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Accurate positioning is a requirement for many applications, including safety-critical autonomous vehicles. To reduce cost and at
the same time improving accuracy for positioning of autonomous vehicles, newmethods, tools, and research platforms are needed.
We have created a low-cost testbed consisting of electronics and software that can be fitted on model vehicles allowing them to
follow trajectories autonomously with a position accuracy of around 3 cm outdoors. The position of the vehicles is derived from
sensor fusion between Real-Time Kinematic Satellite Navigation (RTK-SN), odometry, and inertial measurement and performs
well within a 10 km radius from a base station. Trajectories to be followed can be edited with a custom GUI, where also several
model vehicles can be controlled and visualized in real time. All software and Printed Circuit Boards (PCBs) for our testbed are
available as open source tomake customization and development possible. Our testbed can be used for researchwithin autonomous
driving, for carrying test equipment, and other applications where low cost and accurate positioning and navigation are required.

1. Introduction

It is common to use model cars for automotive research,
and several studies are published in that field. For example,
research within vehicle platooning has been carried out on
model cars equipped with floormarking and distance sensors
[1, 2], with the goal of developing Model Predictive Con-
trol (MPC) algorithms for controlling the distance between
adjacent vehicles. Model cars have also been used to develop
obstacle avoidance algorithms for mobile robots [3] and in
student projects to teach them about autonomous driving [4].
These projects are specific and aimed at certain tasks, and the
hardware and software are not available to replicate for use
within other areas.

The need for a generic model vehicle platform for edu-
cation and research within autonomous driving is recog-
nized in the community, and several attempts at answering
that need have been made. A project named MOPED [5]
provides a model car that has three Raspberry Pi single
board computers [6] connected over ethernet to simulate
part of the complexity of a modern full scale car. Two of

the computers on the MOPEDmodel car run AUTOSAR [7]
while the third one runs the default Raspbian Linux distri-
bution (https://www.raspberrypi.org/downloads/raspbian/)
that comes with the Raspberry Pi. The reason for using
AUTOSAR is to represent a software stack similar to the one
on a full scale car; however it requires software tools that are
not available as open source or freeware for developing the
AUTOSAR portions of the software. Further, the MOPED
model car only provides low level control functions for the
motor and steering servo, meaning that the users have to
implement trajectory following and positioning algorithms
themselves, as well as equipping the car with the necessary
sensors. Gulliver [8] is another initiative that addresses
the need of a miniature vehicle platform in research and
education environments. In their publication, the authors
describe high level algorithms for handling different traffic
scenarios that can be used given access to a model vehicle
that can follow trajectories. While these projects are an
aid in education and research about autonomous driving,
a significant amount of work is still required from the
researchers or students to get a self-driving model car up and
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running. Note that, with self-driving in this context, we refer
to the ability to follow a predefined trajectory accurately and
repeatedly, which has been one of the goals in our work as
explained below.

Our work focuses on providing a hands-on hardware
and software testbed that can be used to build self-driving
model vehicles with minimal effort. The goal is to provide
the possibility to get a model vehicle up and running and
follow a custom trajectory autonomously with 5 cm or
better accuracy in just one day of work, given that the user
has a background within electronics. To achieve this, we
have developed low-cost hardware and both embedded and
desktop software controlling model vehicles with Ackerman
steering that can be modeled with a bicycle model [9].
Our testbed also has support for Hardware-in-the-Loop
(HIL) testing [10, 11] by simulating parts of the vehicle
dynamics, which is useful during development and automatic
testing. Thus, the contribution of this work is to answer to
what extent the aforementioned goal can be achieved with
low-cost hardware, provide help for other researchers who
want to implement their own self-driving model car, and
answer what performance and accuracy can be expected. All
software and hardware design for our testbed are available on
github (https://github.com/vedderb/rise sdvp) for making it
possible to study and extend our platform. To our knowledge
there is nothing available today that can fulfill the goal that we
have for our tested, and as expressed in the aforementioned
studies [5, 8] there is a need for that in the education and
research communities.

In addition to usage as a research and education platform,
our testbed can be used in measurement and data collection
applications. For example, we have used it to pull a trailer
with different radar units to be characterized around a
variety of radar targets. This way the radars can be moved
along a predefined trajectory around the targets, while the
measurements they take are logged together with accurate
position stamps. Another possible application that we have
been considering is using model cars based on our testbed
to carry light sensors and map the light intensity of artificial
lighting in outdoor environments. The open source nature
of the software in our testbed and the versatile visualization
tools that are part of it make this a relatively simple task.

The remainder of this paper is organized as follows: in
Section 2 we describe the architecture of our testbed and in
Section 3 wedescribe howpositioning is performed. Section 4
describes our trajectory following approach and in Section 5
we present our conclusions from this work.

2. Architecture Overview

Our testbed consists of a control Printed Circuit Board
(PCB) we have developed that can be connected to a
VESC (https://vesc-project.com) open-source motor con-
troller over Controller Area Network- (CAN-) bus. Together
with a battery and a Global Navigation Satellite System
(GNSS) antenna they can be connected to the Permanent
Magnet Synchronous Motor (PMSM) and steering servo
suitable for a model car. The control PCB together with a

Figure 1: Our custom control PCB and our VESC 5 kW motor
controller next to a car key for size comparison.

Figure 2: The 1:6 scale model car in our testbed.

5 kW VESC motor controller is shown in Figure 1 together
with a car key for size comparison. Another unit of the same
control PCB configured as a communication interface can
be connected to a laptop computer running RControlStation,
which is the monitoring and control Graphical User Interface
(GUI) for our testbed. The stationary control PCB can also
be connected to a GNSS antenna and act as a Real-Time
Kinematic Satellite Navigation (RTK-SN) base station for the
testbed, eliminating the need for an external base station.This
gives a minimal stand-alone configuration of our testbed,
which is able to follow trajectories autonomously. The cost
of this configuration, excluding the laptop cost, is in the
range of €900 to €2000 depending on the choice of model
car, battery size, VESC version, and GNSS antennas. The
schematics and hardware layout of our control PCB, the
control PCB firmware and the RControlStation software,
and the VESC firmware and configuration software are all
available on github (https://github.com/vedderb).

While the aforementioned minimal configuration is suf-
ficient for getting everything running and carrying out
experiments, a Raspberry Pi (https://www.raspberrypi.org/)
single board computer can be added for remote debugging,
for video streaming, and for providing WiFi or 4G cellular
connectivity. Our github repository also contains a command
line utility for the Raspberry Pi that among other things
provides a TCP/UDP to USB bridge for communication with
RControlStation over WiFi or 4G. Figure 2 shows a photo of
one of our model cars and Figure 3 shows a block diagram
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Figure 3: A block diagram of the configuration of our model car. A laptop computer for control and monitoring while acting as a RTK-SN
base station is also shown.

of its configuration. Note that it also has a touch screen for
the Raspberry Pi for showing network connections and other
useful information, such as the battery charge level. Going
through the block diagram in Figure 3, our model car, shown
in Figure 2, has the following components:

(i) A lithium-ion battery with 10 cells in series and 3 Ah,
providing up to 6 hours of power depending on the
driving speed.

(ii) An integrated fuse and power switch, between the
battery and the rest of the circuit.

(iii) A DC/DC converter that provides a 5V rail.
(iv) Our custom controller PCB, powered from the 5V

rail.
(v) Our VESC motor controller, powered from the bat-

tery and connected to the controller over CAN-bus.
(vi) A PMSM motor, connected to the VESC motor

controller.
(vii) A steering servo and a GNSS antenna, connected to

the controller.
(viii) A Raspberry Pi single board computer, connected

to the controller over USB. It is powered backwards
through the USB ports from the controller. The Serial
Wire Debug (SWD) port of the controller is also
connected to the Raspberry Pi, so that the controller
can be programmed and debugged remotely.

(ix) Outside the car, there is a laptop computer connected
over TCP to the Raspberry Pi using the WiFi or 4G
cellular connection. Our RControlStation software
runs on the laptop computer and utilizes the connec-
tion to control and monitor the model car.

(x) The laptop is connected to Ublox M8T RTK-SN
receiver with an antenna mounted on a tripod to act
as a base station for the model car, enabling high

precision positioning (see Section 3 for more details).
RControlStation handles the setup of the Ublox M8T,
as well as forwarding of the required correction data
for RTK-SN to the model car.

The control PCB is based on an ARM Cortex M4 micro-
controller and runs the ChibiOS (http://www.chibios.org)
real-time operating system. The microcontroller carries out
sensor fusion for position estimation (see Section 3), the
trajectory following algorithm (see Section 4), and all other
functionalities of the model vehicle, meaning that the
connection to the laptop is only required for monitoring
and sending high level control commands. In addition to
the microcontroller, the control PCB contains an Inertial
Measurement Unit (IMU), a CAN transceiver, two radios,
DC/DC converters, an Ublox M8P GNSS receiver, and
various connection ports for possible extensions.

After the control PCB, the other essential part of the
electronics and software on the model car is the VESC
motor controller. The VESC is also developed by us, partly
in parallel with our testbed, but this paper only describes
it briefly. It can drive the motor of the model car with
high efficiency over a wide dynamic range using the state-
of-the-art motor control technique Field Oriented Control
(FOC) [12] with Space Vector Modulation (SVM) [13]. The
VESC is able to operate from zero speed with high torque
without position sensors on the motor by taking advantage
of a nonlinear observer [14] and effective startup algorithms.
Further, it provides position and speed feedback from the
motor over CAN-bus as well as closed loop speed control,
which is essential for the positioning system of the model
car to work accurately as described in Section 3. Another
essential functionality for our testbed that the VESC provides
is automatic identification of all motor parameters necessary
for sensorless FOC, which are rarely available in the datasheet
of inexpensive model car motors. All the configuration and
parameter detection of the VESC can be performed with

http://www.chibios.org
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Figure 4: A screenshot of RControlStation, where parameters for
the model car can be edited.

the accompanied VESCTool GUI, which among other things
provides configuration wizards to get all settings right.

In the same way as the VESC motor controller can be
configured to run with almost any PMSM without writ-
ing code and/or using expensive lab equipment for motor
parameter identification, the control software can easily be
configured for different model car configurations. Figure 4
shows a screenshot of RControlStation where several of the
model car parameters can be edited and stored in the control
PCB, such as the wheel diameter, gear ratio, and turning
radius. This enables users of our testbed to configure the
hardware and software to work with any model vehicle size
and configuration from easy-to-use GUIs, which is one of
the main objectives of our testbed. RControlStation also
provides many debugging and plotting tools aiding with
setting up model vehicles and performing experiments, such
as magnetometer calibration and data visualization. For
example, all graphs and map plots in this paper are generated
in vector format using RControlStation, without requiring
any additional code.

To develop and evaluate the trajectory following algo-
rithm, as well as aiding with development of automatic
test case generation with HIL, the control PCB supports a
simulation mode where tests can be performed with just
a USB connection to it without using the model car. This
mode is implemented by simulating the behavior of the
motor and mechanics with inertia and drag, and by updating
the position of the vehicle with only dead reckoning from
the simulated motor feedback, and heading calculated from
the commanded steering angle (see Section 3 for details
about the position estimation). The rate of movement of the
commanded steering angle is limited to capture the behavior
of a realistic steering servo. This simplifies and speeds up
testing and development, while capturing many important
aspects of the real-time hardware.

3. Positioning

Accurate positioning is an essential part of our testbed.
Our main position source is RTK-SN, which is based

on consumer GNSS technology with the addition of
carrier-phase measurements of the satellite signals. The
carrier-phase measurements together with conventional
code measurements on both the rover (the object to be
positioned) and a base station with a known position
within a 10 km radius from the rover are required. This
means that a data link between the rover and the base
station with a data rate of around 100 bytes/second,
depending on the number of satellites, is required. The
data stream with code and carrier-phase measurements
from the base station, together with information about
the position of the base station is usually referred to as
correction data and sent using a format such as RTCM3
(http://www.navipedia.net/index.php/RTK Standards).
RControlStation can either act as a base station for the model
vehicles by connecting an appropriate GNSS receiver to it
(such as the Ublox M8T), or act by connecting to an existing
base station using the TCP or NTRIP (https://en.wikipedia
.org/wiki/Networked Transport of RTCM via Internet Pro-
tocol) protocol. The correction data is then sent from
RControlStation to the vehicles using the communication
link of choice (4G, WiFi, or radio) using the RTCM3 format.
The position accuracy of the rover relative to the base station
with RTK-SN is around 1 cm under optimal conditions.

Traditionally RTK-SN has been an expensive technology,
but recently less expensive solutions have become available
[15]. In previous work we have compared the performance
of high and low cost RTK-SN systems [16] and came to the
conclusion that, besides the longer initial convergence time
and low update rates of the low cost systems, the performance
is similar. We have also studied how low cost RTK-SN
performs in urban environments [17] using the same control
PCB as presented here, and came to the conclusion that it
performs well even when the view of the sky is poor given
thatmultiple satellite constellations and/or sensor fusionwith
dead reckoning is used.

3.1. Challenges. The main challenge with using inexpensive
RTK-SN equipment with our testbed is the low position
update rate, as well as latency and jitter between updates. The
Ublox M8P RTK-SN receiver provides a position update rate
of 5 Hz, which is too low for accurate positioning and control
at speeds of up to 80 km/h, which our model cars are capable
of. Figure 5 shows the measured age of consecutive position
updates from the Ublox M8P. As can be seen, the samples are
between 95 and 135 ms old and have jitter of up to 40 ms.
If the model car moves at 10 m/s, which is less than half of
the maximum speed, a latency of 100 ms causes a position
error of 1 m. At the same speed, the jitter between consecutive
position samples can cause errors of up to 0.5m.Having a low
update rate and high latency on one ormore of the sensors on
the system is a common problem within robotics, especially
when low cost hardware is involved [18], and there are various
methods to handle that.

To deal with the low update rate, latency, and jitter of
the RTK-SN position samples, dead reckoning from sensor
fusion between the odometry data from the VESC motor
controller and samples from the IMU is combined with the

http://www.navipedia.net/index.php/RTK_Standards
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Figure 5: Delay jitter of the RTK-SN samples over time.

RTK-SN position samples to get a total update rate of 100 Hz
without latency. We have come up with the method below of
performing the combination. Note that the RTK-SN position
in (3) and (4) first is moved to the center of the vehicle based
on the current estimation of the heading angle and offset of
the GNSS antenna from the vehicle center.

(1)The IMU is sampled at 1 kHz and fed to a quaternion-
based orientation filter as proposed by Madgwick et al. [19],
which provides the roll, pitch, and heading of the model
vehicle. When the magnetometer of the IMU is configured to
be included, we have improved the position filter by adding
tilt compensation for estimating the heading [20] as well as
ellipsoid fitting for hard and soft iron compensation of the
magnetometer [21].

(2) The motor position is sampled from the VESC
motor controller at 100 Hz and combined with the estimated
heading from the position filter to calculate a relative dead
reckoning position. This position is stored in a 100 samples
long FIFO buffer together with the current GNSS time stamp
derived from the pulse per second (PPS) signal from the
Ublox M8P receiver.

(3) When RTK-SN position samples are received, they
are compared to the dead reckoning position sample from
the FIFO buffer from (2) with the closest time stamp to
the sample, which will be 5 ms away in the worst case. The
difference between the closest FIFO buffer sample and the
RTK-SN sample is then used to correct the current position
by moving it in the direction of the difference as

𝑝𝑥𝑦 = 𝑝𝑥𝑦 𝑜𝑙𝑑 + 𝑑𝑥𝑦𝐺𝑠𝑡𝑎𝑡 + 𝑑𝑥𝑦𝐺𝑑𝑦𝑛𝑑𝑝 (1)

where 𝑝𝑥𝑦 is a vector with the new xy-position of the vehicle,
𝑝𝑥𝑦 𝑜𝑙𝑑 is the previous position of the vehicle, 𝑑𝑥𝑦 is the
difference vector between the latest RTK-SN sample and
the closest position in time from the FIFO buffer, 𝐺𝑠𝑡𝑎𝑡 is a
scalar configurable static gain, 𝐺𝑑𝑦𝑛 is a scalar configurable
dynamic gain, and 𝑑𝑝 is a scalar of how far the vehicle has
moved since the previous RTK-SN update. Noise between
consecutive RTK-SN samples is rejected by gradually moving

the current position using this method instead of moving it
the full difference at once for every sample.

(4) When the magnetometer is not used to provide an
absolute heading reference, the heading of the orientation
filter in (1) is updated every time a RTK-SN sample is received
by first computing an RTK-SN heading as

𝜙𝑟𝑡𝑘 = −𝑎 tan 2 (𝑦𝑟𝑡𝑘 − 𝑦𝑝𝑟𝑡𝑘, 𝑥𝑟𝑡𝑘 − 𝑥𝑝𝑟𝑡𝑘) (2)

where (𝑥𝑟𝑡𝑘, 𝑦𝑟𝑡𝑘) is the latest RTK-SN position sample and
(𝑥𝑝𝑟𝑡𝑘, 𝑦𝑝𝑟𝑡𝑘) previous RTK-SN position sample. After that
a heading difference is calculated as 𝜙𝑑 = 𝜙𝑟𝑡𝑘 − 𝜙𝐹𝐼𝐹𝑂,
where 𝜙𝐹𝐼𝐹𝑂 is the heading of the sample from the FIFO
buffer from (2) closest to the average time between the latest
and previous RTK-SN samples. The heading in the current
position is then updated by rotating it in the angular direction
of 𝜙𝑑 with a step proportional to how far the vehicle has
moved between the latest and previous RTK-SN samples and
the heading correction gain. Scaling by the distance moved
is used because consecutive RTK-SN samples do not provide
any heading information when the vehicle is stationary.

The rationale of this approach is that the dead reckoning
position is accurate over short distances but drifts as the
distance increases. The time delay of the RTK-SN samples
is short enough to not cause significant degradation of the
dead reckoning, meaning that the current position can be
calculated accurately at a high rate by using an old absolute
position and the relative movements that have occurred since
then. Notice that the heading estimation is critical for the
dead reckoning to perform well, and more details about that
can be found in our previous work [17].

3.2. Performance Evaluation. To evaluate the performance of
the latency and jitter compensation described above, we have
driven the model car along a trajectory with rapid accelera-
tions and decelerations and measured the difference between
the RTK-SN position and the dead reckoning position for
each sample with and without the FIFO delay compensation.
Figure 6 shows the difference without compensation, and
Figure 7 shows the difference with compensation. As can be
seen, without the compensation the difference is stable at
constant low speed but goes to 1.1 m during the accelerations
and decelerations. With the compensation enabled, the dif-
ference is limited to 10 cm during the acceleration and to
20 cm during the deceleration, due to wheel slippage. The
reason that the difference in Figure 6 is low during constant
speed without compensation is that the position converges
to an invalid value, which will be apparent when the speed
changes rapidly, whereas when the compensation is enabled
the position will be closer to the true position at all times.
It can also be noted that during the constant speed shown
in Figure 6 there is over 10 cm position jitter while Figure 7
shows less than 3 cm jitter; this is due to the delay jitter
between the RTK-SN samples shown in Figure 5.

To obtain an estimate about the absolute accuracy and
repeatability of the position, we have downloaded a 20 m
radius circle trajectory to the model car with a constant speed
of 4 km/h.While the carwas following that trajectory lap after
lap on artificial grass, it made visible traces that allowed us to
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Figure 6: The speed and difference between the RTK-SN and the
dead reckoning position during hard acceleration and deceleration.
Delay compensation for the RTK-SN samples is disabled.
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Figure 7: The speed and difference between the RTK-SN and the
dead reckoning position during hard acceleration and deceleration.
Delay compensation for the RTK-SN samples is enabled.

visually inspect the deviation of the car tires from the traces,
as seen in Figure 8. As far as we could observe, the tires of
the car stayed within the traces with less than half the tire
width, or 2.5 cm, for the entire experiment.We alsomeasured
the diameter of the circle on the grass, and it had the correct
diameter as accurately as we were able to measure with
our equipment. The position difference between the RTK-
SN samples and the closest samples in the dead reckoning
FIFO stayed below 3 cm for the entire experiment, giving us
confidence that our model vehicle can estimate its absolute
position with 3 cm accuracy.

Figure 8: Our 1:6 model car repeatedly following a circular tra-
jectory on artificial grass. The traces from previous laps are visible
and can be used to estimate the lateral positioning and control
repeatability.

Figure 9: A screenshot of the map page in RControlStation, where
trajectories can be edited.

4. Trajectory Following

An important aspect of our testbed is the ability to edit
and follow trajectories. We define a trajectory as a list of
points where each point has a xy-positions and a speed
or time stamp, depending on the mode of operation. Our
testbed support three trajectory following modes: (1) speed
based, where themodel vehicle adjusts its speed proportional
to the set speed and relative distances to the two closest
trajectory points; (2) absolute time, where the model vehicle
adjusts its speed such that it reaches the trajactory points at
absolute RTCM(https://en.wikipedia.org/wiki/Coordinated
Universal Time) times (derived from the GNSS receiver
clock); and (3) relative time, where the model vehicle adjusts
its speed such that it reaches the trajectory points at times
relative to when the start command was issued. Creating tra-
jectories is most intuitive using the speedmode, but the time-
based modes are necessary to synchronize multiple vehicles
in a scenario. There is also a synchronization command
available that can be sent to the model vehicles in real time, so
that they continuously update their speed to reach a trajectory
point specified in the command at the time specified in the
command, based on the distance left along the trajectory to
that point.

RControlStation allows users to graphically edit trajecto-
ries with an overlay of OpenStreetMap [22], as shown in the
screenshot in Figure 9. We chose OpenStreetMap because it
is accompanied by a complete set of tools for map creation

https://en.wikipedia.org/wiki/Networked_Transport_of_RTCM_via_Internet_Protocol
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and rendering, available as open source software. This makes
it easy to update and create artificial maps, in e.g., test areas,
and render them on a server. The transforms for convert-
ing OpenStreetMap rendered map tiles with Web Merca-
tor (https://en.wikipedia.org/wiki/Web Mercator) projection
to the coordinate system of our testbed for viewing in
RControlStation are well documented on their wiki page
(https://wiki.openstreetmap.org/wiki/Main Page).Thiswas a
significant aid in implementing the map rending functional-
ity of RControlStation.

4.1. Lateral Control. Lateral control along the trajectories of
the model vehicles in our testbed is performed using the
pure pursuit algorithm, which is a common method within
robotics [23]. Essentially it works in the following way: (1)
draw a circle around the vehicle with a radius of the chosen
look-ahead distance; (2) calculate the point where that circle
intersects the trajectory; if multiple points are found pick
the one furthest ahead on the trajectory; and (3) adjust the
steering angle of the vehicle such that it follows an arc that
intersects with that point. When visualized, it looks like the
vehicle follows a point that moves away from it along the
trajectory. More details about the pure pursuit algorithm can
be found in the literature [23].Wehave also added support for
the case when the vehicle is further away from the trajectory
than the look-ahead distance, in which case it will follow
the closest point on the trajectory until the circle around
the vehicle intersects with the trajectory, after which the
algorithm is carried out as usual. This is useful when sharp
turns or oscillations cause the vehicle to lose the trajectory,
or when it is started far away from the trajectory. Also, if
the model vehicle is to be used with automatic test case
generation, it is helpful to have the ability to drive to the
closest point on a recovery trajectory and drive back to the
initial position along it.

Improvements to the pure pursuit algorithm commonly
found in literature are interpolation of the trajectory to find
points between trajectory points [23] and to use an adaptive
look-ahead distance [24]. Both of these improvements have
been employed in our testbed to increase the trajectory
following performance. We have also implemented one to
our knowledge unique improvement to the pure pursuit algo-
rithm, which is adding gain to the steering angle calculation
when the point to be followed is far away. The steering angle
is corrected as

𝐴𝑐𝑜𝑟𝑟 =
{
{
{

𝐴 𝑠𝑡 (1 + 0.2𝐷) if 𝐷 < 20m
5𝐴 𝑠𝑡 otherwise

(3)

where𝐴𝑐𝑜𝑟𝑟 is the corrected steering angle,𝐴𝑠𝑡 is the steering
angle that leads to the goal point along a circle that tangents
with the car, and 𝐷 is the distance to the goal point. The gain
helps when the vehicle starts far away from the trajectory
heading away from it, where it without the gain would follow
an arc longer than necessary to reach the trajectory. Figure 10
shows the arc the vehicle follows without the distance gain
and Figure 11 shows the arc that it follows with the gain. The
starting position is the same in both figures, namely, where

Figure 10:The red trace shows how the model car navigates back to
the trajectory with angle distance gain disabled.

Figure 11: The red trace shows how the model car navigates back to
the trajectory with angle distance gain enabled.

Figure 12: The red trace shows how the model car oscillates at 30
km/h with too small fixed look-ahead distance.

the red line starts. As can be seen, the arc in Figure 11 is
significantly shorter. Note that the look-ahead distance of the
vehicle in the figures is illustrated with a red circle around it
and that the point it is aiming for is drawn on the trajectory.

Using the simulation mode of the control PCB and a tra-
jectory that has variable speeds and sharp turns, we have set
up an experiment to evaluate the performance of the lateral
control with different settings and improvement strategies of
the pure pursuit algorithm. First we disabled adaptive look-
ahead distance and found a static distance that is long enough
to follow the trajectory in a stable manner. As an unstable
example, Figure 12 shows how the car behaves when the

https://en.wikipedia.org/wiki/Web_Mercator
https://wiki.openstreetmap.org/wiki/Main_Page
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Figure 13: The red trace shows how the model car follows the
trajectory at 30 km/h with sufficient look-ahead distance.

Figure 14: The red trace shows how the model car followed the
trajectorywith an arc without adaptive look-ahead distance enabled.

look-ahead distance is too short on a high speed part of the
trajectory, whereas the same scenario with a sufficient look-
ahead distance is shown in Figure 13.Themaximumdeviation
from that trajectory without adaptive look-ahead distance
during a stable lap was 40 cm, whereas it was 13 cm for the
same track with adaptive look-ahead distance enabled. The
difference in deviation from the trajectory comes from the
low-speed parts of that trajectory with sharp turns, where
a short look-ahead distance at low speed allows the vehicle
to follow the trajectory tightly while still being stable due to
the low speed. Figure 14 shows a tight turn without adaptive
look-ahead distance and Figure 15 shows the same turn with
adaptive look-ahead distance. For reference, the adaptive
look-ahead distance is calculated based on the speed of the
vehicle as

𝑑 = 𝑑𝑏𝑎𝑠𝑒 (1 + |V| ∗ 0.05)2 (4)

where 𝑑 is the calculated adaptive look-ahead distance, V is
the speed in m/s, and 𝑑𝑏𝑎𝑠𝑒 is the look-ahead distance when
the speed is 0. This equation was derived experimentally.

5. Conclusion

In this paper we have presented a novel testbed for research
and development within the areas of autonomous driving
and accurate positioning. We were able to achieve high
position accuracy and low latency using low-cost hardware

Figure 15: The red trace shows how the model car followed the
trajectory with an arc with adaptive look-ahead distance enabled.

Figure 16: The model car pulling a trailer with radar to be
characterized.

by fusing data from multiple sensors (Accelerometer, Gyro-
scope, odometry, and RTK-SN) to take advantages of their
individual strengths. For trajectory following we have imple-
mented the well-known pure pursuit algorithm along with
two common and one unique improvements as described in
Section 4.

Model vehicles based on our testbed can follow trajecto-
ries autonomously, and all tools necessary for visualization
and trajectory generation are provided. Our testbed is scal-
able to a wide range of model vehicles and can be set up
in just one day of work given familiarity with the testbed.
The custom hardware and all involved software are open
source for easy development and extension. We have also
performed a wide range of tests to ensure high performance
and reliability in various situations. To our knowledge there
is no similar testbed available today, and there is a significant
need for it in the research and education communities.

In addition to use within research and education, our
testbed can be used in data acquisition applications where
sensors need to be moved accurately according to a defined
path, while data is stored together with position and speed.
For example, Figure 16 shows a photo of ourmodel car pulling
a trailer with radar to be characterized along a predefined
path around different targets. The open source nature of
our testbed provides a solid base for such applications and
enables further functionality to be implemented without
the burden of implementing the positioning and navigation
functionality.
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Glossary

CAN: Controller area network. A
communication bus standard for
industrial and automotive applications.

Dead reckoning: The process of estimating the current
position by advancing a previously
determined position using inertial or
speed measurements. Dead reckoning
generally relies on measuring
derivatives, meaning that the error will
drift without an upper bound if no
absolute measurements, e.g., GNSS, are
used

FOC: Field Oriented Control (see [12])
GNSS: Global Navigation Satellite System
GUI: Graphical User Interface
HIL: Hardware-In-the-Loop
IMU: Inertial Measurement Unit. Achip that

can measure acceleration and angular
velocity with three axes each

MPC: Model predictive control (see [2])
Odometry: Tracking the rotation of the wheels. In

our case this is done by tracking the
rotation of the motor

PCB: Printed circuit board
PMSM: Permanent magnet synchronous motor.

A three-phase motor without brushes,
often referred to as BLDCmotor

PPS: Pulse per second. A pulse that is
emitted with accurate timing in the
beginning of each second, synchronized
to GNSS time

RTK-SN: Real-time kinematic satellite navigation
(see [15, 16])

SVM: Space vector modulation (see [13])
SWD: Serial wire debug. A programming and

debugging interface.

Data Availability

As our testbed is open source, including all PCB
designs, embedded software, and desktop software, the
experiments presented in this paper can be replicated by
constructing a model car using the resources available at
https://github.com/vedderb/rise sdvp. The data, plots, and
trajectories, as well as additional data and plots from the
experiments presented in this paper, can be found here https://
github.com/vedderb/rise sdvp/tree/master/Misc/Test%20Data/
paper 2018-06. To replicate the experiments and collect
similar data, as well as to generate similar plots, the
trajectories in the routes directory from the previous
link can be used together with the appropriate terminal
commands from the car terminal of RControlStation.
RControlStation is part of the open source software, and all
terminal commands can be listed by typing help in the car
terminal.
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