation of the actual hardware. For
example, our custom positioning system based on ultrasound is represented
in the simulator, which enables us to inject realistic position faults into the
simulation. We then evaluate the simulated quadcopters by automatically
generating tests using a PBT-tool named QuickCheck, and our fault injection
tool FaultCheck. With this, we address the challenge of automatically generating
test cases that evaluate both functional and safety requirements simultaneously
on a relatively complex autonomous system, during simulation.

After the quadcopter simulator, to further address Q3 as well as Q5, we
focused on developing a self-driving model vehicle platform. We test our model
cars with the same techniques we used for the quadcopter simulator, with the
difference that we now are generating test cases for real-time hardware that
is moving around during the auto-generated tests, rather than for a simulator
that runs purely in software using simulated time. In addition to the challenges
with the quadcopter simulator, this brings the new challenges of executing the
tests in real-time, restoring the state between tests and keeping the tests safe
now that they involve moving hardware.

With this work, we show an approach on developing and testing complex
dependable systems, together with simulation and automatic test case generation,
all the way from realistic simulations to automatic testing on real-time hardware.
During this journey, we encountered challenges such as how to inject realistic
faults in simulations and how to deal with automatically testing moving real-time
hardware, and propose approaches on addressing these challenges.

1.3

Research Contributions

The main contributions of this thesis, attempting to answer the research ques-
tions, are:

C1

C2

C3

C4

C5

We present methods on how FI and PBT can be combined in order to test
fault tolerance and functional requirements simultaneously. The ideas are
implemented in a tool named FaultCheck, which enables PBT-tools such
as QuickCheck to inject faults based on common fault models into C and
C++ code (Paper I). This contribution addresses Q1.

We develop a quadcopter system with a novel approach for indoor po-
sitioning, together with a closely-connected simulator. The simulator
represents many details about the hardware, the positioning system and
the communication between the quadcopters, which enables us to carry
out realistic fault injection with our FaultCheck tool. We show several
design choices from the development that makes the simulator convenient
to use with our automated testing setup (Paper IT and Paper I1T). This
contribution addresses Q2 and Q3.

We show how to derive realistic fault models, both for our quadcopter
simulator (Paper IIT) and for our Ultra-Wide Band (UWB) positioning
system (Paper VI), and how to inject them using our testing platform.
This gives us confidence that fault models can be derived in a similar
way for a wide range of complex systems from different domains. This
contribution addresses Q4.

We show how to develop a complex model car that is suitable to be used
with our testing approach. By making it possible to activate different
parts of the positioning system while simulating others on the hardware,
it is possible to first develop tests with Hardware-In-the-Loop (HIL), and
then run the same automated testing setup in a real scenario with minimal
changes (Paper IV and Paper V). This contribution addresses Q3.

We show how to test the components of the redundant positioning sys-
tems of the model car against each other with auto-generated test cases
(Paper VI). Compared to the tests conducted in Paper I to Paper III,
the automatic tests are running in real time with the extra challenges
that come from that. Namely, tests have to be constructed such that no

3

hardware gets destroyed when they fail, timing is critical and fewer tests
can be run as they are executed in real time as opposed to simulated time.
We also address the challenge of restoring the state of the full-scale system
between tests, by automatically driving the model car back to the start
position while avoiding obstacles (Paper VI). This contribution addresses

Q2, Q4 and Q5.

1.4 Thesis Structure

The rest of this thesis is organized as follows: In the next chapter we introduce
PBT and FI, and we present an overview about the accurate positioning
technologies that are essential for the work on our self-driving model vehicle
platform. The chapter after that summarizes the included papers, and explains
how they are connected. It also shows additional results related to Paper I,
that were not included in the paper. Finally, the papers with details about the
conducted research are appended.

2. Background

2.1 Property-Based Testing

Writing software tests is often done in the form of unit tests, where each test
case with fixed input data is written manually. In order to create a wide variety
of test cases, a technique named PBT can be used [7]. When doing PBT, many
“unit tests” with different parameters are automatically generated from the
specification of a property. An early lightweight tool that can be used for PBT
is the Haskell QuickCheck library [9]. For example, a property that defines that
the reverse of a reversed list should be equal to the initial list can be expressed
like the following;:

1| prop_ RevRev xs =
2| reverse (reverse xs) == xS

where QuickCheck will generate lists zs of random sizes and check if that
property returns true for all of them.

Because of its popularity, the QuickCheck algorithm has been ported to many
programming languages, including Scala [10], Erlang [11], Python [12] and Java
[13]. ScalaCheck, which is the QuickCheck algorithm implemented in the Scala
programming language, is integrated in the Scala testing framework ScalaTest
[14] and used by prominent Scala projects such as the Akka concurrency
framework [15]. One commercially available implementation of QuickCheck
is Erlang QuickCheck [11], which has been used for the testing of large scale
systems [16, 17]. While working on the first three papers included in this
thesis we had close collaboration with QuviQ', the company behind Erlang
QuickCheck, which is why we used Erlang QuickCheck in them. In the last paper
we evaluated ScalaCheck, which has the advantage of being open source, while
providing all the functionality we need. ScalaCheck allowed us to study how it
works internally, and to conveniently take advantage of the high performance
of the Java virtual machine for implementing resource-intensive trajectory
generation algorithms.

2.1.1 Testing Stateful Software

Many pieces of software behave according to their internal state. For example a
counter, with the functions Increment, Decrement and Get, will return a count
when running Get that depends on the initial count and how many Increment

Thttp://quviq.com/

http://quviq.com/

and Decrement commands have been run. To test systems like that, several
PBT tools, such as Erlang QuickCheck and ScalaCheck, have implemented a
testing method that is aware of the system state. With this testing method,
a sequence of commands is generated where each command has a generator,
a precondition, a postcondition and a way to update the system state. The
purpose of them are as follows:

Generator: The generator is responsible for generating input data for
the command. It has access to the state of the system and can adjust the
generation of input data according to the state, if necessary.

Precondition: The precondition must be true in order to allow this
command to be run. For the example with the counter, it could be the case
that a Decrement command only is allowed when the counter is non-zero.
This can be expressed in the precondition which can throw away this
command if the count value of the system state is zero.

Postcondition: The postcondition has to be true in order for the test to
pass. The postcondition check also has access to the system state and can
decide whether the behaviour is correct depending on the state. For the
example with the counter, the postcondition for the Get command is that
the result should be equal to the count state of the system.

State update: After each command, the state of the system can be
updated if necessary. For example, the Increment command for the counter
should add one to the count value of the system state.

Because the systems we work with in this thesis are inherently stateful, stateful
PBT is what we are using.

2.1.2 Shrinking

One feature most PBT tools have is the ability to do shrinking. Shrinking
means that when a failing test case is found, the PBT tool tries to reduce it to a
smaller failing test case. For non-stateful testing, an example is that a property
that takes a list as an input argument fails when the list has duplicate elements.
Since the lists are randomly generated, the first list with duplicates might have
many other elements. In that case shrinking tries to remove one element from
the list at a time until the smallest list that causes the same failure is found,
which should be a list with just two elements with the same value.

When it comes to testing of stateful systems, shrinking will first remove one
command at a time from the generated command sequence that led to a failure
and then try to make the arguments (if any) smaller. For example, if a counter
with an initial count of 0 fails when the command Decrement is run when the
count is zero, a command sequence of [Increment, Decrement, Decrement] will
be reduced to just the command Decrement since that is enough to trigger
the failure. Shrinking can be complicated for stateful systems since removing

commands affects the system state and might make the whole command sequence
invalid. This can happen if the removal of one command affects the system
state in such a way that the next command would not have been generated
because its precondition is not true after the removal. Therefore, it is common
that the shrinking process has to be adjusted manually to make it work with
stateful systems.

2.2 Fault Injection

Collecting statistical data about the effects of faults under normal operation of
a system is often not feasible during development, because faults can appear
with very low frequencies. FI is a method where the occurrence of faults is
accelerated in order to exercise and evaluate fault handling mechanisms [8].
FT is highly recommended in the safety standard ITEC 61508 [18] when the
required diagnostics coverage is at least 90%. The automotive functional safety
standard ISO 26262 [19] recommends FI for ASIL A & B applications and
highly recommends FI for ASIL C & D applications.

Traditional targets for FI have been hardware such as microprocessors and
memories. One example of physical FI is scan-chain implemented FI [20] where
the internal state of a microprocessor can be observed and controlled in a
detailed way. The purpose is to evaluate what happens when something, such
as ionizing particles, affects the internal state of the microprocessor. In other
literature, heavy-ion radiation has been used directly on microprocessors to
evaluate how the execution is affected by transient errors that affect the internal
state of different registers [21]. Radiation is present everywhere, but in some
environments such as airplanes and in space the levels are significantly higher
than on ground and therefore these types of faults become even more evident.
In order to deal with faults that affect the internal state of microprocessors,
it may be necessary to build special architectures that are designed to detect
and handle such faults. For example, the fault tolerant version of the Leon
microprocessor [22] has several internal fault detection mechanisms, such as
Triple Modular Redundancy (TMR) on particular hardware blocks.

Another type of physical FI is pin-level FI [23] where external faults are
emulated by affecting the pins of, for example, microprocessors. Dealing with
pin-level faults does not require special microprocessor architectures, but other
fault handling mechanisms have to be used.

Hardware faults, emulated by physical FI as presented above, can also be
emulated by injecting faults into models of hardware [24, 25] or directly into
software [26, 27]. Software-implemented FI introduces some overhead to the
execution, but has the advantage that it can be done early in the development
process before the final hardware is available. Other advantages are that setting
up and carrying out numerous experiments can be easier.

7

2.2.1 Golden Run

A golden run is a recorded reference run used during fault injection for which no
faults are injected. For example, when testing a speed controller for a vehicle,
the test can first be run without faults using a selected input vector while the
output of the speed controller as well as the state of the vehicle is recorded.
After that, the test can be run again while faults are injected and the speed
controller output and the vehicle state are compared to the golden run. This
way faults, or combinations of faults, that cause unacceptable deviation from
the golden run for the input vector of this test can be identified.

For a given system, there may be many invalid input vectors and a deviation
from the golden run can be defined in different ways. Therefore, creating the
golden run can be a manual process and the possibility to test with a wide
variety of different golden runs can be limited. This is one of the limitations
we would like to address by using PBT together with FI. By creating random
generators and postconditions (see Section 2.1.1) that are aware of the system
state and have a model of the system, we would like to automatically generate
golden runs and be able to check whether the tests with injected faults pass or
fail for each of those automatically generated golden runs. This way, we will be
able to do FI with a wide variety of golden runs generated automatically.

2.2.2 Characteristics of Fault Injection

There are several properties that can be defined to describe different character-
istics of FI. Reachability describes how many possible locations of faults can be
reached in a system. For example, a simulation-based FI tool for VHDL models
of microprocessors has higher reachability than a scan-chain implemented FI tool
that only reaches registers and memory locations. Repeatability describes how
well the same experiment can be repeated. Heavy-ion FI is an example where
it is difficult to repeat the same experiment, while software-implemented FI
makes repeating the same experiment easier. Controllability describes how well
the location of faults in space and time can be controlled. Even here, heavy-ion
FI is an example of low controllability. Further, intrusiveness describes how
much undesired impact the FI has on the system. Software-implemented FI
can introduce overhead in execution speed, while heavy-ion FI does not have
any intrusiveness at all. Observability refers to how well the effect of faults on
the system can be measured. Finally, effectiveness describes how well the FI
technique is able to trigger fault handling mechanisms and efficiency defines
the amount of effort required to conduct and repeat the FI experiments.

In this thesis, where we combine PBT with FI, we aim to have good reach-
ability, repeatability, controllability, observability, efficiency and effectiveness.
However, our technique will have some intrusiveness on the system that we are
testing. In the later part of the thesis where we perform automatic testing of
real-time hardware, good repeatability is more challenging to achieve as random
variations in the environment affect the experiments. Bringing the system back
to a known state also adds to this difficulty, as it involves automatically driving
our model cars back to an initial position from the random position the previ-

ous experiment made it end up in. Our results regarding repeatability while
automatically testing real-time hardware are promising, and we demonstrate
techniques to deal with the challenges.

2.3 Accurate Positioning

For the development of the self-driving model car in Paper V to Paper VI, as well
as for the experiments in Paper IV, it is essential to have knowledge about the
positioning techniques used. Therefore, we include a brief introduction to them
here. Our positioning techniques are based on two technologies: Real-Time
Kinematic Satellite Navigation (RTK-SN) and UWB ranging.

2.3.1 RTK-SN

Global Navigation Satellite Systems (GNSSs) is a widely used technology today,
and we rely on it daily. It works by passively receiving code words modulated
onto a carrier signal from at least four satellites in space, and determining the
distance to them by comparing the time when the code words were sent to
the time they were received. Based on that distance, and the known satellite
orbits, the position of the receiver can be calculated. The accuracy of GNSS
can be improved by using more satellites and compensating for signal delays
caused by the atmosphere of the earth, but it will still not be better than within
several meters [28]. This is impressive considering that we are measuring how
long it takes for light to travel to us from fast moving satellites in space using
inexpensive integrated circuits, but it is still not good enough for the accuracy
required for autonomous driving and thus for our experiments.

RTK-SN uses the same satellites as conventional GNSS, but in addition
to measuring the code modulated onto the carrier, the carrier itself is tracked.
Tracking the carrier does not provide a direct measurement of the distance to
the satellites, but it provides accurate high-resolution tracking of the movement
relative to the satellites. Using this information, together with the same
measurements from a base station with a known position within 10 km, position
accuracies of around 1 em can be achieved [28].

Traditional RTK-SN systems have been rather expensive, but recently more
cost effective solutions have shown up. RTKLIB [3] is a library that allows
using rather inexpensive receivers that output raw code and carrier-phase
measurements, such as the Ublox M8T!, both as a base station and as a rover
to be positioned. With these measurements, RTKLIB provides a processed
position solution with around 1 cm accuracy. More recently, affordable receivers
that process the data internally, such as the Ublox M8P? have also become
available. The accuracy of the lower-cost solution tends to be on par with
higher-cost solutions, such as the OXTS RT10032, but their convergence time
and position output rate is lower. For example, the RT1003 has an output rate

Thttps://www.u-blox.com/en/product /neolea-m8t-series
2https:/ /www.u-blox.com/en/product /neo-m8p-series
Shttps://www.oxts.com/products/rt1003/

9

https://www.u-blox.com/en/product/neolea-m8t-series
https://www.u-blox.com/en/product/neo-m8p-series
https://www.oxts.com/products/rt1003/

of 100 Hz, whereas the M8P has an output rate of 5 Hz where each sample is
around 100 ms old. In our model vehicle platform, we use odometry and an
Inertial Measurement Unit (IMU) to get 100 Hz output rate, and to compensate
for the sample age. More details about this can be found in Paper V.

2.3.2 UWB Ranging

In Paper IV we used UWB ranging as a reference to evaluate RTK-SN under
poor conditions, and in Paper VI we used it as a SUT to demonstrate our
approach on automated test case generation on real-time hardware. UWB
ranging works by sending packets between radios using very wide bandwidth.
These packets can be accurately timestamped because they are short in time
due to the wide bandwidth, and the timestamps can then be used to calculate
the distance between the radios. As is the case with RTK-SN, low-cost solutions
have only become available recently.

UWB ranging works by sending packets between two transceivers with
high-resolution clocks and comparing the timestamps of when the packets were
sent and received. This way the Time of Flight (ToF) can be calculated and
divided by the speed of light to get the distance between the radios. As the
ToF is short compared to the time it takes to transmit and receive the packets,
a small difference in the clock speed can cause large errors. These errors can be
compensated for using various methods, for example with a scheme called Two-
Way Ranging (TWR) [6]. With TWR, three packets with certain timestamps
are sent between two radios, where the timestamps can be used to estimate the
clock speed difference between the radios. TWR, performs well when the clock
speeds of the transceivers differ slightly, as long as the clock drift during the
ranging operation is small enough. We have been using the Decawave DWM1000
[29] in our experiments, which can achieve accuracies of around 10 cm when
using TWR together with signal attenuation compensation [30].

RTK-SN achieves better accuracies compared to UWB ranging, but the
error sources are different and independent. For RTK-SN a clear view of a large
enough portion of the sky is required, whereas UWB ranging only requires the
radios to be close enough to each other have a connection. Therefore, UWB can
be used indoors as well. With line-of-sight conditions, the DWM1000 modules
we have been using, can reach up tp 200 m. Another important difference
between UWB ranging and RTK-SN is the convergence time. RTK-SN can take
up to 5 minutes to converge after loosing track of most satellites, whereas UWB
does not need to converge at all and can be used from the first sample. This
makes these systems suitable to complement each other to cover more areas, or
to provide redundant positioning with higher integrity.

10

3. Summary of Papers

Included in this thesis are six papers that present the research and experiments
that have been carried out. In Paper I we introduce FI and PBT, and present
a tool named FaultCheck that can be used from PBT tools like QuickCheck
in order to utilize common FI techniques. In Paper II we present a novel
hardware quadcopter platform and a simulator that we have developed such
that it integrates well with our testing platform. After that, in Paper III,
we present details about how we have tested our quadcopter simulator using
FaultCheck and QuickCheck.

In Paper IV we introduce RTK-SN and UWB-based positioning while
studying how RTK-SN can be used to implement active safety on bicycles.
These technologies are essential for the work carried out in the next papers. In
Paper V we document the implementation and performance of a self-driving
model car that we have developed, which is suitable for use with auto-generated
tests both with HIL and on full hardware. Finally, in Paper VI we equip the
model car with UWB positioning in addition to RTK-SN to get a redundant
positioning system. We then verify the performance and fault handling capability
of the UWB positioning system against the RTK-SN positioning system by
auto-generating test trajectories and following them while injecting various
faults. This way we show how automatic test-case generation combined with FI
can be used on several abstraction levels throughout the design and development
of software-intensive dependable autonomous systems.

3.1 Paper I: Combining Fault-Injection with Property-
Based Testing

This paper introduces the areas of FI and PBT, and proposes a tool that enables
PBT tools to use fault injection directly on C and C++ source code. The tool
is named FaultCheck, and is intended to be used from PBT tools as shown
in Figure 1. FaultCheck is a library written in C++ with a wrapper in C, so
that it can be linked against from C and C++ programs that are to be tested.
It is used by adding probes to variables in the programs to be tested, where
any number of faults can be injected. FaultCheck supports fault models such
as bitflip, offset, stuck at and amplification that can be triggered at certain
times or permanently. Faults can be activated simultaneously, even on the same
probes, with different types of triggers independently of each other.

To control the probes, FaultCheck provides an interface that can be accessed
from the PBT tool in the same way as it accesses the rest of the program that

11

Generated

—

inputs 2
3

Figure 1: FaultCheck used together with a PBT-tool.

QuickCheck Fault Injection Control FaultCheck

E2E
Library

E2E
Library

Figure 2: Experiment setup to evaluate the E2E library.

12

42 [+ +1: 29562 : if(State->NewDataAvailable == TRUE){

43 : 14781 : uint8 RcvdCounter = *(Data + (Config->Counteroffset/8)) & OxOF;
44 =+ 1 14781 : if(Config->Counter0ffset % 8 != 0){

45 :

46 : : }

a7 E :

48 : 14781 : uint8 RcvdCRC = *(Data + (Config->CRCOffset/8));

49 E E

50 . 14781 : uint8 CalcCRC = E2E_CalcCRC(Config, RcvdCounter, Data);

51 : :

52 [+ B 14781 : if(RevdCRC == CalcCRC){

53 [+ +1: 14781 : if(State->WaitForFirstData){

54 : 950 : State->WaitForFirstData = FALSE;

55 : 950 : State->MaxDeltaCounter = Config->MaxDeltaCounterInit;

56 : 950 : State->LastvalidCounter = RcvdCounter;

Eir/ E E

58 : 950 : State->Status = E2E_PO1STATUS_INITAL;

59 E . } else {

60 : 13831 : int DeltaCounter = ((15 + RcvdCounter) - State->LastValidCounter) % 15;
61 E E

62 [ENE 13831 : if(DeltaCounter == 0){

64 [ENE 13831 : } else if(DeltaCounter > State->MaxDeltaCounter){

65 i@ state->Status = E2E POISTATUS WRONGSEQUENCE;

66 : : } else {

67 : 13831 : State->MaxDeltaCounter = Config->MaxDeltaCounterInit;
68 : 13831 : State->LastvalidCounter = RcvdCounter;

69 E 13831 : State->LostData = DeltaCounter - 1;

70 E E

71 [+ B 13831 : if(DeltaCounter == 1){

72 : 13831 : State->Status = E2E_PO1STATUS_OK;

73 : : } else {

~
&
-
-
-

78 : : } else {

~
©

Figure 3: The code coverage of the E2E library when running the experiment
without injecting any faults.

is being tested. The different probes are addressed by using string identifiers,
which are stored in a hash table in FaultCheck. For each identifier, any number
of faults with different triggering settings can be added.

FaultCheck has e.g. the ability to emulate a communication channel where
communication faults can be injected. The communication channel is fed with
packets and packets can be fetched from it. To corrupt the packets, all fault
models mentioned previously are supported on the bytes of the packets, and other
communication faults such as packet drop and packet repetition are supported.
One instance of FaultCheck can simulate any number of communication channels
and the fault injection can be controlled from the PBT tool in the same way as
the probing faults are controlled.

In this paper, we have used the AUTOSAR E2E library [31] as an example
application and the PBT tool Erlang QuickCheck to control FaultCheck, as
shown in Figure 2.

In addition to what we presented in the paper, we also used the gcov and
lcov tools! to annotate the code of the E2E library with which lines of code
have been executed in order to determine which fault handling mechanisms
got activated while certain faults were injected. In Figure 3 it can be seen
that when the experiment is run without injecting faults, the state is never set
to any of the faults that can be detected by the E2E library. Figure 4 shows
that when the experiment is run with only repetition faults, the E2E P01STA-
TUS_REPEATED fault code gets activated, but no other fault codes. Finally,
Figure 5 shows that when the experiment is run with all fault injection active,

Thttp://ltp.sourceforge.net/coverage/

13

http://ltp.sourceforge.net/coverage/

42 [+ +1: 50199 : if(sState->NewDataAvailable == TRUE){

43 35392 uint8 RcvdCounter = *(Data + (Config->CounterOffset/8)) & Ox@F;
44 = + 35392 if(Config->Counter0ffset % 8 != 0){

45

46 ¥

47 H

48 35392 uint8 RcvdCRC = *(Data + (Config->CRCOffset/8));

49

50 B 35392 : uint8 CalcCRC = E2E CalcCRC(Config, RcvdCounter, Data);
51

52 [+ = 35392 if(RcvdCRC == CalcCRC){

53 [+ + 35392 if(State->WaitForFirstData){

54 2207 State->WaitForFirstData = FALSE;

55} : 2207 : State->MaxDeltaCounter = Config->MaxDeltaCounterInit;
56 2207 State->LastValidCounter = RcvdCounter;

57

58 E 2207 : State->Status = E2E_PO1STATUS INITAL;

59 } else {

60 33185 int DeltaCounter = ({15 + RcvdCounter) - State->LastValidCounter) % 15;
61

62 33185 if(DeltaCounter 0){

63 1615 : State->Status E2E_PO1STATUS_REPEATED;

64 31570 : } else if(DeltaCounter > State->MaxDeltaCounter){

65

66 B H } else {

67 31570 State->MaxDeltaCounter = Config->MaxDeltaCounterIni
68 3157@ State->LastValidCounter = RcvdCounter;

69 31570 State->LostData = DeltaCounter - 1;

70

71 [+ B 31570 if(DeltaCounter 1{

72 31570 State->Status = E2E_PO1STATUS_OK;

73 : } else {

74

75 }

76 }

77 }

78 } else {

79

Figure 4: The code coverage of the E2E library when running the experiment
when only injecting repetition communication faults.

42 [+ +1: 44782 : if(State->NewDataAvailable == TRUE){

43 : 31505 : uint8 RcvdCounter = *(Data + (Config->CounterOffset/8)) & Ox0F;
44 [EBE 31505 : if(Config->Counter0ffset % 8 !'= 0){

45 H

46 : : }

47 H :

48 H 31505 : uint8 RcvdCRC = *(Data + (Config->CRCOffset/8));

49 : :

50 H 31505 : uint8 CalcCRC = E2E CalcCRC(Config, RcvdCounter, Data);
51 : :

52 [+ +1: 31505 : if(RcvdCRC == CalcCRC){

53 [+ +1: 29075 : if(State->WaitForFirstData){

54 : 2016 : State->WaitForFirstData = FALSE;

55 H 2016 : State->MaxDeltaCounter = Config->MaxDeltaCounterInit;
56 : 2016 : State->LastValidCounter = RcvdCounter;

57 : :

58 : 2016 : State->Status = E2E_PO1STATUS_INITAL;

59 B : } else {

60 : 27059 : int DeltaCounter = ((15 + RcvdCounter) - State->LastvalidCounter) % 15;
61 : :

62 [+ +1: 270859 : if(peltaCounter 0){

63 : 1041 : State->Status = E2E_PO1STATUS_REPEATED;

64 [+ +1: 26018 : } else if(DeltaCounter > State->MaxDeltaCounter){

65 : 244 State->Status = E2E_PO1STATUS_WRONGSEQUENCE;

66 H : } else {

67 H 25774 : State->MaxDeltaCounter = Config->MaxDeltaCounterInit;
68 H 25774 : State->LastValidCounter = RcvdCounter;

69 H 25774 : State->LostData = DeltaCounter - 1;

70 H :

71 [+ +1]: 25774 : if(peltaCounter == 1){

72 H 25492 : State->Status = E2E_P@1STATUS_OK;

73 H : } else {

74 H 282 : State->Status = E2E_P@1STATUS_OKSOMELOST;

75 H : }

76 : : }

77 : : }

78 : : } else {

79 : 2430 : State->Status = E2E_PO1STATUS WRONGCRC;

Figure 5: The code coverage of the E2E library when running the experiment
while injecting all possible communication faults.

14

all fault codes of the E2E library become active several times. This shows that
we need to inject several types of faults in order to exercise all fault handling
mechanisms of the AUTOSAR E2E library, and this can be done effectively
using FaultCheck and QuickCheck.

3.2 Paper II: Towards Collision Avoidance for Com-
modity Hardware Quadcopters with Ultrasound
Localization

This paper presents a quadcopter platform built from inexpensive hardware
that is able to do localization based on ultrasound only. One of our goals was
to design the quadcopter platform in such a way that it is easy to transport
and can be set up in new locations in less than 15 minutes. To our knowledge,
our quadcopters are the only ones that can do a stable hover relying only on
ultrasound localization in addition to the inertial sensors on the copters. A
similar quadcopter platform has been developed by J. Eckert et al. [32, 33] and
relies on ultrasound for localization. However, their quadcopters also rely on
optical flow sensors directed towards the floor and ceiling, and their ultrasound
system has significantly shorter range than ours.

In addition to creating the hardware quadcopter platform we have developed
a simulator for the quadcopters that shares much code with the firmware
on the hardware quadcopters. The simulator also emulates our localization
system and communication between the quadcopters. Using the simulator, we
developed a collision-avoidance mechanism based on communication between
the quadcopters as well as risk contours. To test the simulator, we used our
testing platform described in Paper I. This enabled us to randomly generate
thousands of simulations and randomly inject faults while running them in
order to evaluate the localization and collision avoidance algorithms.

3.3 Paper III: Using Simulation, Fault Injection
and Property-Based Testing to Evaluate Collision
Avoidance of a Quadcopter System

This paper describes more details about how our testing platform, based on
FaultCheck and QuickCheck, can be used on the quadcopter simulator intro-
duced in Paper II. We show how to derive realistic fault models based on the
hardware quadcopter platform and how FaultCheck can be used to represent
and inject them in the differential equations that are continuously solved by the
quadcopter simulator. Further, we present all tools that we developed around
the quadcopter simulator and how they are connected. We also show how the
QuickCheck model works that we use to automatically generate tests for the
system and how FaultCheck is used from the quadcopter simulator.

In order to visualize failed test cases, we present a way in which we can

15

modify the command sequences generated by QuickCheck so that the test case
can be played back smoothly in real time and visualized on a map during the
playback. This is very useful since it is difficult to understand what went wrong
when just looking at the sequence of commands that led to a failure.

Since the quadcopter simulator is complex and the effort and overhead
required to test it with FaultCheck and QuickCheck was relatively small, we
have confidence that PBT can be used together with FI to test a wide range of
safety-critical systems efficiently.

3.4 Paper IV: Accurate Positioning of Bicycles for Im-
proved Safety

In this paper we have evaluated the use of inexpensive RTK-SN receivers
with multiple satellite constellations together with dead reckoning for accurate
positioning of bicycles to enable active safety functions such as collision warnings.
This is a continuation of previous work (not included in this thesis) were we
concluded that RTK-SN alone is not sufficient in moderately dense urban areas
since buildings and other obstructions degrade the performance of RTK-SN
significantly [4]. We have added odometry to the positioning system as well as
extending RTK-SN with multiple satellite constellations to deal with situations
where the view of the sky is poor and thus fewer satellites are in view. To verify
the performance of the positioning system we have used UWB radios as an
independent positioning system to compare against while testing during poor
conditions for RTK-SN. We were able to verify that adding dead reckoning and
multiple satellite constellations improves the performance significantly under
poor conditions and makes the positioning system more useful for active safety
systems.

This work helped us understand the possibilities and limitations of RTK-SN,
which was a significant aid in the work carried out in Paper V. It was also a
chance to get familiar with UWB technology, which was necessary to develop the
UWB-based position system of the model cars and carry out the experiments
presented in Paper VL.

3.5 Paper V: A Low-Cost Model Vehicle Testbed with
Accurate Positioning for Autonomous Driving

Here we present our self-driving model vehicle testbed, which is useful for
research and development within autonomous driving and accurate positioning.
It consists of custom electronics and software developed by us, and can fitted
on any model vehicle with Ackerman or differential steering. Figure 6 shows
our 1:6 scale model car equipped with the electronics of our testbed.

Our model car uses RTK-SN as an absolute position reference, and fuses this
data with odometry feedback from our motor controller as well as measurements
from an IMU. This way we can achieve a position update rate of 100 Hz with

16

{_\\\\‘\\\\\‘\'

L

Figure 6: A photo of the 1:6 scale model car in our testbed.

only one sample latency. In comparison, the Ublox M8P! RTK-SN receiver we
are using outputs position data with 5 Hz where every sample is around 120 ms
old. We have verified that our position filter provides an accuracy of around
3 cm under dynamic conditions, as long as there is sufficiently low wheel slip.

In addition to the accurate high rate positioning, our testbed can follow
trajectories using the pure pursuit algorithm [34] with some of our improvements.
We have also developed a comprehensive Graphical User Interface (GUI) for
our testbed where trajectories can be edited on top of OpenStreetMap [35] and
a fleet of our model cars can be monitored and controlled in real time.

Our model vehicle testbed can be used for a wide variety of research,
development and surveying applications. We use it as a base platform for
carrying out the experiments presented in Paper VI.

3.6 Paper VI: Automated Testing of Ultra-Wideband
Positioning for Autonomous Driving

In this paper we equip our model car, presented in Paper V, with our UWB
positioning modules, presented in Paper IV. Then we update the embedded
software of our model car control Printed Circuit Board (PCB) with a sensor
fusion filter that derives the position of the car using UWB range measurements
betwen the UWB module on the car and several stationary anchors, as shown
in Figure 7. This position filter also uses odometry feedback from the motor
controller of the car and measurements from the IMU. This way we can derive

Thttps://www.u-blox.com/en/product /neo-m8p-series

17

https://www.u-blox.com/en/product/neo-m8p-series

Figure 7: Our model car driving on a parking lot with two UWB anchors
mounted on tripods in waterproof boxes.

an absolute position at 100 Hz independent of the RTK-SN measurements, thus
providing a redundant position estimate.

Then we use the PBT tool ScalaCheck [10] to generate HIL and full hardware
tests for our model car, where we compare the UWB-derived position with the
RTK-SN-derived position. While performing tests, we also inject faults using
an embedded version of our FaultCheck tool, presented in Paper I, in order to
evaluate the fault tolerance of our UWB sensor fusion filter. This is similar
to the experiments we performed in Paper II, with the additional challenges
of 1) dealing with the real-time nature of the system as opposed to simulated
time; 2) being able to reset the system state between tests and 3) maintaining
safety during the tests as our automatically generated tests cause our model
car to physically drive along randomly generated trajectories. In the paper we
go through the details of how we randomly generate drivable trajectories and
how we constrain where the car is allowed to drive. We also describe how we
generate a trajectory from an arbitrary position and orientation to the start
position and orientation of the test scenario in order to generate new tests, or
to repeat interesting tests.

To demonstrate the approach, we managed to find several interesting tests
where the UWB position deviates more than our defined maximum allowed
deviation from the RTK-SN position. We were able to repeat the tests several
times, with and without fault injection enabled, with consistent results between
consecutive tests.

18

References

(1]

3]

(4]

[5]

(8]

(9]

(10]
(11]

[12]

J. P. John, S. S. Kumar, and B. Jaya. "Space Vector Modulation based Field
Oriented Control scheme for Brushless DC motors”. In: International Conference
on Emerging Trends in Electrical and Computer Technology. Mar. 2011, pp. 346—
351.

F. C. Braescu. "Basic control algorithms for vehicle platooning prototype model
car”. In: 21st International Conference on System Theory, Control and Computing
(ICSTCC). Oct. 2017, pp. 180-185.

T. Takasu and A. Yasuda. "Development of the low-cost RTK-GPS receiver
with an open source program package RTKLIB”. In: International Symposium
on GPS/GNSS. International Convention Centre Jeju, Korea. 2009, pp. 4-6.

M. Skoglund, T. Petig, B. Vedder, H. Eriksson, and E. M. Schiller. ”Static and
dynamic performance evaluation of low-cost RTK GPS receivers”. In: IFEE
Intelligent Vehicles Symposium (IV). June 2016, pp. 16-19.

M. Gaballah and M. El-Bardini. "Low cost digital signal generation for driving
space vector PWM inverter”. In: Shams Engineering Journal 4.4 (2013), pp. 763—
774.

Decawave. The implementation of two-way ranging with the DW1000. APS013.
Application Note. Decawave, 2015.

J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund,
V. Gulias, J. Hughes, and S. Thompson. "Property-Based Testing - The ProTest
Project”. In: Formal Methods for Components and Objects. Ed. by F. Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel. Vol. 6286. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 250-271.

R. K. Iyer. "Experimental Evaluation”. In: Proceedings of the Twenty-Fifth
International Conference on Fault-Tolerant Computing. FTCS’95. Pasadena,
California: IEEE Computer Society, 1995, pp. 115-132.

K. Claessen and J. Hughes. ”"QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming. ICFP ’00. New York, NY,
USA: ACM, 2000, pp. 268-279.

R. Nilsson. ScalaCheck: The Definitive Guide. Artima Press, 2014.

T. Arts, J. Hughes, J. Johansson, and U. Wiger. "Testing Telecoms Software
with Quviq QuickCheck”. In: Proceedings of the ACM SIGPLAN Workshop on
Erlang. Portland, Oregon: ACM Press, 2006.

T. Morimoto. pytest-quickcheck. 2015. URL: https://pypi.python.org/pypi/
pytest-quickcheck/.

19

https://pypi.python.org/pypi/pytest-quickcheck/
https://pypi.python.org/pypi/pytest-quickcheck/

[13]

[14]

(15]

[16]

(17]

18]

[19]

20]

(21]

22]

(23]

24]

[25]

[26]

[27]

K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden. ”ArbitCheck: A Highly
Automated Property-Based Testing Tool for Java”. In: IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Validation Workshops
(ICSTW). Mar. 2014, pp. 405-412.

J. Hunt. ”Scala Testing”. English. In: A Beginner’s Guide to Scala, Object
Orientation and Functional Programming. Springer International Publishing,
2014, pp. 365-382.

M. Gupta. Akka FEssentials. Community experience distilled. Packt Publishing,
2012.

A. Nilsson, L. M. Castro, S. Rivas, and T. Arts. ”Assessing the Effects of
Introducing a New Software Development Process: a Methodological Description”.
In: International Journal on Software Tools for Technology Transfer (2013),
pp. 1-16.

R. Svenningsson, R. Johansson, T. Arts, and U. Norell. ”Formal Methods Based
Acceptance Testing for AUTOSAR Exchangeability”. In: SAE Int. Journal of
Passenger Cars— Electronic and Electrical Systems 5.2 (2012).

1. E. Commission. IEC 61508: Functional safety of electrical/electronic/pro-
grammable electronic safety related systems. Norm. 2010.

I. O. for Standardization ISO. ISO 26262: Road vehicles — Functional safety.
Norm. 2011.

P. Folkesson, S. Svensson, and J. Karlsson. ”A Comparison of Simulation Based
and Scan Chain Implemented Fault Injection”. In: Proceedings of the Twenty-
Eighth Annual International Symposium on Fault-Tolerant Computing. 1998,
pp. 284-293.

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. "Using
Heavy-Ion Radiation to Validate Fault-Handling Mechanisms”. In: IEEE Micro
14.1 (1994), pp. 8-23.

J. Gaisler. ”A portable and fault-tolerant microprocessor based on the SPARC v8
architecture”. In: International Conference on Dependable Systems and Networks
(DSN). 2002, pp. 409-415.

H. Madeira, M. Rela, F. Moreira, and J. Silva. "RIFLE: A General Purpose
Pin-Level Fault Injector”. In: Dependable Computing — EDCC-1. Ed. by K.
Echtle, D. Hammer, and D. Powell. Vol. 852. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1994, pp. 197-216.

E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. "Fault Injection
into VHDL Models: the MEFISTO Tool”. In: Proceedings of the Twenty-Fourth
International Symposium on Fault-Tolerant Computing. 1994, pp. 66-75.

V. Sieh, O. Tschache, and F. Balbach. "VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions”. In: Proceedings of the
Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing.
1997, pp. 32-36.

S. Han, K. Shin, and H. Rosenberg. "DOCTOR: an Integrated Software Fault
Injection Environment for Distributed Real-Time Systems”. In: Proceedings of
the Computer Performance and Dependability Symposium. 1995, pp. 204-213.

M. Hiller. "PROPANE: An Environment for Examining the Propagation of
Errors in Software”. In: Proceedings of the ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ACM Press, 2002, pp. 81-85.

20

(28]
29]
(30]
(31]

32]

33]

34]

[35]

Trimble. GPS The First Global Navigation Satellite System. Trimble Navigation
Limited, 2007.

Decawave. DWM1000 IEEE 802.15.4 UWB Transceiver Module. DWM1000
Datasheet. Datasheet. Decawave, 2016.

Decawave. Sources of Error in DW1000 based Two-Way Ranging (TWR)
Schemes. APS011. Application Note. Decawave, 2015.

AUTOSAR. Specification of SW-C end-to-end communication protection Library.
Specification. 2013-02-20.

J. Eckert, R. German, and F. Dressler. "ALF: An Autonomous Localization
Framework for Self-Localization in Indoor Environments”. In: 7th IEEE/ACM
International Conference on Distributed Computing in Sensor Systems (DCOSS
2011). Barcelona, Spain: IEEE, 2011, pp. 1-8.

J. Eckert, R. German, and F. Dressler. ?On Autonomous Indoor Flights: High-
Quality Real-Time Localization Using Low-Cost”. In: IEEE International Con-
ference on Communications (ICC 2012), IEEE Workshop on Wireless Sensor
Actor and Actuator Networks (WiSAAN 2012). Ottawa, Canada: IEEE, 2012,
pp. 7093-7098.

H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro. "Pure Pursuit Re-
visited: Field Testing of Autonomous Vehicles in Urban Areas” In: IEEE jth
International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA). Oct. 2016, pp. 7-12.

M. Haklay and P. Weber. "OpenStreetMap: User-Generated Street Maps”. In:
IEEE Pervasive Computing 7.4 (Oct. 2008), pp. 12-18.

Paper |

Combining Fault-Injection with
Property-Based Testing

Benjamin Vedder, Thomas Arts, Jonny Vinter and Magnus Jonsson

Published in Proceedings of the International Workshop on
Engineering Simulations for Cyber-Physical Systems (ES4CPS ’14),
Dresden, Germany, 2014

23

Abstract

In this paper we present a methodology and a platform using Fault Injection
(FI) and Property-Based Testing (PBT). PBT is a technique in which test
cases are automatically generated from a specification of a system property.
The generated test cases vary input stimuli as well as the sequence in which
commands are executed. FI is used to accelerate the occurrences of faults in a
system to exercise and evaluate fault handling mechanisms and e.g. calculate
error detection coverage. By combining the two we have achieved a way of
randomly injecting different faults at arbitrary moments in the execution
sequence while checking whether certain properties still hold. We use the
commercially available tool QuickCheck for generating the test cases and
developed FaultCheck for FI. FaultCheck enables the user to utilize fault
models, commonly used during FI, from PBT tools like QuickCheck. We
demonstrate our method and tools on a simplified example of two Airbag
systems that should meet safety requirements. We can easily find a safety
violation in one of the examples, whereas by using the AUTOSAR E2E-library
implementation, exhaustive testing cannot reveal any such safety violation.
This demonstrates that our approach on testing can reveal certain safety
violations in a cost-effective way.

1 Introduction

Testing cannot reveal the absence of software defects, but it is one of the most
cost effective ways of demonstrating that certain requirements are not fulfilled.
Property-Based Testing (PBT) with QuickCheck [1] is a demonstrated way
to get more effective testing in a cost effective way [2]. Among others, it has
been used for large scale testing of AUTOSAR software [3]. When using PBT
for complex software, a model is created that describes certain properties of
the software specified by so called functional requirements. The PBT tool
automatically generates and runs many tests in an attempt to falsify these
properties. When the properties are falsified a counterexample in a minimalistic
form is shown that can be used to either fix a bug in the implementation or
to revise the specification. The case where the PBT tool is not able to falsify
a property is not a formal proof that the property holds, but it shows that it
holds for numerous randomly generated inputs.

In particular when it comes to costly procedures of certifying software where
additional arguments have to be provided concerning the correctness of the
implementation, one would better be sure it is very well tested. Not only for the
common case, but also in cases in which faults occur and the software should
deal with those faults.

Under normal circumstances it is unlikely that errors occur that the software
should react upon. Therefore the purpose of Fault Injection (FI) is to introduce
errors while testing. Thus, the goal of FI is to inject faults into software and/or
the hardware connected to the software in order to ensure that the system
still fulfils certain requirements while these faults are present. For example, in
safety-critical systems, it has to be made sure that the system is not dangerous

25

when certain faults are present. This means that FI deals with non-functional
requirements.

In general, the models used for PBT are describing the behaviour of the
system in case no faults occur. Injecting faults might very well change the
functional behaviour and make tests fail w.r.t. the functional behaviour, even
though this behaviour would still be correct from the safety point of view. The
challenge we address in this paper is to enhance the model with specifying
its behaviour in case of occurring faults, but still be able to detect functional
defects in case no faults occur. For that, we need to make the models aware of
the injection of faults and the generated test cases should also be controlling
the fault injection.

In this paper, we present a method for combining PBT and FT in order to
test safety-critical systems in an effective way. According to our knowledge,
this has not been reported before. We demonstrate the gained possibilities
through experiments with an example utilizing the AUTOSAR End-to-End
(E2E)-library.

The rest of the paper is organized as follows. In Section 3.1 we introduce
FI with related work, and in Section 3 we introduce PBT with related work.
In Section 4 we introduce the FaultCheck tool that is developed within this
study. Section 5 shows a use case where this platform is used and in Section 6
we present our conclusions from this study.

2 Fault Injection

FI is used to accelerate the occurrences of faults in a system [4]. The aim is to
exercise and evaluate fault handling mechanisms and calculate fault-tolerance
measures such as error detection coverage. Traditionally, targets for FI have
been hardware (microprocessors and memories), simulation models of hardware
and software running on hardware. Examples on different approaches for
hardware-implemented FI includes heavy-ion FI [5], pin-level FI [6, 7], Scan-
chain implemented FI [8] and Nexus-based FI [9]. Examples on approaches
for FI in models of hardware include simulation-based FI [10-12]. Software-
implemented FI can be used pre-runtime [13] or during runtime [14]. Other
approaches have been presented in the literature dealing with FI directly in
source code [15] and in models of, e.g. software (denoted here as model-based
FI) [16, 17] from which source code may be generated. Such techniques can be
used early in the software development process and dependability flaws can be
corrected less costly compared to flaws found during later phases. Model-based
FI is particularly useful during model-based development of systems. This paper
presents ideas on how to combine knowledge from FI (fault tolerance against
hardware faults) with knowledge on PBT (fault removal of software faults) to
enhance PBT testing tools such as QuickCheck. The ideas are implemented in
a tool called FaultCheck, which is presented in detail in Section 4.

One simple example of model-based fault injection is illustrated in Figure
1. In this example, a model is fed with the same inputs over and over again
while different faults are injected. The output is compared to the output from

26

Output from '
. golden run Y,

Figure 1: One example of model-based fault injection.

a golden run where everything was run without faults present.

In summary, fault injection deals with showing how fault tolerant a system is,
evaluating fault handling mechanisms and determining error detection coverage.
One opportunity for improvement lies in checking how numerous auto-generated
input sequences affect the impact of faults.

3 Property-Based Testing

Property-based testing [18] is a technique in which test cases are automatically
generated from a specified property of a system. For example, if we would have
a function computing one trusted value from three possibly different sensor
values, then one could express a property of the output value in relation to the
input values. With PBT one would automatically generate test sequences that
vary the sensor input data and compare the output data with the “modelled”
output data in the property.

One example of PBT is shown in Figure 2 where the QuickCheck tool
[1, 19] is used. In this example, a very simple application is tested and the
model contains all the details of the implementation. In more sophisticated
applications, the model might contain only a few details of the implementation
relevant for evaluating the interesting properties.

3.1 Combing Property-Based Testing and Fault Injection

In this paper we present how techniques from PBT and FI are used together.
Advantages are that we can automatically generate test cases and check if the
state of the System Under Test (SUT) is as expected while injecting faults at
the same time.

In order to combine FI with PBT, a set-up as illustrated in Figure 3 is used.
We show that it is possible to define properties that are supposed to hold with
certain faults present in the system and run tests with randomly generated
Application Programming Interface (API) calls.

27

Compare o
v,
I:O(/

&

Generated
inputs

Figure 2: One example of PBT.

Parameters

Parameters

e
A=

Figure 3: Property-based testing combined with fault injection inside a C
program.

Generated

inputs 2 Fault injection
3

28

Y S P
Generated | 5
inputs 2

3 g :

Y

Figure 4: The FaultCheck probing-library controlled from a PBT-tool.

In this study we have implemented one way to perform FI on C code while
using techniques from PBT and QuickCheck to generate thousands of “golden
runs” automatically. The approach presented in this paper shows the concept
of the idea.

4 FaultCheck

FaultCheck is a tool under early development with the aim to support FI into
C and CH++-code. It consists of a library written in C++ with a wrapper
around C, so it can easily be included and linked against in existing applications.
FaultCheck is designed to be used by other tools that perform property-based
testing with QuickCheck or other PBT tools, such as ScalaCheck [20]. A block
diagram of a typical use case of FaultCheck is shown in Figure 4.

Currently, there are two parts of FaultCheck under development:

Probing, which is done by modifying existing C and C++ applications. This
way, faults can be injected anywhere in the application, to simulate hardware
faults that manifests as errors at the software level, at the cost of some overhead
in execution time and code space.

Communication channel emulation, which is an interface that provides
an emulated communication channel into which a number of communication
faults can be injected to evaluate to which extent the application can handle
them.

The motivation for making the communication channel accessible from C
is that many programming languages such as Python [21], Java and Scala [22]

29

have the ability to interface with C libraries. In this way, FaultCheck can easily
be used from other tools and languages.

4.1 Fault Models

A hardware fault model can be defined as the number of faults, the duration and
the type of the fault. An example is a single transient bit-flip fault. Another
example is multiple permanent stuck-at-zero faults. In this study we have
implemented several hardware fault models as well as communication fault
models. Several of these fault models are handled by the AUTOSAR E2E
library [23]. We have tested that injecting these faults when using that library
did not violate our safety requirements.

4.2 Supported Fault Models

FaultCheck currently supports the following fault models that can be injected
into C and C++-code via probing:

o BITFLIP

— Flips a specific bit in a variable.
o BITFLIP. RANDOM

— Flips a randomly selected bit in a variable.
o STUCK TO_ CURRENT

— Freezes a variable to the last value it had.
« SET_TO

— Sets a variable to a pre-set value.
o« AMPLIFICATION

— Scales a variable with a factor.
o OFFSET

— Adds an offset to a variable.

The communication channel emulation currently supports these fault models:
« REPEAT

— Repeats a packet a number of times.
« DROP

— Drops a number of packets (loss of information).

« CORRUPTION

30

— Alters the data of a packet with any of the fault models specified
in the probing part for variables. Since the same code as for the
probing interface is used, features added to the probing interface can
be made available for the corruption fault easily.

4.3 Probing C-Code

The probing interface of FaultCheck can be used by including the FaultCheck
headers and linking against its dynamic libraries. This way of probing C code
has been inspired by a tool called PROPANE [24] which supports fault injection
probes and monitoring probes.

The following sample code shows how a C application can be probed by
using the FaultCheck tool:

#include "faultcheck wrapper.h”
// C code...
SensorValue sensor_ evaluate(int Slval, int S2val, int S3val) {

SensorValue sv;

0 1 O UL = W N —

Ne]

// some code...
10
11 faultcheck_injectFaultInt(”S1lval”, &Slval);
12 faultcheck injectFaultInt(”S2val”, &S2val);
13 faultcheck injectFaultInt(”S3val”, &S3val);

14

15 // Some more code...
16

17 return sv;

18] }

Here, pointers to the integers Slval, S2val and S3val are sent to FaultCheck
with string identifiers, and based on the configuration and previous events they
may be modified.

Probing combined with the triggering functionality described in Section 4.6
can, for example, be used to precisely affect certain iterations of loops in C
programs in a way that is not possible by only using the external interface of
the program.

4.4 Communication Channel Emulation

A packet-based communication channel can be emulated by FaultCheck and used
from C programs. The following example shows how one packet is encapsulated
by the AUTOSAR E2E-library [23] and passed to the communication channel
emulated by FaultCheck.

31

void sensor(unsigned char *data) {
unsigned char buffer[config.DataLength + 2];

memcpy (buffer + 1, data, config.DataLength);
E2E_ P01Protect(&config, &sender_ state, buffer);

faultcheck packet_addPacket(”airbag”,
(char*)buffer, config.DataLength + 2);

© 00 1 O U b= W N —

}

This packet will be added to a buffer in FaultCheck and can later be read
by using faultcheck packet_getPacket in a similar manner from the application.
When the packet is read, the communication channel faults that are enabled
will be applied to the packet.

4.5 Integration with other Tools

FaultCheck is not intended to be used as a stand-alone testing framework.
It should be used together with other tools that preferably use PBT. Many
tools that do PBT on C code already have access to the interface of that code,
therefore FaultCheck extends the interface of the C applications with functions
to control the FI. This means that the tool that performs PBT can use the
functions provided by FaultCheck in the same way it uses the other functions
of that C application.

The following sample code shows how to activate a bit-flip fault for one
identifier:

1| faultcheck addFaultBitFlip(”Slval”, 3, 1);

This would flip bit number three (zero is the least significant bit) in the
variable S7val in the sample shown in Section 4.3. Every time the function
sensor__evaluate would be called after this point, the third bit of S1val would
be flipped.

Multiple faults can also be added to the same identifier at the same time.
They will be applied to the data in the order they were added. For example, in
order to first flip bit number two, then add 23 and then flip bit number 11, the
following calls would be used:

1] faultcheck addFaultBitFlip(”Slval”, 2);
2| faultcheck addFaultOffset(”S1lval”, 23);
3| faultcheck addFaultBitFlip(”S1val”, 11);

Note that this combination of faults might not be a realistic fault model,
but it shows the flexibility of FaultCheck to design complex fault models.

4.6 Temporal Triggers for Faults

In addition to information about the type and parameters of the faults, Fault-
Check also keeps track of when faults should be activated. This mechanism is

32

called temporal triggering and essentially means that fault activations can be
delayed for a number of iterations and then be active for a number of iterations.
The notion of iteration in this context means that every time the probing
function is called, one iteration has occurred. As multiple faults can be added
to each identifier, each of these faults can also have an individual trigger.

The following is an example where multiple faults are added for the same
identifier (S1val) with different triggers:

1] faultcheck addFaultBitFlip(”Slval”, 2);

2| faultcheck _setTriggerAfterIterations(”S1lval”, 120);
3| faultcheck setDurationAfterTrigger(”Slval”, 45);
4

5| faultcheck addFaultOffset(”S1lval”, 23);

6| faultcheck_setTrigger AfterIterations(”S1val”, 45);
7| faultcheck _setDurationAfterTrigger(”S1val”, 200);
8

9| faultcheck addFaultBitFlip(”Slval”, 11);

10| faultcheck _setTriggerAfterIterations(”S1lval”, 130);
11| faultcheck_setDurationAfterTrigger(”S1lval”, 10);

The trigger will be applied to the latest fault that was added. So, the way
to add multiple faults with triggers is to add one fault, set the trigger for it,
add another fault, set the trigger for it and so on. The code snippet above will
cause the following to happen:

e A bit flip on bit number two that is active from iteration 120 and for 45
iterations after that.

o An offset of 23 that is active from iteration 45 and for 200 iterations after
that.

e A bit flip on bit number 11 that is active from iteration 130 and for 10
iterations after that.

Note that the offset will be triggered before the first bit flip, but when the
first bit flip is also triggered it will be applied before the offset. This scenario will
occur during iteration 120 to iteration 165. When several faults are triggered
at the same time, they will be applied to the variable in the same order as they
were added in the code.

The previous examples illustrate how to use triggers with the probing func-
tionality, but triggers can also be used in the same way with the communication
channel of FaultCheck. For the communication channel, one iteration is defined
as every time faultcheck packet__getPacket is called.

5 An example: AUTOSAR E2E

When designing safety-critical control systems, one needs to ensure that safety
requirements are met. In different domain areas corresponding safety standards

33

help to guide safety engineers through the process of formulating requirements
and designing for safety.

In the automotive domain the standard that covers functional safety aspects
of the entire development process is called ISO 26262 [25], which is an adaptation
of the IEC 61508 [26] standard. The AUTOSAR E2E-library takes the ISO
26262-standard into consideration and is supposed to work with all Automotive
Safety Integrity Levels (ASILs) regarding communication when the implemen-
tation recommendation is followed. This can reduce the development effort and
make the implementation compatible with other AUTOSAR components.

In short, the AUTOSAR E2E library supports the detection of corruption
and loss of data when transporting data from one end to the other. This is a
building block for safety solutions, since typical fault models include that data
on a bus may occasionally be corrupt or even be totally lost.

On top of this library we developed an example of an airbag system with
three sensors to detect a collision. The sensors are continuously sampled and
their combined data is constantly sent to the airbag ignition system. It would
be unsafe if that data could be corrupted in such a way that the airbag would
spontaneously fire. Hence, the airbag ignition system needs to know that the
data received from the sensors can be trusted. Thus, safety requirements state
that the airbag should explode when the car crashes, but even more important
that it does not explode at low speed or without a crash.

5.1 Experiment Set-up

In order to test to whether the E2E-library indeed offers good protection against
some of the fault models it is designed to handle, a system as shown in Figure
5 has been developed. It works in the following manner:

1. A series of calls is generated and fed into a C application that uses the
AUTOSAR E2E-library. In this case, a series of calls with a certain
command, [85,170], should update a variable in the state. When these
commands are not sent, the state is not allowed to change regardless of
what other commands are sent.

2. The commands from the calls are encapsulated by the E2E protection
wrapper that uses the E2E library. The encapsulated packets are then
passed to the FaultCheck tool.

3. If a fault is activated, FaultCheck will alter the packet based on the chosen
fault model before it is fetched by the application.

4. The E2E protection wrapper fetches packets from FaultCheck and checks
them by using the E2E library. Then it performs state updates based on
the results.

5. The QuickCheck tool analyses the state of the application and determines
whether the state follows the specification or not.

34

QuickCheck

Fault Injection Control

Figure 5: Experiment set-up of the E2E evaluation system.

The reason that multiple commands are sent to update the state is that the
AUTOSAR E2E-library recommends that the application is able to handle one
faulty packet by itself.

In order to validate our framework, we also tested the application without
using the AUTOSAR E2E-library to see which failures we can detect. Later
we confirmed that the E2E-library protects against the faults that cause these
failures.

The C-code is tested with four different QuickCheck-commands: sensor,
bit_flip, repetition, and explosion. The sensor command is run 10 time more
frequently than the other commands and looks as follows:

1| sensor(Data) —>

2| DataPtr = eqc_ c:create_array(unsigned char,Data),
3| case 7USE_E2E of

4 yes —>

5 c_call:sensor e2e(DataPtr),

6 c_call:airbag_ iteration_e2e();
7 no —>

8 c_ call:sensor(DataPtr),

9 c_ call:airbag__iteration()

10| end,

11| eqc_c:value_of(airbag_active).

13| % Always send 170 as the second byte, otherwise it is
14| % very unlikely that an explosion will occur since a
15| % double fault would be required most of the time.

16| sensor__args(_S) —>

171 [[byte(), 170]].

19| sensor__pre(_S, [Data]) —>

35

20| not is_explode(Data).

21
22| sensor__post(_S, [Data], Res) —>
23] Res==0.

This command will generate a combination of two bytes that should not
fire the airbag (e.g. not [85,170]) and send them to the application. The
postcondition is that the airbag should not fire, and if this is not true (the
airbag state is set to fired) the property will evaluate as false.

The bit_ flip command is used to make FaultCheck inject a CORRUPTION
fault of the bit flip type into the communication channel. It looks in the
following way:

1] bit_ flip(Byte,Bit) —>

2 c_ call:faultcheck packet_addFaultCorruptionBitFlip(“airbag”, Byte
, Bit).

3

4| bit_flip_args(_S) —>

5 case "USE_E2E of

6 yes —> [choose(0,3), choose(0,7) |;

7 no —> [choose(0,1), choose(0,7)]

8 end.

9

10| bit_ flip_ pre(S,[Byte,Bit]) —>

11 length(S#state.faults) < 4 andalso

12| not lists:member({bitflip,Byte,Bit },S#state.faults).
13
14| bit_flip_ next(S, _, [Byte, Bit]) —>

15 S#state{faults = S#state.faults ++ [{bitflip, Byte, Bit}]}.

The arguments are the byte to affect in the packet (0 to 1 without the
E2E-library or 0 to 3 with the E2E-library) and which bit to flip in that byte
(0 to 7). The precondition to run this command is that there is not already
another bit flip on the same bit, as this would be meaningless because they take
each other out. Another part of the precondition is that there are less than 4
faults active simultaneously.

The repetition command will make FaultCheck repeat a packet a certain
number of times. It looks as follows:

1| repetition(Num) —>

2 c_ call:faultcheck packet_ addFaultRepeat(”airbag”, Num).
3

4| repetition_ args(_S) —>

5 [choose(1, 3)].

6

7| repetition pre(S, [Num]) —>

8 length(S#state.faults) < 4 andalso

9] not lists:member({repetition, Num}, S#state.faults).

10

36

11| repetition_ next(S, _, [Num]) —>
12 S#state{faults = S#state.faults ++ [{repetition, Num}]}.

The explosion command is used to test that the airbag actually will explode
when there are no faults. It looks as follows:

—_

explosion(Data) —>
2| DataPtr = eqc_ c:create_array(unsigned_ char, Data),

3| c_call:faultcheck_packet_removeAllFaults(),

4] case ?TUSE_E2E of

) yes —>

6 % Call the sensor function often enough for the E2E library
7 % to recover (15 times)

8 [c_call:sensor__e2e(DataPtr) || __<—lists:seq(1,15)],

9 c_call:airbag_ iteration_ e2e();
10 no —>
11 c_ call:sensor(DataPtr),
12 c_ call:sensor(DataPtr),
13 c_call:airbag__iteration()
14 end

15| Res = eqc_c:value_of(airbag_ active),
16| c_ call:application_ init(),

171 Res.

18
19| % The arguments for the explosion command are always [85, 170]
20| explosion_ args(_S) —>

21 [[85, 170]].

22
23| % The postcondition is that the airbag should explode
24| explosion__post(_S, [_Data], Res) —>

25| Res == 1.

The reason that the explosion command calls the sensor function several
times is to give the E2E-library a chance to recover after many possible injected
faults. The reason to use this command is to make sure that the E2E-library
actually will pass data to the application when there is no fault present.

5.2 Experiment Results

First we tested the application without the E2E-library to see how it behaves.
The following commands constitute a typical sequence that makes the airbag
explode when it should not:

airbag_eqc:bit_flip(0, 1) -> ok
airbag_eqc:repetition(1) -> ok
airbag_eqc:sensor([87, 170]) -> 1

This sequence shows one command that flips bit number 1 in byte number
0. The next command will repeat whatever is sent once. The third command,

37

sensor, will send [87,170] to the airbag. 87 will be changed to 85 when the first
bit is flipped and then [85,170] will be sent twice because of the repetition.

Note that this short sequence is easy to understand and exactly points to the
problem. The small sequence is obtained from a much longer sequence of calls
that failed. QuickCheck automatically searches for smaller failing test cases
when a failure is detected. Thus, all commands unnecessary for this unintended
explosion to occur are removed by QuickCheck’s shrinking technique. As two
consecutive commands are required for the airbag to explode, the repetition
fault combined with the bit flip were necessary.

It took around 1000 auto-generated tests before this unintended explosion
occurred, even when one out of 10 commands was an injected fault, so the
mechanism in the application to require two consecutive commands was useful.
Without that mechanism, when only one [85,170] command for an explosion
was required, it usually took less than 50 tests with the otherwise same set-up
for the failure to occur.

When we run the same QuickCheck model against the Airbag implemen-
tation based upon the AUTOSAR E2E-library, the airbag never exploded
unintentionally. Not even after running more than 100 000 tests.

Since the possible combinations of injected faults and state of the system is
huge, one cannot draw much conclusion from a lot of passing test cases. Failing
test cases reveal a problem, but until you find that, you cannot say much about
the implementation. The distribution of the test data, collected during testing,
is the only hint we have to see what we tested and whether we think this is a
good test distribution.

While analysing the data, we realized that it is hard to jump from an
arbitrary number to 85 by flipping a bit. We did reduce the search space by
instead of sending two arbitrary integers, always send 170 as the second integer
and choose the first integer in the set of values {84,87,117,213,21}, i.e., values
that easily mutate to 85. The data generator to express this is written in
QuickCheck as follows:

1| sensor__args(_S) —>
2| [[elements([84, 87, 117, 213, 21]), 170]].

Here only one bit differs an innocent command from a command that causes
an explosion. This made the application fail after less than 50 tests most of the
time without the AUTOSAR E2E-library (as opposed to 1000 tests). The test
output typically looked like the following after shrinking:

airbag_eqc:bit_flip(0, 0) -> ok
airbag_eqc:sensor([84, 170]) -> O
airbag_eqc:sensor([84, 170]) -> 1

The first command flips bit number 0 in byte number 0. This will cause
[84,170] to be changed to [85,170] and two such commands will make the airbag
explode. In this case, two sensor commands with the same data were more
likely to occur than a repetition command because of the limited amount of
data for the sensor command to be chosen from.

38

However, with the E2E-library included, even 100 000 tests with the modified
generator would not make the airbag explode when it should not, while the
explosion command that sends [85,170] still could make the airbag explode
when the faults where disabled for several iterations.

In this experiment, the Protection Wrapper communicates directly with
FaultCheck and is not the one provided by the real application that uses one of
the communication interfaces provided by AUTOSAR. This does however not
imply that the Protection Wrapper of the application to be tested has to be
modified to support the FaultCheck interface. One might as well use an existing
Protection Wrapper and mock the interface that AUTOSAR provides with an
additional C component. This way, the same experiment can be carried out
without intruding on the original Protection Wrapper of the application. The
only reason that we connected the Protection Wrapper directly to FaultCheck
in the example here is that we do not have any different protection wrapper to
begin with; and therefore we could as well connect the one we create directly to
FaultCheck.

6 Conclusions

We have presented a platform and methodology that uses FI and PBT to test
safety-critical systems. Advantages include that faults can be injected while
inputs are auto-generated based on properties and property-based checks on
the software under investigation are performed.

An Airbag example based on the AUTOSAR E2E-library is presented
where we run thousands of auto-generated tests. In this experiment, we have
discovered faults that will cause unexpected behaviour with certain inputs when
the E2E-library is disabled. We have also confirmed that enabling the E2E
library will protect against these types of faults. This way, we have shown how
non-functional requirements can be tested by using FI combined with PBT.

This methodology presents how to combine FI with PBT for evaluation of
realistic use cases with one or more software components in order to exercise and
evaluate fault handling mechanisms. This will indicate whether the evaluated
fault handling mechanism is enough to cope with the expected faults or if
something additional is needed.

Although the AUTOSAR example is from the automotive industry, which is
one of the areas where fault injection is used today, the same techniques can
be applied to other areas. Wherever it makes sense to test one or several parts
of a system in a realistic use case, this platform can be used to evaluate fault
handling capabilities.

7 Acknowledgement

This research has been funded by the PROWESS EU project (Grant agreement
no: 317820) [27]. We would like to thank Hans Svensson for useful feedback
and comments.

39

References

(1]

2l

B8l

(4]

(8]

(10]

(1]

[12]

(13]

T. Arts, J. Hughes, J. Johansson, and U. Wiger. "Testing Telecoms Software
with Quviq QuickCheck”. In: Proceedings of the ACM SIGPLAN Workshop on
Erlang. Portland, Oregon: ACM Press, 2006.

A. Nilsson, L. M. Castro, S. Rivas, and T. Arts. ”Assessing the Effects of
Introducing a New Software Development Process: a Methodological Description™.
In: International Journal on Software Tools for Technology Transfer (2013),
pp. 1-16.

R. Svenningsson, R. Johansson, T. Arts, and U. Norell. ”Formal Methods Based
Acceptance Testing for AUTOSAR Exchangeability”. In: SAE Int. Journal of
Passenger Cars— Electronic and Electrical Systems 5.2 (2012).

R. K. Iyer. "Experimental Evaluation”. In: Proceedings of the Twenty-Fifth
International Conference on Fault-Tolerant Computing. FTCS’95. Pasadena,
California: IEEE Computer Society, 1995, pp. 115-132.

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. ”Using
Heavy-Ion Radiation to Validate Fault-Handling Mechanisms”. In: IEEE Micro
14.1 (1994), pp. 8-23.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and
D. Powell. ”Fault Injection for Dependability Validation: A Methodology and
Some Applications”. In: IEEE Transactions on Software Engineering 16.2 (1990),
pp. 166-182.

H. Madeira, M. Rela, F. Moreira, and J. Silva. "RIFLE: A General Purpose
Pin-Level Fault Injector”. In: Dependable Computing — EDCC-1. Ed. by K.
Echtle, D. Hammer, and D. Powell. Vol. 852. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1994, pp. 197-216.

P. Folkesson, S. Svensson, and J. Karlsson. ”A Comparison of Simulation Based
and Scan Chain Implemented Fault Injection”. In: Proceedings of the Twenty-
FEighth Annual International Symposium on Fault-Tolerant Computing. 1998,
pp. 284-293.

J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. "GOOFI: Generic Object-
Oriented Fault Injection Tool”. In: Proceedings of the DSN International Con-
ference on Dependable Systems and Networks. 2001, pp. 83-88.

E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. "Fault Injection
into VHDL Models: the MEFISTO Tool”. In: Proceedings of the Twenty-Fourth
International Symposium on Fault-Tolerant Computing. 1994, pp. 66-75.

V. Sieh, O. Tschache, and F. Balbach. "VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions”. In: Proceedings of the
Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing.
1997, pp. 32-36.

K. K. Goswami, R. K. Iyer, and L. Young. "DEPEND: A Simulation-Based
Environment for System Level Dependability Analysis”. In: IEEE Transactions
on Computers 46 (1997), pp. 60-74.

S. Han, K. Shin, and H. Rosenberg. "DOCTOR: an Integrated Software Fault
Injection Environment for Distributed Real-Time Systems”. In: Proceedings of
the Computer Performance and Dependability Symposium. 1995, pp. 204-213.

40

[14]

(15]

[16]

(17]

18]

[19]

ISR
N

24]

[25]
[26]

27]

J. Carreira, H. Madeira, J. G. S., and D. E. Informatica. ”Xception: A Technique
for the Experimental Evaluation of Dependability in Modern Computers”. In:
IEEFE Transactions on Software Engineering 24 (1998), pp. 125-136.

M. Hiller. ”A Software Profiling Methodology for Design and Assessment of De-
pendable Software”. Ph.D Thesis. Goteborg: Chalmers University of Technology,
2002.

J. Vinter, L. Bromander, P. Raistrick, and H. Edler. "FISCADE - A Fault Injec-
tion Tool for SCADE Models”. In: Proceedings of the Institution of Engineering
and Technology Conference on Automotive Electronics. 2007, pp. 1-9.

R. Svenningsson, J. Vinter, H. Eriksson, and M. Térngren. "MODIFI: a Model-
Implemented Fault Injection tool”. In: Proceedings of the 29th International
Conference on Computer Safety, Reliability, and Security. SAFECOMP’10.
Vienna, Austria: Springer-Verlag, 2010, pp. 210-222.

J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund,
V. Gulias, J. Hughes, and S. Thompson. ”Property-Based Testing - The ProTest
Project”. In: Formal Methods for Components and Objects. Ed. by F. Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel. Vol. 6286. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 250-271.

K. Claessen and J. Hughes. "QuickCheck: a Lightweight Tool for Random
Testing of Haskell Programs”. In: Proceedings of ACM SIGPLAN International
Conference on Functional Programming. 2000, pp. 268-279.

R. Nilsson. ScalaCheck. 2013. URL: https://github.com/rickynils/scalacheck.
Python/C API reference manual. 2013. URL: http://docs.python.org/2/c-api/.
bridj. 2013. URL: http://code.google.com/p/bridj/.

AUTOSAR. Specification of SW-C' end-to-end communication protection Library.
Specification. 2013-02-20.

M. Hiller. "PROPANE: An Environment for Examining the Propagation of
Errors in Software”. In: Proceedings of the ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ACM Press, 2002, pp. 81-85.

1. O. for Standardization ISO. ISO 26262: Road vehicles — Functional safety.
Norm. 2011.

I. E. Commission. IEC 61508: Functional safety of electrical/electronic/pro-
grammable electronic safety related systems. Norm. 2010.

P. Consortium. Property-Based Testing for Web Services. 2014. URL: http:
/ /www.prowessproject.eu/.

41

https://github.com/rickynils/scalacheck
http://docs.python.org/2/c-api/
http://code.google.com/p/bridj/
http://www.prowessproject.eu/
http://www.prowessproject.eu/

Paper 11

Towards Collision Avoidance for
Commodity Hardware QQuadcopters with
Ultrasound Localization

Benjamin Vedder, Henrik Eriksson, Daniel Skarin, Jonny Vinter
and Magnus Jonsson

Published in Proceedings of the International Conference on
Unmanned Aircraft Systems (ICUAS), Denver, Colorado, USA,
(2015).

43

Abstract

We present a quadcopter platform built with commodity hardware that is
able to do localization in GNSS-denied areas and avoid collisions by using
a novel easy-to-setup and inexpensive ultrasound-localization system. We
address the challenge to accurately estimate the copter’s position and not hit
any obstacles, including other, moving, quadcopters. The quadcopters avoid
collisions by placing contours that represent risk around static and dynamic
objects and acting if the risk contours overlap with ones own comfort zone.
Position and velocity information is communicated between the copters to
make them aware of each other. The shape and size of the risk contours are
continuously updated based on the relative speed and distance to the obstacles
and the current estimated localization accuracy. Thus, the collision-avoidance
system is autonomous and only interferes with human or machine control
of the quadcopter if the situation is hazardous. In the development of this
platform we used our own simulation system using fault-injection (sensor faults,
communication faults) together with automatically-generated tests to identify
problematic scenarios for which the localization and risk contour parameters
had to be adjusted. In the end, we were able to run thousands of simulations
without any collisions, giving us confidence that also many real quadcopters
can manoeuvre collision free in space-constrained GNSS-denied areas.

1 Introduction

In order to test and demonstrate different applications on Micro Air Vehicles
(MAVs), a platform that is easy to set-up and safe to operate can be very
useful. We envision a quadcopter platform built from inexpensive hardware
that can be set up at new locations in less than 15 minutes. Our targeted
environments have constraints on space and lack of Global Navigation Satellite
Systems (GNSSs), which makes it difficult to navigate autonomously compared
to outdoor environments. This platform should give the pilot, who can be a
human or a machine, full control in normal circumstances while preventing
collisions when the situation gets hazardous, regardless of pilot input. Thus, the
quadcopters have to be aware of their own positions and the positions of static
and moving objects in the area. They also have to be aware of the accuracy of
their position and the physics that restrict how they can manoeuvre.
Our platform is designed to meet the following requirements:

e No sensitivity to lighting conditions and background contrast, as is the
case with camera-based systems [1-4].

e The computations for estimating the position and avoiding collisions
should be inexpensive enough to be handled by on-board microcontrollers
(as opposed to offloading them to external computers [3, 4]).

e The extra equipment on each quadcopter should be light enough to allow
extra payload and spare the battery. There are solutions with relatively
heavy laser range finders that do not meet this requirement [5, 6].

45

e There should be fault tolerance to e.g. handle occasional faulty distance
measurements.

e Pilot errors should be handled by automatically taking over control if the
situation becomes hazardous.

To meet these requirements, we have created a localization system that uses
ultrasound to measure the distance between the copters and several stationary
anchors. The ultrasound-localization hardware is based on open-source radio
boards [7]. To make the copter’s aware of each other, they communicate their
positions and velocities to each other on a regular basis.

Testing the system has been a significant part of this work. We have
developed a simulator that operates together with fault injection [8] and property-
based testing [9] techniques to evaluate how a larger system with quadcopters
behaves while hardware faults and/or pilot misbehaviour occurs. This way,
we could randomly generate pilot control commands and inject faults during
thousands of automatically generated simulations to see when a collision occurs.
For fault injection, we used the FaultCheck tool [10] and for generating tests
we used the Erlang QuickCheck tool [11]. When we had a sequence of pilot
and fault injection commands that led to a collision, we used the shrinking
feature of QuickCheck to get a shorter test sequence of commands that leads
to a collision. We could then run this sequence of commands in the simulator
repeatedly, while adjusting the system parameters, until it would not lead to a
collision anymore.

Dealing with the slow update rate of the anchors, with the simulation-
hardware relation, and with the occasional measurement faults of the system
was challenging. Even so, we achieved a result with a functioning copter platform
and much shared code between the simulator and the hardware.

The contributions of this work are the following:

e A novel hardware and software solution for doing localization in GNSS-
denied areas based on ultrasound measurements fused with Inertial Mea-
surement Unit (IMU) data using easily available, inexpensive hardware.

e A technique to take over control in hazardous situations to avoid collisions
between moving quadcopters by using communication between them and
risk contours.

e We show how performance and fault tolerance can be evaluated with
automatically generated tests using our previously proposed platform that
utilizes fault injection and property-based testing [10].

The rest of the paper is organized as follows. Section 2 presents related
research, Section 3 describes our hardware platform, Section 4 describes our
ultrasound distance measurement technique and Section 5 shows how we do
position estimation. Further, in Section 6 we describe our collision-avoidance
technique, Section 7 describes our simulations and in Section 5 we present our
conclusions from this work.

46

2 Related Work

Much research has been devoted to autonomous MAVs, such as quadcopters.
Early systems worked only outdoors as they relied on GNSS positioning sys-
tems [12]. Recently, part of this research has been devoted platforms that
operate in GPS-denied areas such as indoor environments [1-6, 13, 14]. One
approach is to use cameras either mounted on the copters to identify the envi-
ronment [2, 4, 13]; or external cameras that identify markers on the copters [1,
3]. Limitations with the camera-based solutions are that they require much
computational power and good light/contrast conditions. Many camera-based
solutions run the computation on a stationary computer and send the results
back to the copter [1-3, 13, 14]. Another approach is to use laser range finders
mounted on the copters to run Simultaneous Localization and Mapping (SLAM)
algorithms [5, 6]. This approach often works without modifying the external
environment with e.g. anchors or cameras, but relies on the environment having
walls that are close enough to be detected. Limitations with laser range finders
are that they are relatively expensive and quite heavy, adding much payload to
the weight-constrained copter.

Similar to our platform, there is one early system that relies on infra-red
and ultrasound sensors mounted on quadcopters that measure distances to
walls and the floor [15]. These copters can avoid collisions, but did not have
enough accuracy to perform a stable hover. More recently, a platform has
been presented by J. Eckert that uses ultrasound localization with inexpensive
hardware to manoeuvre quadcopters [14, 16, 17]. This platform uses a swarm of
small robots that spread out on the floor and allow a consumer (a quadcopter in
this case) to hover above them. Compared to our platform, Eckerts’s ultrasound
system has a shorter range, of 2 m when there is noise from quadcopters,
while our system can operate at distance of up to 12 m from the anchors
with the current configuration. Eckert’s quadcopter also relies on optical flow
sensors aimed towards the floor and ceiling because the update rate from their
ultrasound system is too low and not as tightly coupled to the control loop as
our system. Thus, their localization depends on having relatively good contrast
and lightening conditions and a ceiling that is low enough, which makes it
difficult to use outdoors.

To our knowledge, beside our quadcopter system, there is currently no other
indoor quadcopter system that can do a stable hover and collision avoidance
with only ultrasound localization and IMU-based dead reckoning. Our system
also has a unique approach on collision avoidance and fault tolerance.

3 Hardware Setup

Our platform consists of several quadcopters and several (at least two) stationary
anchors, as shown in Figure 1. The anchors and quadcopters have synchronized
clocks to do Time of Flight (ToF) measurement of ultrasound to determine the
distance between them. The copters also have one ultrasound sensor each that
measures the distance to the floor. Since the [x,y,z]” position of the anchors

47

A Quadcopter 3 (X, Y, Z)

Y-Axis

Anchor 2 5
*

e . X-Axis
ﬁnchorl Anchor 3 I

Figure 1: The ultrasound-localization system with anchors. The measured
distances from the copters to the anchors are marked D a:b.

is known by the copters, they can calculate their own position based on the
distances to the anchors. Two anchors are enough for this system to work if the
copters never pass the line between the anchors, but any number of anchors
can be used to provide more accuracy and/or redundancy.

A block diagram of the hardware components on each quadcopter and their
connections can be seen in Figure 2. There is one custom main controller board
that is responsible for the high-speed (1000 Hz) attitude control loop. The
position control loop and part of the position estimation is also done here. The
components and their functions on the mainboard are:

The STM32F4 microcontroller is responsible for all computation and
communicates with the other components on the mainboard.

The MPU9150 IMU sensor provides the raw data that is used for attitude
estimation. It has a three-axis accelerometer, a three-axis gyroscope, and
a three-axis magnetometer; thereby providing nine degrees of freedom.

The barometer measures the air pressure and is currently not used in any
algorithm. Later, it could be used for redundancy when measuring the
altitude.

The CC2520 radio transceiver is used to communicate with the ground
station and other quadcopters.

Standard Pulse-Position Modulation (PPM) signals are sent to motor
controllers that drive the propeller motors.

48

Quadcopter Mainboard CAN STM32-BV Mote

CC2520
UART x4 | CAN | USB
ADC

Ultrasound UART
Battery o +
monitor Receiver g
with amplifier
Microcontroller
STM32F4
- Ultrasound
Gyroscope MicroSD .
! Memory Height sensor

Accelerometer PPM
PPM/ADC Program/Debug 4x Motors

Barometer

Magnetometer

| sng oz!

I‘

Figure 2: The hardware setup on each quadcopter.

The STM32BV-mote is responsible for clock synchronization and distance
measuring. An ultrasound receiver is connected to an Analog to Digital Con-
verter (ADC) pin with a simple amplifier to capture pulses from the anchors.
The mote also communicates with an ultrasound altitude sensor to measure the
distance to the floor. These measurements together are sent to the mainboard
that computes the position of the copter based on them.

4 Ultrasound Distance Measurement

The ultrasound distance measurements are done by synchronizing the clocks
of all anchors and quadcopters and having timeslots assigned when pulses are
sent from different anchors, which are then recorded by the receivers on the
quadcopters. The receiver then uses the ToF of the pulse to calculate the
distance to the anchor.

Clock synchronization is done by having a node sending out a clock value
and using a hardware interrupt on the receiving nodes that saves the local clock
value at the time the packet starts being received. When the whole clock packet
is received, the difference between the time stamp and the received clock value
is subtracted from the own clock. This difference is also used to estimate the
clock drift and compensate for that over time. With clock packets sent every
2 s, the clock has a jitter of less than 5 ps, which is good enough to measure
the ToF of sound.

In order to reject noise on the ultrasound measurements, the pulses sent out
by the anchors are created by multiplying the 40 kHz carrier with a sinc pulse.
The received signal is then cross-correlated with the same sinc pulse to find the
first peak above a certain threshold. In order to speed up the cross correlation,
it is performed using overlapping Fast Fourier Transforms (FFTs) [18]. Figure 3
shows the recorded ultrasound pulse and the cross correlation result from an
anchor that is placed 10 m away. It can be seen that the noise amplitude is
rejected on the correlated signal, making analysis of the distance easier.

49

0 25 5 75 10 12,5 15 17,5
Meters

Figure 3: Ultrasound samples recorded for a time corresponding to 10 meters
and the cross correlation result.

5 Position Estimation

The software on the quadcopter mainboard does the bulk of all the computational
work required for the copter to operate. This section gives a brief overview of
the discrete-time calculation performed in software to update the state of the
system at time n regularly with interval dr.

The algorithm that runs at the highest rate of the control system is the
attitude estimation and control. We have used a slightly modified version of
an Attitude and Heading Reference System (AHRS) algorithm [19] to get a
quaternion-based representation of the current attitude, from which we calculate
Euler angles as:

6,(n) atan2(2(qoq1 +42q3), 1 —2(q3 +43))
Op(n)| = arcsin(2(qog2 — q3q1)) (1)
6y(n) atan2(2(qoq3 +q192), 1 —2(q3 +43))

where [q0,41,92,93]7 is the quaternion representation of the current attitude,
atan?2 is a function for arctan that takes two arguments to handle all possible
angles and [6,(n), 0,(n),0,(n)] are the roll, pitch, and yaw Euler angles. Then,
there is one Proportional-Integral-Derivative (PID) controller for each Euler
angle to stabilize the copter. There is also a PID controller for the altitude. In
order to get as little altitude-variations as possible, feed-forward is used on the
throttle output from the roll and pitch-angles, calculated as:

FFpae(n) = \/1an(6,(n))2 + tan(8) (n))? + 1 @)

The feed-forward term FF,(n) is calculated at a higher rate than the altitude
measurements arrive and represents a compensation factor that makes the
vertical thrust component constant while the roll and pitch angles [6,(n),8,(n)]”
vary. This equation has singularities when the roll or pitch angles are at 90°,
but the attitude control loop truncates its inputs to prevent the roll and pitch
angles from exceeding 45°.

50

After several manual aggressive flight tests with altitude hold activated, we
had confidence that our altitude control loop was working properly.

To estimate the position of the copter, we use one high-rate update based
on dead reckoning from its attitude. The assumption is that the throttle is con-
trolled such that the altitude remains constant or slowly changing. Additionally,
one low-rate update is used on the position every time new ultrasound ranging
values arrive. For the high-rate dead reckoning, the first thing we calculate
for each iteration is the velocity-difference [dyx(n),dyy(n)]” and add it to the

integrated velocity value [Vy(n),Vy(n)]T, rotated by the yaw angle:

(] = o et + o] ®)
Sl L) @

6y (n)
Vi(n) Ve(n—1) +dyx(n)cy +dyy(n)s
) = B e Lo ®)

where 6,y(n) and 6y,.5(n) are offsets that could be estimated over time to
compensate for misalignment of the accelerometer. Again, the singularity when
the roll or pitch angle [6,(n), 6,(n)]” are 90° is not an issue because these angles
are limited at 45°. This is then used to update the position [P(n),P,(n)]":

= o] ©

As the velocity integration drift is unbounded even when there is a small offset
on the attitude estimation, the anchor distance measurements have to be used
to estimate the velocity drift in addition to the roll and pitch error. For the
anchor corrections, which arrive at a lower rate, we first compute the difference
between the expected distance to the anchor from the dead-reckoning and the
measured distance to the anchor:

ax (I’l) Py (n - 1) Py anchor
day (n) = P (I’l - 1) y anchor (7)

dgz(n) P. 2(n—1)— P anchor
1) = \/dax(n)? + day(n)? +das(n)? 8)
err(") = dq(n) — dyeasurea(n) (9)
Fu(n) = Z:((:)) (10)

where [Py(n), Py(n), P,(n)] is the position of the copter, [Px,anchorapyﬂnchomPz,anchor]T
is the position of the anchor this measurement came from and [dgy (1), dgy(n),dg; (n)]"
is the difference between them. Further, d,(n) is the magnitude of the calcu-
lated difference, dyeqsured(n) is the measured magnitude, err(n) is the difference
between the calculated and the measured magnitude and F.(n) is a factor that is
used in later calculations for correction. Notice that there is a singularity when
d,(n) approaches 0, but this would imply that the copter is located exactly on
one anchor which means that the copter collides with that anchor. This should

o1

not happen because the copters should keep a safety distance from the anchors
at all times.

At this point, if the error is larger than a certain threshold, we discard
this measurement and lower the position quality because something is likely to
be wrong. If too many consecutive measurements have a large error, we stop
discarding and start using them in case this is the initial position correction at
start-up.

Next, the position differences [duy(n),dqy(n),da;(n)]" are used to correct the
current position and the velocity error where we compute proportional and
derivative parts, [Ppos(n), Pypos(n)]” and [Diypos(n), Dypos(n)]”, on the position
error. The gain components in the following equations (Gp,ver, Gp poss Gd pos) Were
derived experimentally and the simulation presented in Section 7 has been an
important aid for doing that.

P, os(n) _ dax(n)FcG DOS
{Pyzos(")} B |:day(n)FcG;iox:| (11)
D, os(n) _ (dax(n)Fc _dax(n - I)FC)Gd, 05
| R b ki el (12
Then, apply this to the position:
PX(”) _ Px(n_ 1) + Py os(n) + Dy, os(f’l)
k] vt e k] (19

The height P;(n) could also be updated as above, but using the ultrasound
sensor directed towards the floor directly gave better results in our experiments.
Updating the velocity state [Vy(n),V,(n)]” is done in a similar way:

Ve(n)| _ [Ve(n—1) +duxFe(n)Gp ver
&wk{mmn+%awiJ (14)

A test flight of 60 s where a simple PID control loop is issuing control
commands to hold the [x,y]” position based on the estimated position is shown
in Figure 4. The overlapping red dots represent estimated position samples
during this flight, and it can be seen that the deviation was below 20 cm for the
entire flight. Notice that we did not have a more accurate positioning system
to compare with in this test. The distribution of the estimated position gives
an impression about the performance.

Because of the complexity we did not attempt to make an analytical stability
analysis of the position-estimation algorithm. We did an experimental stability
analysis using fault injection presented in Section 7.1.

6 Collision Avoidance

In this study, collision avoidance is attempted by placing risk contours around
copters and static objects from the perspective of every copter, and steering
away if the risk contours overlap with the comfort zone of the copter [20]. This
means that the risk contours are not a global state, but different from every
copter’s perspective based on its relative velocity to the object and when the

52

(mm)

-2400

— || Quado
— || (1706,-2718,2)
2800 /

-3200

-3600

800 1200 1600 2000 2400

Figure 4: The estimated position during a 60 s long hover.

positions of other copters were last received. The comfort zone is represented
as a circle placed around the quadcopter with a radius that is calculated based
on the confidence of the position estimation.

The risk contours are represented as ellipses and sized/rotated based on the
squared relative velocity vector to the copters/objects they surround. To share
the knowledge about the position of all copters, they broadcast this information
one at a time to everyone else. When a copter receives a position update
from another copter, it will update its Local Dynamic Map (LDM) with this
information. Between the position updates, the risk contours around other
copters will be moved and reshaped based on the velocity the other copters had
when their position was last received. What this looks like can be seen in the
screenshot in Figure 5 of the visualization and control program we developed
for this application.

The risk contour around every neighbouring object in each copter’s LDM

looks like the following;:
dvx _ Vx,r_Vx
i) = B &

dy=/d% +d?, (16)

where [dvx,dvy]T are the X and Y velocity difference between this copter’s
own velocity and the velocity [VW,V),_,]T of the copter corresponding to this
risk contour in the LDM. The position [Ry,Ryy|7, width, height [R,,,Ry]" and
rotation 0, of the risk contour are calculated as:

{Rpx} _ {Px,c +Rgxdvxdv} (17)

Rpy| ~ |Prc + Rexdvydy

93

|:Rw:| _ [Rr +Rgxdvxd3:| (18)
Ry| — |Ry+Rgydyyd?
6, = atan2(dyy, dyy) (19)

where R, is a safety margin around the copter in the LDM that this risk contour
surrounds. R, is scaled based on the time that has passed since the copter
corresponding to this risk contour was heard the last time. [nyc,Py,C]T is the
position of the copter corresponding to this risk contour. Further, R,, and R,y
are factors that scale the size of the risk contour that we found suitable values
for in the auto-generated tests described in Section 7.

When an overlap between the comfort zone of a copter and a risk contour
occurs, the collision-avoidance mechanism will take over control and steer away
from the overlapping risk contour in the opposing direction. If there are several
simultaneous overlaps, a vector will be calculated from a weighted sum of all
overlapping risk contours and their relative direction, and used to steer away
from the collision, calculated as:

&]-xem] -
R s omoevid (21)

where [Cy,C,]T are the relative [X,Y]7 direction sums of all risk contours i that
overlap with the comfort zone of the copter. [C,,CP]T are the roll and pitch
output commands calculated from all overlapping risk contours, rotated by the
yaw angle 6, of the copter. Further, M; is the amount of overlap with every
overlapping risk contour i. Thus, the more overlap there is for one risk contour,
the more influence it will have on the output.

It should be noted that collision avoidance is done in two dimensions. This
is because our copters are not able to fly over each other even if they are at
different heights, since the height sensor of each copter requires a free path to the
ground. Since the position-estimation algorithm relies on an altitude controller
that keeps the altitude constant or slowly changing, collision avoidance in the Z
direction is not necessary if truncation is used on the set point of the altitude
controller.

7 Simulation and Fault Injection

To evaluate and optimize our quadcopter system, we have created a simulator
with the architecture shown in Figure 6. Our simulator is a library written in
C++ with an interface where copters can be added, removed, or commanded
to move. The block named coptermodel runs the same code for position and
velocity estimation, shown in Equation 5 and 6, as the real implementation on
the hardware copters. The angles [6,,6,,6,]T are updated from the movement
command with a similar response to that of the actual hardware, and then the
position and velocity state is updated based on these angles. For this update,

o4

P quakio
(2279, 3564, 0)

)uad|4 ~

-4000 -2000 0 fooo

Figure 5: A screenshot of the risk contours from the perspective of Quad 4. The
red contour is red because there is an overlap between the copters own comfort
zone (Quad 4) and the risk contour around the right upper wall.

we do not inject any faults and assume that it represents the true position of
the copter.

There is also a position and velocity state that is updated in the same way,
but where we inject various faults. This perceived position is then corrected
from simulated ultrasound measurements as described in Equation 13 and 14,
while we inject faults on these ultrasound measurements. Additionally, each
simulated copter has the collision-avoidance mechanism described in Section 6,
shown as Intelligent Transportation System (ITS)-station in Figure 6. The
simulated ITS-station on each copter broadcasts and receives I'TS-messages
to and from the other copters every 100 ms, where we also inject faults. The
CopterSim library can either be used from a Graphical User Interface (GUI) to
manually add and move copters, or from a program that auto-generates tests
and injects faults. All fault injection is done with probes from the FaultCheck
tool [10], linked to the simulator.

We have created a model for the QuickCheck tool [11] that sends commands
to the simulator where we add a random number of copters at random non-
overlapping positions and run commands while checking the property that they
do not collide. These randomly-generated commands can either be steering
commands for the copters, or fault-injection commands passed to the FaultCheck
tool. The whole set-up can be seen in Figure 7.

The parameters for the steering commands are:

e Which copter to command, randomly chosen from all the copters present
in the simulation.

e The roll output, chosen between +15°.

95

...

CopterSim C++ library

CopterSim CopterModel
CoptersModels (Part of CopterSim)
Collision Differential
Detection equations
Communication Localization
emulation emulation
Variable "
time steps ITS Station
ITS Station
(Part of CopterModel) Communication

Local Dynamic Map (LDM)
Collision
= = avoidance

B)

ules|

il

Take over
control

sizyd

...

Figure 6: The simulation architecture. CopterSim has a list with all copters and
checks for collisions between them and the terrain in every iteration. CopterModel
handles the physical model of every copter and has an ITS-station that handles
collision avoidance. The localization emulation is also part of CopterModel.

e The pitch output, chosen between +15°.

e The yaw rate output, randomly chosen between £90° per second.
Further, the fault injection commands have the following parameters:

e Which copter to affect, randomly chosen from all the copters present in
the simulation.

e The fault type, randomly chosen from:

— Communication bit-flip, which flips a randomly chosen bit of the
broadcast ITS message.

Packet loss, where ITS-messages are lost.

Repetition, where I'TS-messages are repeated.

Ultrasound ranging faults, where a random offset is added to the
ultrasound distance measurements.

— Offsets on the [6,,6,,6,]7 angles.

When a collision occurred during these auto-generated tests, we used the
QuickCheck tool to shrink the sequence of commands to a smaller one that
led to a collision, in order to make it easier to identify the problem. Then, we
replayed this smaller sequence of commands while adjusting the gains described

56

[FaultCheck

CopterSim QuadcopterTool
library oo (for
(C++) visualization)

~
J

Property:
No collision ever

VS

COpterS|mGU| _Generator:l
(optional _ - | QuickCheck Arbitrary steering
|

-
(&

~

J
~

commands
interface)

P
Generator:

Various faults
(passed to FauItCheck))

Figure 7: CopterSim with FaultCheck connected to a visualization tool and
QuickCheck.

in Section 5 and the risk contour parameters described in Section 6 until this
command sequence did not lead to a collision any more. This also gave us
insight into the number of simultaneous faults the copters can handle.

7.1 Experimental Performance and Stability Analysis

Here we show specific injected faults and their impact on the position and
velocity error under different gain values, which are described in Section 5. This
is not a full analysis of all possible combinations of faults and gains, but it gives
a general impression about the fault tolerance and performance of the system
under different conditions. Running many auto-generated tests with different
combinations of injected faults gave us confidence that the chosen parameters
gave a robust position correction.

Figure 8 shows how the position recovers when a position offset fault of
1.5 m is injected. The left part of the graph shows the recovery with G, o5 = 0.2
and the right part with G, pos = 1.0. It can be seen that the higher position gain
makes the position error recover faster. A similar relation is shown in Figure 9
where a pitch offset is injected for different values of G, ,.;. When the gain is
too high, an oscillation such as in Figure 10 where a position offset of 1.5 m is
injected while G, pos = 2.0 can occur.

In Figure 11 a position offset fault is shown with G, ;e = 0.0 and G, ;e = 2.0.
It can be seen that when only a position offset is injected, the velocity gain
does not help at all. However, a roll or pitch offset such as in Figure 9 requires
Gpver > 0 to recover. An example where both a ranging offset and a pitch offset
are injected at the same time can be seen in Figure 12, where the difference
between low and high G, ,. can be seen. The injected pitch fault requires
Gpver > 0, but the ranging fault recovers the same way with lower G, ;.

57

Gppos = 0.2

®

— 2,8
—— Position Error
—— Velocity Error |7 2

Gppos = 1.0

Position Error (m)
°
®
-
>
(s/w) Jou3z Apojan

e L | d = !
153 157,5 162 166,5
Time (s)

09 — Px
075 F Py
Roll
2 o6 -
=2 Pitch
<
< 0,45 Yaw
n
o3k —— Range
—— Comm
0,15
0 I . .
139,5 144 148,5 153 157,5 162 166,5

Time (s)

Figure 8: Fault injection with 1.5 m position offset. The lower part shows when
the faults are active and the upper part shows the position and velocity errors.
The first activation had Gj pos = 0.2 and the second one had Gy pos = 1.0.

A dynamic example, where one copter is moved forth and back, is shown
in Figure 13 for different values of G, yos While an amplification on the pitch of
0.95 is injected. If there were not any acceleration the pitch amplification fault
would remain unnoticed, but the acceleration makes it appear. It can be seen
that higher gain keeps the position error lower during the flight.

8 Conclusions

We have created a quadcopter platform that has a novel approach to localiza-
tion using ultrasound distance measurement combined with IMU-based dead
reckoning for accurate positioning, while we use risk contours to avoid collisions
with static objects and other copters. Additionally, we have created a powerful
simulation environment where we can auto-generate tests and inject faults with
many copters simultaneously, making it possible to scale up the tests beyond
what our hardware allows. Our current platform has a limited size, because
the anchors can be no further away from the copters than 12 m. Future work
includes implementation of handover, both in simulation and hardware, between
flying zones to handle more anchors spread out in a larger area. Another
improvement would be handover between GNSS positioning and the positioning
method proposed in this work, when higher position accuracy is required during
landing and take-off.

o8

0,12
- 0,7 <
% 01 06 z
2 o008 05 &
w 2
5 006 04 3
= 03 =
S 0,04 3
& 02 =
0,02 0,1
0 0
Time (s)
09 — Px
0,75 —py
Roll
W
z 08 ——— Pitch
S
< 045 Yaw
03 —— Range
—— Comm
0,15
o , L \ \ . \
22,5 27 31,5 36 40,5 45
Time (s)

Figure 9: Fault injection with 5° pitch offset. The lower part shows when the
faults are active and the upper part shows the position and velocity errors. The
first activation had G, ,.; = 2.0 and the second one had G, . = 0.5.

1,4 |
—~ 12F s
E o
Y g
5 osf 2
s 3
2 o6} S
2 put
S oaf %
0,2 ‘)
o b I . 0
4,5 9 13,5 18 22,5 27 31,5
Time (s)
09 — Px
075} — Py
Roll
o L
g 08 —— Pitch
S
< 045 —— Yaw
)
03k —— Range
—— Comm
0,15
ol \ \
4,5 9 13,5 18 22,5 27 31,5
Time (s)

Figure 10: Fault injection with 1.5 m position offset and G, yos = 2.0. The lower
part shows when the faults are active and the upper part shows the position and
velocity errors.

99

14¢
= 12} Gpvel = 0.0 Gpvel = 2.0 <
T 1F 3
2 g
0,8
w 1,35 §
2 06FfF]
3 09 3
g o4l 3
02k 0,45
oL
144 148,5 153 157,5 166,5 17
Time (s)
09 — Px
075 F — Py
° —— Roll
g o —— Pitch
S
< 0,45 Yaw
]
03l —— Range
—— Comm
015
ol " , . . \ .
144 148,5 153 157,5 162 166,5 17
Time (s)

Figure 11: Fault injection with 1.5 m position offset. The lower part shows
when the faults are active and the upper part shows the position and velocity
errors. The first activation had G, ,.,; = 0.0 and the second one had G, . = 2.0.

0,15 0,9
- 5
€ 0125 FGpvel = 2.0 075 o
Eow 06 <
w o
& 0075 045 3
7 2
7
0,05 0,3
& x :
0,025 0,15
o b . 1 .
49,5 54 58,5 63 67,5 72 76,5
Time (s)
09 ‘ — Px
0,75 — Py
° —— Roll
g % —— Pitch
S
< 045 Yaw
n
03 —— Range
—— Comm
0,15
ol | . 1 . \ .
49,5 54 58,5 63 67,5 72 76,5
Time (s)

Figure 12: Fault injection with 5° pitch offset and 0.5 m anchor distance offset.
The lower part shows when the faults are active and the upper part shows the
position and velocity errors. The first activation had G, ,.; = 2.0 and the second
one had G, = 0.3.

60

3,6

13 Gppos = 0.3
1,25
2,4
1
0,75 18

1,2

Position Error (m)
(s/w) Jou3 AANO)IA

0,5

0,25 1 0,6

L L
94,5 99

0,9 — px
0,75 —py
Roll
Pitch
0,45 — Yaw
—— Range
—— Comm

Is Active

0,3

0,15
ok : . : L : ‘
94,5 99 103,5 108 112,5 17 121,5
Time (s)

Figure 13: Fault injection with 0.95 pitch amplification. The lower part shows
when the faults are active and the upper part shows the position and velocity
errors. The first activation had G, pos = 0.3 and the second one had G pos = 1.0.

9 Acknowledgement

This research has been funded through the KARYON EU project (Grant
agreement no: 288195), the PROWESS EU project (Grant agreement no:
317820) and through EISIGS (grants from the Knowledge Foundation). We
would like to thank Kenneth Ostberg for fruitful discussions regarding the usage
of risk contours.

References

[1] M. Achtelik, T. Zhang, K. Kuhnlenz, and M. Buss. ”Visual Tracking and
Control of a Quadcopter Using a Stereo Camera System and Inertial Sensors”.
In: Proceedings of the International Conference on Mechatronics and Automation
(ICMA). 2009, pp. 2863-2869.

[2] B. Ben Moshe, N. Shvalb, J. Baadani, I. Nagar, and H. Levy. "Indoor Positioning
and Navigation for Micro UAV Drones”. In: Proceedings of the 27th Convention
of Electrical Electronics Engineers in Israel (IEEEI). 2012, pp. 1-5.

[3] M. Bosnak, D. Matko, and S. Blazi¢. "Quadrocopter Hovering Using Position-
Estimation Information from Inertial Sensors and a High-delay Video System”.
In: Journal of Intelligent & Robotic Systems 67.1 (2012), pp. 43-60.

[4] J. Engel, J. Sturm, and D. Cremers. ”Accurate Figure Flying with a Quadro-
copter Using Onboard Visual and Inertial Sensing”. In: Proc. of the Workshop
on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS International
Conference on Intelligent Robot Systems (IROS). 2012.

61

[5]

(9]

[10]

(11]

[12]

(13]

(14]

(15]

[16]

[17]

S. Grzonka, G. Grisetti, and W. Burgard. "Towards a Navigation System
for Autonomous Indoor Flying”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2009, pp. 2878-2883.

I. Sa and P. Corke. ”System Identification, Estimation and Control for a Cost
Effective Open-Source Quadcopter”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2012, pp. 2202-2209.

B. Vedder. CC2520 and STMS32F/ RF Boards. 2014. URL: http://vedder.se/
2013/04/cc2520-and-stm32-rf-boards/.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and
D. Powell. ”Fault Injection for Dependability Validation: A Methodology and
Some Applications”. In: IEEE Transactions on Software Engineering 16.2 (1990),
pp. 166-182.

J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund,
V. Gulias, J. Hughes, and S. Thompson. "Property-Based Testing - The ProTest
Project”. In: Formal Methods for Components and Objects. Ed. by F. Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel. Vol. 6286. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 250-271.

B. Vedder, T. Arts, J. Vinter, and M. Jonsson. ”Combining Fault-Injection
with Property-Based Testing”. In: Proceedings of the International Workshop
on Engineering Simulations for Cyber-Physical Systems. ESACPS ’14. Dresden,
Germany: ACM, 2014, 1:1-1:8.

T. Arts, J. Hughes, J. Johansson, and U. Wiger. "Testing Telecoms Software
with Quviq QuickCheck”. In: Proceedings of the ACM SIGPLAN Workshop on
FErlang. Portland, Oregon: ACM Press, 2006.

G. Hoffmann, D. Rajnarayan, S. Waslander, D. Dostal, J. S. Jang, and C.
Tomlin. "The Stanford Testbed of Autonomous Rotorcraft for Multi Agent
Control (STARMAC)”. In: The 23rd Digital Avionics Systems Conference,
DASC 04. Vol. 2. 2004, pp. 4-121.

J. Pestana, J. Sanchez-Lopez, P. de la Puente, A. Carrio, and P. Campoy. "A
Vision-Based Quadrotor Swarm for the Participation in the 2013 International
Micro Air Vehicle Competition”. In: Proceedings of the International Conference
on Unmanned Aircraft Systems (ICUAS). 2014, pp. 617-622.

J. Eckert, R. German, and F. Dressler. ?On Autonomous Indoor Flights: High-
Quality Real-Time Localization Using Low-Cost”. In: IEEE International Con-
ference on Communications (ICC 2012), IEEE Workshop on Wireless Sensor
Actor and Actuator Networks (WiSAAN 2012). Ottawa, Canada: IEEE, 2012,
pp. 7093-7098.

J. F. Roberts, T. Stirling, J. Zufferey, and D. Floreano. "Quadrotor Using
Minimal Sensing for Autonomous Indoor Flight”. In: Furopean Micro Air Vehicle
Conference and Flight Competition (EMAV2007). Toulouse, France, 2007.

J. Eckert, R. German, and F. Dressler. "ALF: An Autonomous Localization
Framework for Self-Localization in Indoor Environments”. In: 7th IEEE/ACM
International Conference on Distributed Computing in Sensor Systems (DCOSS
2011). Barcelona, Spain: IEEE, 2011, pp. 1-8.

J. Eckert. Autonomous Localization Framework for Sensor and Actor Networks:
Autonomes Lokalisierungsframework Fir Sensor- und Aktornetzwerke. 2012.

62

http://vedder.se/2013/04/cc2520-and-stm32-rf-boards/
http://vedder.se/2013/04/cc2520-and-stm32-rf-boards/

[18] J. Jan. Digital Signal Filtering, Analysis and Restoration. IEE telecommunica-
tions series. Institution of Electrical Engineers, 2000.

[19] S. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. ”"Estimation of IMU and
MARG Orientation Using a Gradient Descent Algorithm”. In: IEEFE International
Conference on Rehabilitation Robotics (ICORR). 2011, pp. 1-7.

[20] K. O. et al. Safety Constraints and Safety Predicates. Public Report. KARYON
consortium, 2014.

63

Paper 111

Using Simulation, Fault Injection and
Property-Based Testing to Evaluate
Collision Avoidance of a Quadcopter

System

Benjamin Vedder, Jonny Vinter and Magnus Jonsson

Published in Proceedings of the 1st Workshop on Safety and
Security of Intelligent Vehicles (SSIV), Rio de Janeiro, Brazil, 2015

65

Abstract

In this work we use our testing platform based on FaultCheck and QuickCheck
that we apply on a quadcopter simulator. We have used a hardware platform
as the basis for the simulator and for deriving realistic fault models for our
simulations. The quadcopters have a collision-avoidance mechanism that shall
take over control when the situation becomes hazardous, steer away from the
potential danger and then give control back to the pilot, thereby preventing
collisions regardless of what the pilot does. We use our testing platform to
randomly generate thousands of simulations with different input stimuli (using
QuickCheck) for hundreds of quadcopters, while injecting faults simultaneously
(using FaultCheck). This way, we can effectively adjust system parameters and
enhance the collision-avoidance mechanism.

1 Introduction

For safety-critical systems, non-functional requirements such as fault tolerance
have to be considered. One way to evaluate and exercise fault tolerance mecha-
nisms is by using Fault Injection (FI) [1]. FI can e.g. be carried out early in
the development process for models of hardware [2-4], models of software [5-8],
source code [9, 10], and at later stages of the development process, for software
deployed on target hardware [11-16]. When working with FI, it is common
to manually create input stimuli for a System Under Test (SUT) and run it
without faults, and save the state of the SUT during this run as the golden run.
After that, the experiment is repeated with the same input stimuli again while
injecting faults, and the system state is compared to the corresponding state
from the golden run. This will show how faults affect the SUT for a pre-defined
input sequence. In our work, we automatically generate the input stimuli to find
out how the system behaves when faults are injected under different conditions.

When dealing with software testing, one way to make sure that functional
requirements are fulfilled is using Property-Based Testing (PBT) [17]. When
doing PBT, inputs are automatically generated and a model of the software is
used to evaluate whether it fulfils its specification, whereby the golden run is
generated automatically for each test sequence based on the model. Previously,
we have introduced the concept of combining techniques from the areas of
PBT and FT using the commercially available PBT-tool QuickCheck [18] and
our FI-tool FaultCheck to test functional and non-functional requirements
simultaneously [10]. By using techniques from PBT while doing FI, we can
automatically generate golden runs during our experiments and test the SUT
using thousands of input sequences and fault combinations. The aim of this
work is to evaluate how effectively our testing platform, based on FaultCheck
and QuickCheck, can be used during the development of a complex SUT while
doing FT with realistic fault models.

The SUT that we are using is a quadcopter simulator that is based on
the hardware quadcopter platform described in Section 2. We have derived
several realistic fault models from the hardware platform that we inject during
the simulation to make sure that the real quadcopters can deal with these

67

faults without collisions. The simulated quadcopters have a collision-avoidance
mechanism that automatically takes over control if the situation becomes
dangerous in order to avoid a collision with the terrain or other quadcopters.
As soon as the collision is avoided, control is be given back to the pilot, who can
be a human or an autonomous system. This collision-avoidance system relies
on communication between the quadcopters and knowledge of each quadcopters
current position. To test the functional requirements of this system, we randomly
place quadcopters in an environment and give them random steering commands
using QuickCheck. The postcondition for each generated test to succeed is
that the copters should never collide regardless of their steering commands.
When these auto-generated simulations work as expected, we run them again
while injecting faults using FaultCheck. This helps us to figure out problematic
scenarios when certain faults are present and to add fault handling mechanisms
and safety margins so that the system can deal with faults during these scenarios.

When simulating the quadcopters, a physical model with differential equa-
tions is used to calculate their positions and movements. This means that
their positions are always known, which makes it difficult to test the position-
estimation algorithm. One way to test their position estimation is to start the
simulator with a “true” (golden run) position state and a perceived (incorrect)
position state, while simulating sensor readings from their correct position to
evaluate how their perceived position converges to the correct position. Cre-
ating the perceived position can obviously be done manually, but FaultCheck
provides a variety of different fault models to chose from in order to create
a faulty position from the correct position. This way, our testing platform
allows us to test the collision-avoidance mechanism and the position-estimation
algorithm simultaneously. This provides a more realistic scenario than testing
the individual parts of the system isolated from each other.

Compared to the normal case with QuickCheck, where the golden run is
calculated in the model, our simulator calculates the true position continuously
while the simulations are running. Calculating the true position within the
simulator gives advantages because the calculation framework is already present
in the simulator and does not have to be reimplemented in the QuickCheck
model again. Another advantage is that this gives improvements in execution
speed in our case since the simulator is written in the language C++4-, which is
designed for high performance. Since the differential equations of all simulated
copters are evaluated hundreds of times every simulated second, having high
execution speed is important to run long simulations, with many copters, in a
reasonable amount of time.

The contributions of this work are as follows:

e We show how to derive realistic fault models based on the hardware
quadcopter platform that the simulator is based on, and how to relate
them to the equations of the movement and position updates of the
quadcopters. We also show how to represent and inject these faults into
the simulator using FaultCheck.

e We show a method to intuitively visualize failed test cases that lead to
a collision between the quadcopters. Since the visualization is created

68

Figure 1: A photo of one of the quadcopters.

in real-time based on a list of QuickCheck commands (e.g. steering and
FI) that lead to the collision, we can adjust and enhance the collision-
avoidance mechanism and replay and visualize the experiment with the
same commands over and over again attempting to avoid a collision caused
by this series of commands.

e We show how our testing platform based on FaultCheck together with
QuickCheck scales when testing a complex SUT, namely the quadcopter
simulator.

The rest of this paper is organized as follows. In Section 2 we describe the
quadcopter system that our simulator is based on. In Section 3 we describe our
simulator and in Section 4 we show how we apply our testing platform on the
quadcopter simulator. Further, in Section 5 we show how we visualize and deal
with failed test sequences, and in Section 6 we present our conclusions from this
work.

2 Quadcopter System

The hardware quadcopter platform that our simulator is based on consists of
four quadcopters, as the copter shown in Figure 1, and two or more anchors
that are placed at known locations. The anchors send ultrasound pulses to
the copters at certain timeslots and are clock synchronized with the copters.
Based on the time when the ultrasound pulses are received by the copters, they
calculate the time of flight of the pulses and hence the distance to the anchors.
A drawing of the hardware quadcopter platform and the anchors can be seen in
Figure 2.

Each quadcopter has two computing nodes connected over a CAN bus. The
main computing node handles 1) attitude estimation and control, 2) position
estimation and 3) collision avoidance. The second computing node is responsible
for clock synchronization and measuring the distance from the copter to the
floor and the distance to the anchors.

To give an insight about the connection between the quadcopter system and
the simulator, we describe the discrete-time equations that the quadcopter uses

69

to estimate its position. Every time n with interval dt the inertial sensors on
the quadcopter are sampled to update the state of the quadcopter.

The algorithm that runs at the highest rate of the control system is the
attitude estimation and control. We have used a slightly modified version of
an Attitude and Heading Reference System (AHRS) algorithm [19] to get a
quaternion-based representation of the current attitude, from which we calculate
Euler angles as:

6,(n) atan2(2(qoq1 + 4293),1 — 2(43 + 43))
0,(n)| = aresin(2(qoq2 — q3q1)) (1)
6y(n) atan2(2(qoq3 +q192),1 — 2(q3+43))

where [q0,91,92,¢3]" is the quaternion representation of the current attitude,
atan?2 is a function for arctan that takes two arguments to handle all possible
angles and [6,(n),0,(n), 6y(n)]” are the roll, pitch, and yaw Euler angles. Then,
there is one Proportional-Integral-Derivative (PID) controller for each Euler
angle to stabilize the copter. There is also a PID controller for the altitude. In
order to get as little altitude-variations as possible, feed-forward is used on the
throttle output from the roll and pitch-angles, calculated as:

FFuc(n) = \/1an(8,(n))? + tan(8,(n))? + 1 2)

The feed-forward term FFp,(n) is calculated at a higher rate than the altitude
measurements arrive and represents a compensation factor that makes the
vertical thrust component constant while the roll and pitch angles [6,(n),8,(n)]T
vary.

To estimate the position of the copter, we use one high-rate update based
on dead reckoning from its attitude. The assumption is that the throttle is con-
trolled such that the altitude remains constant or slowly changing. Additionally,
one low-rate update is used on the position every time new ultrasound ranging
values arrive from the anchors.

For the high-rate dead reckoning, the first thing we calculate for each
iteration is the velocity-difference [dyx(n),d,y(n)]7 and add it to the integrated
velocity value [Vy(n),V,(n)]”, rotated by the yaw angle:

do(n)] [9.82tan(8,(n) + Oy (m))dt
szy(n)} [9 82tan (8 (n) + Opops (n))dt] (3)

)
o] _ [eos(8y(n))
|:S):| B Lm(0,(n)) (4)
Vi(n) _ Vi(n—1) +dyx(n)cy +dyy(n)s, (5)
Vy(n) Vy(n— 1) + dux(n)sy +dyy(n)cy
where 0,y(n) and 6,.4(n) are offsets that could be estimated over time to
compensate for misalignment of the accelerometer. Again, the singularity when

the roll or pitch angle [6,(n), 6,(n)]T are 90° is not an issue because these angles
are limited at 45°. This is then used to update the position [P(n),Py(n)]T:

o] = el 9

70

4 Quadcopter 3 (X, Y, Z)

Y-Axis

Anchor 1 Anchor 3

Figure 2: The ultrasound-localization system with anchors. The measured
distances from the copters to the anchors are marked D a:b.

As the velocity integration drift is unbounded even when there is a small offset
on the attitude estimation, the anchor distance measurements have to be used
to estimate the velocity drift in addition to the roll and pitch error. For the
anchor corrections, which arrive at a lower rate, we first compute the difference
between the expected distance to the anchor from the dead-reckoning and the
measured distance to the anchor:

dax(n) P (n - 1) x anchor
duy (l’l) = Py (l’l - 1) y,anchor (7)
daz(n) P, (}’l - 1) z anchor
) = s 1)+ oy (1) + () (®)
err(”) = da(”) - dmeasured(n) (9)
_err(n)
F.(n) = o) (10)

where [P,(n), Py(n),P,(n)]T is the position of the copter, [Py anchor, Py anchor P, anchor) "
is the position of the anchor this measurement came from and [du(n),day(n),
d,;(n)]7 is the difference between them. Further, d,(n) is the magnitude of
the calculated difference, dyeqsured(n) is the measured magnitude, err(n) is the
difference between the calculated and the measured magnitude and F,(n) is a
factor that is used in later calculations for correction.

At this point, if the error is larger than a certain threshold, we discard
this measurement and lower the position quality because something is likely to
be wrong. If too many consecutive measurements have a large error, we stop

71

discarding and start using them in case this is the initial position correction at
start-up.

Next, the position differences [duy(n),dqy(n),da;(n)]" are used to correct the
current position and the velocity error where we compute proportional and
derivative parts, [Ppos(n), Pypos(n)]T and [Dipos(n), Dypos(n)]T, on the position
error. The gain components in the following equations (G, ver, Gp pos, GdJ,,,s) were
derived experimentally and the simulation presented in Section 3 has been an
important aid for doing that.

[Rl iz ond o
it o R

Then, apply this to the position:

P()| _ (n—l)—|—Px os(n)+Dx os (1)

Updating the velocity state [Vx(n),Vy(n)]T is done in a similar way:

Ve(n)| _ [Ve(n—1)+duF.(n)Gp ver
|:Vy(n):| B [Vy (l’l - 1) + dayFC (n)GZ,vel:| (14)

2.1 Collision Avoidance

Collision avoidance is done by placing risk contours around copters and static
objects from the perspective of every copter, and steering away if the risk
contours overlap with the comfort zone of the copter. This means that the risk
contours are not a global state, but different from every copter’s perspective
based on its relative velocity to the object and when the positions of other
copters were last received. The comfort zone is represented as a circle placed
around the quadcopter with a radius that is calculated based on the confidence
of the position estimation.

The risk contours are two-dimensional and represented as ellipses with width,
height and rotation [Wg,Hg,6g]", and they are sized and rotated based on the
squared relative velocity vector to the copters/objects they surround. To share
knowledge about the position of all copters, they broadcast this information
one at a time to everyone else. When a copter receives a position update from
another copter, it will update its Local Dynamic Map (LDM) (which contains
the positions of all other known copters and the surrounding terrain) with this
information. Between the position updates, the risk contours around other
copters will be moved and reshaped based on the velocity that the other copters
had when their position was last received. When an overlap between the comfort
zone of a copter and a risk contour occurs, the collision-avoidance mechanism
will take over control and steer away from the overlapping risk contour in the
opposing direction. If there are several overlaps at the same time, a vector will
be calculated from a weighted sum of all overlapping risk contours and their
relative direction, and used to steer away from the collision.

72

2.2 Realistic Fault Models

On the hardware quadcopter platform, we have observed a number of fault
sources that we use to derive realistic fault models. A list of where they originate
from and how they affect the equations is given below:

e Accelerometer misalignment. The accelerometer provides the abso-
lute reference gravity vector that points towards the ground, and if it is
misaligned, the position estimation will be affected. This can be modelled
by adding offset faults to [6,,6,]” in Equation 3. This fault will not change
over time.

e Air movement. When flying outdoors, close to other quadcopters or
close to objects, air movement and turbulences affect the localization.
Since we have not included that in the model, it will affect the copters
as accelerations. Similar to accelerometer misalignment, this can be
modelled by adding offset faults to [6;, 9,,]T in Equation 3. Compared to
the accelerometer misalignment fault, this fault changes more and faster
over time. With FaultCheck, it can be added as a second fault on the
same probes as the accelerometer faults.

o Gyroscope drift. A MEMS-gyro will drift over time [20] and affect the
localization. This fault is also similar to the accelerometer misalignment
fault and can be injected on [6,,6,]" in Equation 3. The drift is not
constant like the accelerometer misalignment fault, but it changes slower
than the air movement faults.

e Gyroscope gain errors. If the gain is not perfectly calibrated on the
gyroscope, the position will drift while the quadcopter is moving. This
can be modelled by adding amplification faults to [6,, Gp]T in Equation 3.
When the copter is perfectly leveled and not moving this fault will not
have any effect.

« Ranging reflections. The localization does not always give perfect
samples, and some of them can be much too long when the direct path is
blocked to one anchor and a reflection is received. This can be modelled
by adding a large random offset to the measured distance dyeqsureq(n) in
Equation 9.

e Anchor misplacement. If one of the anchors is not placed where it is
expected, the correction from it will not converge to the correct position
over time. This can be modelled by adding a small offset to [P anchors
Py,anchorvpz,anchor]T in Equation 7.

e Communication faults. If the radio channel is unreliable, communi-
cation faults, such as corrupted data, repeated packets and lost packets,
can occur. This can be modelled by passing the packets sent between the
copters through the communication channel of FaultCheck and injecting
these communication faults on them.

73

The same variables in the equations are affected by different fault models
that can be active simultaneously (e.g. the accelerometer can be misaligned at
the same time as there is air movement and gyroscope drift). FaultCheck has a
feature to inject simultaneous faults that can be controlled independently to
the same variable with a single probe, which is useful when a SUT has fault
models that behave in this way.

3 Quadcopter Simulator

Our quadcopter simulator is a library written in C++ with an interface where
copters can be added, removed, or commanded to move. A block diagram of
the simulator is shown in Figure 3. The block named CopterSim has a list of
CopterModels and a list of line segments that represent static terrain. Every
time dt CopterSim executes the state update function for each CopterModel
and checks for collisions between all CopterModels and the static terrain. When
a collision occurs, the simulation is halted and the position of the collision is
reported. When a CopterModel is added to the simulation, CopterSim will
upload the list of terrain to it and broadcast perceived position state messages
from it to the other CopterModels and vice versa. This broadcast is done
between all copters every communication time interval and the messages are
passed through the communication channel of FaultCheck, where communication
faults can be injected.

The CopterModel block runs the same source code for position and velocity
estimation, shown in Equation 5 and 6, as the implementation on the hardware
quadcopters. The angles [6;,6),, Gy]T are updated from the movement command
with a similar response to that of the actual hardware, and the golden run (the
true position and velocity state) is updated based on these angles. In addition to
the true position state for each copter, CopterModel also updates the perceived
position for them. For the perceived position, we have added FaultCheck probes
to the various state variables, as described in Section 2.2, where faults can be
injected. As long as no fault is activated the true and perceived position will be
the same. As soon as we activate faults the positions will drift apart.

In order to compensate for faults and thus position drift, the perceived
position has to be estimated using ultrasound sensor readings, as described in
Section 2. CopterModel has a list of all anchors and simulates ultrasound-sensor
readings based on the true position state and the anchor positions, with the
same rate as they are received on the hardware copters. These readings are
passed to the correction part of the position-estimation algorithm which corrects
the position as described in Equation 7 - 14.

Every CopterModel block has a block named Intelligent Transportation
System (ITS) station, which builds and updates a LDM that contains all other
copters and their states as it receives messages from them. The ITS station
also keeps track of the terrain (received from CopterSim) and runs the collision-
avoidance mechanism, as described in Section 2.1, based on the LDM. Since the
ITS-station operates on the perceived position of all copters, it is important that
the position-estimations algorithm performs well when there are faults present

74

...

CopterSim CopterModel

(Part of CopterSim)
| Differential
Detection | equations

Communication : Localization
emulation Terrain Anchors I emulation

| — - - ——— =

Variable E E |t !

CoptersModels

Collision

time steps o o | ITS Station 1
. 5 | «—- -2
r;;;'— - =~
! ITS Station '
| (Part of CopterModel) |
I Local Dynamic Map (LDM) T :
Collision
| :
I = Qo = o avoidance |
O 2l g ﬁ |
| . 3 - Take over
| : . control |
e e e e e e e -)

...

Figure 3: The simulator library. CopterSim has a list with all copters and
checks for collisions between them and the terrain in every iteration. CopterModel
handles the physical model of every copter and has an ITS-station that handles
collision avoidance.

and that safety margins are large enough to cope with a slightly inaccurate
perceived position.

3.1 QuadcopterTool

QuadcopterTool, as can be seen in Figure 4, is a Graphical User Interface
(GUI) that is used to set up and control the hardware quadcopters. We have
extended its interface and 2D-visualizations with the ability to visualize the
state of all simulated quadcopters in CopterSim in real-time. CopterSim has
the ability to send UDP-commands to QuadcopterTool with the states of all
simulated quadcopters at the same time. CopterSim also sends the risk contours
seen from a selected quadcopter to QuadcopterTool, which are represented as
ellipses around other quadcopters and map line segments as seen in Figure 5.
In Figure 6 it can be seen that the ellipses around the other copters from the
perspective of Quad 4 are stretched because there is a relative velocity between
them.

Even when running a simulation with many copters simultaneously using
short time steps, the simulation and visualization is fast enough to run in real
time. The simulation in Figure 5 has 40 quadcopters, an iteration time step
of 5 ms and updates the map at 60 Hz, and can still run on a common laptop
computer without dropping in frame rate.

75

QuadcopterTool

Quad| Range (Contiki) Map Simulation
B
£ Roll Pitch Yaw Get Parameters Set Parameters
s - - .
g P[00 | P (080 |] P [300 |, Zero Orientation
2 0 [100 2 v [0 21 [oz0 |2
£ DP 030 | DP 030 |2 DP 040 |
& DEf020 | DE[020 .| DE|020
< (7] Update Orientation
L= Joystick
8 Port /dev/input/jso
< Not connected | Disconnect | | Connect
B G
E G
G
| G
J (0
Control Mode: @ Simple () Advanced
(7] send Joystick
(] Override Power | 50% Motor1 || Motor2 || Motor3 || Motor4 || Motors || Motor6
N/A N/A N/A

Figure 4: A screenshot of the main tab of QuadcopterTool. It is a GUI for
controlling and visualizing the hardware quadcopters. We have updated the
interface and the 2D-visualization of QuadcopterTool to receive UDP commands
from CopterSim so that the simulation state, including all risk contours, can be

visualized in real-time.

Quad | Range (Contiki) | Map | Simulation

Clearall

Clear trace

O] Draw Trace

uadis2
99]3352,
Quad
2121

Qusd
F (3763, 548

Quad!

jadjis’
3/-1302,0)

Quad Serial Connection
Connect Disconnect

/dev/ttyacM3 Not Connected

Control Single Quad
Selected quad o
Zero Position | | Zero Gyro and sticks

Get Anchors

Set Anchors
[Update Position
Control All Quads.
LED Landed indication
Los Dir Both
Set Anchors
Zero Position Zero gyro/sticks
Demo 0 Demo 1 Demo2
Demo 3 Demo 4 Demo 5
Demo All
Autoland All
N/A N/A N/A

Quad serial Connection

Connect Disconnect

/dev/ttyACM3 Not Connected

Control single Quad

TN

S§®

Selected quad o
= Zero Position Zero Gyro and Sticks
Get Anchors Set Anchors.
(] Update Position
gx Control All Quads
LED Landed indication
Los Dir Both
f85:0)
Set Anchors
Zero Position Zero gyro/sticks
Demoo Demo1 Demo2

/

Demo3 Demo 4. Demos

Demo All

Figure 5: A screenshot of the map in QuadcopterTool where a CopterSim
simulation with many copters is visualized in real-time. The selected copter
(with the smallest circle around it), has its comfort zone overlapping with the

fQuac
(1156]-3529,0)

00 320

N/A

N/A

risk contours of the other copters (shown in red).

76

X
154;-362040)
N/A N/A N/A

Autoland All

: qu
9% 3;23;19‘,) 4,0 G%@(Az ,a\,n)
/ Quag 3
/. (976, 3098, 0) {_—
p Quad # A
8601252, 0)
l-&nara An ‘uk
C

uad 4”1 T

|
1
|

Anchor 2
*(3500,-3500, 0)

\ [-4000 2000 0 7ooo 4000 aoo/

Figure 6: A screenshot of the risk contours from the perspective of Quad 4.
The red contour is red because there is an overlap between the copter’s own
comfort zone (Quad 4) and the risk contour around the right upper wall.

3.2 CopterSimGUI

CopterSimGUI, seen in Figure 7, is a GUI that we developed to manually
control the simulated quadcopters and inject faults using FaultCheck. It is
useful when developing the simulator and to test a few FaultCheck probes at a
time, but running a wide variety of simulations using it takes significantly more
effort and time than using QuickCheck to automatically generate command
sequences for CopterSim. Although generating simulations with QuickCheck
is more effective than doing it manually using CopterSimGUI, CopterSimGUI
is still useful during the development of the simulator since it is convenient to
have the ability to test one feature at a time as they are added.

4 Testing CopterSim with our Testing Platform

The setup of our testing platform can be seen in Figure 8. CopterSim and
QuadcopterTool are the SUT, and FaultCheck together with QuickCheck is
our testing platform. QuickCheck sends steering commands to the CopterSim
library and FI-commands to FaultCheck. How these commands are generated
and behave is controlled by the model for QuickCheck.

4.1 QuickCheck Model

We have created a model for QuickCheck that sends commands to the simulator
where we add a random number of copters at random non-overlapping positions
and run commands while checking the property that they do not collide. These
randomly-generated commands can either be steering commands for the copters,
or fault-injection commands passed to FaultCheck.

7

3 CopterSimGUI

1D Actual pos Perceived pos ~ Add Copter 1,00 21,00
10 (-1.87,-2.05,0.00) (-1.87,-2.05, 0.00) ‘ Scenario 1 Scenario 2 Scenario 3
2 1 (-3.11,-1.28,0.00) (-3.11,-1.28, 0.00) Delete Copter Delete all copters
3 |2 (-3.80,-2.98,0.00) (-3.80,-2.98, 0.00) . . - =
Crash Simulation Reset simulation
4 3 (-2.40,-3.53,0.00) (-2.40,-3.53,0.00) o
[Log speeds 0 samples Clear Save to file...
el
6 5 (1.24,-3.46,0.00) (1.24,-3.46, 0.00)
FaultCheck Probe | FaultCheck Packet
7 6 (1.15,-1.52,0.00) | (1.15,-1.52, 0.00)
8 7 (2.75,-2.64,0.00) (2.75,-2.64, 0.00) Identifier | Update | |Pxid11 3 | Offset
9 8 (4.08,-3.53,0.00) (4.08,-3.53, 0.00) Duration |0 . Amp
10 9 (4.32,-0.41,0.00) (4.32,-0.41, 0.00) Delay 0 . Set to
PGP 0,80 . AGP 0,00 - | value 0,000 Bit Flip
PGI 0,00 . AGI 0,00 . Reset
PGD 0,00 _ AGD 0,00 .
Joystick axes
va s weTe (oo . (D
Joystick |/dev/input/js0 Not connected | Disconnect Connect Send joystick

Figure 7: CopterSimGUI is a simple GUI that we have developed for manual
testing. It can be used to manually control the quadcopters and inject faults
using FaultCheck.

The steering command has the parameters 1) which copter to command,
randomly chosen from all the copters present in the simulation, 2) the roll
output, randomly chosen between +15°, 3) the pitch output, randomly chosen
between +15°, and 4) the yaw rate output, randomly chosen between +90° per
second. The only precondition is that the previous command is not a steering
command, since this does not make any sense without having iterations between
them. Further, the fault injection commands have the parameters 1) which
copter to affect, randomly chosen from all the copters present in the simulation,
and 2) the fault type, randomly chosen from the fault models described in
Section 2.2.

All fault injection commands look similar and are essentially two different
types of calls to FaultCheck. The first type is to the probing interface, and
looks like the following:

%% Position offset fault
fault_pos_ offset_pre(S, [Id, _OffX, _OffY]) —>
length(S#area.faults) < ZMAX FAULTS andalso
not lists:member({pos_ offset, Id}, S#area.faults).

[t

fault_pos_ offset__args(S) —>
?LET (Copter, elements(S#area.copters), [Copter#copter.id,
choose(—?MAX_POS_OFFSET, 7MAX_ POS_OFFSET)

0~ O U W N

9 choose(—?"MAX_ POS_OFFSET, "MAX POS_OFFSET)

78

[FaultCheck

CopterSim
library
(C++)

()

System Under Test

(

Testing Platform

QuadcopterTool
(for
visualization)

/)
Property:
No collision ever
| S —

Generator:
Arbitrary steering

commands
- e

QuickCheck

Generator:

Various faults
(passed to FaultCheck)
-

Figure 8: Our testing platform (FaultCheck, QuickCheck) connected to our
SUT (CopterSim, QuadcopterTool).

D).
10

11| fault_pos_ offset_ pre(S) —>
12 S#tarea.copters /= [].

13
14| fault_ pos_ offset(Id, OffiX, OffY) —>

15 CStrX = ”CopterOffsetXId” ++ integer_ to_ list(Id),
16 CStrY = ”CopterOffsetYId” ++ integer_ to_ list(Id),
17 c_ call:faultcheck__addFaultOffset(CStrX, OffX / 1000),
18 c_ call:faultcheck__addFaultOffset(CStrY, OffY / 1000).
19
20| fault_pos_ offset_next(S, _, [Id, _OffiX, OffY]) —>

21 S#area{faults = S#area.faults ++ [{pos_offset, Id}], prev_cmd =
fault}.

the other type is to the communication channel interface, and it looks in a
similar way.

In both cases a precondition is that there are no more than MAX_FAULTS
simultaneous faults and that not the same fault with the same parameters is
already present. For example, having two position offsets on the same anchor
will have the same result as having a single offset on it with the sum of both
offsets. The reason that we limit the maximum number of simultaneous faults
is that it is difficult to isolate the problem in a long test sequence with many
faults.

There is also a command to run the simulation for a certain amount of time,
named iterate. This command will instruct the simulator to run for a chosen
amount of milliseconds. It is possible to make the iterations longer and run for
less iterations or the other way around, depending on whether simulation speed
or accuracy is more important. A constant is used to tell the simulator how often

79

the copters are allowed to communicate with each other. By setting another
constant, the simulator will send the simulation state to QuadcopterTool (see
Figure 8). This will make the tests run much slower, but the test sequences are
visualized while the tests are running, which can be useful for debugging. The
iterate command is the only command with a postcondition, which is that no
collision has occurred.

4.2 FaultCheck Integration

The integration of FaultCheck into this system required the steps 1) linking
to the FaultCheck library in the build system of CopterSim 2) probing the
code of CopterSim both with the communication channel and probing parts of
FaultCheck and 3) linking to FaultCheck when starting the C code from Erlang
using QuickCheck.

The probes are added to the CopterModel class code like the following:

1| // Inject ranging fault

2| const QString feStr = QString().sprintf(”Rangeld%d Anch%d”,
mltsStation.getId(), anch int.id);

3| faultcheck_injectFaultDouble(fcStr.toLocal8Bit().data(), &
anchor_ distance);

In this example, the string fcStr is the identifier, generated from the copter
ID and anchor number, that can be used by QuickCheck to inject a fault here.
Together with the identifier, a pointer to the variable anchor_distance is passed
to FaultCheck. FaultCheck keeps track of all such probes and has list of fault
models on each one them. When the fault models for the probes should be active
and for how long is also handled by FaultCheck. As explained throughout the
paper, FI is only done on the perceived positions of the simulated quadcopters
and on the communication between them.

Where packets are sent between the simulated copters, they are passed
through the communication channel of FaultCheck, which is simple to implement
in the source code of CopterSim. FaultCheck handles buffering (for delay faults),
modification (for corruption faults) and repetition (for repetition faults) of the
packets.

The total amount of source code for the probes of FaultCheck in the simulator
is about 15 lines, which is a small overhead for the integration.

5 Visualizing Test Sequences and Improving the Sys-
tem

When generating tests with QuickCheck, every time a test fails a sequence of
the generated commands is printed. Since the state of the system is complex
and difficult to see from only looking at the commands, we had to find a
way to visualize what the command sequence actually meant. One way to
do that would be to send the state of CopterSim to QuadcopterTool after
each iterate command so that the position of all quadcopters could be seen in

80

QuadcopterTool (see Section 3). However, the problem with this would be that
the iterate commands tend to be quite long (up to several seconds), hence the
movement of the quadcopters cannot be followed smoothly until the collision.

One way to get a smooth replay of the command sequence is to split the
iterate commands into several short parts and send the state to QuadcopterTool
after each such part and then put the replay thread to sleep for the duration
of the part. As the sleeping time between each part of the iterate command
can be varied, this can be used to change the playback speed of the command
sequence. By playing the commands slower, more details about the collision
can be observed.

Because CopterSim is restarted every time the commands are replayed,
modifications can be made to the code between the replays. This way, system
parameters and the collision-avoidance mechanism can be adjusted and tested
over and over again until the quadcopter system can handle the encountered
faults.

5.1 Handling Faults in the Quadcopter System

While running auto-generated tests, we discovered several scenarios that led to
collisions while faults were injected. This is a summary of type of changes we
made to the quadcopter system to deal with those faults:

e Making the quadcopters comfort zone bigger. This will cause them to
keep larger safety distance and thus make them less sensitive to position
estimation errors.

e Communicating more often. One way to deal with lost and corrupted
packets between the copters is to communicate more often to compensate
for that.

e Placing the anchors that the copters measure their distance from more
accurately. Setting up the localization system correctly helps to improve
the position estimation.

o Adjusting the position-estimation algorithm. Having a more accurate
position while there are faults present will decrease the probability of
collisions.

e Filtering out outliers in the position-estimation algorithm. When an
ultrasound sensor reports a distance with a random offset, corresponding
to a bounce and not the direct path, the value can be compared to the
previous one and ignored if it differs too much.

It can also be concluded that if we still get collisions for certain combinations
of faults even though we have used the countermeasures above, we have to find
a way to make sure pre-runtime that a combination and/or intensity of faults
that cannot be handled is not encountered.

81

6 Conclusions

We have created a simulation environment, based on a hardware quadcopter
platform, where we can auto-generate tests and inject faults for many copters
simultaneously, making it possible to scale up the tests beyond what the physical
hardware allows. We have shown a practical example on how FaultCheck and
QuickCheck can be used together to effectively enhance the copter’s collision-
avoidance mechanism and adjust system parameters (e.g. communication rate
and safety margins) to reduce the risk of collisions under realistic conditions.
Additionally we have shown how to visualize the state of the SUT during
a sequence of QuickCheck commands for CopterSim and FaultCheck in an
intuitive way, while providing the possibility to replay the visualization while
adjusting the SUT.

The overhead from integrating FaultCheck into the simulator, including
generating the perceived position state for each copter, is only 2 % of the total
amount of source code of the CopterSim library. Additionally, our QuickCheck
model consists of 320 lines of Erlang code. Although the amount of code is not
an accurate measure to compare software, it shows that not a significant amount
of extra effort was required to use our testing platform on our quadcopter
simulator.

Even though the quadcopter simulator is a complex SUT, using our testing
platform on it was straight forward. It provided many advantages such as the
ability to test the collision-avoidance mechanism and the position-estimation
algorithm together under realistic conditions. This gives us confidence that
our testing platform is a useful aid when developing and testing a wide range
of complex systems from different domains where faults have to be handled
effectively during operation of the system.

7 Acknowledgement

This research has been funded through the PROWESS EU project (Grant
agreement no: 317820), the KARYON EU project (Grant agreement no: 288195)
and through EISIGS (grants from the Knowledge Foundation).

References

[1] R. K. Iyer. "Experimental Evaluation”. In: Proceedings of the Twenty-Fifth
International Conference on Fault-Tolerant Computing. FTCS’95. Pasadena,
California: IEEE Computer Society, 1995, pp. 115-132.

[2] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. "Fault Injection
into VHDL Models: the MEFISTO Tool”. In: Proceedings of the Twenty-Fourth
International Symposium on Fault-Tolerant Computing. 1994, pp. 66-75.

[3] V. Sieh, O. Tschache, and F. Balbach. "VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions”. In: Proceedings of the
Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing.
1997, pp. 32-36.

82

(4]

(8]
(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

K. K. Goswami, R. K. Iyer, and L. Young. "DEPEND: A Simulation-Based
Environment for System Level Dependability Analysis”. In: IEEE Transactions
on Computers 46 (1997), pp. 60-74.

J. Vinter, L. Bromander, P. Raistrick, and H. Edler. "FISCADE - A Fault Injec-
tion Tool for SCADE Models”. In: Proceedings of the Institution of Engineering
and Technology Conference on Automotive Electronics. 2007, pp. 1-9.

R. Svenningsson, H. Eriksson, J. Vinter, and M. Térngren. "Model-Implemented
Fault Injection for Hardware Fault Simulation”. In: Workshop on Model-Driven
Engineering, Verification, and Validation (MoDeV'Va). Oct. 2010, pp. 31-36.

R. Svenningsson, J. Vinter, H. Eriksson, and M. Térngren. "MODIFI: a Model-
Implemented Fault Injection tool”. In: Proceedings of the 29th International
Conference on Computer Safety, Reliability, and Security. SAFECOMP’10.
Vienna, Austria: Springer-Verlag, 2010, pp. 210-222.

A. Joshi and M. Heimdahl. "Model-Based Safety Analysis of Simulink Models
Using SCADE Design Verifier”. In: SAFECOMP. Vol. 3688. LNCS. 2005, p. 122.

M. Hiller. "PROPANE: An Environment for Examining the Propagation of
Errors in Software”. In: Proceedings of the ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ACM Press, 2002, pp. 81-85.

B. Vedder, T. Arts, J. Vinter, and M. Jonsson. "Combining Fault-Injection
with Property-Based Testing”. In: Proceedings of the International Workshop
on Engineering Simulations for Cyber-Physical Systems. ES4CPS '14. Dresden,
Germany: ACM, 2014, 1:1-1:8.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and
D. Powell. ”Fault Injection for Dependability Validation: A Methodology and
Some Applications”. In: IEEE Transactions on Software Engineering 16.2 (1990),
pp. 166-182.

H. Madeira, M. Rela, F. Moreira, and J. Silva. "RIFLE: A General Purpose
Pin-Level Fault Injector”. In: Dependable Computing — EDCC-1. Ed. by K.
Echtle, D. Hammer, and D. Powell. Vol. 852. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1994, pp. 197-216.

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. ”Using
Heavy-Ion Radiation to Validate Fault-Handling Mechanisms”. In: IEEE Micro
14.1 (1994), pp. 8-23.

P. Folkesson, S. Svensson, and J. Karlsson. ”A Comparison of Simulation Based
and Scan Chain Implemented Fault Injection”. In: Proceedings of the Twenty-
Eighth Annual International Symposium on Fault-Tolerant Computing. 1998,
pp. 284-293.

J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. "GOOFI: Generic Object-
Oriented Fault Injection Tool”. In: Proceedings of the DSN International Con-
ference on Dependable Systems and Networks. 2001, pp. 83—88.

D. Skarin, R. Barbosa, and J. Karlsson. "GOOFI-2: A tool for experimental
dependability assessment”. In: International Conference on Dependable Systems
and Networks (DSN). June 2010, pp. 557-562.

83

(17]

18]

(19]

[20]

J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund,
V. Gulias, J. Hughes, and S. Thompson. "Property-Based Testing - The ProTest
Project”. In: Formal Methods for Components and Objects. Ed. by F. Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel. Vol. 6286. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 250-271.

T. Arts, J. Hughes, J. Johansson, and U. Wiger. "Testing Telecoms Software
with Quviq QuickCheck”. In: Proceedings of the ACM SIGPLAN Workshop on
Erlang. Portland, Oregon: ACM Press, 2006.

S. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. "Estimation of IMU and
MARG Orientation Using a Gradient Descent Algorithm”. In: IEEFE International
Conference on Rehabilitation Robotics (ICORR). 2011, pp. 1-7.

J. D., C. Gerdtman, and M. Linden. ”Signal processing algorithms for temper-
auture drift in a MEMS-gyro-based head mouse”. In: International Conference
on Systems, Signals and Image Processing (IWSSIP). May 2014, pp. 123-126.

84

Paper IV

Accurate Positioning of Bicycles for
Improved Safety

Benjamin Vedder, Jonny Vinter and Magnus Jonsson

Published in Proceedings of the IEEE International Conference on
Consumer Electronics (ICCE), Las Vegas, USA, 2018

85

Abstract

Cyeclists are not well protected in accidents with other road users, and there
are few active safety systems available for bicycles. In this study we have
evaluated the use of inexpensive Real-Time Kinematic Satellite Navigation
(RTK-SN) receivers with multiple satellite constellations together with dead
reckoning for accurate positioning of bicycles to enable active safety functions
such as collision warnings. This is a continuation of previous work were we
concluded that RTK-SN alone is not sufficient in moderately dense urban
areas as buildings and other obstructions degrade the performance of RTK-SN
significantly. In this work we have added odometry to the positioning system
as well as extending RTK-SN with multiple satellite constellations to deal
with situations where the view of the sky is poor and thus fewer satellites
are in view. To verify the performance of the positioning system we have
used Ultra-Wideband radios as an independent positioning system to compare
against while testing during poor conditions for RTK-SN. We were able to
verify that adding dead reckoning and multiple satellite constellations improves
the performance significantly under poor conditions and makes the positioning
system more useful for active safety systems.

1 Introduction

Cyclists are vulnerable road users and today there are few active safety systems
available for them. In Sweden Studies have shown that among all types of
bicycle accidents, the second most common type of accident is between cyclists
and motor vehicles [1]. The same study also shows that 69 % of accidents that
were fatal for the cyclist are collisions with motor vehicles. Given that travelling
by bicycle is getting more common in urban environments, which is where 90
% of serious bicycle accidents occur [1], there is a strong incentive to improve
bicycle safety.

If the position of a bicycle can be measured with precision greater than
0.5 m this information can be used for active safety systems that, for example,
warn other road users when a bicycle approaches their trajectory in such a way
that a collision may occur. Another example is to equip bicycle helmets with
Augumented Reality (AR) devices that warn the cyclist about other road users
that are at risk of a collision with them or about upcoming dangers such as
damaged or slippery roads.

For the proposed positioning system to be practical it must not only fulfil the
accuracy requirement, it must also be inexpensive, have low power consumption
and not occupy too much space. In previous work [2] we have evaluated the
use of inexpensive Real-Time Kinematic Satellite Navigation (RTK-SN) for
positioning under static and dynamic conditions and concluded that it works
well under good conditions, but urban environments with occasionally poor
view of the sky degrades the performance significantly. In this study we have
improved the positioning system by using more satellite constellations and
by introducing dead reckoning using odometry and inertial navigation. For
evaluating the performance we have developed a separate positioning system
that uses Ultra-Wide Band (UWB) radios as a reference, which is unaffected

87

by the conditions in our experiments that degrade the performance of RTK-SN.
We observed significant improvements of the performance under poor conditions
for RTK-SN when using more satellite constellations and when incorporating
dead reckoning. The proposed positioning system is integrated on a compact
Printed Circuit Board (PCB) developed by us that externally only requires an
antenna for RTK-SN, odometry input and a power supply.

The remainder of this paper is organized as follows: in Section 2 we report
related work in the area and in Section 3 we present our proposed implementa-
tion. Section 4 describes our evaluation method, while Section 4 presents our
experiment results. In Section 6 we present our conclusions from this work.

2 Related Work

Active safety systems, that avoid accidents for cyclists, are of major importance
and more research in the area is needed. Due to new technologies and low-cost
consumer electronics, the market for active safety systems for cyclists is foreseen,
by the authors, to grow in the near future. One strategy that has been used
according to the literature is to equip bicycles with sensors to detect the presence
and motion of other road users, and warn the cyclist locally or the other road
user with sound signals when possible collisions are predicted. Examples of such
attempts involve equipping the bicycle with radar [3], sonar and laser sensors
[4]. Another approach is to rely on communication between road users and
notifying them when possible collisions are predicted so that they can prevent
them [5, 6].

In an early study specialized tags with short range communication and
Radio-frequency identification (RFID) beacons built into the infrastructure
near intersections for positioning has been proposed to identify when cyclists
are about to collide with cars [6]. These tags, carried by the cyclist and car
driver, would warn them based on communication between them and the relative
position knowledge from the beacons in the infrastructure. As smartphones
have become more widespread in use, later studies have proposed to use them
as a display [3] and even as a localization and communication device [5].

One of the later studies proposes to use a smartphone mounted to the handle
bar of the bicycle [5]. Since the smartphone is the only equipment used in
that study, it is used for both localization with the built in Global Navigation
Satellite System (GNSS) receiver and for communication using the built in
internet connection. The achieved accuracy for the positioning was around 5 m
and the communication delay was around 500 ms. With driver intent inference
[7] near intersections, delay compensation and map knowledge, they were able to
predict possible collisions during turns in an intersection when a car crosses the
path of a cyclist. However, the smartphone positioning was not accurate enough
to determine which lane the bicycle was in, which is limiting in many situations.
Further, the route where they conducted the experiments had relatively good
view of the sky, which was a requirement as they used RTK-SN as a reference
positioning system. They also concluded that the positioning performance of
the smartphone degrades too much to be useful for collision prediction when

88

worn in a pocket, meaning that the smartphone must be attached to the handle
bar of the bicycle.

Among the above mentioned studies, our work is best compared against
the study where a smartphone is mounted on the handle bar of a bicycle. The
advantage of our proposed implementation is that the position accuracy is at
least one order of magnitude better and that communication delay is signif-
icantly lower. This makes it possible to determine in which lane the cyclist
and other vehicles are, and collisions can be predicted without having access to
an accurate and detailed map of the environment that the position has to be
matched against. The cost of our proposed implementation is similar to that of
a smartphone, but the advantage of using a smartphone is that many people
already have access to one. Compared to the studies where sensors are mounted
on the bicycle our solution has the advantage that less hardware is required and
that the collision-prediction algorithm has access to more data earlier, but the
disadvantage is that it only works together with road users that use a similar
system that can communicate with our system.

3 Proposed Implementation

We have made an attempt at demonstrating a realistic implementation of our
positioning system on a bicycle. Fig. 1 shows a rendering of a custom PCB
that we have developed, containing an Inertial Measurement Unit (IMU), a
RTK-SN module, Controller Area Network (CAN)-bus interface, two radios for
communication and a cortex M4 microcontroller that performs sensor fusion.
The size of the PCB is 55 x 98 mm, but this could be reduced significantly
if the unused extension connectors are omitted. Connecting this PCB to an
antenna for RTK-SN and a power supply is enough to get position information
at a rate of 5 Hz with an accuracy of 10 cm or better, when the view of the
sky is good enough to track at least 5 GPS and/or GLONASS satellites. If the
PCB is provided with odometry data from a wheel sensor on the bicycle, the
position update rate increases to 100 Hz and it is possible to operate under
bad conditions for RTK-SN during short distances using dead reckoning from
the odomotry data and the IMU alone. The power consumption of our PCB is
around 200 mA without any power saving optimizations, which means that two
3 Ah 18650-size lithium-ion battery cells with a total weight of 100g can power
it for more than 20 hours on one charge. When omitting odometry, the PCB,
antenna and battery could be integrated in a bicycle helmet, possibly together
with some type of AR display.

We have attached this PCB to an electric bicycle that we have access to.
The reason for using our electric bicycle is that it has a motor controller that can
provide odometry data over CAN-bus and power to the positioning PCB, but a
regular bicycle with a wheel sensor and a small battery would work equally well.
Fig. 2 shows the PCB mounted on a wood plate together with an UWB radio
for distance measurement. The UWB radio is described further in Section 4.
Fig. 3 shows the same wood plate attached to the battery box of our electric
bicycle, where the RTK-SN antenna also can be seen on top of the plate. The

89

5

i 04
W R10

Figure 1: Rendering of our custom positioning PCB.

only connection from the plate is the white cable, which has both CAN-bus and
power coming from the motor controller of the bicycle.

The two radio units on the PCB operate at different frequencies and data
rates. One radio operates at around 450 MHz and is intended to receive a
correction data stream for RTK-SN that is sent over distances of up to 10 km
with a bandwidth of around 100 B/s. The other radio operates at 2.4 GHz and is
intended for short range communication between road users with a bandwidth of
250 kbit/s. Compared to the hundreds of ms latency of an internet connection,
this radio enables road users to communicate with a latency of 1 - 2 ms, similar
to what the communication standard 802.11p achieves [8] and thus a realistic
delay for future connected vehicles.

3.1 Real-Time Kinematic Satellite Navigation

The main positioning technology of our implementation is RTK-SN, which can
achieve an accuracy of around 1 cm [9]. In addition to doing code measurement
of the GNSS signals, RTK-SN works by also locking to the carrier phase
of the signals to achieve significantly higher resolution. Compared to code
measurements, the carrier-phase measurements do not provide means to measure
the absolute distance to the satellites, but only to track changes in distance
with high accuracy and resolution. Therefore RTK-SN requires the same raw
measurements from a base station with a well known position that is within
10 km for achieving high accuracy. Those measurements from the base station are
referred to as correction data, and they are required at a rate of approximately
1 Hz. The correction data from the public L1 signals of all GPS and GLONASS
satellites visible on average can be transmitted in around 100 bytes of data
using the RTCM3 transmission standard®.

Thttp://www.rtcm.org/

90

http://www.rtcm.org/

Figure 3: Bicycle equipped with our positioning system.

91

“Grid res: |10 m
" 00 : 0.0099217

Visionen 0SM zoom: |19

20.08 m

6.00 m

Hus

-20.08 M

88 m -48.00 m -20.00 m s.ﬂﬁ\ 20.60 m 49.00 m

Figure 4: The red cross shows where the antenna was placed in a window
of a building. The background rendering with buildings and walking trails is
generated by OpenStreetMap [12].

When starting an RTK-SN system with the Ublox M8P! receivers we are
using, it takes around one minute for the position to converge after locking
to the signals from most visible satellites. This time is affected by how many
satellites are in view and how good the used antenna is at rejecting reflections
[10]. Every time less than 4 satellites are tracked the position fix is lost and
the solution has to converge again, which is why dense urban environments are
challenging for RTK-SN. Not only is the position information lost when too much
of the sky is blocked, it also takes a relatively long time to converge after a lost
position when enough, but still few, satellite signals can be tracked. Therefore,
having access to more satellites is extremely important in urban environments.
Compared to our previous work where we only used GPS satellites [2], we saw a
significant improvement when also including GLONASS satellites when the view
of the sky is poor. As an example, Fig. 4 shows the placement of a RTK-SN
antenna in a window which is close to some trees and other buildings, and Fig. 5
shows the tracking output of the open source software package RTKLIB [11]
from this placement. The first column shows a number starting with G for
GPS satellites and a number starting with R for GLONASS satellites, and the
last column shows FLOAT or FIX, depending on whether integer ambiguities
have been resolved for that satellite, for satellites that are used in the current
position solution. With both GLONASS and GPS satellites, RTKLIB was able
to maintain a position solution from the tracked satellite signals during a whole
day without problems, but when only using GPS satellites a position solution
was achieved only a few times during the day lasting for 5 minutes or less every
time.

Thttps://www.u-blox.com/en/product /neo-m8p-series

92

https://www.u-blox.com/en/product/neo-m8p-series

L1 L2 Fix1

Figure 5: The visible satellites when the antenna was placed in the window.

3.2 Dead Reckoning

In order to get higher position update rate and to better deal with situations
where the RTK-SN positioning solution is lost for short durations, we have
implemented support for dead reckoning on our positioning system. Our
implementation of dead reckoning works by using odometry data from the
bicycle wheel rotation to determine how far the bicycle moves and yaw angle
from the IMU to determine the direction of movement. When the wheel slip is
low, which usually is the case for cyclists, the distance measurement has errors
of less than 1 m after moving a distance of 100 m. The main source of error
during dead reckoning is caused by the yaw estimation from the IMU data. Yaw
information can be obtained from the IMU in two different ways: by integrating
the angular velocity provided by the gyroscope and by measuring the direction
of the magnetic field of the earth using the magnetometer.

The problem with using the gyroscope is that the yaw angle will drift over
time as there is no absolute reference and small errors will accumulate [13].
Therefore the gyroscope angle has to be corrected with an absolute source,
which either can be obtained from consecutive RTK-SN samples while moving,
or from the magnetometer while standing still. The magnetometer does not
have the problem of drift, but it suffers from offsets caused by metallic objects
on the bicycle itself and in the environment where the bicycle moves. We have
compensated for offsets on the bicycle itself by an ellipsoid fit and transformation
method [14], but the offsets caused by the environment are more difficult to
deal with as they cannot be predicted easily.

This means that the main error source of dead reckoning is the yaw angle

93

estimation. The gyroscope alone gives a good approximation that drifts with
about 0.5 degrees per minute in our experiments. While moving, the RTK-SN
position samples keep this error well below one degree and situations where
RTK-SN is unavailable for short durations can be dealt with, but when the
bicycle is standing still this error accumulates without an upper bound. The
magnetometer can be used for yaw correction even when standing still, but
it causes yaw errors of over 10 degrees in some environments, which degrades
the dead reckoning performance significantly. In Section 4 we show experiment
results both with and without using the magnetometer for yaw correction and
compare them.

4 Evaluation Setup

In order to evaluate the performance of our positioning system, we have de-
veloped a distance measurement PCB based on Decawave DWM1000 UWB
radios [15] and a microcontroller which is unaffected by many error sources
for RTK-SN. The DWM1000 radios have a high resolution clock and can send
packets at precise times, and time stamp received packets precisely. This can
be used to determine the Time of Flight (ToF) of the radio signals, which can
be divided by the speed of light to calculate the distance between a sending and
receiving radio. This measured time is very short compared to the time it takes
to send the packets, so small clock speed differences between the radios have
a large impact on the measurements. One way to deal with this problem is
using a scheme called Two-Way Ranging (TWR), where three packets are sent
between two radios, between which a distance is to be measured. This is done to
remove the clock speed difference from the calculation [16]. By adding further
compensation for distance-dependent signal attenuation which affects where
the packets are time stamped by the hardware [17], around 10 cm of absolute
accuracy can be achieved with the DWM1000 radios. Further, to reduce noise
during the measurements, our implementation makes 10 measurements using
TWR and takes the average of them for each distance sample.

One of these UWB PCBs was connected over CAN-bus to our positioning
PCB and three other UWB PCBs were placed on tripods together with batteries
as shown in Fig. 6 and used as anchors for the UWB positioning system. The
distance between the bicycle and these anchors was then measured using the
UWRB radios and calculated using the known anchor position and the estimated
position of the bicycle. By comparing the measured distance to the estimated
distance from the bicycle an error was calculated.

It should be noted that RTK-SN under moderate to good conditions has
better accuracy than the UWB distance measurement and that there are
geometry conditions in our experiment, such as the assumption that the anchors
and the bicycle are in a level plane, that have a negative impact on the accuracy.
However, the accuracy of the UWB system is still sufficient to determine if the
positioning system on the bicycle has sufficient performance for our application,
and as it has independent error sources it can be used in conditions that are
challenging for RTK-SN.

94

Figure 6: Three UWB PCBs placed on tripods together with batteries.

5 Results

Fig. 7 shows the three UWB anchors and the base station antenna for RTK-SN
outside of a garage in a residential area. A portion of the sky is covered for
the base station antenna and for the bicycle, so the conditions for RTK-SN are
good but not optimal.

Notice the following: the figures with traces on maps in this section have two
lines: a red line that represents the bicycle trace determined by sensor fusion
between dead reckoning and RTK-SN; and a magenta line that represents the
bicycle trace using RTK-SN alone. Under good conditions the lines are mostly
overlapping and indistinguishable from each other, but under bad conditions
there is a difference between them. The figures with distance deviation plots
represent the difference between the calculated distance to the closest UWB
anchor and the UWB distance measurement to the same anchor. The deviation
between the UWB measurement and calculated distance to the anchor based
on sensor fusion between dead reckoning and RTK-SN is the blue line, and
deviation from RTK-SN alone is the red line. Errors shown in these plots are
mostly caused by the UWB measurements under good conditions for RTK-SN,
but in the last experiment where the bicycle is in the garage where the satellite
signals are mostly blocked the UWB measurements have higher accuracy.

First we made a test cycling 20 m with a slight turn in the end under good
conditions. The map traces are shown in Fig. 8 and the distance difference to
the UWB measurements are shown in Fig. 9. The traces on the map in Fig. 8
are overlapping and the distance deviations in Fig. 9 are less than 35 cm the
whole time.

We made another test under good conditions for RTK-SN with more turns,
which is challenging when using the magnetometer for correcting the yaw angle
because of its accuracy as mentioned in Section 3.2. Fig. 10 shows a cycling with

95

Figure 7: Two of the three UWB anchors and the base station antenna for
RTK-SN, which is the higher tripod.

Grid [res: 1 m
Zoon{ 6.6575755

osm Joon: 19
.00
6.00
achor 35
@55 oy
500 / \
-10.00|n \
B
car 0 \
7.361] -10.715, 128 \
-12.60|m (-9.974 _ -11]8R4)
ra.oolm mchor 234 |
|
16.00|n
-18.00|n
» |aeceln |a200m |-0.0m |-se0m 600 1 .00 .00 0 0.00 2.00m so0m 6.00 m s.00m

Figure 8: A 20 m cycling under good conditions.

96

Error (m)
moN Joypuy.

L L L . | .
39084 39090 39096 39102 39108 39114

Time (s)

Figure 9: Distance deviations during the 20 m cycling under good conditions.
The deviation is less than 35 cm for the whole cycling.

several turns where the magnetometer was used for yaw correction and Fig. 11
shows a cycling with several turns where RTK-SN was used for yaw correction.
As can be seen, the cycling where RTK-SN was used for yaw correction has
completely overlapping traces for the RTK-SN position and the sensor fusion
position, while traces for when the magnetometer was used for yaw correction
has some deviation between the traces close to turns. This is the expected
outcome during movement, as described in Section 3.2.

Another test was made without using the magnetometer were part of the
cycling was inside the garage. The trace for that cycling is shown in Fig. 12
and the distance deviations for that cycling are shown in Fig. 13. As can be
seen on the traces in Fig. 12, when the bicycle is in the garage the trace with
sensor fusion is stable and even shows the manoeuvre where the bicycle was
pushed forth and back to turn around, while the trace with RTK-SN alone
only jumps around while the bicycle is inside the garage. When the quality
drop of RTK-SN was noticed by the sensor fusion filter inside the garage, the
RTK-SN correction was dropped and only dead reckoning used. This can be
seen in Fig. 13 in the middle where a deviation of 1 m was sustained for the
sensor fusion position while the deviation for RTK-SN alone climbs to almost
3 m. At the end when the bicycle leaves the garage RTK-SN recovers and then
it is included in the sensor fusion again where the deviations converge to the
same value.

These experiments show that RTK-SN alone works sufficiently for accurate
positioning of bicycles under moderate to good conditions, and that the addition
of dead reckoning using odometry and an IMU helps in situations where the
conditions for RTK-SN are bad.

97

Grid res: b m

20.00m
Zoon: 00253100
/ o5 zo0m: o
10.00 n
o.00m
chor. 35

@ je.2c0 ;m\

0,00 m %\\
6,373, 103067 700)
anchor 1230:31136:739
@ (C5.974, 11880)
Anchor 234

@ Ca23) 13020

Y. “20.00m “10.00 m 0.00 m 10800 20.00m 30.00m

Figure 10: A cycling with some turns using the magnetometer for yaw correction.

TN Grid res: 5
Zoom: 0.0304413
osH zoom: 19
10.00
0.00 m D
Anchor 35 /
. (-8.264, 760)
-10.00m
car 0
(76.995, -10.943, 139)
anchor X2 10:42:41:157
@ (o074, N 8a)
anchor 234
@ (5123, -13.928)

Figure 11: A cycling with some turns using RTK-SN for yaw correction.

98

Error (m)

2.0 m {
L4.00 m \

L6.00 m

bl A

s | | AON / | ’\ \\

\
/TN & AN N
e N\ s U oA M S,

72
},{m N\ i o NG) N
/ \
Ve "

Garage //
WNg.00 m b’)
N\ [/ , .
y /
y
N

Figure 12: A cycling that partly goes through the garage.

R |{21
27
- - Gps Error
+ Curent Anchor
175
225
14
18
.\ I 105
s o oo s x < i . 0 [oo - o e
135 H ‘ l
|
| |
I
(|
i ' 03
, | 0
045 i }“ VIl L
0 AU L . Pl o
1IN fl i
| (L
° 33680 38700 38720 38740 38760 38780 38800
Time (s)

Figure 13: Distance deviations during the cycling that partly goes through the
garage.

99

MON Joupuy

6 Conclusion

In this paper we have presented a novel positioning and communication system
that can be used on bicycles for active safety functions. The system has roughly
the same cost as a smartphone and one order of magnitude better position
accuracy than the built in GNSS receiver of a smartphone. The delay when
communicating with other road users is significantly lower compared to the
smartphone. To evaluate the performance of the system under bad conditions
we have used UWB radios as an independent positioning system and shown
that the position accuracy is better than 0.5 m under good conditions and that
dead reckoning improves the accuracy significantly for short durations during
bad conditions.

As more and more vehicles and other road users become connected, this
technology has the potential to prevent many serious and fatal accidents between
e.g. cyclists and motor vehicles as collision detection systems get access to
accurate position data of road users.

Acknowledgement

This research has been funded through EISIGS (grants from the Knowledge
Foundation) and through the Swedish Trafikverkets Skyltfond.

References

[1] A. Niska and J. Eriksson. Statistik éver cyklisters olyckor - Faktaunderlag till
gemensam strategi for siker cykling. VT rapport 801. Rapport. VTI, 2013.

[2] M. Skoglund, T. Petig, B. Vedder, H. Eriksson, and E. M. Schiller. ”Static and
dynamic performance evaluation of low-cost RTK GPS receivers”. In: IFEE
Intelligent Vehicles Symposium (IV). June 2016, pp. 16-19.

[3] T. Krejci and M. Mandlik. "Close vehicle warning for bicyclists based on FMCW
radar”. In: 27th International Conference Radioelektronika (RADIOELEKTRON-
IKA). Apr. 2017, pp. 1-5.

[4] W. Jeon and R. Rajamani. ”A novel collision avoidance system for bicycles”. In:
2016 American Control Conference (ACC). July 2016, pp. 3474-3479.

[5] M. Liebner, F. Klanner, and C. Stiller. ”Active safety for vulnerable road users
based on smartphone position data”. In: IEEFE Intelligent Vehicles Symposium
(IV). June 2013, pp. 256—261.

[6] H. Oda, S. Kubota, and Y. Okamoto. "Research on Technology for Reducing
Sudden Pedestrian or Cyclist Accidents with Vehicles”. In: IEEE Intelligent
Transportation Systems Conference. Sept. 2007, pp. 1032-1036.

[7] M. Liebner, M. Baumann, F. Klanner, and C. Stiller. "Driver intent inference
at urban intersections using the intelligent driver model”. In: IEEE Intelligent
Vehicles Symposium. June 2012, pp. 1162—-1167.

[8] M. Jutila, J. Scholliers, M. Valta, and K. Kujanpaa. "ITS-G5 performance

improvement and evaluation for vulnerable road user safety services”. In: IET
Intelligent Transport Systems 11.3 (2017), pp. 126-133.

100

(9]
[10]

(1]

[12]

(13]

(14]
(15]
[16]

(17]

Trimble. GPS The First Global Navigation Satellite System. Trimble Navigation
Limited, 2007.

Ublox. Achieving Centimeter Level Performance with Low Cost Antennas.
UBX-16010559. White Paper. Ublox, 2016.

T. Takasu and A. Yasuda. "Development of the low-cost RTK-GPS receiver
with an open source program package RTKLIB”. In: International Symposium
on GPS/GNSS. International Convention Centre Jeju, Korea. 2009, pp. 4-6.

M. Haklay and P. Weber. ”OpenStreetMap: User-Generated Street Maps”. In:
IEEE Pervasive Computing 7.4 (Oct. 2008), pp. 12-18.

J. D., C. Gerdtman, and M. Linden. ”Signal processing algorithms for temper-
auture drift in a MEMS-gyro-based head mouse”. In: International Conference
on Systems, Signals and Image Processing (IWSSIP). May 2014, pp. 123-126.

A. Vitali. Ellipsoid or sphere fitting for sensor calibration. DT0059. Design Tip.
ST Microelectronics, 2016.

Decawave. DWM1000 IEEE 802.15.4 UWB Transceiver Module. DWM1000
Datasheet. Datasheet. Decawave, 2016.

Decawave. The implementation of two-way ranging with the DW1000. APS013.
Application Note. Decawave, 2015.

Decawave. Sources of Error in DW1000 based Two-Way Ranging (TWR)
Schemes. APS011. Application Note. Decawave, 2015.

101

Paper V

A Low-Cost Model Vehicle Testbed with
Accurate Positioning for Autonomous
Driving

Benjamin Vedder, Jonny Vinter and Magnus Jonsson

Accepted for Publication in Hindawi Journal of Robotics, 2018

103

Abstract

Accurate positioning is a requirement for many applications, including safety-
critical autonomous vehicles. To reduce cost and at the same time improving
accuracy for positioning of autonomous vehicles, new methods, tools and
research platforms are needed. We have created a low-cost testbed consisting
of electronics and software, that can be fitted on model vehicles allowing them
to follow trajectories autonomously with a position accuracy of around 3 cm
outdoors. The position of the vehicles is derived from sensor fusion between
Real-Time Kinematic Satellite Navigation (RTK-SN), odometry and inertial
measurement, and performs well within a 10 km radius from a base station.
Trajectories to be followed can be edited with a custom GUI, where also several
model vehicles can be controlled and visualized in real time. All software and
Printed Circuit Boards (PCBs) for our testbed are available as open source to
make customization and development possible. Our testbed can be used for
research within autonomous driving, for carrying test equipment, and other
applications where low cost and accurate positioning and navigation is required.

1 Introduction

It is common to use model cars for automotive research, and several studies
are published in that field. For example, research within vehicle platooning
has been carried out on model cars equipped with floor marking and distance
sensors [1, 2], with the goal of developing Model Predictive Control (MPC)
algorithms for controlling the distance between adjacent vehicles. Model cars
have also been used to develop obstacle avoidance algorithms for mobile robots
[3] and in student projects to teach them about autonomous driving [4]. These
projects are specific and aimed at certain tasks, and the hardware and software
is not available to replicate for use within other areas.

The need for a generic model vehicle platform for education and research
within autonomous driving is recognized in the community, and several attempts
at answering that need have been made. A project named MOPED [5] provides
a model car that has three Raspberry Pi single board computers [6] connected
over ethernet to simulate part of the complexity of a modern full scale car.
Two of the computers on the MOPED model car run AUTOSAR [7] while
the third one runs the default Raspbian Linux distribution® that comes with
the Raspberry Pi. The reason for using AUTOSAR is to represent a software
stack similar to the one on a full scale car, however it requires software tools
that are not available as open source or freeware for developing the AUTOSAR
portions of the software. Further, the MOPED model car only provides low
level control functions for the motor and steering servo, meaning that the users
have to implement trajectory following and positioning algorithms themselves,
as well as equipping the car with the necessary sensors. Gulliver [8] is another
initiative that addresses the need of a miniature vehicle platform in research and
education environments. In their publication, the authors describe high level
algorithms for handling different traffic scenarios that can be used given access

Thttps://www.raspberrypi.org/downloads/raspbian/

105

https://www.raspberrypi.org/downloads/raspbian/

to a model vehicle that can follow trajectories. While these projects are an aid
in education and research about autonomous driving, a significant amount of
work is still required from the researchers or students to get a self-driving model
car up and running. Note that with self-driving in this context, we refer to the
ability to follow a predefined trajectory accurately and repeatedly, which has
been one of the goals in our work as explained below.

Our work focuses on providing a hands-on hardware and software testbed
that can be used to build self-driving model vehicles with minimal effort. The
goal is to provide the possibility to get a model vehicle up and running, and
follow a custom trajectory autonomously with 5 cm or better accuracy in
just one day of work, given that the user has a background within electronics.
To achieve this, we have developed low-cost hardware and both embedded
and desktop software controlling model vehicles with Ackerman steering that
can be modeled with a bicycle model [9]. Our testbed also has support for
Hardware-In-the-Loop (HIL) testing [10, 11] by simulating parts of the vehicle
dynamics, which is useful during development and automatic testing. Thus,
the contribution of this work is to answer to what extent the aforementioned
goal can be achieved with low-cost hardware, provide help for other researchers
who want to implement their own self-driving model car, and to answer what
performance and accuracy can be expected. All software and hardware design
for our testbed is available on github! for making it possible to study and extend
our platform. To our knowledge there is nothing available today that can fulfill
the goal that we have for our tested, and as expressed in the aforementioned
studies [5, 8] there is a need for that in the education and research communities.

In addition to usage as a research and education platform, our testbed can
be used in measurement and data collection applications. For example, we
have used it to pull a trailer with different radar units to be characterized
around a variety of radar targets. This way the radars can be moved along a
predefined trajectory around the targets, while the measurements they take are
logged together with accurate position stamps. Another possible application
that we have been considering is using model cars based on our testbed to
carry light sensors and map the light intensity of artificial lighting in outdoor
environments. The open source nature of the software in our testbed and the
versatile visualization tools that are part of it make this a relatively simple task.

The remainder of this paper is organized as follows: In Section 2 we describe
the architecture of our testbed and in Section 3 we describe how positioning
is performed. Section 4 describes our trajectory following approach and in
Section 5 we present our conclusions from this work.

2 Architecture Overview

Our testbed consists of a control Printed Circuit Board (PCB) we have developed
that can be connected to a VESC? open-source motor controller over Controller
Area Network (CAN)-bus. Together with a battery and a Global Navigation

Thttps://github.com/vedderb/rise_sdvp
2https://vesc-project.com

106

https://github.com/vedderb/rise_sdvp
https://vesc-project.com

Designed by Benjamin Vedder

7: S/IX
vescprofect.com

Figure 1: Our custom control PCB and our VESC 5 kW motor controller next
to a car key for size comparison.

Satellite System (GNSS) antenna they can be connected to the Permanent
Magnet Synchronous Motor (PMSM) and steering servo suitable for a model
car. The control PCB together with a 5 kW VESC motor controller is shown in
Fig. 1 together with a car key for size comparison. Another unit of the same
control PCB configured as a communication interface can be connected to a
laptop computer running RControlStation, which is the monitoring and control
Graphical User Interface (GUI) for our testbed. The stationary control PCB
can also be connected to a GNSS antenna and act as a Real-Time Kinematic
Satellite Navigation (RTK-SN) base station for the testbed, eliminating the need
for an external base station. This gives a minimal stand-alone configuration
of our testbed, which is able to follow trajectories autonomously. The cost of
this configuration, excluding the laptop cost, is in the range of 900 to 2000
depending on the choice of model car, battery size, VESC version and GNSS
antennas. The schematics and hardware layout of our control PCB, the control
PCB firmware and the RControlStation software, and the VESC firmware and
configuration software, are all available on github!.

While the aforementioned minimal configuration is sufficient for getting
everything running and carrying out experiments, a Raspberry Pi? single board
computer can be added for remote debugging, for video streaming, and for
providing WiFi or 4G cellular connectivity. Our github repository also contains
a command line utility for the Raspberry Pi that among other things provides

Thttps://github.com/vedderb
2https://www.raspberrypi.org/

107

https://github.com/vedderb
https://www.raspberrypi.org/

Figure 2: The 1:6 scale model car in our testbed.

VESC
Motor Controller

| Cortex M4 |

Measure/Control

CAN

802.15.4
R

u 1 3

Pos Vel Trg

UART SPI 12C ADC CAN

SWD USB PWM GPIO INT

420 - 470 MHz
Radio
IMU

ACC, GYRO, MAG
RTK-GNSS

(Ublox M8P)

USB +
Controller oo * Raspberry PI 3
Cortex M4 | WiFi I
SWD | 4G Modem |

| Touch Screen I

5V

GNSS
Antenna

PWM + Power |

DC/DC Converter

B ===

PMSM Motor

Steering
Servo

Fuse &

Switch [BatterY

RControlStation

WiFi, 4G or Radio

Figure 3: A block diagram of the configuration of our model car. A laptop
computer for control and monitoring while acting as a RTK-SN base station is

also shown.

108

a TCP/UDP to USB bridge for communication with RControlStation over
WiFi or 4G. Fig. 1 shows a photo of one of our model cars and Fig. 3 shows a
block diagram of its configuration. Note that it also has a touch screen for the
Raspberry Pi for showing network connections and other useful information,
such as the battery charge level. Going through the block diagram in Figure 3,
our model car, shown in Figure 1, has the following components:

e A lithium-ion battery with 10 cells in series and 3 Ah, providing up to 6
hours of power depending on the driving speed.

e An integrated fuse and power switch, between the battery and the rest of
the circuit.

o A DC/DC converter, that provides a 5V rail.
e Our custom controller PCB, powered from the 5V rail.

e Our VESC motor controller, powered from the battery and connected to
the controller over CAN-bus.

e A PMSM motor, connected to the VESC motor controller.
e A steering servo and a GNSS antenna, connected to the controller.

e A Raspberry Pi single board computer, connected to the controller over
USB. It is powered backwards through the USB ports from the controller.
The Serial Wire Debug (SWD) port of the controller is also connected to
the Raspberry Pi, so that the controller can be programmed and debugged
remotely.

e Outside the car, there is a laptop computer connected over TCP to the
Raspberry Pi using the WiFi or 4G cellular connection. Our RControl-
Station software runs on the laptop computer, and utilizes the connection
to control and monitor the model car.

e The laptop is connected to a Ublox M8T RTK-SN receiver with an
antenna mounted on a tripod to act as a base station for the model
car, enabling high precision positioning (See Section 3 for more details).
RControlStation handles the setup of the Ublox M8T, as well as forwarding
of the required correction data for RTK-SN to the model car.

The control PCB is based on an ARM Cortex M4 microcontroller and runs
the ChibiOS! real-time operating system. The microcontroller carries out sensor
fusion for position estimation (See Section 3), the trajectory following algorithm
(See Section 4) and all other functionality of the model vehicle, meaning that
the connection to the laptop is only required for monitoring and sending high
level control commands. In addition to the microcontroller, the control PCB
containts an Inertial Measurement Unit (IMU), a CAN transceiver, two radios,

Thttp://www.chibios.org

109

http://www.chibios.org

DC/DC converters, an Ublox M8P GNSS receiver and various connection ports
for possible extensions.

After the control PCB, the other essential part of the electronics and software
on the model car is the VESC motor controller. The VESC is also developed by
us, partly in parallel with our testbed, but this paper only describes it briefly. It
can drive the motor of the model car with high efficiency over a wide dynamic
range using the state-of-the-art motor control technique Field Oriented Control
(FOC) [12] with Space Vector Modulation (SVM) [13]. The VESC is able to
operate from zero speed with high torque without position sensors on the motor
by taking advantage of a nonlinear observer [14] and effective startup algorithms.
Further, it provides position and speed feedback from the motor over CAN-bus
as well as closed loop speed control, which is essential for the positioning system
of the model car to work accurately as described in Section 3. Another essential
functionality for our testbed that the VESC provides is automatic identification
of all motor parameters necessary for sensorless FOC, which are rarely available
in the datasheet of inexpensive model car motors. All the configuration and
parameter detection of the VESC can be performed with the accompanied
VESCTool GUI, which among other things provides configuration wizards to
get all settings right.

In the same way as the VESC motor controller can be configured to run
with almost any PMSM without writing code and/or using expensive lab
equipment for motor parameter identification, the control software can easily
be configured for different model car configurations. Fig. 4 shows a screenshot
of RControlStation where several of the model car parameters can be edited
and stored in the control PCB, such as the wheel diameter, gear ratio and
turning radius. This enables users of our testbed to configure the hardware and
software to work with any model vehicle size and configuration from easy-to-use
GUIs, which is one of the main objectives of our testbed. RControlStation
also provides many debugging and plotting tools aiding with setting up model
vehicles and performing experiments, such as magnetometer calibration and data
visualization. For example, all graphs and map plots in this paper are generated
in vector format using RControlStation, without requiring any additional code.

To develop and evaluate the trajectory following algorithm, as well as aiding
with development of automatic test case generation with HIL, the control PCB
supports a simulation mode where tests can be performed with just a USB
connection to it without using the model car. This mode is implemented by
simulating the behavior of the motor and mechanics with inertia and drag,
and by updating the position of the vehicle with only dead reckoning from the
simulated motor feedback, and heading calculated from the commanded steering
angle (See Section 3 for details about the position estimation). The rate of
movement of the commanded steering angle is limited to capture the behavior of
a realistic steering servo. This simplifies and speeds up testing and development,
while capturing many important aspects of the real-time hardware.

110

serial Connection R B W @ 3 e @ P»

IF - ttyACM3 - caro %
o ~ P
Car settings CarlD:0
UDP Connection .
" = ; - = Poll Dat:
ﬁ Gear Ratio: 0,189 < | Wheel Diameter: 0,110 m <! Motor Poles: 4 s oft bate
TCP Connection Keyboard Control
o Turn Radius: 1,062 m < | Steering Ramp: 0,600 | Axis Distance: 0,475 m s e =
¥ = = AutoPilot
Servo Center: 0,500 2| servo Range: 0,580 = utoRio
Add Vehicles Use Odometry for YAW correction Yaw IMU Gain: 0,50000 = Routzomimap
Lal L] Disable Motor v/ simulate Motor BLDC Tool UDP
Joystick _ VESC Tool TCP
. ; e |~ |8 = Plot radar
J/dev/input/jso =
T] Use Magnetometer ‘Yaw Magnetometer Gain: 1,20000 B i
E,
e 7| Use Magnetometer Compensation Matrix (hard and soft iron) Ostm
[Thros |[EEGy 0% CX:0,0000 2| xx: 1,0000 2| Yx: 0,0000 :| zx:0,0000 B oF
B2 o I o CY:0,0000 </ xv: 0,0000 2| Y¥: 1,0000 2| zv:0,0000 5
OReboot PI
Contel €Z:0,0000 2| xz: 0,0000 < yz: 0,0000 +| zz: 1,0000 2
i e ®shutdown Pl
off @D 0 tLoad from Calibration Page
Max: 0,15 =
0% 0030 |2 t@ls
- “o% o080 2
\e/\e/\a/\a/\x \e N\s/\@ /\#/
Pollinterval: 40ms |* FAULT CODE NONE
@ Fw .20 Battery: 62.5 % (LR 1) [vosFet Temp: 25°C 00:00:00:000

Connected

Figure 4: A screenshot of RControlStation, where parameters for the model car
can be edited.

3 Positioning

Accurate positioning is an essential part of our testbed. Our main position
source is RTK-SN, which is based on consumer GNSS technology with the
addition of carrier-phase measurements of the satellite signals. The carrier-
phase measurements together with conventional code measurements on both
the rover (the object to be positioned) and a base station with a known position
within a 10 km radius from the rover are required. This means that a data link
between the rover and base station with a data rate of around 100 bytes/second,
depending on the number of satellites, is required. The data stream with
code and carrier-phase measurements from the base station, together with
information about the position of the base station, is usually referred to as
correction data and sent using a format such as RTCM3!. RControlStation can
either act as a base station for the model vehicles by connecting an appropriate
GNSS receiver to it (such as the Ublox M8T), or by connecting to an existing
base station using the TCP or NTRIP? protocol. The correction data is then
sent from RControlStation to the vehicles using the communication link of
choice (4G, WiFi or radio) using the RTCM3 format. The position accuracy
of the rover relative to the base station with RTK-SN is around 1 cm under
optimal conditions.

Traditionally RTK-SN has been an expensive technology, but recently less
expensive solutions have become available [15]. In previous work we have

Thttp://www.navipedia.net/index.php/RTK_ Standards
2https://en.wikipedia.org/wiki/Networked Transport_of RTCM_ via_ Internet__
Protocol

111

http://www.navipedia.net/index.php/RTK_Standards
https://en.wikipedia.org/wiki/Networked_Transport_of_RTCM_via_Internet_Protocol
https://en.wikipedia.org/wiki/Networked_Transport_of_RTCM_via_Internet_Protocol

125

100 -

751

Age (ms)

50

0 50 100 150 200 250 300
Sample

Figure 5: Delay jitter of the RTK-SN samples over time.

compared the performance of high and low cost RTK-SN systems [16] and
came to the conclusion that, besides the longer initial convergence time and
low update rates of the low cost systems, the performance is similar. We have
also studied how low cost RTK-SN performs in urban environments [17] using
the same control PCB as presented here, and came to the conclusion that it
performs well even when the view of the sky is poor given that multiple satellite
constellations and/or sensor fusion with dead reckoning is used.

3.1 Challenges

The main challenge with using inexpensive RTK-SN equipment with our testbed
is the low position update rate, as well as latency and jitter between updates.
The Ublox M8P RTK-SN receiver provides a position update rate of 5 Hz, which
is too low for accurate positioning and control at speeds of up to 80 km/h, which
our model cars are capable of. Fig. 5 shows the measured age of consecutive
position updates from the Ublox M8P. As can be seen, the samples are between
95 and 135 ms old and have jitter of up to 40 ms. If the model car moves at
10 m/s, which is less than half of the maximum speed, a latency of 100 ms
causes a position error of 1 m. At the same speed, the jitter between consecutive
position samples can cause errors of up to 0.5 m. Having a low update rate and
high latency on one or more of the sensors on the system is a common problem
within robotics, especially when low cost hardware is involved [18], and there
are various methods to handle that.

To deal with the low update rate, latency and jitter of the RTK-SN position

112

samples, dead reckoning from sensor fusion between the odometry data from
the VESC motor controller and samples from the IMU is combined with the
RTK-SN position samples to get a total update rate of 100 Hz without latency.
We have come up with the method below of performing the combination. Note
that the RTK-SN position in 3) and 4) first is moved to the center of the vehicle
based on the current estimation of the heading angle and offset of the GNSS
antenna from the vehicle center.

1) The IMU is sampled at 1 kHz and fed to a quaternion-based orientation
filter as proposed by Madgwick et al. [19], which provides the roll, pitch and
heading of the model vehicle. When the magnetometer of the IMU is configured
to be included, we have improved the position filter by adding tilt compensation
for estimating the heading [20] as well as ellipsoid fitting for hard and soft iron
compensation of the magnetometer [21].

2) The motor position is sampled from the VESC motor controller at 100 Hz,
and combined with the estimated heading from the position filter to calculate a
relative dead reckoning position. This position is stored in a 100 samples long
FIFO buffer together with the current GNSS time stamp derived from the Pulse
Per Second (PPS) signal from the Ublox M8P receiver.

3) When RTK-SN position samples are received, they are compared to the
dead reckoning position sample from the FIFO buffer from 2) with the closest
time stamp to the sample, which will be 5 ms away in the worst case. The
difference between the closest FIFO buffer sample and the RTK-SN sample is
then used to correct the current position by moving it in the direction of the
difference as:

Pxy = Pxy_old + dxsztat + dxdeyndp (1)

where p,, is a vector with the new xy-position of the vehicle, py, o is the
previous position of the vehicle, dy, is the difference vector between the latest
RTK-SN sample and the closest position in time from the FIFO buffer, Gy
is a scalar configurable static gain, Ggy, is a scalar configurable dynamic gain
and d,, is a scalar of how far the vehicle has moved since the previous RTK-SN
update. Noise between consecutive RTK-SN samples is rejected by gradually
moving the current position using this method instead of moving it the full
difference at once for every sample.

4) When the magnetometer is not used to provide an absolute heading
reference, the heading of the orientation filter in 1) is updated every time a
RTK-SN sample is received by first computing an RTK-SN heading as:

Ok = _atanz(yrtk — YprtksXrtk _xprtk) (2)

where (X, k) is the latest RTK-SN position sample and (xXpk,yprk) previous
RTK-SN position sample. After that a heading difference is calculated as
Oq = Ok — OF1F0, Where ¢pipo is the heading of the sample from the FIFO
buffer from 2) closest to the average time between the latest and previous
RTK-SN samples. The heading in the current position is then updated by
rotating it in the angular direction of ¢; with a step proportional to how far
the vehicle has moved between the latest and previous RTK-SN samples and
the heading correction gain. Scaling by the distance moved is used because

113

consecutive RTK-SN samples do not provide any heading information when the
vehicle is stationary.

The rationale of this approach is that the dead reckoning position is accurate
over short distances, but drifts as the distance increases. The time delay of the
RTK-SN samples is short enough to not cause significant degradation of the
dead reckoning, meaning that the current position can be calculated accurately
at a high rate by using an old absolute position and the relative movements
that have occurred since then. Notice that the heading estimation is critical for
the dead reckoning to perform well, more details about that can be found in
our previous work [17].

3.2 Performance Evaluation

To evaluate the performance of the latency and jitter compensation described
above, we have driven the model car along a trajectory with rapid accelerations
and decelerations, and measured the difference between the RTK-SN position
and the dead reckoning position for each sample with and without the FIFO
delay compensation. Fig. 6 shows the difference without compensation, and
Fig. 7 shows the difference with compensation. As can be seen, without the
compensation the difference is stable at constant low speed, but goes to 1.1 m
during the accelerations and decelerations. With the compensation enabled, the
difference is limited to 10 cm during the acceleration and to 20 cm during the
deceleration, due to wheel slippage. The reason that the difference in Fig. 6 is
low during constant speed without compensation is that the position converges
to an invalid value, which will be apparent when the speed changes rapidly;
whereas when the compensation is enabled the position will be closer to the
true position at all times. It can also be noted that during the constant speed
shown in Fig. 6 there is over 10 cm position jitter while Fig. 7 shows less than
3 cm jitter; this is due to the delay jitter between the RTK-SN samples shown
in Fig. 5.

To obtain an estimate about the absolute accuracy and repeatability of the
position, we have downloaded a 20 m radius circle trajectory to the model car
with a constant speed of 4 km/h. While the car was following that trajectory
lap after lap on artificial grass, it made visible traces that allowed us to visually
inspect the deviation of the car tires from the traces, as seen in Fig. 8. As far
as we could observe, the tires of the car stayed within the traces with less than
half the tire width, or 2.5 cm, for the entire experiment. We also measured the
diameter of the circle on the grass, and it had the correct diameter as accurately
as we were able to measure with our equipment. The position difference between
the RTK-SN samples and the closest samples in the dead reckoning FIFO stayed
below 3 cm for the entire experiment, giving us confidence that our model
vehicle can estimate its absolute position with 3 cm accuracy.

114

i

300 —— Diff (cm)
—— Speed (0.1 * km/h)

250

200

150

Value

100

50

10 20 30 40 50 60
Time (s)

Figure 6: The speed and difference between the RTK-SN and dead reckoning
position during hard acceleration and deceleration. Delay compensation for the
RTK-SN samples is disabled.

N
300 —— Diff (cm)
—— Speed (0.1 * km/h)

250

200

150

Value

100

50

b
50 60

10 20 30 40
Time (s)

Figure 7: The speed and difference between the RTK-SN and dead reckoning

position during hard acceleration and deceleration. Delay compensation for the
RTK-SN samples is enabled.

115

Figure 8: Our 1:6 model car repeatedly following a circular trajectory on
artificial grass. The traces from previous laps are visible, and can be used to
estimate the lateral positioning and control repeatability.

4 Trajectory Following

An important aspect of our testbed is the ability to edit and follow trajectories.
We define a trajectory as a list of points where each point has a xy-positions
and a speed or time stamp, depending on the mode of operation. Our testbed
support three trajectory following modes: 1) Speed based, where the model
vehicle adjusts its speed proportional to the set speed and relative distances to
the two closest trajectory points; 2) Absolute time, where the model vehicle
adjusts its speed such that it reaches the trajactory points at absolute UTC!
times (derived from the GNSS receiver clock); and 3) Relative time, where
the model vehicle adjusts its speed such that it reaches the trajectory points at
times relative to when the start command was issued. Creating trajectories is
most intuitive using the speed mode, but the time-based modes are necessary
to synchronize multiple vehicles in a scenario. There is also a synchronization
command available that can be sent to the model vehicles in real time, so that
they continuously update their speed to reach a trajectory point specified in
the command at the time specified in the command, based on the distance left
along the trajectory to that point.

RControlStation allows users to graphically edit trajectories with an over-
lay of OpenStreetMap [22], as shown in the screenshot in Fig. 9. We chose
OpenStreetMap because it is accompanied by a complete set of tools for map
creation and rendering, available as open source software. This makes it easy to
update and create artificial maps in e.g. test areas, and render them on a server.

Thttps://en.wikipedia.org/wiki/Coordinated_ Universal_Time

116

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Serial Connection AR B %W e 2 % @& #

ttys4 - / 1’ " I
iy 6rid gest 5 1 Car:0 e
= L4 Zogih:=ng236619 [Route: s w
SELE O 05 : 19 =\
UDP Connection Ja Info Trace: 0]
TCP Connection . 18 212.94 |n Follow Trace
- [y 8 o @
Add Vehicles 1/ ? ® ¥
= 1=} fU Current Route Point
] o
Joystick /_\ Oz:i)ﬂkm/h 1'4 V:8,0 km/h e
/dev/input/jso 00:00+18:000 <r T: 00:00:58:000 @
] - -900.00 m !A Add: 00:00:02:000
Not connected q‘sta Z Upload Current Route
| theov (0% car @ ef'o (0 0% n
B2 o 0% % (27.063, -903.490, 23) P: 10
- W . 00:00:00: . Oe.e km/h Generate Circle
Contel - 'Bukm/h 06:00:44:000
S 90: 00+52; 000 ol‘i 1 Map Center
Off © D 1 ~ : P: 12 8.0 kn/h
. O\z.o km/h| 00:00:48:000 X: 0,000 m
Max: 0,15 2 v -y 00:00:504000 Y:0,000m
0% 0030 |2 w R:500m
BEEZox 0050 : | o000 m / N:30
Poll Interval: 40 ms € =) = Append to Current
= ° 2| —
& 2 I]
o : : S\~ E e

Not connected

Figure 9: A screenshot of the map page in RControlStation, where trajectories
can be edited.

The transforms for converting OpenStreetMap rendered map tiles with Web
Mercator! projection to the coordinate system of our testbed for viewing in
RControlStation are well documented on their wiki page?. This was a significant
aid in implementing the map rending functionality of RControlStation.

4.1 Lateral Control

Lateral control along the trajectories of the model vehicles in our testbed is
performed using the pure pursuit algorithm, which is a common method within
robotics [23]. Essentially it works in the following way 1) draw a circle around
the vehicle with a radius of the chosen look-ahead distance; 2) calculate the
point where that circle intersects the trajectory; if multiple points are found
pick the one furthest ahead on the trajectory; and 3) adjust the steering angle
of the vehicle such that it follows an arc that intersects with that point. When
visualized, it looks like the vehicle follows a point that moves away from it along
the trajectory. More details about the pure pursuit algorithm can be found in
the literature [23]. We have also added support for the case when the vehicle is
further away from the trajectory than the look ahead distance, in which case it
will follow the closest point on the trajectory until the circle around the vehicle
intersects with the trajectory, after which the algorithm is carried out as usual.
This is useful when sharp turns or oscillations cause the vehicle to lose the
trajectory, or when it is started far away from the trajectory. Also, if the model
vehicle is to be used with automatic test case generation, it is helpful to have

Thttps://en.wikipedia.org/wiki/Web_ Mercator
2https://wiki.openstreetmap.org/wiki/Main_ Page

117

https://en.wikipedia.org/wiki/Web_Mercator
https://wiki.openstreetmap.org/wiki/Main_Page

Grifzges: (1 m
-124.90 m Zoom: 0%Q455992
©SM-zoom:
/ RP: 21
RLen: 101.80
-126.90 m /

-128.90 m
T

P: 19
Ohg.o kn/
037044081000
-130.40 m
P: 20 /
O10.0 kn/ B: 0
03:04:08;006)g_g,
Talilyh P: 1
93:04: 247900 Obeoia/h
-132.40 m 03: 04726000 :P- 2
93: T8
™134.40 m
P3704730:000
P: 9 .4
eg:gskgzr-]emr‘f -0 kmih
€ ; : = £ 3:04:32:000
3 8 8 E no 8
-136240 m] 3 Bl o 3
o = :34+

Figure 10: The red trace shows how the model car navigates back to the
trajectory with angle distance gain disabled.

the ability to drive to the closest point on a recovery trajectory and drive back
to the initial position along it.

Improvements to the pure pursuit algorithm commonly found in literature are
interpolation of the trajectory to find points between trajectory points [23] and
to use an adaptive look-ahead distance [24]. Both of these improvements have
been employed in our testbed to increase the trajectory following performance.
We have also implemented one to our knowledge unique improvement to the
pure pursuit algorithm, which is adding gain to the steering angle calculation
when the point to be followed is far away. The steering angle is corrected as:

Ag(1+0.2D) if D<20m
Acorr = { S[() (3)

S5Ag otherwise

where A, is the corrected steering angle, Ay, is the steering angle that leads
to the goal point along a circle that tangents with the car and D is the distance
to the goal point. The gain helps when the vehicle starts far away from the
trajectory heading away from it, where it without the gain would follow an arc
longer than necessary to reach the trajectory. Fig. 10 shows the arc the vehicle
follows without the distance gain and Fig. 11 shows the arc that it follows with
the gain. The starting position is the same in both figures, namely where the
red line starts. As can be seen, the arc in Fig. 11 is significantly shorter. Note
that the look-ahead distance of the vehicle in the figures is illustrated with a red
circle around it and that the point it is aiming for is drawn on the trajectory.

118

Grid res: 1 m
-124.60 m Zoom: 0.0455992
6SM-zoom:119
— RP: 21
N RLen: 101.80 m
-126.60 m
-128.60 m
o A
03044081000
-130.60 m
P: 20
Oro.0 kn/ B @
03:04:081008)g h
03:04: B 1
3:04: 747000 T
-132.40 m Ao b
6.0 km/h
:04:28:000
N P: 3
%134.90 m 6.0 kn/h
N p3:04:30:009

£ IPTOIEEII00 £) & €000 50

2 3 3 e BS kn/h S 9h -135 153
-136340 m g . :04:40: 60 !

e & & g ﬁ—‘ﬂi 5

Figure 11: The red trace shows how the model car navigates back to the
trajectory with angle distance gain enabled.

\\ Grid [res: 1 m
oom:| .
-122.00 m \ 0SM Zoom: 19

RP: 21
RLen: 101.80 m

124.00 m
N
N
126.00 m
I \
b N ~N
-128.00 m (65008, -127&, 141)
\ U 17070
N P: 19
-0 kmyh

100

132.00 |m

-134.00 m

1= 1= E € € 1= E € 1=
(=3 =3 i< [=3 (=3 = =3 (=3 (=3
5 e g g 3 g g g 8
-136.00 |m v . i

Figure 12: The red trace shows how the model car oscillates at 30 km/h with
too small fixed look-ahead distance.

119

Grid res: 1 m
™ Zoom:| 0.0397127|
0SM Zoom: |19
: 18 RP: 21

5
Ou0.6 kn/h RLen:| 101.80 m
:,04:08: 000

-122.00 m

-t
@

il
-124.00 m

-126.00 m —\

Car 0
-65.698, -126.810, -147) N
10 :34:619

T
N—
P: 19
Olefe kmyh
03:04:.08:00
-130.00 m

-128.00 m

/

-132.00 m

134.00 m \

£ £ E 5 £ £ 5 5 £ } P: 9
2 2 2 2 2 2 2 2 2 2

= = = 2 2 = = =2 = = 03:03342:
5 g g g 3 g g g £ 3 3
136,00 m : . . v g 3 3 . 3

Figure 13: The red trace shows how the model car follows the trajectory at 30
km/h with sufficient look-ahead distance.

Using the simulation mode of the control PCB and a trajectory that has
variable speeds and sharp turns, we have set up an experiment to evaluate
the performance of the lateral control with different settings and improvement
strategies of the pure pursuit algorithm. First we disabled adaptive look-ahead
distance and found a static distance that is long enough to follow the trajectory
in a stable manner. As an unstable example, Fig. 12 shows how the car behaves
when the look-ahead distance is too short on a high speed part of the trajectory,
whereas the same scenario with a sufficient look-ahead distance is shown in
Fig. 13. The maximum deviation from that trajectory without adaptive look-
ahead distance during a stable lap was 40 cm, whereas it was 13 cm for the same
track with adaptive look-ahead distance enabled. The difference in deviation
from the trajectory comes from the low-speed parts of that trajectory with
sharp turns, where a short look-ahead distance at low speed allows the vehicle
to follow the trajectory tightly while still being stable due to the low speed.
Fig. 14 shows a tight turn without adaptive look-ahead distance and Fig. 15
shows the same turn with adaptive look-ahead distance. For reference, the
adaptive look-ahead distance is calculated based on the speed of the vehicle as:

d = dpase(1+[v] %0.05) (4)
where d is the calculated adaptive look-ahead distance, v is the speed in m/s
and dpu is the look-ahead distance when the speed is 0. This equation was

derived experimentally.

120

Grid res: |1 m
-110.00 m oom: 0.0988178
0SM zoom: |19
RP: 21
\RLen: 101.80 m
8, -JL11.476, [20)
21l
-112.00 m
3 13
-114.00 m km/
W TOOU
P: 12
0 km/p
3:48:000
e e £
=3 (=3 =3 (=3
S} s} S} 3
< o) ©
@ © 5 [
-116.00 m ‘ '

Figure 14: The red trace shows how the model car followed the trajectory with
an arc without adaptive look-ahead distance enabled.

Grid res: |1 m
-110.00 m oom: 0,0988178
0SM zoom: |19
RP: 21
RLen: 101,80 m
r\o
048, -111.541, 22)
142:362
-112.00 m
14
0 km/h
:03:52:000
P: 13
-114.00 m 6 _kn/
U3TOUTOU0
P: 12
.0 km/p
\93:48:000
e “!? e £
i< (=3 =3 (=3
S}) S} <)
< o) o
@ © 5 [
-116.08 m ‘ ' '

Figure 15: The red trace shows how the model car followed the trajectory with
an arc with adaptive look-ahead distance enabled.

121

Figure 16: The model car pulling a trailer with a radar to be characterized.

5 Conclusion

In this paper we have presented a novel testbed for research and development
within the areas of autonomous driving and accurate positioning. We were able
to achieve high position accuracy and low latency using low-cost hardware by
fusing data from multiple sensors (Accelerometer, Gyroscope, Odometry, RTK-
SN) to take advantages of their individual strengths. For trajectory following
we have implemented the well-known pure pursuit algorithm along with two
common and one unique improvements as described in Section 4.

Model vehicles based on our testbed can follow trajectories autonomously,
and all tools necessary for visualization and trajectory generation are provided.
Our testbed is scalable to a wide range of model vehicles, and can be set up in
just one day of work given familiarity with the testbed. The custom hardware
and all involved software is open source for easy development and extension.
We have also performed a wide range of tests to ensure high performance and
reliability in various situations. To our knowledge there is no similar testbed
available today, and there is a significant need for it in the research and education
communities.

In addition to use within research and education, our testbed can be used
in data acquisition applications where sensors need to be moved accurately
according to a defined path, while data is stored together with position and
speed. For example, Fig. 16 shows a photo of our model car pulling a trailer
with a radar to be characterized along a predefined path around different targets.
The open source nature of our testbed provides a solid base for such applications,
and enables further functionality to be implemented without the burden of
implementing the positioning and navigation functionality.

122

Acknowledgement

This research has been funded through EISIGS (grants from the Knowledge
Foundation) and by VINNOVA via the FFI projects Chronos step 1 and 2.

Data Availability

As our testbed is open source, including all PCB designs, embedded software
and desktop software, the experiments presented in this paper can be replicated
by constructing a model car using the resources available at https://github.
com/vedderb/rise_sdvp. The data, plots and trajectories, as well as additional
data and plots from the experiments presented in this paper can be found
here https://github.com/vedderb/rise_sdvp/tree/master/Misc/Test%20Data/
paper__2018-06. To replicate the experiments and collect similar data, as well
as to generate similar plots, the trajectories in the routes directory from the
previous link can be used together with the appropriate terminal commands
from the car terminal of RControlStation. RControlStation is part of the open
source software, and all terminal commands can be listed by typing help in the
car terminal.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication
of this paper.

References

[1] F. C. Braescu and C. F. Caruntu. "Prototype model car design for vehicle
platooning”. In: International Conference on Optimization of Electrical and
Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical
Machines and Power Electronics (ACEMP). May 2017, pp. 953-958.

[2] F. C. Braescu. "Basic control algorithms for vehicle platooning prototype model
car”. In: 21st International Conference on System Theory, Control and Computing
(ICSTCC). Oct. 2017, pp. 180-185.

[3] A. Fenesan, T. Pana, D. Szdcs, and W. H. Chen. ”"Building an electric model
vehicle and implementing an obstacle avoidance algorithm”. In: International
Conference and Exposition on Electrical and Power Engineering. Oct. 2012,
pp. 49-53.

[4] F. Bormann, E. Braune, and M. Spitzner. ”The C2000 autonomous model car”.
In: 4th European Education and Research Conference (EDERC 2010). Dec. 2010,
pp- 200-204.

[6] J. Axelsson, A. Kobetski, Z. Ni, S. Zhang, and E. Johansson. "MOPED: A
Mobile Open Platform for Experimental Design of Cyber-Physical Systems”.
In: 4J0th EUROMICRO Conference on Software Engineering and Advanced
Applications. Aug. 2014, pp. 423-430.

123

https://github.com/vedderb/rise_sdvp
https://github.com/vedderb/rise_sdvp
https://github.com/vedderb/rise_sdvp/tree/master/Misc/Test%20Data/paper_2018-06
https://github.com/vedderb/rise_sdvp/tree/master/Misc/Test%20Data/paper_2018-06

(6]

(7]

(8]

[10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

18]

(19]

[20]

G. Halfacree and E. Upton. Raspberry Pi User Guide. 1st. Wiley Publishing,
2012.

R. Svenningsson, R. Johansson, T. Arts, and U. Norell. ”Formal Methods Based
Acceptance Testing for AUTOSAR Exchangeability”. In: SAE Int. Journal of
Passenger Cars— Electronic and Electrical Systems 5.2 (2012).

M. Pahlavan, M. Papatriantafilou, and E. M. Schiller. ”Gulliver: A Test-Bed for
Developing, Demonstrating and Prototyping Vehicular Systems”. In: IEEE 75th
Vehicular Technology Conference (VT'C Spring). May 2012, pp. 1-2.

K. Hulme, E. Kasprzak, K. English, D. Moore-Russo, and K. Lewis. ”Experiential
Learning in Vehicle Dynamics Education via Motion Simulation and Interactive
Gaming”. In: International Journal of Computer Games Technology 2009 (2009).

A. Soltani and F. Assadian. ”A Hardware-in-the-Loop Facility for Integrated Ve-
hicle Dynamics Control System Design and Validation”. In: 7th IFAC Symposium
on Mechatronic Systems MECHATRONICS 2016 49.21 (2016), pp. 32-38.

A. Mouzakitis, D. Copp, R. Parker, and K. Burnham. "Hardware-in-the-Loop
System for Testing Automotive Ecu Diagnostic Software”. In: SAGE Measure-
ment and Control Journal 42.8 (2009), pp. 238-245.

J. P. John, S. S. Kumar, and B. Jaya. "Space Vector Modulation based Field
Oriented Control scheme for Brushless DC motors”. In: International Conference
on Emerging Trends in FElectrical and Computer Technology. Mar. 2011, pp. 346—
351.

M. Gaballah and M. El-Bardini. "Low cost digital signal generation for driving
space vector PWM inverter”. In: Shams Engineering Journal 4.4 (2013), pp. 763—
774

J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi. "Sensorless
Control of Surface-Mount Permanent-Magnet Synchronous Motors Based on a
Nonlinear Observer”. In: IEEE Transactions on Power Electronics 25.2 (Feb.
2010), pp. 290-297.

T. Takasu and A. Yasuda. "Development of the low-cost RTK-GPS receiver
with an open source program package RTKLIB”. In: International Symposium
on GPS/GNSS. International Convention Centre Jeju, Korea. 2009, pp. 4-6.

M. Skoglund, T. Petig, B. Vedder, H. Eriksson, and E. M. Schiller. "Static and
dynamic performance evaluation of low-cost RTK GPS receivers”. In: IFEE
Intelligent Vehicles Symposium (IV). June 2016, pp. 16-19.

B. Vedder, J. Vinter, and M. Jonsson. ”Accurate positioning of bicycles for
improved safety”. In: IEEE International Conference on Consumer Electronics
(ICCE). Jan. 2018, pp. 1-6.

M. Bosnak, D. Matko, and S. Blazi¢. ”Quadrocopter Hovering Using Position-
Estimation Information from Inertial Sensors and a High-delay Video System”.
In: Journal of Intelligent & Robotic Systems 67.1 (2012), pp. 43—60.

S. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. "Estimation of IMU and
MARG Orientation Using a Gradient Descent Algorithm”. In: IEEFE International
Conference on Rehabilitation Robotics (ICORR). 2011, pp. 1-7.

T. Ozyagcilar. Implementing a Tilt-Compensated eCompass using Accelerometer
and Magnetometer Sensors. AN4248. Application Note. Freescale Semiconductor,
2015.

124

21]
22]

(23]

24]

A. Vitali. Ellipsoid or sphere fitting for sensor calibration. DT0059. Design Tip.
ST Microelectronics, 2016.

M. Haklay and P. Weber. "OpenStreetMap: User-Generated Street Maps”. In:
IEEE Pervasive Computing 7.4 (Oct. 2008), pp. 12-18.

H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro. "Pure Pursuit Re-
visited: Field Testing of Autonomous Vehicles in Urban Areas” In: IEEE 4th
International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA). Oct. 2016, pp. 7-12.

M. W. Park, S. W. Lee, and W. Y. Han. "Development of lateral control system
for autonomous vehicle based on adaptive pure pursuit algorithm”. In: 14th
International Conference on Control, Automation and Systems (ICCAS 2014).
Oct. 2014, pp. 1443-1447.

125

Paper VI

Automated Testing of Ultra-Wideband
Positioning for Autonomous Driving

Benjamin Vedder, Joel Svensson, Jonny Vinter and Magnus
Jonsson

To be submitted for review, 2018

127

Abstract

Autonomous vehicles need accurate and dependable positioning, and these
systems need to be tested extensively. We have evaluated positioning based
on Ultra-Wide Band (UWB) ranging with our self-driving model car using
a highly automated approach. Random drivable trajectories were generated,
while the UWB position was compared against the Real-Time Kinematic
Satellite Navigation (RTK-SN) positioning system that our model car also is
equipped with. Fault injection was used to study the fault tolerance of the UWB
positioning system. Addressed challenges are: automatically generating test
cases for real-time hardware, restore the state between tests and to maintain
safety by preventing collisions. We were able to automatically generate and
carry out hundreds of experiments on the model car in real time, and re-
run them consistently with and without fault injection enabled. Thereby we
demonstrate one novel approach to perform automated testing on complex
real-time hardware.

1 Introduction

Accurate positioning is important technology for autonomous vehicles. A
positioning system needs to be both accurate and dependable, thus there is a
need for extensive testing and evaluation. In this paper we address this need by
automating test case generation not only in simulations [1] and Hardware-In-
the-Loop (HIL) tests [2, 3], but also on full scale hardware. To demonstrate this
approach, we equip our self-driving model car with an Ultra-Wide Band (UWB)
positioning system in addition to the Real-Time Kinematic Satellite Navigation
(RTK-SN) positioning system it already has, and evaluate the performance
of the UWB system against the RTK-SN system. Our test method consists
of automatically generating random drivable trajectories for our model car,
injecting faults into the UWB system and comparing the position outputs of
both positioning systems.

To generate the tests, we utilize the Property-Based Testing (PBT) tool
ScalaCheck [4]. PBT is an approach to test functional requirements of software
[5]. With PBT test cases are automatically generated from an abstract model
of the System Under Test (SUT), as opposed to being manually written as is
the case with unit testing of software.

As we also want to evaluate the fault tolerance of the UWB system, we
utilize Fault Injection (FI). The goal of FI is to exercise and evaluate fault
handling mechanisms [6]. FI is commonly used across the entire development
process of safety-critical systems; from models of hardware [7] and models of
software [8] to software deployed and running on the target system [9, 10]. In
our case we use software-implemented FI on software running on the target
system, i.e. the positioning system on the model car.

During FT it is common to run a few different scenarios (inputs) over and
over with different faults injected during the runs, while comparing the SUT
to the same scenario without faults present, namely the golden run. These
scenarios are often created manually, which can be time consuming when dif-
ferent aspects of a system have to be considered. In previous work we have

129

shown how PBT can be used in combination with FI to generate many tests
randomly where the golden run can be derived on-the-fly from the model used
in the PBT tool [11]. This way functional and non-functional requirements
can be tested simultaneously using the same test setup, which can reduce the
total required testing effort. We have tested this approach on both a simple
End-to-End (E2E) system from the AUTOSAR standard [12] and on a more
complex quadcopter system simulator [1]. In this work we extend our approach
of performing PBT and FI simultaneously to be used on a system with HIL
simulation, as well as on the full hardware. This brings the following challenges:

I Instead of simulated time, the system is now running in real time. How do
we synchronize the test case generation with the system, and can we make
sure that the PBT tool can keep up with the latency requirements?

IT How to reset the state of the SUT between generated tests? Our tests
make the model car drive along a random trajectory, hence make it end up
in a random position when the test ends. In order to execute the next test
we have to make the model car drive back to the start position from the
random position the previous test made it end up in.

IIT How do we maintain safety while carrying out the tests? We have to avoid
generating tests that cause collisions or other dangerous situations.

The SUT in this study is the UWB positioning system mounted on our self-
driving model car. The UWB positioning system derives its position estimate by
fusing distance measurements to fixed anchors with heading and odometry data
from the internal sensors on the model car. Our tests consist of automatically
generating trajectories for the model car with a geometry such that they can be
followed by the car, in addition to having the property of not leading the model
car into a corner where it has too little space to stop safely. As the car follows
the trajectories, a deviation between the UWB and RTK-SN positions exceeding
1 m is considered a failure. During the tests we also inject faults into the UWB
positioning system to study their effect and how they are handled. We perform
the experiments both as a HIL test with the main controller of our model car
running a simulation of the motor and dynamics of the car, as well as with the
model car running outdoors in real-time carrying out the auto-generated test
cases.

This experiment setup has the real time and latency challenge, and especially
the challenge of resetting the SUT state so that new experiments can be
performed. Resetting the SUT state here means generating a trajectory to
accurately drive the model car back to the initial position and resetting the
state of the UWB positioning system. Being able to reset the state consistently
is also important for replaying and analyzing recorded experiments. Further, it
is important to generate tests that do not make the model car collide with any
obstacles, which is a significant challenge compared to the simulated and the
HIL cases. Thus, the main contributions of this paper are:

e Showing how PBT with FI can be carried out on real-time hardware while
addressing the aforementioned challenges.

130

e Our method to generate safe and random trajectories for the model car,
as well as how to generate a trajectory to drive the car back to the initial
position between tests.

e Showing how to repeatedly replay experiments on real-time hardware
with and without FI to study the effects of faults, as well as the effects of
random variations in the test environment.

e A method for doing FI in the firmware running on the final hardware with
small intrusion on the code base.

The remainder of this paper is organized as follows: In Section 2 we describe
the different parts of our testing setup and SUT, and in Section 3 we describe
our approach for test case generation. Section 4 presents the results from our
tests and in Section 5 we present our conclusions from this work.

2 System Setup

The SUT in the experiments is our self-driving model car equipped with an UWB
ranging module, as shown in Figure 1. Figure 2 shows a block diagram of the
model car, where the UWB module is shown at the top in green connected over
a Controller Area Network (CAN) bus. The model car estimates its position by
combining RTK-SN [13] with dead reckoning based on the Inertial Measurement
Unit (IMU) and odometry feedback from the motor controller. The position
filter of the car also keeps track of the time stamps from the RTK-SN samples
to compensate for the latency of the samples at higher speeds. This makes it
possible to estimate the position of the model car with an accuracy of around
5 cm with 100 Hz update rate under dynamic conditions [14].

To control the model car, we use an SSH tunnel over a 4G connection to the
Raspberry PI 3 single board computer on it, forwarding the ports necessary to
control and visualize the state of the model car. The configuration, control and
visualization of the model car is handled from our RControlStation software
that runs on a computer to which the SSH port forwarding from the car is
done. RControlStation can be used to graphically edit trajectories overlayed
on OpenStreetMap [15] that the car can follow using a variation of the pure
pursuit algorithm [16]. The real-time position estimation and control, including
the pure pursuit algorithm, is handled on the controller board on the car with
a Cortex M4 microcontroller. Remote debugging and firmware updates can be
done over the SSH tunnel to the raspberry pi computer, which is a convenience
when developing and testing in general.

RControlStation also has a network interface that can be used to control
the model car from remote software by sending XML messages over UDP or
TCP. Additionally, there is a synchronous C library for generating and decoding
these messages, making it easy to implement communication with the cars from
any programming language that supports a native interface to C code. We
have extended this network interface and library with support for accessing
trajectories on the map in RControlStation, as well as support for uploading

131

Figure 1: Photo of our self-driving model car with our UWB module attached
to the back on a stick.

UuwB

DWM1000
[ownio00 JRSESEIS

[Cortex M4][CAN and Power] (F:’é\:l/e‘:
VESC Controller USB + | Raspberry Pl 3

Power

Motor Controller
Cortex M4 IFi
B2 ABA WD 20 todem
Rad
Measure/Control ’C_.,AN +
T over 420 - 470 MHz
» e Radio
os el rq
MU GNSS

ACC, GYRO, MAG Antenna

UART SPI 12C ADC CAN RTK-GNSS
(Ublox M8P) 5V

SWD USB PWM GPIO INT

DC/DC Converter

I I PWM + Power |
Steering
PMSM Motor Servo I;l;z(:ci‘ =l Battery

Figure 2: Block diagram of our self-driving model car with our UWB module
in green.

132

Model Car [| |

SSH/
TCP

Figure 3: Experimental setup consisting of a laptop computer, our model car
and two or more of our UWB anchors.

CommLib/Brid]

Laptop Computer

.

generated trajectories to the map and/or the model car. This C interface
together with the BridJ' native interface for Java and Scala gave us full control
over the model cars as well as a visualization interface from Scala. An overview
of the setup is shown in Figure 3.

2.1 HIL Simulation Mode

The controller of our model car also has a simulation mode, where the motor
and inertia of the car are simulated and its position is updated by feedback
from the simulated motor. The IMU and RTK-SN correction is switched off
in this mode. The simulation mode enables us to only connect the controller
Printed Circuit Board (PCB) of our model car to RControlStation over USB,
and integrates seamlessly with the rest of the test setup. This is useful for
designing and setting up experiments without risking damage to the hardware as
dry-runs can be made with most of the software running on the final hardware
without physical moving parts.

2.2 UWB Positioning

Our UWB positioning system is responsible for estimating the position of the
model car without relying on RTK-SN positions, thus providing an independent
and redundant position estimate. This can be useful in scenarios where not the
whole driving area has Global Navigation Satellite System (GNSS) coverage, or
when an independent position source is required to increase the integrity of the
position estimate.

The UWB positioning system consists of a number of modules containing a
Decawave DWM1000 UWB transceiver [17], a 32-bit microcontroller, a CAN-bus
interface and some voltage regulators. We have developed these modules in
previous work [18], and they can measure the distance between each other with
best case accuracy of around 10 cm. One of the modules is mounted on the stick
on the back of our model car and connected to its controller over CAN-bus,

Thttps://github.com/nativelibs4java/BridJ

133

https://github.com/nativelibs4java/BridJ

Figure 4: Our custom UWB module mounted on the model car and connected
over CAN-bus. Power is also provided through the same connector.

as shown in Figure 1 and Figure 4, and two or more modules are mounted on
stationary tripods as anchors shown in Figure 5.

We have extended the firmware of our model car controller with a position
sensor fusion algorithm that merges distance measurements from the UWB
module on the car to the anchors with odometry data from the motor controller
and heading information from the IMU. Further, we have extended RControl-
Station with the ability to edit the UWB anchor positions on OpenStreetMap,
and upload them to the model car to be used in the sensor fusion. This gives
the UWB sensor fusion the following input information:

1. The measured distance between the UWB module on the model car to
the anchors with known positions.

2. Odometry, showing how far the car has traveled between iterations of the
filter, by means of how much the motor has rotated together with the
known gearing and wheel diameter.

3. Heading information from the IMU derived from the gyroscope and/or
the magnetometer, depending on the car configuration.

The heading and odometry information arrives at 100 Hz, while the UWB
module is sampled at 10 Hz. Note that the distance measurements to the
anchors are done one at a time by cycling through a list with anchors provided
by RControlStation, and only making measurements to the anchors that are
closer than 80 m away from the last position estimate. The 80 m cut is done

134

Figure 5: Our UWB modules mounted on tripods, each in a waterproof enclosure
together with a battery. These are used as stationary anchors.

because the measurements to anchors too far away are likely to not succeed,
which would just lower the system update rate.

Based on the odometry and heading data, the position estimate of the car
is advanced as:

o= o o+ Di ey 1)
where p,y is the new position, p,, . is the previous position, D;, is the odometry
travel distance since the previous position update and ¢ is the heading angle from
the IMU. This update is done at 100 Hz and is accurate over short distances,
but the error increases without an upper bound as it is based on relative
measurements only. To deal with the drift, the 10 Hz distance measurements
to the anchors are used one at a time as they arrive to correct the position
estimate. This is done by first calculating the expected position of the UWB
module on the car by removing its offset from the estimated car position as:

Puwb = Pxy + OJYC;/ f;)fyf((x()g) 2;’;(((;)) (2)

where py, is the estimated position of the UWB module on the car, py, is the
estimated position of the car, 0§y is the offset from the UWB module to the
center between the rear wheels of the car and « is the heading angle. Then the
estimated distance and direction to the anchor for which this measurement was

135

made with is calculated as:
de = ||axy = puws | (3)

Vuwb = (axy - puwb)/de (4)

where d, is the estimated scalar distance to the anchor, a,, is the position of the
anchor and vy, is a vector with length 1 pointing in the estimated direction of
the anchor. Then the estimated position of the car is updated as:
d,—dy if |de —dpy| <0.2m
= |d—dy| . (5)
O.ZW otherwise

Dxy = Pxy_old T CVuwb (6)

where py, is the new position estimate, py, o4 is the old position estimate and
dy, is distance measured to the anchor by the UWB module.

In other words, when a distance measurement to an anchor arrives, the
measurement is compared to the expected distance to that anchor from the
current position estimate and the position estimate is then updated by moving
it in the direction of the anchor. This movement is truncated to 0.2m in order
to reject high frequency noise and outliers such as reflections. This converges
well when the initial position is known and at least two anchors are used. If
the initial position is unknown and the car is stationary, at least three anchors
with positions that are linearly independent in the xy-plane are required for the
position to converge. Experiment results on the performance of this position
estimation implementation can be found in Section 4. It should be noted that
our UWB positioning implementation assumes that the model car moves on a
plane and that the anchors have the same height as the UWB module on the car.
Deviations from this assumption degrade the UWB positioning performance,
but in our experience the practical impact on the performance is less than 0.5 m
which is within our requirements.

3 Test-Case Generation

For automating the generation of test-cases and the testing itself we use
ScalaCheck [4], which is a framework for testing, primarily, Java and Scala pro-
grams implemented in the object-oriented and functional programming language
Scala. We go beyond this purpose, via BridJ and a C Application Programming
Interface (API), to run tests against an embedded system in real-time while it
is moving around in the physical world.

ScalaCheck provides a library for testing stateful systems based on a sequence
of interactions via an API. This library is called the “Commands” library!, where
each possible interaction with the API of the SUT is described as a command
that ScalaCheck can generate using a “generator”. The commands library is
useful when parts of the SUT state have to be known for generating further

Lorg.scalacheck.commands.commands

136

commands, or when the state is required to determine whether commands
produce correct results. When using the commands library, an abstract model
of the SUT state is carried along the test, and each command can use the state
to determine if the results it produces are correct. The commands are also
responsible for updating the state if necessary. The generator is responsible for
generating a suitable command with suitable parameters based on the current
state. What the state that ScalaCheck maintains for us looks like is shown later,
after introducing all necessary concepts.

The API for interacting with the SUT that we give to ScalaCheck is defined
as follows:

1| class Car {
// Apply brake and wait until the car has stopped
def stopCar(): Unit = {...}

2

3

4

5| // Send the next trajectory part to the car and wait until

6] // it is almost finished. Returns true if the maximum difference

7| // between the UWB and RTK—SN position stayed below 1m

8| def runSegments(route: List[RpPoint]): Boolean = {...}

10| // Drive the car back to its initial position and wait until it

11| // arrives. Returns true if sucessful, false otherwise.

12| def runRecoveryRoute(ri: RouteInfo, carRoute: Int): Boolean = {...}

14| // Add a fault to one of the probes
15| def addFault(probe: String, faultType: String,
16 param: Double, start: Int, duration: Int): Unit = {...}

18| // Clear all faults
19| def clearFaults(): Unit = {...}

21| // Set the UWB position equal to the RTK—SN position
22| //in order to start from a known state.

23| def resetUwbPosNow(): Unit = {...}

24|}

Ultimately these methods communicate with the model car, as it is running,
over TCP. As indicated by the comment provided in the API description, the
runSegments method can return false when the UWB and RTK-SN derived
positions differ by over 1 m. If this happens, the test will fail.

When using the commands library, a test generated by ScalaCheck is a
sequence of random commands acting on the system. The commands we have
specified are RunSegments and AddFault, which have the following generators:
genRunSegments, genFaultAnchor, genFault WheelSlip and genFault Yaw. The
first generator, genRunSegments, results in the generation of a random trajectory
that is executed using the RunSegments command. The other generators are for
injecting various kinds of faults into the system using the AddFault command,
this is explained further in Section 3.1.

137

(&)} Zoom: 0.0052040
0SM zoom: 18

é ®
3
Staz, s
@ €rp @ B
Ar @
2
%o
& @
® @
®
®
azery 9‘&/4
e
©
®

Figure 6: A driving area defined by route with ID 2 with the cutouts 4, 5, 6
and 7. Route 1 is the recovery route and route 0 is the start trajectory. The
route IDs are written in the vertex circles of the polygons.

Each command comes with a precondition and a postcondition. The precon-
dition is used by ScalaCheck to decide if the command can be allowed to run
given the current state. After executing the command, ScalaCheck runs the
postcondition code and decides if the test can continue or if a failure occured.

As our tests involve moving a car around outdoors, a parameter to the
test-case generation is a description of the area it is allowed to travel in. The
geometry of this test scenario is specified using RControlStation by means
of routes with different IDs. Note that routes in RControlStation consist of
a connected set of points, and we use them for defining both polygons and
trajectories.

Figure 6 shows such a scenario: route 0 defines the trajectory that the car
starts with in every test and route 1 defines the recovery trajectory, which is
used to lead the car back to the start trajectory with a repeatable heading and
speed. Route 2 defines an outer polygon that encloses where the car is allowed
to drive and routes 4 to 7 define cutouts in that enclosing polygon that the car
is not allowed to drive in.

With these concepts established, the state maintained by ScalaCheck to
facilitate test-case generation has the following content:

1| case class State(
2| // The trajectory that has been generated so far
3| route: List[RpPoint],

138

// Object containing the drivable map with methods
// to generate valid trajectories within it.
routelnfo: Routelnfo,

// Number of faults injected so far

8| faultNum: Int)

~ O Ol W~

That is, it contains the route generated so far as well as information about the
test scenario geometry and the number of faults injected so far.

Now we proceed to generate test cases, using ScalaCheck, as follows:

1) Create a new state and initialize it to default values. The member faultNum
is initialized to 0 and the member route is initialized to the route with ID
0 fetched from RControlStation over TCP/XML. The member routelnfo is
initialized with the routes 2 and 4 to 7, defining the valid area the experiments
are allowed to be generated within.

2) A new SUT object is created, representing the connection to the car and the
actions it can execute. The SUT object is then used to clear the injected faults
on the car, drive back to the recovery route, as described in Section 3.3, and to
start driving along the start route. Between finishing the recovery route and
driving along the start route the UWB position estimate on the car is reset to
be equal to the RTK-SN position estimate. This is done so that all experiments
are started in a known and repeatable state.

3) Now that the state is initialized and the car drives along its start route a
new command is generated, which can be either one of the FI commands, as
described in Section 3.1, or a RunSegments command, as described in Section 3.2.
The commands are generated according to a distribution of choice and can be
based on the system state, for example such that only a certain number of FIs
are generated in each test. The genRunSegments generator requires the previous
trajectory to make a valid extension to it, and the RunSegments command
needs to update the state with the now extended trajectory.

4) Repeat 3) until the test is finished, or until the postcondition of any command
fails. The test size, or number of commands to be generated, can be passed to
ScalaCheck when starting the test generation. We have chosen to generate tests
with 5 to 20 commands. When running many tests, ScalaCheck will start by
generating smaller tests (fewer commands) and increase the test size towards
the end of the testing campaign.

5) After the test finishes ScalaCheck will call destroySut, which in our case tries
to stop the car safely. This is done by first generating a valid trajectory with a
low speed connected to the current trajectory, waiting until the car has reached
the low speed along that trajectory and then applying brake until the car has
stopped. This safe stop addresses Challenge III from Section 1.

6) ScalaCheck will run steps 1) to 5) for the number of tests we decide to run.
We usually run between 3 and 100 generated tests like this, depending on the
available time and remaining battery life of the model car.

Note that the connection to the model car has a certain latency, we have a
limited state sampling interval and that generating trajectories takes a certain
time due to the complexity and potentially large number of tries, as explained
in Section 3.2 and 3.3. Therefore, the RunSegments command will not wait

139

until the car has reached the end of the segment, but only until it has a certain
time left before reaching the end. During this time we have to send possible
FI commands and the next RunSegments command. As a consequence we also
have to make sure that each RunSegments command provides at least a long
enough trajectory to account for this time and that our code is optimized to a
certain extent. The fact that ScalaCheck runs on the efficient Java JVM has
made it easier to write complex algorithms that execute in a short time. This
addresses Challenge I and III from Section 1.

It should also be noted that shrinking is a common concept within PBT [5],
meaning that failing test cases are shrunk to smaller failing test cases to make
analyzing them easier. With the commands implementation of ScalaCheck,
shrinking would mean to remove commands from the failing command sequence
while keeping it valid, and re-run it after each shrinking step until the shortest
sequence of command leading to a failure is found. In our tests this was not
meaningful as changing the command sequence has a significant impact on the
experiment, and often leads to finding a different fault that happens to result
from a shorted sequence of the initial commands.

As our test setup is rather complex to replicate with many details involved,
we have published the complete source code for the test generation and all parts
for our model car, as well as the sources for RControlStation, on Github under
the GNU GPL version 3 license. See the footnotes below for links!?3.

Compared to other HIL testing setups, our approach has a more general
description of the test scenarios. For example, it is common to choose from a
set of traffic scenarios [19] or mission profiles [20] that have to be constructed
manually, whereas we completely generate the scenarios based on higher level
geometric constraints. This allows us to generate a wide variation of scenarios
with little manual work, but brings the challenge of added complexity to the
test case generation. Further, our generated tests are not only run in a HIL
setup, they are also executed on the full hardware with the additional challenges
of keeping the tests safe and being able to restore the state so that tests can be
re-run or further tests can be executed.

3.1 Fault Injection

We have based the FI on the approach used by the FaultCheck tool that we have
developed in previous work [1, 11]. Essentially this is done by adding probes
to variables in the firmware of the controller on the model car and controlling
these probes with a simplified embedded C version of FaultCheck. For example,
we have added probes to the travel distance and yaw variables in the IMU and
odometry update described in Section 2.2 as:

1] void pos_uwb_update dr(float imu_yaw, float turn_rad, float speed)

{

2| fi_inject_fault_float("uwb_ travel dist”, &travel dist);

Thttps://github.com/vedderb/rise_sdvp
2https://github.com/vedderb/rise_ sdvp/tree/master/Linux/scala_ test
3https://github.com/vedderb/rise_sdvp/tree/master/Linux/RControlStation

140

https://github.com/vedderb/rise_sdvp
https://github.com/vedderb/rise_sdvp/tree/master/Linux/scala_test
https://github.com/vedderb/rise_sdvp/tree/master/Linux/RControlStation

3| fi_inject_fault_float("uwb_yaw”, &imu_yaw);
4

1

These probes are controlled by our embedded C FaultCheck library, which is
controlled from ScalaCheck using command generators such as:

1| def genFaultWheelSlip(state: State): Gen[AddFault] = for {

2| param <— Gen.choose(10, 50)

3| start <— Gen.choose(0, 100)

4] duration <— Gen.choose(1, 10)

5| } yield AddFault("uwb_ travel dist”, ”JAMPLIFICATION”, param.
toDouble / 10.0, start, duration)

yielding an AddFault command. In this example we generate a wheel slip fault
that can be modeled by an amplification greater than one of the travel distance
measured by the odometry. For adding faults the probe has to be specified, the
type of fault (BITFLIP, OFFSET, AMPLIFICATION or SET_TO), the start
iteration and number of iterations of the fault. As with FaultCheck, multiple
faults can be added to the same probe (or variable). Our C version of FaultCheck
consists of less than 400 lines of code, has low runtime overhead and is written
without the requirement for external libraries. To use it only the probes as
shown above have to be added, and text strings controlling the faults have to
be provided. These text strings can be easily generated by ScalaCheck and sent
over the existing communication interface to the model car. In summary, this
is a simple method of adding FI support to the firmware with small intrusion
on the code base.

In addition to the wheel slip fault shown above we inject the following faults:

o Ranging reflections, meaning that the distance measured between the
UWB module on the car and an anchor was not the line of sight, but a
reflection. This fault can appear e.g. when something is blocking the way.
We model this by a positive offset fault injected on the measured distance.

e Yaw error, meaning that the yaw angle used for the position estimation
as described in Section 2.2 has an offset, which can be caused by e.g.
external objects interfering with the magnetometer. This can be modeled
by a positive or negative offset added to the yaw angle.

There are other techniques to inject faults on embedded target hardware,
such as scan chain implemented FI [9] that have no intrusion on the final firmware.
However, they would require additional code and hardware for controlling the
debug port of the controller of our model car from ScalaCheck. Using these
techniques also makes it more difficult to time injections to align with variable
updates from the external events. Therefore, we considered the small intrusion
on the source code a better option in our case given the simplicity and exact
control over timing in relation to external events.

141

3.2 Trajectory Generation

One of the essential parts of our test case generation is the ability to generate
random trajectories. Trajectory generation is a known problem within mobile
robotics, and it is common to solve problems such as finding parking spots while
avoiding obstacles [21] or navigating to a position on a map while adjusting the
trajectory around obstacles [22]. Our situation has some similarities with these
problems, but our problem formulation is different: we are not aiming for a
specific final position or orientation of our model car, we want to generate long
random trajectories that are drivable by our model car while staying within the
valid driving area.

The trajectories we generate have to stay within the valid outer polygon of
the map without crossing the inner polygons, and they must have a shape that
our model car can follow given its steering geometry. Our trajectories consist
of points creating segments with a length between 0.6 and 2.0 m. The angle
between two consecutive segments must be less than 30°, because that makes
the tightest turn we can make larger than the minimum turning radius of our
model car. Figure 7 illustrate how we generate such valid trajectories randomly:
1) Assume that we start with a valid trajectory segment, such as the start
trajectory 0 in Figure 6. If we start from the car we make a short segment with
the same orientation as the car.

2) From the previous segment, S,_; in Figure 7, extend three lines of length
L; one pointing in the same direction as the segment (line B) and two lines
pointing +6° to the sides (line A and C), where 8 =30° and L =2m in our case.
If the lines intersect with any of the polygons, truncate them at the intersections
(I} and b).

3) Create a horizontal rectangle that contains the vertices of the lines A to
C, by simply setting the X and Y coordinates to the respective maximum and
minimum X and Y coordinates of the line vertices. If the diagonal of this
rectangle is less than 0.6 m we assume that we are stuck in a corner and start
over from the start trajectory in Figure 6.

4) Generate a random XY-coordinate within the rectangle and consider the line
segment formed by that coordinate and the end coordinate of segment S,_i;
if the segment is between 0.6 and 2.0 m long, does not intersect with any of
the polygons and has an angle of less than 30° to S,_; we keep this segment
and proceed to the next step. Otherwise, we repeat this step until we either
generate a valid segment, or until we have reached the maximum number of
inner tries in which case we start over with the trajectory generation.

5) If 4) creates a valid point we add it to the trajectory as S, and start over
with step 1) with the now extended trajectory. Repeat step 1) to 4) until we
have generated the desired amount of points, or until we have exceeded the
maximum number of outer tries.

In our case we use up to 50 inner tries generating a point within the rectangle
for each segment, and up to 5000 outer tries of starting over. This way we can
successfully generate trajectories of 30 - 40 segments most of the time, with few
retries in the normal case (<2 inner tries and <3 outer tries). This becomes
increasingly difficult though when generating trajectories longer than 40 points

142

—

(Xz, YZ)I

Bounding
or inner

polygon

Figure 7: Rectangle considered for trajectory segment generation.

as it becomes increasingly likely that we end up in a corner or against a wall
and have to start over. We solve this by generating shorter trajectories with an
ahead margin, and concatenate them. That means that we generate for example
30 points and only use the 10 first points and append them to our trajectory,
e.g. with an ahead margin of 20. Thereby we guarantee that there exists a
trajectory of at least 20 points that can be appended to our current trajectory.
Then we repeat this for every extension of our trajectory, where the extensions
guarantee that there is a possible further extension after it. With this method
in place, we were able to generate trajectories millions of points long without
any issues, even within complex polygons.

This is the method we use to generate a trajectory for the RunSegmens
ScalaCheck command described above; we generate between 2 and 20 points
at a time, and guarantee that there exists a trajectory of at least 20 (ahead
margin) points with 0.6 to 2.0 m spacing after this trajectory piece. Even in
the worst case where we have 5000 outer retries, this generation takes less than
50 ms on a common laptop computer meaning that we can do it in real time,
addressing Challenge 1.

Our trajectory generation method is not guaranteed to succeed, meaning
that we possibly can generate a trajectory leading into a corner with too short
distance to stop the car safely. To avoid that, we have a method in our test suite
that attempts to generate many long random trajectories within the test area
that we use every time we create a new test area. If we are able to generate long
trajectories, e.g. 100 km, without exceeding half the maximum number of outer
tries we consider it safe to use the given test area, addressing Challenge III.
Figure 8 shows an example of a 14 km long generated trajectory within the
driving area from Figure 6. The reason that we stopped at 14 km for making the
figure is that rendering the trajectory during generation is resource-intensive,
and not necessary for only making the test. An observation that gives us further
confidence in our trajectory generation method is that the only problematic
test areas we have found so far have a narrow path longer than the ahead

143

"7 “\}5'2':$Fﬂlo

kingdonkSAegHS21_EIma e
J ge s f—
,‘\) .02y V23.0.C Rlen: 14393.68 m
(3 Glass

V25_Gift

V5_Kings

V39_Control laundry
oom V62071
V3_Accra pRRES V9_Polo
Greene
V12 _Dry
V59_ cleaning
V13 Metro

Figure 8: Part of a 14 km long trajectory generated within the driving area
from Figure 6.

margin leading into a corner with too little space to turn around the car, which
is evident by just looking at the test area. Even these areas can be handled
though by increasing the ahead margin at the expense of computational power.

3.3 Return Trajectory Generation

Initially, or after finishing previous experiments, the model car is located at a
random position with a random orientation. To minimize the need to manually
reorient and move the model car while performing tests, we designed a method
for automatically generating a return-route. The goal is to connect a starting
point and orientation (point-orientation) with a goal point-orientation derived
from the beginning of the recovery route while adhering to the same constraints
for trajectory generation as the test-trajectory generation, i.e. the trajectory
cannot leave the test area, the trajectory may not enter into cut-off areas and
it must be possible for the model car to follow the trajectory given the vehicle
dynamics. The method shown in this section addresses Challenge II from
Section 1.

Our method of return-route generation is based on the following insights,
or, heuristics:
1) If unconstrained by obstacles, an efficient way to reposition and reorient
a car is to turn in an arc, using maximum steering angle, towards the new
position while making room for the turning arc necessary to also establish
correct orientation at the target position. Figure 9 illustrates this approach to

144

A, ‘*4.51" 2 Zoom: 0.0328412
O Ogpg N E

@Iy l;{4: 20.68 m
4.061, -904.625, 229) E

14:23:39:361 3)

Figure 9: Trajectory generated by extending arcs from a starting point-
orientation (the car) to a goal point-orientation (the recovery trajectory (trajectory

1).

repositioning the model car.

2) From Section 3.2, we already have a method for generating random trajecto-
ries that can reach most locations within the test area. So if it is impossible to
reposition the car using 1), a short random trajectory can be extended from the
current position leaving us in a new location to try again from. This procedure
of trying 1) and 2) is iterated for a maximum number of tries before giving
up and restarting from the original point-orientation. After finding a valid
trajectory, we start over with this process again until we find a new valid return
trajectory, and keep it if it is shorter than the previous one. This is then
repeated 100 times in order to increase the probability of generating a shorter
return trajectory.

3) From a number of repetitions of trying and retrying 1) and 2) we are likely,
but not guaranteed, to have a route that connects the starting point-orientation
with the target point-orientation. Given the random nature of this approach, we
are however not likely to have obtained the shortest route (or even a short route
by any standards). We improve on this by applying a trajectory shortening pass
to the generated trajectory. This pass is explained in more detail below, but in
essence it attempts to find valid shortcuts between head- and tail-sublists of the
generated trajectory. While this methodology still does not guarantee that the
route is optimal, we have seen that in practice the result is an improvement. As
an example, Figure 10 shows a trajectory generated by our approach without
optimization and Figure 11 shows the same trajectory after the optimization
pass. In this case the trajectory was shortened from 104.4 m to 84.9 m.

More in depth, the method for connecting two arbitrary point-orientations
by arcs and a line is performed as follows. First extend arcs, consisting of
short line segments, turning left- and rightwards from both the start and target
positions. Second try to connect initial subarcs at the start and target position
by a line given the constraint that it must have a valid turning angle. If it is
possible to connect the start and target position and the resulting trajectory is
valid the procedure ends successfully, otherwise failure to find a direct route is

145

Zoom: 0.0121299
RP: 66

G)

RLen: 104.43 3

>

Figure 10: Recovery trajectory generated without optimization. Length:
104.4 m.

oo

0SM zoom:
RP: 18

Figure 11: Trajectory from Figure 10 after the optimization pass. New length:
84.9 m.

146

Figure 12: Our model car driving on a parking lot with two UWB anchors
mounted on tripods in waterproof boxes.

reported.

As section 3.2) explains step 2) in depth, we now proceed to look at the
details of 3), trajectory shortening. Our method expects a trajectory as input
and tries to shorten it while maintaining the start and end positions and
orientations intact, as well as respecting the constraints of a maximum turning
angle between consecutive segments and not intersecting with the polygons.
The shortening process iterates over the trajectory in each point cutting it into
a head and tail portion. The head portion of the trajectory is extended with
arcs turning left and right. These added arcs are then traversed and in each
point an attempt is made to form a trajectory that meets a tailing sublist of the
tail section of the trajectory. If the steps above result in a shorter trajectory,
the procedure is run again with this new shorter trajectory as input. When no
further shortening can be obtained the process completes.

4 Results

We have evaluated the performance of our UWB positioning system described
in Section 2.2 using our test setup by placing our model car together with
two UWB anchors on a parking lot, as shown in Figure 12. We started by
manually driving along the edges of the parking lot while drawing a trace on
the map to aid in placing the enclosing polygon. There were no cutouts in this
test. Then we tried to generate 100 km of trajectory within the area, which
succeeded without issues. Next we used our model car in HIL simulation mode,
as described in Section 2.1, running a few experiments to further ensure that
the tests are safe to run.

Next, we tried the setup without FI running 10 experiments to ensure that

147

Grid res: 5 m
Zoom: 0.0277030
0SM zoom: 1

-130.00 m

-140.00

Anchor 50 ar 1
Pos : (-68.604, -142.518)(-60.563, @ldensher 233)
Height : 1.00 m 4:10:43: {@ Pos | : (-57.089, -142|966)
Height : 1.00 m

\ \
Figure 13: Traces after 10 test campaigns without FI. The RTK-SN traces are
shown in magenta and the UWB traces are shown in green.

-70.00 m
-60.00 m

most areas are reached, and that the system works nominally without faults
present. Figure 13 shows the traces from this experiment. The difference
between the UWB position and the RTK-SN position was below 0.6 m for
the entire experiment. It is also clear that all traces for the experiments are
overlapping at the beginning of the start route (route 0), showing that the
return function described in Section 3.3 effectively restores the system state.

Then we ran an experiment with FI enabled in the same area, with the
results shown in Figure 14. The figure shows overlapping traces for re-running
the same experiment three times using the return functionality described in
Section 3.3. Figure 15 shows the maximum difference between the UWB and the
RTK-SN positions for each RunSegment command for the three re-runs of the
same experiment, as well as the difference between the individual experiments.
The experiment consisted of the following commands:

1| RunSegment...)

RunSegment(...)
AddFault(uwb_ travel dist, AMPLIFICATION,2.5,46,6) // Wheel slip
RunSegment(...)
AddFault(uwb_range 234, AMPLIFICATION,2.0,53,4) // UWB
Reflection

RunSegment(...)
AddFault(uwb_ travel dist, AMPLIFICATION,2.2,44,6) // Wheel slip
AddFault(uwb_ yaw,OFFSET,—18.0,0,2) // Yaw error
AddFault(uwb_range 50,AMPLIFICATION,4.0,14,8) // UWB

U W N

© 0 ~J D

148

Grid res: 5 m
Zoom: 0.0273390
0SM zoom: 19

-130.00 m \

-140.00

.] ” -152) S —
oy __‘_.‘——'."'
Anchor 50
Pos : (-68.604, -142.511) Anchor 234
Height : 1,00 m @ros | : (-57.089, -142.966)

Height : 1.00 m

70.00 m
-60.00 m
50.00 m

Figure 14: One test repeated three times with FI enabled. The traces for them
are overlayed, and mostly overlapping. Maximum UWB deviation: 1.7 m

=
o

=

Error / Deviation (m)

0.5

Trajectory Part

Figure 15: The difference between the UWB and RTK-SN positions for the
three re-runs of the experiment shown in Figure 14. The dotted lines show the
difference from each individual test to the average, indicating the repeatability.

149

Reflection

10| AddFault(uwb_range 234, AMPLIFICATION,2.0,21,6) // UWB
Reflection

11| RunSegment(...)

Note that each AddFault command has a comment after it that describes
what the fault represents. Also note that each AddFault command has a duration
that is short enough to only affect the first RunSegment command after it (e.g.
the wheel slip fault on line 3 only affects the RunSegment command on line 4).

As can be seen, the first wheel slip fault brought the deviation up to 0.7 m,
and the first reflection fault had the same impact. The combination of the
later faults however brought the deviation up to around 1.5 m, which made
the postcondition of the RunSegment command and thus the experiment fail.
We got consistent results with less than 0.1 m difference between the runs
(except one outlier of 0.2 m towards the end of one run), indicating that this
particular combination of faults has a repeatable impact, and that we have
good repeatability in our experiments. The fault handling mechanism to handle
reflections, as mentioned in Section 2.2, is to truncate the maximum distance
an UWB anchor correction is allowed to make to 0.2 m. We were able to repeat
the same experiment with different values of this truncation parameter, and
saw that larger values were better at compensating for wheel slip but were
affected more by reflections, and smaller values had the opposite effect. Note
that significantly more complex fault handling mechanisms can be implemented
and evaluated using the same experiment setup, but that is outside the scope
of this paper.

We then re-ran the same experiment without FI enabled three times, as
shown in Figure 16 and Figure 17. This time the UWB deviation was below
0.55 m for the entire experiment, and the results were repeatable with a difference
of less than 0.1 m between experiments. By observing the green traces from
the UWB position it can be noted that they are almost completely overlapping,
with the same kind of deviation consistently when repeating the experiments.
This indicates that the deviation is of systematic nature such as errors in the
anchor positions, incorrect geometry assumptions as described in Section 2.2 and
direction-dependent offsets possibly due to UWB antenna gain directionality,
as described in our previous work [18].

Next we set up another experiment on a different parking lot, with a rock
blocking the line of sight to one UWB anchor for a portion of the trajectory.
There we repeated an experiment that failed without FI three times, with the
results shown in Figure 18 and Figure 19. As can be seen, the rock blocks anchor
234 for a section of the trajectory, where the UWB position obtains an offset
away from the rock due to the longer measured distance caused by the reflection
on the building wall. The three re-runs of the experiment had consistent results,
with less than 0.15 m difference between re-runs, even when the total deviation
was around 2 m. The ability to repeat the same experiment again with nearly
identical results was a great aid in determining that the deviation was caused
by a wall reflection due to the rock blocking the line of sight.

Methods to deal with this type of problems are to alter the anchor placement,

150

Grid res: 5 m
Zoom: 0.0273390
0SM zoom: 19

-130.00 m

I

-140.00

Anchor 50
Pos : (-68.604, -142.511) Anchor 234
Height : 1,08 m @ros | : (-57.089, -142.966)

Height : 1.00 m

-70.90 m
-60.00 m
-50.00 m

Figure 16: The same test as in Figure 14, but with FI disabled. The traces for
repetition runs are overlayed, and mostly overlapping. Maximum UWB deviation:

0.55 m.

T T T
R R R S ~-Runl.
2 : “CDiff 1
: ——Run2
: - ~Diff 2
: —Run3
: -~ ~Diff3
1.5 “ """"""""""""""""""""""""""""""""""""
€ :
5 :
W g b
o 1 : :
= : :
> 3 3
0 —===—==_ _i R i— _-—=z=z=zZZZ:= =
1 2 3 4 5

Trajectory Part

Figure 17: The difference between the UWB and RTK-SN positions for three
re-runs of the experiment shown in Figure 16. The dotted lines show the difference
from each individual test to the average, indicating the repeatability.

151

Anchor 5
Pos :

Building—>

Rock

Anchor 234
.Pos : (-7.261, -1
Height : 1.00 m

, -125.752, -164)
:55:260

Figure 18: Experiment on parking lot with rock without FI, repeated three
times. The traces for the repetitions are overlayed, and mostly overlapping.
Maximum UWB deviation: 2 m.

152

1.5

UWB Error (m)
[

0.5

Trajectory Part

Figure 19: The difference between the UWB and RTK-SN positions for the
three re-runs of the experiment shown in Figure 18. The dotted lines show the
difference from each individual test to the average.

add more anchors and/or improving the fault handling mechanisms of the
software.

5 Conclusion

We have presented a novel approach for automatically testing real-time hardware
with techniques from PBT and FI. The real-time nature of the task brought
challenges such as timing, safety and repeatability. In the process of addressing
these challenges, we have developed a novel method of generating safe and
drivable random trajectories respecting the geometry of the car as well as the
available area on the map. We also took advantage of this trajectory generator
together with a custom trajectory shortening method to generate a drivable
trajectory from an arbitrary position to a defined start position and heading for
consistently resetting the state of our SUT. Our random trajectory generator
also provides a guarantee for each generated part that it is possible to generate
an additional trajectory with a specified length after it, which is essential for the
safety during tests. Further, we incorporated fault injection in our test setup to
make it suitable for testing functional as well as non-functional requirements.

With this test setup in place, we developed and tested a low-cost UWB-based
positioning system for our self-driving model car. We tested this system against
the existing RTK-SN positioning system on the model car, and found several

153

interesting randomly generated test cases with and without injected faults that
led to failures (deviations exceeding 1 m between the positions based on UWB
and RTK-SN). By replaying the test cases many times and comparing the results,
we were able to identify causes for the failures and suggest improvements to
handle them.

To the best of our knowledge, this is a novel approach for automatically
generating tests for complex real-time systems, with regard to safety, timing
and repeatability of conducted experiments. Our work can be used as a basis
for testing a variety of real-time systems extensively on e.g. test tracks dealing
with road vehicles, or when testing mobile robots in various situations.

Acknowledgement

This research has been funded through EISIGS (grants from the Knowledge
Foundation), by VINNOVA via the FFI project Chronos step 2 and through
the PRoPART EU project (Grant agreement no: 776307).

References

[1] B. Vedder, J. Vinter, and M. Jonsson. ”Using Simulation, Fault Injection and
Property-Based Testing to Evaluate Collision Avoidance of a Quadcopter Sys-
tem”. In: IEEE International Conference on Dependable Systems and Networks
Workshops (DSN-W). June 2015, pp. 104-111.

[2] A. Soltani and F. Assadian. ”A Hardware-in-the-Loop Facility for Integrated Ve-
hicle Dynamics Control System Design and Validation”. In: 7th IFAC Symposium
on Mechatronic Systems MECHATRONICS 2016 49.21 (2016), pp. 32-38.

[3] A. Mouzakitis, D. Copp, R. Parker, and K. Burnham. "Hardware-in-the-Loop
System for Testing Automotive Ecu Diagnostic Software”. In: SAGE Measure-
ment and Control Journal 42.8 (2009), pp. 238-245.

[4] R. Nilsson. ScalaCheck: The Definitive Guide. Artima Press, 2014.

[5] J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund,
V. Gulias, J. Hughes, and S. Thompson. "Property-Based Testing - The ProTest
Project”. In: Formal Methods for Components and Objects. Ed. by F. Boer,
M. Bonsangue, S. Hallerstede, and M. Leuschel. Vol. 6286. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 250-271.

[6] R. K. Iyer. "Experimental Evaluation”. In: Proceedings of the Twenty-Fifth
International Conference on Fault-Tolerant Computing. FTCS’95. Pasadena,
California: IEEE Computer Society, 1995, pp. 115-132.

[7] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. "Fault Injection
into VHDL Models: the MEFISTO Tool”. In: Proceedings of the Twenty-Fourth
International Symposium on Fault-Tolerant Computing. 1994, pp. 66-75.

[8] J. Vinter, L. Bromander, P. Raistrick, and H. Edler. "FISCADE - A Fault Injec-
tion Tool for SCADE Models”. In: Proceedings of the Institution of Engineering
and Technology Conference on Automotive Electronics. 2007, pp. 1-9.

154

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

18]

[19]

20]

21]

22]

P. Folkesson, S. Svensson, and J. Karlsson. ”A Comparison of Simulation Based
and Scan Chain Implemented Fault Injection”. In: Proceedings of the Twenty-
Eighth Annual International Symposium on Fault-Tolerant Computing. 1998,
pp. 284-293.

J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. "GOOFI: Generic Object-
Oriented Fault Injection Tool”. In: Proceedings of the DSN International Con-
ference on Dependable Systems and Networks. 2001, pp. 83-88.

B. Vedder, T. Arts, J. Vinter, and M. Jonsson. "Combining Fault-Injection
with Property-Based Testing”. In: Proceedings of the International Workshop
on Engineering Simulations for Cyber-Physical Systems. ES4CPS '14. Dresden,
Germany: ACM, 2014, 1:1-1:8.

J. Cordes, J. Mossinger, W. Grote, and A. Lapp. ”Autosar standardised appli-
cation interfaces”. In: ATZautotechnology 9.2 (Mar. 2009), pp. 42-45.

M. Skoglund, T. Petig, B. Vedder, H. Eriksson, and E. M. Schiller. ”Static and
dynamic performance evaluation of low-cost RTK GPS receivers”. In: IEEE
Intelligent Vehicles Symposium (IV). June 2016, pp. 16-19.

B. Vedder, J. Vinter, and M. Jonsson. ”A Low-Cost Model Vehicle Testbed with
Accurate Positioning for Autonomous Driving”. In: Accepted for Publication in
Hindawi Journal of Robotics. 2018.

M. Haklay and P. Weber. "OpenStreetMap: User-Generated Street Maps”. In:
IEEE Pervasive Computing 7.4 (Oct. 2008), pp. 12-18.

H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro. "Pure Pursuit Re-
visited: Field Testing of Autonomous Vehicles in Urban Areas” In: IEEE 4th
International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA). Oct. 2016, pp. 7-12.

Decawave. DWM1000 IEEE 802.15.4 UWB Transceiver Module. DWM1000
Datasheet. Datasheet. Decawave, 2016.

B. Vedder, J. Vinter, and M. Jonsson. ”Accurate positioning of bicycles for
improved safety”. In: IEEE International Conference on Consumer Electronics
(ICCE). Jan. 2018, pp. 1-6.

P. Olsson. ”"Testing and Verification of Adaptive Cruise Control and Collision
Warning with Brake Support by Using HIL Simulations”. In: SAE Technical
Paper. SAE International, Apr. 2008.

E. Bagalini and M. Violante. "Development of an automated test system for
ECU software validation: An industrial experience”. In: 15th Biennial Baltic
Electronics Conference (BEC). Oct. 2016, pp. 103-106.

J. Yoon and C. D. Crane. "Path planning for Unmanned Ground Vehicle in
urban parking area”. In: 11th International Conference on Control, Automation
and Systems. Oct. 2011, pp. 887-892.

M. S. M. Hashim and T.-F. Lu. "Time-critical trajectory planning for a car-like
robot in unknown environments”. In: IEEE Business Engineering and Industrial
Applications Colloquium (BEIAC). Apr. 2013, pp. 836-841.

155

	Abstract
	Acknowledgements
	List of Included Papers
	List of Other Publications
	Glossary
	Introduction
	Research Questions
	Research Approach
	Research Contributions
	Thesis Structure

	Background
	Property-Based Testing
	Testing Stateful Software
	Shrinking

	Fault Injection
	Golden Run
	Characteristics of Fault Injection

	Accurate Positioning
	rtk-sn
	uwb Ranging

	Summary of Papers
	99993em.5Paper I: Combining Fault-Injection with Property-Based Testing
	99993em.5Paper II: Towards Collision Avoidance for Commodity Hardware Quadcopters with Ultrasound Localization
	99993em.5Paper III: Using Simulation, Fault Injection and Property-Based Testing to Evaluate Collision Avoidance of a Quadcopter System
	99993em.5Paper IV: Accurate Positioning of Bicycles for Improved Safety
	99993em.5Paper V: A Low-Cost Model Vehicle Testbed with Accurate Positioning for Autonomous Driving
	99993em.5Paper VI: Automated Testing of Ultra-Wideband Positioning for Autonomous Driving

	References
	Paper I
	Introduction
	Fault Injection
	Property-Based Testing
	Combing Property-Based Testing and Fault Injection

	FaultCheck
	Fault Models
	Supported Fault Models
	Probing C-Code
	Communication Channel Emulation
	Integration with other Tools
	Temporal Triggers for Faults

	An example: AUTOSAR E2E
	Experiment Set-up
	Experiment Results

	Conclusions
	Acknowledgement
	References

	Paper II
	Introduction
	Related Work
	Hardware Setup
	Ultrasound Distance Measurement
	Position Estimation
	Collision Avoidance
	Simulation and Fault Injection
	Experimental Performance and Stability Analysis

	Conclusions
	Acknowledgement
	References

	Paper III
	Introduction
	Quadcopter System
	Collision Avoidance
	Realistic Fault Models

	Quadcopter Simulator
	QuadcopterTool
	CopterSimGUI

	Testing CopterSim with our Testing Platform
	QuickCheck Model
	FaultCheck Integration

	Visualizing Test Sequences and Improving the System
	Handling Faults in the Quadcopter System

	Conclusions
	Acknowledgement
	References

	Paper IV
	Introduction
	Related Work
	Proposed Implementation
	Real-Time Kinematic Satellite Navigation
	Dead Reckoning

	Evaluation Setup
	Results
	Conclusion
	References

	Paper V
	Introduction
	Architecture Overview
	Positioning
	Challenges
	Performance Evaluation

	Trajectory Following
	Lateral Control

	Conclusion
	References

	Paper VI
	Introduction
	System Setup
	hil Simulation Mode
	UWB Positioning

	Test-Case Generation
	Fault Injection
	Trajectory Generation
	Return Trajectory Generation

	Results
	Conclusion
	References

