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GENERALIZED POISSON INTEGRAL AND SHARP ESTIMATES
FOR HARMONIC AND BIHARMONIC FUNCTIONS IN THE
HALF-SPACE

G. KRESIN"™ AND V. MaAz’ya%34

Abstract. A representation for the sharp coefficient in a pointwise estimate for the gradient of a
generalized Poisson integral of a function f on R™~! is obtained under the assumption that f belongs
to LP. It is assumed that the kernel of the integral depends on the parameters a and 3. The explicit
formulas for the sharp coefficients are found for the cases p = 1, p = 2 and for some values of «, 3
in the case p = co. Conditions ensuring the validity of some analogues of the Khavinson’s conjecture
for the generalized Poisson integral are obtained. The sharp estimates are applied to harmonic and
biharmonic functions in the half-space.
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1. BACKGROUND AND MAIN RESULTS

In the paper [2] (see also [5]) a representation for the sharp coefficient C,(x) in the inequality
[Vo(@)] < Cp@)]o],

was found, where v is a harmonic function in the half-space R’} = {x = (2 zp) 2’ €eR" Lz, > 0}, represented
by the Poisson integral with boundary values in LP(R™™!), || - ||, is the norm in LP(R"™!), 1 < p < o0, z € R}
It was shown that
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and explicit formulas for C, C5 and C', were found. Namely,

01:2(1171)7 Cy — (nfl)n, O =

Wn 2nwn

4(n —1)=D/12 4
n"/2 w,

)

where w,, = 27"/2/I'(n/2) is the area of the unit sphere S*~* in R”.

In [2] it was shown that the sharp coefficients in pointwise estimates for the absolute value of the normal
derivative and the modulus of the gradient of a harmonic function in the half-space coincide for the cases p = 1,
p = 2 as well as for the case p = co.

Similar results for the gradient and the radial derivative of a harmonic function in the multidimensional ball
with boundary values from LP for p = 1,2 were obtained in [3].

We note that explicit sharp coefficients in the inequality for the first derivative of an analytic function in the
half-plane with boundary values of the real-part from LP were found in [4].

The subjects of papers [2, 3] is closely connected with D. Khavinson problem [1] and conjecture (see [5],
Chap. 6) for harmonic functions in a ball. The Khavinson’s problem is to find the sharp coefficient in the
inequality

[Vo(z)] < K(z) Sp lv(y)l, (1.1)

where v is a bounded harmonic function in the ball B = {x € R? : |z| < 1}. The Khavinson’s conjecture is that
the sharp coefficient K(z) in (1.1) and the sharp coefficient K (z) in the inequality

< K(z) ls?<pl lv(y)|

‘5”(%)
Bz

coincide for any x € B.

Thus, the L, L?-analogues of Khavinson’s problem were solved in [2, 3] for harmonic functions in the multi-
dimensional half-space and the ball. Also, the L*>-analogue of Khavinson’s problem for harmonic functions in
the multidimensional half-space was solved in [2].

In this paper we treat a generalization of some problems considered in our work [2]. Here we consider the
generalized Poisson integral in the half-space

xa

B
wo =k [ (FES) 16 (12)

with two parameters, & > 0 and 3 > (n — 1)(p — 1)/p, where k is a constant, n > 2, f € LP(R*"1), 1 < p < o0,
y=(y,0),y e R*L.

In the case « = 1/n, 8 = n, k = 2/w, integral (1.2) coincides with the Poisson integral for harmonic functions
in the half-space. If k = 2/((n — 2)w,), @ = 0 and 8 = n — 2, then integral (1.2) gives solution of the Neumann
problem for the half-space. Solution of the first boundary value problem for the biharmonic equation in the
half-space is represented as the sum of two integrals (1.2) with « =3/(n+2),8 =n+2 and a = 2/n,8 = n,
accordingly. Integral (1.2) with o = 0, 8 € (0,n — 1) with appropriate choice of k can be considered as a
continuation on R’} of the Riesz potential in R 1

In the present paper we arrive at conditions for which some analogues of Khavinson’s conjecture for the
generalized Poisson integral in the half-space are valid.

In Section 2 we obtain a representation for the sharp coefficient C, g, (z) in the inequality

[Vu(z)| < Ca’ﬁ,p(x)”pr ) (1.3)
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where

_ Capp
Capp(®) = 2 n+B—a)+(n=1)/p)

The constant C, 5, in this section is characterized in terms of an extremal problem on the sphere S"~1.
Analyzing this extremal problem for the case p = 1, in Section 3 we derive the explicit formula for Cy 51
with 8 > 0. It is shown that C, 51 = |k|8|1 — | if « satisfies the condition

N A -
VI+B+1 TVI+B-1

0<a<

For these values of «, the constant C, g1 = |k|8|1 — ¢ is sharp also in the weaker inequality obtained from
(1.3) with p = 1 by replacing Vu by 0u/dz,. Also, it is shown that

o PR WA I
apl = 20— 1 1+3

Vit o VIHE
VIih+1 JITh-1

if o satisfies the condition

In Section 4 we consider the case a = 0 in (1.2). Solving the extremal problem on S*~! described in Section 2,
we arrive at the explicit formula for the sharp coefficient Cy g ,(x) in inequality (1.3) with a = 0. In particular,
we obtain the sharp inequality

Co.8.p
V@l < S5 e 141, (14)
for 6 >n—1and p € [1,00], where Cy 51 = |k|8 and
L ((6 +3)p+ 1) =
W%F —n p+n— P—
2(p—1)
Cop.p = kI3 ; (1.5)

(8+2)p
I (2(p—1)>

for p > 1. The constant (1.5) is sharp also in the weaker inequality obtained from (1.4) by replacing Vu by
ou/0x,,.

In Section 5 we reduce the extremal problem on the sphere S?~! from Section 2 to that of finding of the
supremum of a certain double integral, depending on a scalar parameter.

Using the representation for C, g, as the supremum of the double integral with a scalar parameter from
Section 5, in Section 6 we consider the case p = 2. Here we obtain results similar to those of Section 3.

In Section 7 we deal with the case p = oo in (1.3). First, we show that for any S > n — 1 there exists a,,(8) > 1
such that for o > a,,(8) the equality holds

an=1)/2 p (/F;H

r(s)

Ca,p,00 = K| ) (a=1)B+n-1).
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The number a,(8) is a root of a transcendental equation. For instance, a3(2.5) = 1.2865, «a3(3) =
1.4101, «3(3.5) ~ 1.4788. Second, we consider the case aw = 1 separately and show that

7 =1/2(p — 1)I° (w)

C1,6,00 = |kl

for 8 € (n — 1,n]. In each of two assertions of Section 7 we show that the absolute value of the derivative of u
with respect to the normal to the boundary of the half-space at any point z € R} has the same supremum as
[Vu(z)|.

In Section 8 we concretize the results of Sections 3, 4, 6, 7 to obtain sharp estimates for the gradient of
z"~Ly(x), where k£ > 0 and v is a harmonic function in R? which can be represented as the Poisson integral
with boundary values from L?. Here we give the explicit formulas for the sharp constant C ., ;, in the estimate

—1 —2—(n—1
(V(zpi = o(x))] < Crppap” (n )/p”va (1.6)

n

with some values of k and p. For instance, in the case kK = 0 we derive the inequality

Tn

‘v{“”}kg%%ﬁg<nvm”ﬂp (.7)

with the sharp constant

p
n—1 3p+n—1 p—1
2n | T * F(2p(p71))

E T ((”+2)P>

CO,n,p =

2(p—1)

for 1 < p < oo. For the cases p = 1,2, 0o inequality (1.7) becomes

v(x) 2n 1 v(x) nn+3) 1 v(x) 1
{2 ol [T{E2 < M bl [T{S2 )] < 2 el

Ln Wn Tn € :E»El Ty

accordingly. We note, that the constants in inequality (1.7) remain sharp also in the weaker inequalities obtained
by replacing V by 9/0x,,.

We mention one more group of inequalities for harmonic functions with the sharp coefficients obtained for
the case k = 1:

1’

2(n—2){( (n—1)2 )}“’“W 1

nwy, n—2)(n+1 E”U

n(n — 1/2
V(2 ()| < {(1)} 2o, V(@) < (0 - a2 o

2" w, oo’

Concluding Section 8, we present the sharp estimate

9w,

’v(xnm—Zwo(x)H < Cn’nypxzm—2—(n—l)/p 8xn

: (1.8)
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where k£ > 0 and w, is a biharmonic function in R’} with the boundary values

ow,
ox,

€ LP(R™1).

w0| 707 x,=0

=0

The sharp constant Cj n,p in inequality (1.8) is the same as in (1.6). For example, in the case k = 0,p = o0,

inequality (1.8) takes the form
w, (x) 1
v <

2. REPRESENTATION FOR THE SHARP CONSTANT IN INEQUALITY FOR THE
GRADIENT IN TERMS OF AN EXTREMAL PROBLEM ON THE UNIT SPHERE

ow,
0xy,

o0

We introduce some notation used henceforth. Let R} = {J; = (@ zn) 2 = (x1,...,0p_1) ER*" L 2, > 0},
S*l={zeR:|z|=1}, S} ' ={zeR": z|=1, 2, >0} and S” ' = {z € R" : |z| = 1, z,, < O}. Let
e, stand for the n-dimensional unit vector joining the origin to a point ¢ on the sphere S*~!. As before, by
wy, = 20™/2 /T (n/2) we denote the area of the unit sphere in R”. Let e,, be the unit vector of the n-th coordinate
axis.

By || - ||, we denote the norm in the space LP(R™~!), that is

1/p
i ={ [ werar

if 1 <p<oo,and ||f]|e = ess sup{|f(z')] : 2’ € R*"1}.
Let the function u in R”} be represented as the generalized Poisson integral

v = [ (5 s (2.1)

ly — x|

with parameters a > 0 and

B>(n-1)(p-1)/p (2.2)

where k is a constant, f € LP(R"1), 1 <p<oo,y = (¢,0),y € R*~L

Now, we find a representation for the best coefficient C,(z; 2) in the inequality for the absolute value of the
derivative of u(x) in an arbitrary direction z € S"~ !, x € R?. In particular, we obtain a formula for the sharp
coefficient in a similar inequality for the modulus of the gradient.

Proposition 2.1. Let x be an arbitrary point in R} and let z € S"=1. The sharp coefficient Co 5p(; 2) in the
inequality

| (Vu(z),2)| < Ca,B,p(CE? Z)Hf”p (2.3)
s given by

L) Ca,p,p(2)
Capp (5 2) = g D
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where
Oa,BJ(Z) = ‘MB sup |(aen - (607 en)eaa z) | (60'7 en)67
UESi’l
p1
P (B=n)p+tn P
Capp(z)=[k|B / 1’(ae”_(em €n)es, z)‘ o (eg, en) PTh do
S

for 1 <p < oo, and
Ca7ﬁ700(2) - ‘k|ﬂén,71 }(ae" - (60'3 en)ea7 Z) | (607 en)ﬁ_n dU
i

In particular, the sharp coefficient Co g p(x) in the inequality
Vu(@)] < Capp(@)] 1],

1s given by

Copp
Capp() = L2 A=) +(n=1)/p)’

where

Ca,gp = sup Ca,pp(2).
|z|=1

Proof. Let x = (2',2,) be a fixed point in R’}. The representation (2.1) implies

Ou afdnizp Tt BapP(y; — @) N
3Ii /]Rn—l |: ‘y—x|5 + |y71;|ﬂ+2 f(y) y;

that is

Vu(z) = kﬁxf{ﬁ_l/

€y T (y — l‘) R
Rn—1 [ " ly — |f+2 } )y

ly — x|f

L (Can enden g0y,
Rn—1 ly —

where e,, = (y — )|y — z|~!. For any z € S"71,

(Vu(o),2) = koot [ (0= lemenlem 2 yqy,

Hence,

Cap1 (w5 2) = [K| Bz ~" sup l(aen - (er,eZ)ew, )
yEOR? ly —

)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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and

q 1/q
eni e.’I;T)en efl'77z
Copp(@: 2) = [k|B2P~1 {/R ) [(aen — (exy, €n)eay, 2)| dy/} (2.12)

ly — x[P1

for 1 < p < oo, where p~! + ¢~ 1 = 1.
Taking into account the equality

H = (ewy, —€n), (2.13)

by (2.11) we obtain

_ B
Capi(w:2) = K|ags =t sup 0€n = (eavren)esy z”( — )
yEOR™ Tn ly — |

k
= % sup ‘(aen — (es,en)eq, z)|(em—en)ﬁ.
Tn ocesn!

Replacing here e, by —e,, we arrive at (2.4) for p = 1 with the sharp constant (2.5).
Let 1 < p < oo. Using (2.13) and the equality

1 B 1 ( Ty )Bq_n Ty
ly — P ghan T\ |y — ly —z|”

and replacing ¢ by p/(p — 1) in (2.12), we conclude that (2.4) holds with the sharp constant

p—1

P (B=n)ptn P
Cussl®) =81 [ [(0n ~ (errenens 2)[PTer—en) FH= a0 | "

where S"' = {0 € S*! : (e,,e,) < 0}. Replacing here e, by —e,, we arrive at (2.6) for 1 < p < oo and at
(2.7) for p = oo.

Estimate (2.8) with the sharp coefficient (2.9), where the constant C, g, is given by (2.10), is an immediate
consequence of (2.3) and (2.4). O

Remark 2.2. Formula (2.6) for the sharp constant Cy g ,(2) in (2.4), 1 < p < oo, can be written with the
integral over the whole sphere S"~! in R”,

p—1

|]{;‘B P <ﬁ*n7)p+n P
Casr(2) = 55-177 /SH,J(O‘%—(%en>ea7Z)!’“ (esren)| 77 dop (2.14)
A similar remark relates (2.5):
Capa(z) = kB sup |(ae, — (eq, en)eq, 2)||(eq en)|” (2.15)

oesn—1
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as well as formula (2.7):

_ kI8

2 Jonn ’(O‘en - (eaaen)eoa Z)H(eoven)‘ﬁ_n do.

Cap,00(2)

3. THE CASE p=1
In the next assertion we obtain the explicit formula for the sharp constant Cy 3 1.

Theorem 3.1. Let f € LY(R"™!), and let x be an arbitrary point in R’.. The sharp coefficient Co,5.1(x) in the
inequality

[Vu(@)| < Capa(@)] £, (3.1)
1s given by
Ca
COéWBJ(‘T) = xl-‘rﬁ,([ifa)’ (32)
where
Ca,p,1 = |k|B[1 = af (3.3)
if
V143 V143
and
B/2 2 (B+2)/2
Ca,p,1 = |KIB <2aﬁ_ 1) <1iﬁ> (3.5)
if
V1+ 5 V1i+p (3.6)

T8+l S AF5-1

If a satisfies condition (3.4), then the coefficient Co 5.1(x) is sharp also in the weaker inequality obtained from
(3.1) by replacing Vu by Ou/0x,,.

Proof. The equality (3.2) for the sharp coefficient C, 51(x) in (3.1) was proved in Proposition 2.1. Using (2.5),
(2.10) and the permutability of two suprema, we find

Cap1 = k|8 sup sup |(ae, — (e en)eqr. 2)|(es en)’
|z|=1 UESi_l

= k|8 sup |aen - (eg,en)egl(ea,en)ﬁ. (3.7)

n—1
o€eSYy
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Taking into account the equality

1/2 1/2
|ozen —n(ey, en)eg| = (aen — (e, en)es, ae, — (e, en)eg) = (a2 + (1 —2a)(ey, en)z) ,

and using (3.7), we arrive at the representation

2 2\ /2 B
Copi= k|8 sup (a + (1 —2a)(es, €p) ) (€r,€n)". (3.8)

065171
We denote t = (ea, en). Let us introduce the function

F8) = (o + (1 —20)¢2) /%8, (3.9)
where ¢t € [0,1], « > 0 and 8 > 0. By (3.8),

Cupi = |k|B max f(t). (3.10)

0<t<1

Taking into account that f(¢) > 0 for ¢ € (0,1) and any o > 0, 3 > 0, we can consider the function F(t) = f2(t)
on the interval ¢ € (0,1) instead of f(t). We have

F'(t) = 2(a2/3+ (1 —2a)(1+ﬁ)t2)t25—1. (3.11)
If 0 < <1/2, then F'(t) > 0 for t € (0,1). If &« > 1/2, then the positive root of the equation F’(t) = 0 is

a?p

"N A)

(3.12)

Herewith, if

a?p

@a-DI+A) "~ 19

then ¢1 ¢ (0, 1). Solving inequality (3.13) with respect to «, we obtain intervals for which (3.13) holds:

a<o = VB 4 asa = YEEB
- VI¥B+1 - J1+B8-1

Hence, F'(t) = (f2(t)) > 0 for t € (0,1) if @ < o, or @ > ag. This, by (3.9) and (3.10), proves the equality
(3.3) for (3.4).
Furthermore, by (2.5),

Copilen) = kB sup |a—(es,en)?|(€rsen)” > [K|BI1—al.
(rESi_l

Hence, by Cy .81 > Ca p1(en) and by (3.3) we obtain Cy g1 = Cq g,1(ey,), which completes the proof for the
case a < «, as well as in the case o > .
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Now, we consider the case t; < 1, that is

a?p

Ga—Da+p "

The last inequality holds for a € («,, ). Differentiating (3.11), we obtain
F'(t) = 2(0?8 + (1 - 20)(1 + B)(1 + 26)¢ ) 25D,

After calculations, we have
2 B-1
F(4) = —4a2 2( o B ) '
() =" o= a )

Since @ > a1 > 1/2 and 8 > 0, by the last equality we conclude that F"(¢;) < 0. Hence, the function F(t) and,
as a consequence, the function f(t) attains its maximum on [0, 1] at the point ¢; € (0, 1).
Substituting ¢; from (3.12) in (3.9) and using (3.10), we arrive at (3.5) for the case o, < @ < «,. O

4. THE CASE aa =0

In this section we consider integral (2.1) with o = 0 that is

U(I):k/R f) dy/

no1 |y — z|P ’

where z € R"}, 8 satisfies inequality (2.2) and f € LP(R™~!). Here we solve extremal problem (2.10) with o = 0
and obtain the explicit value for Cy g,,. Namely, we prove

Theorem 4.1. Let « =0 in (2.1) and let any of the following conditions holds:
(i) f=n—1andp € [l,0),
(ii) B >n—1 and p = oo,
(iii) B<n—1landpe[l,(n—1)/(n—1-p)).
Then for any v € RY the sharp constant Cy g, in the inequality

COﬁm

Vu@) <~z My (4.1)
is given by Co g1 = |k|B, and
no1 - _1\ ) T
Rl ((5 712+3)p+n 1) P
(r—1)
Copp = KIS Giow (4.2)
r (2(17*1))

forp>1.
The constant Cy g, is sharp under conditions of the Theorem also in the weaker inequality obtained from
(4.1) by replacing Vu by du/0x,,.
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Proof. Let & =0 in (2.1) and p = 1. By (2.10) and (2.15),

Co,1 = |k|B sup sup |(e,,7 z)||(eg,en)|ﬁJr1 < |k|B. (4.3)

|z|=10eSn—1

On the other hand,
B+1
Copa > k|B sup |(es, en)||(es en)|” " = [KIB,
UeSn—l
which, together with (4.3), implies C; = |k|5. We note that by (2.5),

CO,B,l(en) = |k|ﬁ sup ) (ea7en)ﬁ+2 = |k|57

e
o€SY

that is 007571 = 0075,1((3”).
Let now a =0 in (2.1) and p > 1. By (2.10) and (2.14) we have

p—1
k 6 2 %11)?% P
Copp = %Lﬁ sup {/Snll(emz)"k |(6m€n)‘ i da} . (4.4)

|z|=1

Let us denote by p=p/(p—1) and A = ((8 —n+1)p+n)/(p — 1) the powers in (4.4). Obviously, A > 0 for
B >mn—1and any p > 1. That is, A > 0 if condition (i) is satisfied.

If 6>n—1and p=o0,then A= —n+1>0. Therefore, A > 0 if condition (ii) holds.

If <n—1,then A >0 for p<n/(n—p —1). For f —n+ 1< 0, by inequality (2.2), we have p < (n —
1)/(n =B —1). So, A > 0 if condition (iii) is satisfied.

By Holder’s inequality, we obtain

/Sn_l‘(eg,z)|“|(eg,en)"\dag{ /Sn_1|(eg,z)|ﬂ u”dg} { /Sn_l\(eg,en)r *Ida} L (4s)

Obviously, the value of the first integral on the right-hand side of the last inequality is independent of z.
Therefore,

[ fena ar= [ fenen) e,
Sn—l

S§n—1

which, in view of (4.5), implies

/Sn*lKemz)]”|(ea,en)|/\da < / (e, en)) " do . (4.6)

S§n—1

On the other hand,

s / ’(eg’z)‘u}(edven)’AdU 2/ ‘(607en)’A+Md0"
§n-1 -

|2]=1
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which together with (4.6) leads to

sup /Sn_l|(e'7’z)‘u{(eff’en)|/\d0':/ |(echen)|/\+ud0',

|z|=1 Sn—1

The last equality, in view of (4.4), implies
p—1

‘k|ﬂ (B*T;t2)p+n P
Copp = 50-1/p /Snil|(ea7en)| Yo do . (4.7)

Comparing (2.14) with a = 0, z = e,, and (4.7), we conclude that Cy g5, = Co g p(e,). This proves that the
constant Cp g, is sharp also in the weaker inequality obtained from (4.1) by replacing Vu by du/0z,.
Evaluating the integral in (4.7), we find

Bont2)ptn /2 (B=n+2)ptn
/ l(eo,en)| 777 do = 2w, / cos” r1  ¢Ysin" 2 9d9
gn—1 0

on(n=1)/2 ((5*n+3)p+n71>

" B((,B—n+3)p+n—1 n—l) 2p—-1)
2(p—1) 2 r (gf;f{';)
which together with (2.8), (2.9), where o = 0, and (4.7) proves (4.1) and (4.2). O

5. REDUCTION OF THE EXTREMAL PROBLEM TO FINDING OF THE
SUPREMUM BY PARAMETER OF A DOUBLE INTEGRAL

The next assertion is based on the representation for Cq g (), obtained in Proposition 2.1.

Proposition 5.1. Let f € LP(R"™1), p > 1, and let x be an arbitrary point in R?. The sharp coefficient
Co.p,p(x) in the inequality

Vu(@)| < Cappl@)| £, (5.1)
1s given by
Capp(@) = xinﬂf(lcajf((nl)/p)’ (5.2)
where
L (g =
Capp=k|B(wn—2) P~ VP W s {/0 dso/o Foplo: 05, 8,7) dﬁ} : (5.3)
Here

Fn(p:050,8,7) = |G, 95 0, 1) [/ P77 cos(B=mpm)/ (1) 9 sinn=2 g in" =3 ¢ (5.4)



GENERALIZED POISSON INTEGRAL AND SHARP ESTIMATES 13
with
G(p,9; ,7y) = cos® 9 — a + 7y cos ¥ sin ¥ cos . (5.5)

Proof. The equality (5.2) for the sharp coefficient Cy g(x) in (5.1) was proved in Proposition 2.1. Since the
integrand in (2.6) does not change when z € S*~! is replaced by —z, we may assume that z, = (e,,2) > 0 in
(2.10).

Let 2’ = z — z,e,. Then (z',e,) = 0 and hence 22 + |z
S’}:l, we associate the vector o’ = e, — 0,.€,,.

Using the equalities (o/,e,) = 0, o, = y/1 —|0’|? and (z',e,) = 0, we find an expression for (we, —
(er,en)eq, z) as a function of o':

1?2 = 1. Analogously, with ¢ = (01,...,0,_1,0,) €

(e, — (es,€n)es, 2) = azy, — 0n(€0,2) = a2y — 0n (0" + open, 2+ 2p€5)

=az, —o,[(07,2) + 200,] = = [(1 = |0]?) — &)z, — V1 — |0'[2 (0/,2'). (5.6)

Let B" = {z = (z1,...,%,) € R" : |z| < 1}. By (2.6) and (5.6), taking into account that do = do’//1 — |&”|?,
we may write (2.10) as

Ha (e, 2")) (1 = |o’|? ((B=n)p+n)/(2p—2) >
Cupp= k|3 sup {/ »(lo’], (e, 2) (1= |o'?) y
Bn—1

zesn ! V1=l
p1
= |kl sup { / Hop(lo'], (0, 2)) (1—a’|2)“ﬁ‘”‘1”*"*”“2”‘”da'} , (5.7)
zesy HWUB !
where
’ 1ot "2 N A
Ha,p(\0'|,(0',z)):“(1—|0'| ) —alz, + /1 -2 (o7, 2) . (5.8)
Using the well known formula (e.g. Prudnikov, Brychkov and Marichev [6], 3.3.2(3)),
1 ™
/ 9(|z], (a,@))dz = w,—1 / r”’ldr/ g(r, |a|rcosp) sin™ 2 dp ,
B 0 0
we obtain
/ Hoz,p(|o-/‘7 (o, Z/)) (1 _ |0_/|2)((5*”*1)P+n+1)/(217*2) do’
Br—1
1 ™
= wn,g/ P2 (1—7‘2)((B_n_l)p+n+1)/(2p_2)dr/ Hap(r,r]2"| cos @) sin" > pdp .
0 0
Making the change of variable r = sin 9 on the right-hand side of the last equality, we find
Ha,p(|0'/|7 (0'/, z/)) (1 _ |o,/|2)((ﬁ_"—l)il’+n+1)/(2p_2) dO'/ (59)

Bn—1

T 3 /2 . "o . 9 (B=—n)p+n
:wn_g/ sin”~ gpdcp/ Hop(sind, |2'|sindcosp) sin® *dcos™ »-1 9dd,
0 0
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where, by (5.8),

) o 5 , ) p/(p—1)
Hap(sind, |2'|sindcosp) = ‘(cos ¥ — &) zp+|2'| cos ¥sin ¥ cos .

Introducing here the parameter v = |2’|/z, and using the equality |2/|> + 22 = 1, we obtain
Hap(sind, |2'|sindcosp) = (1+ 42~/ (2p=2) |G (¢, V; 7)|p/(p71), (5.10)
where G(p, J; a, ) is given by (5.5).

By (5.7), taking into account (5.9) and (5.10), we arrive at (5.3). O

6. THE CASE p = 2
In the next assertion we obtain the explicit formula for C, g 2.

Theorem 6.1. Let f € L>(R"™ 1Y), and let x be an arbitrary point in R™. The sharp coefficient Co g 2(x) in the
inequality

[Vu(@)| < Ca,p2(@)]|£], (6.1)
18 given by
Co,p,
Ca,pa(z) = zﬂ(l—a)+(6(?>2—n)/2) ; (6.2)
where
1/2
r(nD/2p (2855=m) g g ) 26+3-n
Ca,p2 = |kIB TG +2) {2ﬂ+1—n —20(B+ 1)+ —5— (6.3)
for (n—1)/2 < g <n—1. The same formula for Cy g2 holds for 8 >n —1 and
wea = 1EAEB+1—) - V(1 +p)2B+1-n)(B+1-n)
- 28(1+5) ’
or
asa - LEAEB+1-—n)+ O+ BB+ -n)(B+1-7)
- 26(1+p) '
If 8>n—1and oy < a < ag, then
1/2
71'(”_1)/21—1 28+3—n
Cap2 = |kIB ( ’ ) (6.4)

2I(6 +2)

If(i) (n—1)/2< B <n—1or(ii) B>n—1, a <oy ora > as, then the coefficient Co g.2(x) is sharp under
conditions of the Theorem also in the weaker inequality obtained from (6.1) by replacing Vu by Ou/dx,,.
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Proof. The equality (6.2) for the sharp coefficient C, g 2(z) in (6.1) was proved in Proposition 2.1. By (5.3),
(5.4) and (5.5),

1/2
1 T w/2
Ca; 2 = |k6 Wn—2 SUPp —F—— / d@/ ‘7:717 @719;aaﬁa’y) dv ) (65)
g2 = |k|Bywn =2 sup T%{ ; ; 2(

where

Fn2lp, P, 8,7)= ( cos® ) — a4+ cos ¥ sin ¥ cos @)20082ﬁ*"19$in"*219 sin" 3.

The last equality and (6.5) imply

1 1/2
Ca = |k Wn_3 sup ———— {7, ++*Z , 6.6
B2 = |kIByY 27213\/@{1 I} (6.6)
where
T :.on—3 ~/2 2 2 . n-2 2B8—n
7 = sin" 77 ¢ dp (cos 9 — a) sin"™“ 9 cos 9 do
0 0
n— 2 3—n
_ﬁf(%)ﬂiﬂz ) 20006 4+1) g ), 2BH3 -
- 2T (B + 2) 2B+1-n O 2 '
and
™ w/2
I, = / sin" 2 p cos? @ dgp/ sin™ ¥ cog?PHD =" 9 dy
0 0
IF(L_Q) Ia 28+3—-n
VT 2 2 (6.)
N AI(B+2) ' '
By (6.6) we have
Copz = |k|By/En—s max {T;/*,7,/%}. (6.9)
Further, by (6.7) and (6.8),
7, » B(B+1)
I P 1 1) —
7 1 =4 5511 _n da(f+1)+2(8+1)—n
_ 402B(B+1) —4a(B+1)(2B8+1—n)+(268+2—-n)(2B8+1—n) (6.10)

26+1—n
We note that, by (6.9) with p =2, 28 —n+1> 0. By

fla) =4a2B(B+1) —4a(B+1)(28+1—-n)+ (286+2—-n)(28+1—n)
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we denote the numerator of fraction (6.10). The roots of the equation f(«) = 0 are

_B+DEE+1-m) VBB +1-n)(B+1-n) (6.11)
0[172— 26(/8—{—1) . .

It follows from (6.10) and (6.11) that Z; > Z for §+ 1 —n < 0. Combining the last condition for § with
inequality 8 > (n —1)/2 and taking into account (6.7), (6.9), we arrive at formula (6.3) for the case (n—1)/2 <
B<n—1.

Now, let 8 > n — 1. Then, by (6.10),

I

——12>0

Ts -
for a <, or a > «,, and

7,

——-1<0

Iy

for o, < o < av,. This, by (6.9), proves (6.3) for a < o, or @ > v, and (6.4) for o, < a < .

In conclusion, we note that supremum in (6.6) is attained for v = 0 in two cases: (i) (n —1)/2 < <n—1,
(ii) 8 >n—1and a < a, or a > «,. Taking into account that v = |2’|/z,, we conclude that Cy g2 = Cy g2(€n)
for these cases. This proves that the coefficient Cq g 2(x) is sharp under conditions of the Theorem also in the
weaker inequality obtained from (6.1) by replacing Vu by 0u/0z,. O

7. THE CASE p = 00

This section is devoted to the case p = oo with some restrictions on a and 5. In the assertion below we obtain
the explicit formula for C, g o with any fixed 5 > n — 1 and sufficiently large o > 1. We note that inequality
B > n — 1 follows from (2.2) with p = cc.

Theorem 7.1. Let f € L°(R"™1), and let x be an arbitrary point in R".. Let 3 be a fived and let o, () be the
root from the interval (1,+00) of the equation

QF(B%n'i_l) _ a—1 (7.1)
ﬁ(ﬁ(a—1)+n—1)r(%) L+ /14 (a—1)? ‘
with respect to a.
If o > a, (B), then the sharp coefficient Co g.oo(x) in the inequality
[Vu(z)| < Ca,p,00(@)] £, (7.2)

s given by

Coz,ﬂ,oo
Cov,p,00(T) = “TnrA(-a) (7.3)
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where

r(n=1)/2 p (ﬁfgﬂ

26

Under conditions of the Theorem, absolute value of the derivative of u with respect to the normal to the
boundary of the half-space at any x € R’} has the same supremum as |Vu(z)|.

Co oo = |K| ) (a=1)B+n-1). (7.4)

Proof. First of all, we show that equation (7.1) has only one a-root ., () on the interval (1,+o0) for any fixed
B > n — 1. In fact, the function

or (252 +1)
fla) = — (7.5)
Va(Bla—1)+n—1)I (T)
decreases, and the function
go) = —2— (76)

1+ /T+ (a—1)?
increases on the interval [1,00). The functions f, g are continuous, f(1) > 0,¢(1) =0, and

lim f(a) =0, lim g(a)=1.

a——+oo a—r+o00

So, the existence and uniqueness of the a-root a,,(8) of equation (7.1) on the interval (1, +00) are proven.
The equality (7.3) for the sharp coefficient Co g 00 () in (7.2) was proved in Proposition 2.1. We pass to the
limit as p — oo in (5.3) and (5.4). This results at

T /2
Ca.p.00 = |k|Bsup ﬂ/ sin ™3 cpdgo/ 1G(p,0; 7)’ cos? =" 9 sin" 2 9¥do, (7.7)
0

v>0 /1 +~2Jo

where G(p, ¥; @, ) is defined by (5.5).
Suppose that § > n — 1 and a > «, () are fixed. We introduce three integrals

/2

J(v) = |k|Bwn—2 / sin" 3 Lpd(p/ ’a — cos® 1 — y cos ¥ sin ¥ cos <p| cos® ™ ¥ sin" 2 9dy, (7.8)
0 0
T /2
J1 = |k|Bwn_2 / sin" ™3 godgo/ |a — cos? 19| cos? ¥ sin" "2 9o, (7.9)
0 0
and

™ w/2
Jo = |k|Bwn—2 / sin" "3 | cos g0|d<p/ cos? " g sin™ 1 9dy.
0 0
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We note that

. 7.10
R (710
Calculating J; and Jo, we obtain
r(n=1)/2 p (ﬂf;url)
Ji = |k| 2 (a=1)B+n-1), (7.11)
r(3)
and
2n(nD/2 [ (852 4 1)
Jo = |k| . (7.12)
(8
()
It follows from (7.11) and (7.12) that
oI (552 +1
L (5= ) (7.13)

h a(a—1)B+n—1)T (%) '

We note that the right-hand side of the last equality coincides with the function f(«), defined by (7.5). Since
fla) < g(a) for @ > a,(B) and g(a) < 1, by (7.13) we conclude that

2= fla) <1 (7.14)

for @ > «,,(8). We find the interval of v for which the inequality

J1+vJs <7

Vel

holds. Solving inequality (7.15) with respect to «, we obtain

(7.15)

_ 20k 2D/
TE IR T 1= (R0

(7.16)

We denote

_2(J/Jh)
AT A NAP

By (7.10), (7.15) and (7.16),

TO) = for o> 0. (7.17)

V142
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Now, we show that « — 1 — v9 > 0 for a > «a,,(5). Taking into account that f(«) < g(«) for a > a,(8), by
(7.6) and (7.14) we arrive at inequality

~1
2 @ . (7.18)
Ji T 1+ 1+ (a—1)2

Using (7.18), after calculations we obtain

202/0) oy

70271_“2/']1)2*

which proves the inequality « — 1 — 7 > 0 for o > @, (8).
Let 0 < 7 < 7. Taking into account that « —1 — >0, by (7.8) and (7.9) we have J(v) = J;. Hence,

J(7) = N < J; for 0 <~ <7y,

VI+?2  J1+92 7

which together with (7.17) leads to inequality

J(7)

et

for any v > 0. Therefore, in view of (7.7)-(7.9), we obtain

Ca.8,00 = SUp

— < Jy = J(0), (7.19)
v>0 +

which together with inequality

sup
>0 /147y

results at
Co.,00 = J(0) = J;.

In view of (7.11), the last equality proves (7.4). Since v = |2’|/z,, and the supremum with respect to v in (7.19)

is attained at v = 0, we conclude that the coefficient Cq g 00 (2) = C’aﬁ’ooxzfﬂﬁ(a*l) is sharp under conditions
of the Theorem also in the weaker inequality, obtained from (7.2) by replacing Vu by du/0x,,. O

Remark 7.2. As an example, we give a number of values of a,, (), obtained by numerical solution of equation
(7.1):

a3(2.5) & 1.2865, a3(3) ~ 14101, a3(3.5) ~ 14788, as(4) ~ 1.521, as(4.5) ~ 1.5482, as(5) ~ 1.5664,
(3.5) ~ 1.207, as(4) ~ 1.3079, ay(4.5) ~ 1.3698, au(5) ~ 1.4115, ay(5.5) ~ 1.4413, a4(6) ~ 1.4631,

a5(4.5) ~ 1.1623, a5(5) ~ 1.2469, a5(5.5) ~ 1.3016, a5(6) ~ 1.3403, a5(6.5) ~ 1.3693, a5(7) ~ 1.3917,
(5.5) (6) (7)

~ 1.1316, ag(6) =~ 1.2063, ag(6.5) ~ 1.2548, ae(7) ~ 1.2903, ag(7.5) = 1.3176, as(8) ~ 1.3393.

o7

(&73]

The representation for Cy g, With o € (0, 1], obtained in the following auxiliary assertion, will be used later.
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Lemma 7.3. Let 0 < a <1 and 8 >n—1. Let f € L°(R"™'), and let x be an arbitrary point in R . The
sharp coefficient Co p,00(x) in the inequality

V()] < Cap,oo(@)]| ]| (7.20)
s given by
Caf,00(2) = Ca 00 a 2B, (7.21)
where
CuB,00 = |k|6§§% % {cnﬁ(a) +2 /O7T P(hy(¢)) sin" ™3 gadcp} . (7.22)
Here

I e L IS 9} et g
P(z) = Blda? £ )2 + ; —5 a+vcospcosdsind p cos” "I sin™ " Iddd, (7.23)

onit ) VAT (232) 1 ()

cnp(a) = ( 3 v (%) , (7.24)

and
1/2
hy(p) = vycosp + (72 cos® o + da(l — a)) . (7.25)

Proof. The formula (7.21) for the sharp coefficient C, g,00 () in (7.20) was proved in Proposition 2.1. By (7.7)
and (5.5) we have

T w/2
Co.g,00 = |k|Bsup ﬁ/ sin" ™3 <pd<p/ G (0,9, 7)| cos® ™ I sin™ 2 9, (7.26)
0

>0 y/1+~2Jo

where
G, U5, ) = cos® ¥ — a +  cos IsinJ cos . (7.27)
First, we calculate the integral
™ w/2
cn,p(@) = / sin” "~ pdp / G(p, 05 a, ) cos” ™ Y sin" 2 9d

0 0

u /2
= / sin" " @dsﬂ/ { cos® ¥ — a4y cos ¥ sind cos p} cos” ™ ¥sin™ 2 ¥dd
0 0

T w/2
= / sin" 3 g@dgp/ ( cos? 19704) cos? ™" Y sin" 2 Ydy
0 0
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n— —n+1
B—n+1 ﬁF(TQ)F<B 5 )
= (=21 g . (7.28)
B or (é)
2
Now, we are looking for a solution of the equation
cos? ¥ — a +ycos¥sind cos p = 0 (7.29)
as a function ¥ of p. We can rewrite (7.29) as the second order equation in tan¢:
—atan® ¥ + ycosptand + (1 — ) = 0.
Since 0 < ¥ < /2, we find that the nonnegative root of this equation is
hy (%)
v = arctan — .
+(ip) = arctan —-==, (7.30)
where
1/2
hy(p) = ycosp + (72 cos? o + da(l — a)) . (7.31)
We calculate the integral
P
ol vsm) = [ Glovtsan) cos’ " osin™ 9y
0
P
= / (cos2 ¥ — a + 7y cos ¥ sin ¥ cos go) cos® " ¥ sin" 2 ¥dy
0
P »
= / (cos2 9 — a) cos”’ " ¥ sin™ 2 9dv + v cos <p/ cos? "L 9sin™ 1 ¥d
0 0
- n—1 B—n+1 P o 1
_ v cﬁos L4 +/ {(ﬂng - a) +y cos p cos v sinﬁ} cos® " 9 sin" "2 9dd. (7.32)
0
Obviously, G(p,¥;a,v) > 0 for 0 <9 <9, (p) and G(p,d; a,v) <0 for ¥,(p) < ¥ < m/2. Hence,
™ w/2
/ sin" 3 gpd(p/ |g(<p, % a, "y)| cos” " 9 sin" "2 Yy
0 0
™ B ()
= / sin" 3 gadgo/ G, V5, ) cos® ™ 9 sin™ 2 Idv)
0 0
T /2
- / sin" ™3 godgo/ G, 9; a,y) cos® ™ 9 sin" 2 9dd) . (7.33)
0 Dy ()
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On the other hand, by (7.28),

g Dy ()
Cnﬂ(a) = A Sin”—3 wd@A g(sp’ 19, Q, ,-Y) COSBin ﬁsin"‘Q I

T /2
+ / sin" 3 cpdgo/ G,V a,) cos? "9 sin™ 2 9. (7.34)
0 9 ()

Using the equalities (7.33) and (7.34), and taking into account (7.32), we rewrite (7.26) as

& 9 ()
Cap.00 = |kl Fsup e —Cn,p() + 2/ sin” % ¢ d@/ G(p,¥;a,7) cos? " Y9 sin" 2 ¥dw
7>0 /1 +72 0 0
= |k'WSUP wn_Q{_cn,B(a) +2 /W H, (‘P7 79’y(§0)§ «, ’Y) sin™ 3 gpdgp} . (7.35)
v=0 1+ ’YQ 0
By (7.30),
h
sind, (o) = 100 (7.36)

da? + h2(p)

cos U (p) = 2—04, (7.37)

da? + hZ ()

where h, () is defined by (7.31).
Using (7.36) and (7.37), we find

(20)7~ " hE 1 ()

ian—1 B—n+1 _
sin”™ ™" 9, () cos 9 (p) = . (7.38)
' TP
By (7.32) and (7.38) we can write H, (p,9,(¢); o, 7) as
(20)7 "R (p)
H, (¢, 0 3 O = z
(2 95(9); 07) B(4a? + hZ(p))P/2
arctan h”;(w ﬂ +1
+/ { (Z — a) + v cos p cos ¥ sin ﬁ}cosﬁ" ¥ sin™ 2 9dv,
0
which together with (7.35) leads to
Co.B,00 = |k|Bsup _Wn-2 {—cnyg(a) + 2/ P(hy(p)) sin" 3 godcp} , (7.39)
720 /1 + 2 0

where

_ (2a)ﬁ—n+1zn—1 arctan 5= ,8—7’L+1 ‘ ‘ . Bn 2
P(z) = 5(40&24—22)5/2—’—/0 3 —a |+ cos p cosd sindd pcos” ™ Y sin™ ¥dd). (7.40)
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Equalities (7.39), (7.40) together with (7.28), (7.31) prove the Lemma. O

In the next assertion we consider a particular case of (7.22) for « = 1, 8 € (n — 1,n]. To find the explicit
formula for C' g, we solve an extremal problem with a scalar parameter in the integrand of a double integral.

Theorem 7.4. Let « =1 and 8 € (n—1,n]. Let f € L™(R"™1), and let x be an arbitrary point in R". The
sharp coefficient C1 g 0 () in the inequality

[Vu(z)] < Crpoo()| ], (7.41)
is given by

[kl D72 — 1)1 (B3
Cl,ﬁ,OO(i) = I (ﬁ) :

2

2 (7.42)

The absolute value of the derivative of u with respect to the normal to the boundary of the half-space at any
x € R} has the same supremum as |Vu(x)|.

Proof. The inequality (7.41) follows from (7.20). By (7.25), in the case a = 1 we have h.,(¢) = 2ycos for
¢ €[0,7/2] and h,(¢) = 0 for ¢ € (7/2,7]. Therefore, by (7.22)-(7.24) we obtain

/2
Wn—2 .. n—3
Ci18.00 = |k|Bsup ————=< —c, 1+2/ U(~ cos ) sin dy p, 7.43
1,8, | ‘67213 m{ 75( ) o (7 QD) 2 90} ( )
where
VA=)l (252) 1 (252
cn,p(l) = (7.44)
28I (g)
and
Zn_l arctan z 1 -n
U(z) = —n —|—/ ( + z cos ¥ sin 19) cos” ™" ¥ sin™ % Y. (7.45)
5(1 + 22) 0 B
Denoting
1 /2
F(y) = ——=1{ —cn5(1) + 2/ U(ycosp)sin™? pdyp ¢, (7.46)
V1+92 0

where U(z) is defined by (7.45), we can rewrite (7.43) in the form

C1,6,00 = | k| Bwn—2sup F(7). (7.47)

720

It follows from (7.46) that

dF 1 /2 20 OU(ycos@)\ . ,_3
o = A2 {cnﬂ(l)'y + 2/0 (’yU('y cosp)+ (1+7 )&y) sin” " odep o . (7.48)
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Differentiating U (y cos ¢) with respect to 7, we obtain

U arctan(vy cos ¢)
(Z;;OSQO) = cos go/ cos? 1Y sin™ 1 9dy. (7.49)
0

Substituting U (v cos ¢) from (7.45) and QU (v cos ¢)/0v from (7.49) into (7.48), we arrive at equality

dF 1
s CUCIR A (7.50)
where
"Y(Tl—l) fF (n 2) I <w) /2 arctan(7y cos @)
P1(v) = + 2/ / cos? ™ 9sin™ 2 9d0 | sin 3 pdy
s 21 (g) 0 0
and
7'r/2 n 13— /2 arctan(vy cos ) )
Do) = / (ycosp)"” sin 57 <'Od<p—|—/ / cos? T Y sin™ 1 9dw | cos psin™ P pde b
8 (1+~2cos? ) 0 0

Estimating &4 (7), we obtain

_ Val (52) (gt ®/2( /2
Pq(y) < an=) 2 ( 2 ) +2 cos® ™ 9 sin™ 2 9dd | sin™ > pdyp p = 0. (7.51)
B 2r (g) 0 0

By differentiating ®@5(y), we arrive at equality

dd /2 n—1
o2 2/ (7 cos o) 372 {_n + (1 — ) ~* cos ap—i—cosgo} n" "3 pdp.
dy 0 (1+72cos?yp) B B

Therefore, &4(y) < 0 for v > 0 and any S € (n — 1, n]. This together with @2(0) = 0 proves inequality P2(7y) < 0
for v > 0 and any 8 € (n — 1,n]. Hence, by (7.50) and (7.51), F'(v) <0 for v > 0 and any 8 € (n —1,n]. S
by (7.47),

0o,

Ci8,00 = k| Bwn—2F'(0),

which, in view of (7.44)—(7.46), leads to

Cl,ﬂ,oo = _|k|ﬂwn72cn,ﬂ(1) = |k‘

Combining the last formula with (7.21) in the case a = 1, we arrive at (7.42). Since v = |2’|/z, and the supremum
in (7.47) is attained at v = 0, we conclude that the coefficient C1 g 00 (z) = C1 g,0027 2 is sharp under conditions
of the Theorem also in the weaker inequality, obtained from (7.41) by replacing Vu by du/0x,,. O
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8. SHARP ESTIMATES FOR HARMONIC AND BIHARMONIC FUNCTIONS

By hP(R?) we denote the Hardy space of harmonic functions on R which can be represented as the Poisson
integral

o) = = / Iy (8.1)

v
W Jgn-1 ly — x|?

with boundary values in LP(R"~1), 1 < p < co. Multiplying (8.1) on 2"*~1, a > 0, we obtain

n

et = 2 [ (L) ar 52

wn, ly — x|

On the right-hand side of the last equality is located generalized Poisson integral (1.2) with k = 2/w,, and 8 = n.
Thus, we can apply the results of previous sections to obtain sharp pointwise estimates for ’V(xﬁo‘_lv(a:))‘
in terms of the norm LP(R"~1),1 < p < oo.
As consequence of Proposition 2.1 and Theorem 4.1 with § = n, we obtain

Corollary 8.1. Let v € hP(R"}) and let = be an arbitrary point in R’ . The sharp coefficient Co pnp(x) in the
inequality

V(e o(@)] < Campl@)o]],
s given by
a—2—(n—1)/p

Canp(®) = Casnp Ty

where

2n
Ca,n,l = —— Sup sup |(aen - (307 en)eaa Z) ’ (eo'u en)na
Wn |2]=1 gegy

for 1 <p< oo, and

In particular, the sharp constant Coy, p in the inequality

V{52 )] < om0 e, 53

Tn



26 G. KRESIN AND V. MAZ’YA

is given by Co n1 = 2n/wy, Con.co =1 and

_P_
n_1 3pt+n—1 p—1
o | T2 F(2p(p71))

o n+2
n r ( (2(10—%1)])

CO,n,p =

for1 <p<oo.
The constant Cy r p is sharp in conditions of the Corollary also in the weaker inequality obtained from (8.3)
by replacing V(xza_lv) by 8(95”“‘%)) /Oy,

n

Concretizing Theorem 3.1 for 8 = n, we arrive at

Corollary 8.2. Let v € h'(R") and let x be an arbitrary point in R:. The sharp coefficient Con(z) in the
inequality

V(@7 o(@))| < Cana (@)l (8.4)
1s given by

Cani1(x) =Can xz(a_l)_l,
where

Coni = 2—n|1 —qf
Wr,
if
and
Can1%< n )n/2< o2 >(n+2)/2
” wp \2a0—1 n+1

if

vn+1 o< vn+1
Vn+1+1 NCES

In particular,

C2n-2) f (n-1? "
Cina = e, { (n—2)(n+ 1)} '

If o satisfies condition (8.5), then the coefficient Cq . 1(x) is sharp in conditions of the Corollary also in the
weaker inequality obtained from (8.4) by replacing V(x"aflv) by a(x”a’lv)/ﬁxn.

n n

Theorem 6.1 in the case 8 = n leads to the following
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Corollary 8.3. Let v € h?(R%) and let x be an arbitrary point in R". The sharp coefficient Co n2(z) in the
imequality

’V(J;Zo‘_lv(x))‘ < Cmn,g(av)Hv||2 (8.6)
s given by
Ca n 2(3’3) = Ca n,2 xza—(n+3)/2)
where
1/2
_ 9 n+3
Ca,n,2 - {2”—2wn (’I’LO& - (n + ]-)a + 4 > }
if
1 1 1
0§a§§ or QZTF%’ (8.7)
and
1/2
n
Can =
™2 {2”wn }
if
<a< L + !
2SSy

In particular,

V2
Cl’ng:{n(n)} _

2" Wy,
If a satisfies condition (8.7), then the coefficient Co n.2(x) is sharp in conditions of the corollary also in the
weaker inequality obtained from (8.6) by replacing V(xﬁaflv)) by 6(m2°‘*1v))/8xn,
As consequence of Theorem 7.1 with 8 = n we obtain

Corollary 8.4. Let v € h>(R"}) and let x be an arbitrary point in R'}. Let o, be the root from the interval
(1,400) of the equation

2 a—1

mna—1) 1+ /14 (a—1)2

with respect to .
If & > v, then the sharp coefficient Co p oo(2) in the inequality

V(@ v(@))| < Camoo (@)0]
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s given by

Can,oo(x) = (nav — 1) :cZDﬁZ.

In conditions of the Corollary, the absolute value of the derivative of x"* v with respect to the normal to

the boundary of the half-space at any x € R} has the same supremum as |V(;vﬁo‘*1v)|.
Theorem 7.4 with 8 = n implies

Corollary 8.5. Let v € h*(R) and let x be an arbitrary point in R’y. The sharp coefficient Cy n oo(x) in the
inequality

|V (2~ 0(2))] < Cunoo(@)] 0]

s given by
Crm o () = (0 — D2,

The absolute value of the derivative of 2~ 'v(x) with respect to the normal to the boundary of the half-space
at any x € R’} has the same supremum as ’V(mﬁ‘lv(x)) ’

We conclude this section with some remark. The following representation is well known (e.g. Schot [7])

3 2
wia) = 22 [ 0+ = [ P (59

W Jro-1 |y — "2 Wn, ly — x|

for solution in R} of the first boundary value problem for the biharmonic equation

A2w =0 in RY, w

= f1 (x/)a (8'9)

z,=0

25, =0 = fo (‘rl>+a frac@waxn

where y = (y/,0).
By w, we denote a solution of the problem (8.9) with f, = 0. By (8.8), we have

- 2 Tn®
2w, (x) = o /Rni1 Wfl (v)dy'. (8.10)

The right-hand side of (8.10) is the same as in (8.2). So, by Proposition 2.1 we arrive at

ow,

[V (a0, (@))| < Ol o>~/ | 200

, (8.11)

where the sharp constant Cy ,, , in (8.11) is the same as in Corollaries 8.1-8.5.
For instance, in the case a = 0,p = oo by Corollary 8.1 we have the following inequality with the sharp

coefficient
z3 3

0z,

‘ ow,

o0
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In another interesting case o = 1 and p = oo, Corollary 8.5 leads to the following inequality

n— n— 81'U0
|V (@n™?w, (@))] < (n = 1)ay 2 oz,

n

oo
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