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An integration of ICT advances into a conventional healthcare system is spreading 

extensively nowadays. This trend is known as Electronic health or E-Health. E-Health 

solutions help to achieve the sustainability goal of increasing the expected lifetime while 

improving the quality of life by providing a constant healthcare monitoring. Cardiovascular 

diseases are one of the main killers yearly causing approximately 17.7 million deaths 

worldwide. The focus of this work is on studying the detection of one of the cardiovascular 

diseases – Atrial Fibrillation (AF) arrhythmia.  This type of arrhythmia has a severe influence 

on the heart health conditions and could cause congestive heart failure (CHF), stroke, and 

even increase the risk of death. Therefore, it is important to detect AF as early as possible. 

In this thesis we focused on studying various machine learning techniques for AF detection 

using only short single lead Electrocardiography recordings. A web-based solution was built 

as a final prototype, which first simulates the reception of a recorded signal, conducts the 



 

preprocessing, makes a prediction of the AF presence, and visualizes the result. For the AF 

detection the relatively high accuracy score was achieved comparable to the one of the state-

of-the-art. The work was based on the investigation of the proposed architectures and the 

usage of the database of signals from the 2017 PhysioNet/CinC Challenge. However, an 

additional constraint was introduced to the original problem formulation, since the idea of a 

future deployment on the resource-limited devices places the restrictions on the complexity 

of the computations being performed for achieving the prediction. Therefore, this constraint 

was considered during the development phase of the project. 
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1 INTRODUCTION 
 

 

According to Principle I of the Rio Declaration on Environment and Development, which 

state [1]:  “Human beings are at the centre of concerns for sustainable development. They 

are entitled to a healthy and productive life in harmony with nature”, world sustainability 

goals cannot be fully achieved while there is still high mortality rate due to widely spread 

debilitating illnesses, such as skeletal, cardiovascular, lung, neuromuscular diseases and 

some others. In addition, the issue of increasing aging population also necessitates 

improvement and development of technologies for constant health monitoring, since most 

of the diseases, especially cardiovascular ones, increase in accordance with aging and 

requires regular checks. Therefore, in order to achieve sustainability in the world, it is crucial 

not only to provide environmentally good-living conditions, but also to keep global 

population health as one of the main priorities. Wellbeing of world's nation is at utmost 

importance and provision with modern tools for health monitoring contributes to 

strengthening preventative healthcare system, as well as enhancing early diagnostics 

capabilities. Thus, the sustainability goal of increasing life expectancy and improving quality 

of life may be achieved. The process towards these objectives includes integration of 

Information and Communication Technologies advances into a conventional healthcare 

system which relates to E-Health area. The idea of “doctor in your pocket” will improve the 

whole chain of healthcare provision [2]. Patients will be able to regularly monitor and control 

their health conditions, eliminating the time spent in hospital corridors waiting for the 

medical check-up.  

 

E-Health solutions are aimed at empowering people to better manage their health and 

lifestyle by equipping them with tools for enhanced health monitoring and ability to cope 

with associated conditions. Currently European Commission and many EU countries put 

their priorities on making E-Health records systems, the deployment of telemedicine services 

and patient safety more interoperable for enhancing care, mobility and safety of patients [3]. 

If E-Health tools were available for the majority of people and were easy in use, they would 

significantly contribute to improvements in medical care provision on the whole.  
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1.1 Motivation 

 

Nowadays, people are induced to keep up with the high pace of life so that in most cases 

they have to sacrifice their health care, as well as with the aging population it would be 

harder to get a routine visit to a doctor. Unregulated diet, lack of physical activity, 

environmental factors and many other habits caused by the lack of time significantly affect 

health conditions, specially causing heart-related problems. In order to provide timely 

medical help, it is crucial to detect cardiovascular problems at an early stage. Therefore, the 

development of handy E-Health tools may contribute to improvements in early detection and 

prevention of cardiovascular diseases. 

  

According to the statistical data provided by World Health Organization (WHO) [4] 

approximately 17.7 million people die annually around the globe from cardiovascular 

diseases, which is 31 % of the total number of deaths worldwide. This number is expected 

to grow up to 23.3 million deaths per year by 2030, which shows how rapidly this problem 

is spreading. This is giving more importance on researching cardiac health and developing 

more advanced preventative tools. Thus, it will contribute to the improvement of the 

cardiovascular diagnosis technologies, particularly enhances in digital electrocardiography 

(ECG) analysis. And as stated earlier E-Health solutions will have positive impact on the 

whole healthcare system [2]. The focus of this thesis is laying in the researching one of the 

possible causes of heart-related diseases, i.e. detection of atrial fibrillation.  

 

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia which is represented by 

inconstant atrial activation and therefore dysregulations of atrial contraction. Atrial 

fibrillation is considered to be the most common form of heart arrhythmia and has 1-2 % of 

occurrence among the general population with the increasing number due to age. Over 6 

million Europeans have this type of arrhythmia and it is estimated that the number will 

increase within next 50 years twice [4]. According to Framingham Heart study [5], risk of 

AF was observed in 26  % of men and 23  % of women at the age of 40 in Europe. Moreover, 

the incidence of AF in past two decades increased for 13 % and is expected to grow 

substantially. Atrial fibrillation is considered to cause the morbidity and mortality, as well 

as the increment in risks for death, congestive heart failure (CHF), and embolic phenomena 

such as stroke. AF increases the possibility of stroke around 5-fold and it is proved that one 
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of five strokes refers to this type of arrhythmia. It was studied that most of the ischaemic 

stokes in association with AF are fatal, and patients who survived are mostly disabled for a 

long time and have high chance of the repetitive stroke [4]. AF related diseases significantly 

influence on quality of life and therefore its early detection plays an important role in 

sustainable development of the global population.  

 

 AF may remain protractedly undiagnosed and this is called “silent AF”. Due to this factor 

most of the patients are often unaware of its presence, therefore early recognition of AF is 

crucial and requires reliable tools for its detection. The development of these tools may help 

to reduce the severe consequences caused by AF as well as to prevent the progression from 

early and easy treated stages to utterly deteriorated ones. Additionally, AF-related costs for 

care have 1.5-fold increment which is related to the double number of death risk from the 

strokes caused by AF, thus early diagnosis of AF may reduce costs related to its treatment 

[4]. 

 

 All the above-mentioned statistics shows that atrial fibrillation presence may utterly affect 

human health and increase the risk of being disabled after having a stroke. Therefore, timely 

detection of AF may eliminate related serious consequences. 

 

1.2 Problem definition 

 

Cardiovascular diseases are known to be the world's most widespread killer, early detection 

of its causes is extremely important to ease the subsequent treatment and help to take 

corresponding measures on early stages. High potential of Atrial Fibrillation to cause the 

long-term disability of patients makes its early detection crucial for preventing life-

threatening consequences. The work on solving this problem has been done before and 

different detection techniques were used. However, most of the studies concentrated on 

using machine learning techniques. Since it is rather hard to come up with a static rule-based 

algorithm for AF detection, using machine learning has high potential to solve this type of 

problem. Although most of the previous studies showed quite high and promising results, 

they had a number of limitations. Small sized datasets were presented by carefully selected 

signals of only two types: AF and normal. Moreover, previous studies approaches were 

trained and adapted only to the signals having the long duration and being recorded from 
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several leads. Thus, this thesis addresses the problem of atrial fibrillation detection from 

short single-lead Electrocardiography (ECG) recordings by using machine learning 

techniques. In this thesis we investigated the proposed architectures and used the database 

of signals from the 2017 PhysioNet/CinC Challenge. The dataset in this challenge was bigger 

and was presented by four different types of short single-lead ECG recordings. However, the 

idea of future deployment on the resource-limited devices places the restrictions on the 

complexity of the computations. Practical limitations require that the diagnostic can be done 

outside a hospital using inexpensive equipment and without an involvement of medical staff. 

Also, the time required to make a test should be short. 

1.3 Goals and delimitations 

 

The goal of this master thesis was to develop, implement and validate an accurate, efficient 

and sustainable solution for Atrial Fibrillation detection from the short-lead ECG signals 

(between 30 and 60 s) which should have relatively high accuracy in predictions. The AF 

detection should be realized in an accurate and fast manner with the future potential to be 

used in real-time monitoring of abnormalities in ECG signals. The output of signals 

classification had to provide one of four classes: normal sinus rhythm (Normal), atrial 

fibrillation (AF), an alternative rhythm (Other), or too noisy to be classified (Noise). Since 

most of the previous researches did not provide classification for more than two classes, it 

makes the problem of this thesis more sophisticated.  

 

In this thesis, the final deliverable of the project should also include an interactive user-

friendly web application prototype. It should allow users to upload their own recorded ECG 

signals and by means of the machine learning algorithms get a prediction on AF presence or 

absence.  

  

Delimitations: this study mainly concentrated on the development of the working core for 

AF detection and did not include designing the whole system, which would include the real-

time signal reception from sensors and the deployment on a handy device. 
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1.4 Research methodology 

 

In every research it is highly important to correctly choose a research methodology, since 

the main work flow is realized according to it. The achieved goals and results of the project 

are directly related to the properly chosen methodology.  

This thesis was conducted in accordance with the methodology illustrated in the Figure 1.1. 

 

 

Figure 1.1: Thesis methodology. 

 

The first stage of the work process included critical literature review, problem identification 

and research gaps definition. Work process and system requirements definition were the next 

step followed by the practical part of the research. It comprised an iterative process of an 

implementation and a corresponding evaluation of the results. Implementation included two 

main parts: feature extraction and selection of an appropriate machine learning algorithm for 

classification. 

 

1.5 Structure of the thesis 

 

This section provides an information about the thesis structure with a brief description of 

each chapter. 

 The INTRODUCTION gives an overview and understanding of the necessity of 

studying the detection of heart related diseases, covers the sustainability of the 
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problem as well as the implemented research methodology. The particular problem 

of AF detection is described in detail. 

 

 The RELATED WORK chapter presents the review of the relevant studies made in 

this area. It includes previous studies related to the binary classification of AF, as 

well as the analysis of the approaches for multiclass classification from the 2017 

Physionet/CinC challenge. 

 

 The AF DETECTION IMPLEMENTATION chapter includes the detailed 

description of the signal pre-processing, the feature extraction and the implemented 

machine learning algorithms stages. 

 

 The EVALUATION AND RESULTS chapter provides the evaluation of various 

feature sets training and their comparison. The proposed computations reduction 

solution is also described in this chapter. 

 

 The WEB APPLICATION PROTOTYPE chapter describes the development and the 

process flow of the web application built for the visualization purposes of the 

proposed solution. 

 

 The CONCLUSION AND FUTURE WORK chapter gives a brief summary of the 

work. In addition to that, future development and possible improvements are also 

discussed. 
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2 RELATED WORK 

 

In this chapter we look at the nature of ECG signals and investigate the researches done in 

solving AF detection problem. All proposed approaches in the previous studies was divided 

into two subsections: the ones made by various individual researches and the others made in 

the framework of PhysioNet/Computing in Cardiology Challenge 2017. The discussion of 

the proposed approaches is also provided, followed by their comparison presented by the 

tables. 

2.1 ECG signals 

 

The ECG [6] is a technique used to record the cardiac electrical activity over a period of 

time, which is presented by the time-voltage chart of the heartbeat. The ECG is the main tool 

for diagnostics of various cardiac conditions and diseases. It corresponds to cardiac electrical 

activation (depolarization) and relaxation (repolarisation) [7] and represented by several 

main wave complexes (P, Q, R, S, T, U) as shown on the Figure 2.1. 

 

 

Figure 2.1: ECG main wave complexes [7]. 

 

P wave of the signal corresponds to the atrial depolarization related to the upper chamber of 

the heart [7]. The transition of an electrical impulse from the upper chamber of the heart to 
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the lower one is depicted as PR interval. The depolarization of the lower chamber of the 

heart (ventricle) corresponds to QRS interval. The repolarization of the ventricle is 

represented by the ST segment and T wave complex. 

2.2 AF detection from ECG signals 

 

The problem of AF detection has been investigated previously and most of the implemented 

methods showed rather good and promising results, however, all of the previous studies [8]–

[12] had a number of limitations in their applicability. For instance, the classification was 

conducted only between two classes: normal and AF signals, predominant part of which was 

noise-free and was thoroughly picked out. Moreover, in most of the cases the dataset was 

represented by a small number of samples. Even though most of the solutions showed high 

sensitivity in predictions, the future possible accuracy of those results is questionable. 

  

Every heart arrhythmia can be identified by its own specific features. Every ECG signal is 

presented by basic waves: P, Q, R, S, T and U, and cardiovascular anomalies detection is 

based on the analysis of these waves nature. There are several morphological features 

particular to AF, such as absence of P wave, the presence of fluctuating waves instead of P 

waves, and irregularity in intervals between R peaks (RR intervals) [8]. However, it is hard 

to detect AF according to P wave absence factor, since its amplitude is rather small and it 

could deteriorate detection in the presence of noise. Thus, many studies concentrate on 

learning the heart rate irregularity, which is presented by inconsistent intervals between R 

peaks. This is related to one of the main AF characteristics, when the atrium (the upper 

chamber of the heart) quivers instead of beating regularly, causing disturbances in the blood 

flow. So, in case of clot break, it can get stuck in the artery, thus leading to a stroke.  

 

Methods based on RR intervals are proposed in many studies, since it is easier to extract R 

peaks from ECG signals due to its comparably high amplitude. In [13] authors received high 

sensitivity and specificity of 93.2 % and 96.7 % respectively, using the comparison between 

standard density histograms and a test density histogram by the Kolmogorov-Smirnov test 

of RR and delta RR intervals. In this work the dataset was comprised of small amount of 

samples with the duration varying between several hours. In other researches, such as [9], 

[10] and [11], authors were proposing AF detection methods based on Poincare plot features. 
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However, the features extracted from these plots varied in each of these studies. All of these 

works' results showed high specificity and sensitivity scores, but the datasets were still 

remaining small. Additionally together or separately from Poincare plot features, some 

authors were using features received from heart rate variability (HRV) analysis, which 

included time domain, frequency domain and non-linear features [14]. For instance, in [12] 

authors extracted only time domain and non-linear features and after classification stage they 

received 99.07 % sensitivity.  

The procedure in all of these studies mostly included three steps: pre-processing of data, 

feature extraction and classification. On each of the stages different authors used various 

techniques.  

 

2.2.1 Pre-processing of signals 

 

Every analysis-based approach of ECG signals starts from initial signal processing 

techniques, which provides filtered, noise-free results. An accurate pre-processing has a 

significant influence on the further feature extraction and classification stages.  Since most 

of ECG signals are obtained by placing electrodes on the human body, it leads to their 

contamination with noise. It can be presented by baseline wander, power-line interference, 

electromyographic (EMG) noise, electrode motion artefacts and some other noises [15]. The 

solution for elimination of interfering noises in signals is the implementation of various filter 

types. In [9] authors filtered ECG signals using two Butterworth filters: 4th order high-pass 

filter at 1 Hz for elimination of baseline wandering and a 8th order low-pass filter at 40 Hz 

for line interference and higher frequency noise components removal. Authors in [8] used 

sgolay filtering for removing baseline wander presented in segments, obtained from dividing 

signals into desired length. There was also presented another way to get rid of undesirable 

noisy parts in [12], which comprised of 5-15 Hz bandpass filter usage. It was aimed at 

removing 50 Hz power line interference, EMG noises and the baseline wandering. The next 

step in pre-processing of ECG signals for further analysis includes the detection of QRS 

complexes. This stage can be also presented by different techniques, such as Pan-Thomkins 

algorithm used in [12] and [14], algorithm developed by Christov [16] implemented by 

authors in [9] and wavelet method proposed in [17] and used by authors in [10].  
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2.2.2 Feature extraction methods 

 

After obtaining QRS complexes, extraction of meaningful features plays an important role 

in further classification process and, therefore, highly influences on the final accuracy score. 

Many studies differed not only in the pre-processing techniques, but also in the features they 

were using in their works. The feature extraction process varied: some researchers were 

extracting features from Poincare plots as authors in [9], [10] and [11] did, others were 

concentrated on receiving more detailed information about signals by extracting HRV 

features [12]. Moreover, the combination of both was also used in [18].  

Poincare plot is a graphical two-dimensional representation tool capable of displaying 

dynamic properties of a system from time series [19] into a phase space. Every point on this 

plot is represented by the values of a pair of successive elements of time series [20]. In case 

of ECG signals, the pairs of successive RR intervals are taken for visualization, i.e. the 

current RR interval is plotted as a function of the previous one. The visualization part in all 

the studies stayed the same, however the features extracted from these plots varied. So for 

instance in [10] authors extracted the number of clusters, mean stepping increment of inter-

beat intervals, and dispersion of the points around a diagonal line in the plot, in [11] two 

generalized  linear dependence coefficients and two root mean square errors for two and five 

consecutive heart beats cases were proposed, in [18] two types of standard deviation and the 

ratio between them were used. 

  

 For some cases in addition to Poincare plot feature extraction method, HRV analysis 

provided another set of significant features. Variations in the beat-to-beat timing of the heart 

represent the heart rate variability [20]. Since HRV signal has both linear and non-linear 

characteristics, its analysis includes both methods. Linear methods comprise of time domain 

and frequency domain analyses of the episodes, which can provide vast number of features. 

Non-linear analysis is able to describe the processes generated by biological systems in a 

more effective way [21] and includes the following techniques: Recurrence plots, Sample 

entropy (SampEn), Hurst Exponant (H), Fractal dimension, Approximate Entropy, Largest 

Lyapunov Exponent, Detrended Fluctuation analysis, and Correlation Dimension analysis 

[14]. In [12] authors used various features both from linear and non-linear analyses, however 

in [18] they limited number of features only to frequency domain and some non-linear 

features.  
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2.2.3 Classification algorithms 

 

There are various approaches to detect atrial fibrillation based on the extracted set of 

features. For this purpose, different machine learning techniques were implemented, such as 

Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayesian 

classifier, k nearest neighbor (kNN) and some others. Many studies gave their preferences 

to SVM and ANN as the main AF detection classification tool. 

  

Support Vector Machine is a supervised learning algorithm, which may be applicable to both 

classification and regression problems. By means of non-linear function SVM maps data 

points to a high-dimensional space, therefore making non-linearly separable data set linearly 

separable [22]. SVM aims at finding the best separating hyperplane (the plane with 

maximum margins) in two classes classification problem within the feature space by 

identifying the most representative training cases placed at the edge of the class [23], which 

are called support vectors. Even though SVM were initially elaborated for two-class 

problems, it may be applicable to multi class classification as well. This can be achieved by 

using one of the two approaches: either ``one against all'' or ``one against one'' methods, 

where classifiers are applied on either each class against all others or on each pair of classes 

respectively [23]. Training this type of classifier in [18], [11] and [8] showed high sensitivity 

and specificity scores (over 90 % in both cases). 

  

 Artificial Neural Network is a biologically inspired machine learning algorithm, which was 

designed based on nervous system of human brain [14]. It consists of input, output and 

hidden interconnected layers, which are comprised of connected nodes called artificial 

neurons. Every layer has predefined number of nodes, where the input neurons are equal to 

the number of features and the output ones depend on the number of classes. As for the 

hidden layer the number of nodes are specified by the user before the training and is based 

on the desirable performance of the classifier. During the training process of ANN the best 

weights for each nodes on every layer are received and used on the later testing phase for the 

classification [24]. Using this algorithm authors in [25] achieved high results with 

approximately 96 % accuracy. 
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The short comparison of the some of the above-mentioned studies is shown in the table 

below with some remarks taken regarding proposed methods. 

 

Table 2.1: Comparison of various proposed approaches for AF detection 

Authors Preprocessing 

techniques 

Extracted 

features 

Classifiers Remarks 

Padmavathi 

K., Ramakr- 

ishna K. Sri 

Resampling at 128 

Hz, segmentation 

of signal, sgolay 

filtering for noise 

removal 

Autoregressive 

coefficients 

SVM, kNN The presented 

dataset was 

small (280 

signals) 

Tuboly G., 

Kozmann G. 

Two Butterworth 

filters (4th order 

highpass filter at 1 

Hz and 8th order 

lowpass filter at 40 

Hz), QRS 

detection was 

based on algorithm 

proposed by 

Christov in [16] 

Dispersion of 

points around 

the diagonal 

line in the 

Poincaré plots 

and the number 

of clusters. 

k-means 

clustering 

Only 20 

signals for 

each of the 

classes (AF 

and normal) 

were used. 

Park J., Lee 

S.,Jeon M. 

Discrete wavelet 

transform for 

indicating the time 

positions of the 

QRS complexes. 

The number of 

clusters, mean 

stepping 

increment of 

inter-beat 

intervals, and 

dispersion of 

the points 

around a 

diagonal line in 

k-means 

clustering, 

SVM 

The number of 

data were 

limited and the 

approach is 

highly affected 

by the manual 

recheck of 

QRS complex 

detection. 
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the Poincaré 

plot. 

Sepulveda-

Suescun JP., 

Murillo-

Escobar J., 

Urda-Benitez 

RD. et al. 

Pan-Tompkins 

method for R 

peaks detection 

The features 

were based on 

the Poincaré 

plot. 

Parameter 

selection by 

Particle Swarm 

Optimization 

(PSO), SVM 

The dataset 

included small 

number of 

significantly 

long signals 

(approximately 

10 hours). 

Mohebbi M., 

Ghassemian 

H. 

5-15 Hz bandpass 

filters, the cubic 

splines for baseline 

wandering 

removal, the 

Hamilton and 

Tompkins 

algorithm for QRS 

detection 

Features 

extracted from 

HRV analysis 

(5 time 

features, 1 

frequency 

feature and 3 

nonlinear 

features). 

SVM The proposed 

method proves 

the efficiency 

of combined 

usage of linear 

and non-linear 

features. 

 

Mostly discussed studies were insufficient for the real-time applicability, since in the most 

cases the dataset was presented by the long-time signals, whereas in reality there is a 

necessity for a tool being able to detect AF from short-time recording of ECG. 

 

2.3 AF Classification from a short single lead ECG recording: the 

PhysioNet/Computing in Cardiology Challenge 2017 

 

The earlier mentioned limitations in the previous studies were aimed to be solved in the 2017 

PhysioNet/CinC Challenge. The purpose of this challenge was to develop an accurate 

mechanism for AF detection among four different types of signals: AF, normal, other 

(presented by some other cardiac abnormalities) and noise. The dataset included 8528 single 

lead ECG recordings for training and 3658 ECG signals for testing, which were closed from 

the public [26]. The distribution between different classes was as follows: Normal – 5076 

recordings; AF – 758 recordings; Other – 2415 recordings; Noise – 279 recordings. 
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Examples of recordings are presented in Figure 2.2. All records had a duration varying from 

9 s to approximately 61 s and were sampled at 300 Hz. In comparison to previous studies 

the challenge of this competition was that the dataset comprised bigger number of signals 

and the detection had to be realized among four different classes with unequal number of 

samples in it. Additionally, each of the signals was presented by the short single lead ECG 

recording, which also increases the complexity for AF detection mechanism, since usually 

ECG signals are recorded with 12 leads for a longer duration. Thus, the detection mechanism 

has to be able to properly extract meaningful features to accurately detect abnormalities in 

signal. Nevertheless, the final results evaluation showed that it is possible to achieve the 

highest F1 score of 0.8926 and 0.83 on the training and testing sets respectively.  

 

Figure 2.2: Examples of recordings from the dataset [27]. 

 

All the proposed algorithms differed in implemented techniques for pre-processing, feature 

extraction and classification. The first important part always remains the same in all the 

studies, i.e. to remove noise from the signal is crucial in every signal processing based 

mechanism. It allows to avoid extraction of wrong features, which could significantly 

deteriorate further classification of signals. For instance, in [28] authors used spectrogram 
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based approach which represents the spectral power of the signal and allows to detect noisy 

parts, since its values are higher (above 50 Hz) in frequency than parts storing cardiac 

information. Next the high pass filter with the cutting frequency of 0.5 Hz were added to get 

rid of baseline wander and a modified version of Pan-Tompkins algorithm was used for QRS 

detection. While in [29] authors applied logarithmic transform on the spectrogram using 

Tukey window with the length of 64, stating that this procedure significantly influence on 

classification accuracy. Others followed a bit different method in the pre-processing stage 

[30] using transformation into envelograms proposed in [31]. This method was based on 

processing signal into three types of envelopes using Fourier and Hilbert transforms. The 

first one corresponded to low frequency (LF) range (1-10 Hz), the second one - to medium 

frequency (MF) range from 5 to 25 Hz, and the third one was related to high frequency (HF) 

range of 50-70 Hz. Authors used this method to detect QRS by detecting the peak based on 

the subtraction of HF from MF resulting in automatic removal of noise from ECG signal. 

This approach differed from the one proposed in [32], where authors used finite impulse 

response bandpass filter with band limits of 3 Hz and 45 Hz and the Hamilton-Tompkins 

algorithm for further detection of R peaks with the subsequent PQRST templates extraction. 

There was additional filtering for noise or ectopic beats removal caused by some possible 

mistakes made by Hamilton-Tompkins algorithm. Furthermore, some studies [33] included 

extra step prior to the main pre-processing for avoiding imbalance in the training set by 

adding signals to two classes lacking of samples, i.e. AF and noisy signals. Authors of this 

approach padded AF class with 2000 carefully selected 10 s ECG segments from the various 

Physionet databases and simulated additional 2000 noisy signals as well as used time-

reversing of existing noisy signals. This step is followed by filtering the signals with the 10th 

order bandpass Butterworth filters with cut-off frequencies of 5Hz and 45Hz (narrow band) 

and 1Hz to 100 Hz (wide band), and QRS detection by using gqrs [34], Pan-Tompkins (jqrs) 

[35], maxima search [36], and matched filtering.  

 

As it was mentioned earlier feature extraction phase is the most significant and the derivation 

of relevant features determines the future classification accuracy. In comparison to the 

previous studies in some of the proposed techniques [28] not only features received from 

Poincare plots and HRV analysis were used but also morphological ECG features [33] 

extracted from PQRST components, prior art AF features [37] proposed by Sarkar et al [38], 
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frequency features based on Short Time Fourier Transform (STFT) and statistical features 

were derived. In [39] authors based their AF detection mechanism on combination of base-

level and meta-level features including time, frequency, time-frequency, phase space and 

meta-level features. In addition to statistical, signal processing and medical features authors 

of [40] extracted features from the proposed centerwave as well as the ones derived from the 

Deep Neural Networks (DNN) by transforming last hidden layer values to features. Another 

study [37] besides some of the above mentioned features included Shannon entropy [41], K-

S test values [42], the radius of the smallest circle from the normalized Lorenz plot, features 

based on RR intervals and similarity index between beats. On the other hand, in several 

approaches [29] [43] feature extraction was based on the implementation of Convolutional 

Neural Networks (CNN), where the model detects the significant features by its own. 

Finally, all of the features were fed to the corresponding succeeding classifiers. 

  

The choice of machine learning algorithm also has a direct impact on the final accuracy. 

There are many factors that influence on that: the amount of implemented classifiers (either 

the use of only one or the ensemble of several various algorithms), the number of hidden 

units and layers in Artificial Neural Networks, the number and size of filters in CNN, number 

of batches and epochs in Recurrent Neural Networks (RNNs), kernel type and coefficient in 

SVM and many others. Authors who achieved the best accuracy score [44] used several 

stages approach. The first stage included two simultaneous trainings on extracted global and 

per-beat features by eXtreme Gradient Boosting of decision trees (XGBoost) and Long Short 

Term Memory networks (LSTMs) respectively. During the second stage, classification 

stacking was implemented through the combination of the probabilities from previous 

classifiers by means of Linear Discriminant Analysis (LDA) classifier. The implementation 

of various ensemble learning approaches was also seen in [40] and [28], where in the first 

case authors used only XGBoost algorithm to train expert, DNN and centerwave features, 

and adaptive boosting (AdaBoost) classifier in the second study. In some cases [29] and [43] 

when authors extracted features using CNN, for the classifier they employed a linear layer 

with SoftMax function. The implementation of Random Forest algorithm was employed by 

authors of [33] and [45]. Thus, in the physionet challenge among the winning approaches 

classification algorithms [26] extreme gradient boosting (XGBoost), Convolutional (deep) 

Neural Networks (CNNs) and Random Forest were broadly employed. It was noticed that 
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the given size of training data was possibly inadequate, since some of the standard classifiers, 

for instance Random Forest, with the carefully selected features performed as well as other 

more complex ones. Some small comparison of the proposed approaches is shown in the 

Table 2.2. 

 

Table 2.2: The comparison of several approaches proposed in the PhysioNet/Computing in 

Cardiology Challenge 2017 

 

Authors Preprocessing 

techniques 

Extracted features Classifiers 

Datta S., Puri 

Ch., 

Mukherjee A. 

et al. 

Spectrogram based 

approach (the spectral 

power of the signal) for 

identifying noisy parts by 

its power; 

high pass filter with the 

cut-off frequency of 0.5 

Hz, modified version of 

Pan-Tompkins algorithm 

for QRS detection. 

More than 150 features:  

morphological (median, 

range and variance of the 

corrected QT interval 

(QTc), QR and QRS widths 

etc.), prior art AF features 

(AF Evidence, Original 

Count, Irregularity 

Evidence, approximate and 

sample entropy etc.), HRV 

features (pNNx*, SDNN**, 

SDSD*** and normalized 

RMSSD****), frequency 

features (mean spectral 

centroid, spectral roll-off, 

spectral flux), statistical 

features (mean, median, 

variance, range, kurtosis, 

skewness and the 

probability density estimate 

(PDE) of RR intervals). 

Two-layer 

binary 

cascaded 

approach. 
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Zihlmann M., 

Perekrestenko 

D., 

Tschannen 

M. 

Logarithmic transform 

was applied on the one-

sided spectrogram of the 

time-domain ECG signal. 

Features extracted by the 

CNN and CRNN presented 

by blocks of 4 and 6 layers 

were aggregated across 

time. 

SoftMax 

function for 

calculating 

the class 

probabilities. 

Plesinger F., 

Nejedly P., 

Viscor I., 

Halamek J., 

Jurak P. 

Transformation of signals 

into envelograms [31] for 

QRS detection (LF: 1-8 

Hz, MF: 5-25 Hz, HF: 

45-65 Hz) and for CNN 

(1-5 Hz, 5-10 Hz ... 35-40 

Hz). 

Features were extracted 

from statistical description 

of RR intervals as well as 

from the same description in 

a moving window. Also 

some were retrieved from 

CNN and correlation 

coefficients of average 

QRS. 

Neural 

Network and 

badged tree 

ensemble. 

Goodfellow 

S.D., 

Goodwin A. 

et al. 

Filtering by the finite 

impulse response 

bandpass filter (limits of 

3 Hz and 45 Hz), the 

Hamilton–Tompkins 

algorithm was used for R 

peaks detection and was 

followed by additional 

filtering of R peaks from 

any noise or ectopic 

beats. 

Full waveform features 

(min, max, mean, median, 

standard deviation, skew 

and kurtosis), templates (the 

P-, Q-, R-, S-, and T-wave 

amplitudes and times) 

features (summary statistics; 

the PR, QS, and RT interval 

times and the P-wave 

energy were calculated for 

amplitude and time of each 

wave), RRI features (RR 

Interval (RRI), RRI 

velocity, RRI acceleration 

and HRV features). 

Xtreme 

Gradient 

Boosting 

(XGBoost) 

Andreotti F., 

Carr O., 

10th order bandpass 

Butterworth filters with 

cut-off frequencies of 

Features were extracted 

from HRV metrics (time 

domain, frequency domain 

Ensemble of 

bagged trees 

(50 trees) 
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Pimentel M. 

et al. 

5Hz and 45Hz (narrow 

band) and 1Hz to 100 Hz 

(wide band); several QRS 

detectors were used: gqrs, 

Pan-Tompkins (jqrs), 

maxima search and 

matched filtering. 

and non-linear features), 

Poincare plot and Signal 

Quality Indices (SQI) as 

well as morphological and 

residual features. 

and a 

multilayer 

perceptron. 

 

* - The number of successive difference of intervals which differ by more than x ms 

expressed as a percentage of the total number of ECG cycles analyzed (pNNx); 

** - The standard deviation of the NN intervals (SDNN); 

*** - The standard deviation of differences between adjacent NN intervals (SDSD); 

**** - The root mean square successive difference of intervals (RMSSD). 

 

From the table above, it is seen that the techniques implemented in the various approaches 

in the PhysioNet/Computing in Cardiology Challenge 2017 are more complicated than the 

ones discussed in the previous studies section, particularly the number of extracted features 

were significantly higher and the architectures of classifiers included more than one stage. 
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3 AF DETECTION IMPLEMENTATION 

 

This chapter discusses the main steps needed for AF detection starting from the system 

requirements followed by the signal pre-processing, the feature extraction and the applied 

machine learning algorithms. It provides a comprehensive description of each of the steps in 

detail.  

 

The dataset used for the experiments was used from the Physionet/CinC Challenge 2017 

[26]. It comprised of 8528 single lead ECG recordings including: Normal – 5076 recordings, 

AF – 758 recordings, Other – 2415 recordings, Noise – 279 recordings. 

3.1 The requirements for AF detection 

 

In order to build an accurate resource-constrained AF detection tool it is crucial to specify 

the requirements for such system. The requirement analysis includes: 

 

1. The proper signal pre-processing techniques should be used to remove noise and 

detect QRS complexes. 

2. The proposed solution should extract meaningful features from ECG recordings. 

3. The implemented machine learning algorithms should have relatively high accuracy 

in detecting AF among 4 different types of signals. 

4. The proposed solution should be computationally inexpensive. 

5. The time constraint should be also taken into account. 

6. The visualization of the prediction must be realized as well. 

 

Based on the previous studies review three of the first requirements have a direct influence 

on the performance and accuracy of the AF detection. While the forth and the fifth ones were 

introduced due to the idea of the future implementation and deployment on the resource-

constrained handy devices. We also introduced the last requirement as the sample 

visualization tool for users. All the above listed requirements will be discussed in the 

following sections in detail. Following these requirements, the final solution is presented as 

a web-based resource-constrained AF prediction system with relatively high accuracy score 

comparable to the current state-of-the-art. 
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3.2 Signal pre-processing: noise removal and QRS complexes detection 

 

Since all the signals are contaminated with a noise during their recordings, first it is crucial 

to eliminate any kind of interferences to make further processing and analysis of the signal. 

The solution for the elimination of the interfering noises in the signals is the implementation 

of various filter types.  

 

Based on the F. Andreotti et al. work [33], we used two 10th order bandpass Butterworth 

filters with cut-off frequencies of 5Hz and 45Hz (narrow band) and 1Hz to 100 Hz (wide 

band) respectively. Both filters remove the baseline wander noise caused by possible offset 

voltages in the electrodes, respiration, or body movement. By means of the first filter, QRS 

complexes are detected more accurately during the next step of preprocessing, since they are 

concentrated on 10-50 Hz range. However, besides eliminating power line interference and 

higher frequency noise components the first filter also removes the information about P and 

T wave complexes. Thus, using the second filter allows extracting features related to these 

complexes as well as some additional ones (residual and morphological) on later stages. The 

example of filtered signal having AF is illustrated on the Figure 3.1. 

 

 

Figure 3.1: AF signal after filtering with two Butterworth filters. 
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After the signals were filtered four different methods were used for QRS detection in each 

narrow-band preprocessed signal [33]: gqrs provided by WFBD toolbox from Physionet, 

Pan-Tompkins algorithm by using jqrs function (window-based peak energy detector), 

maxima search (for the highest peak (R complex of the signal) detection), and matched 

filtering (presence detection of a template signal in the unknown one by their correlation). 

The final reliable result of QRS detection was made by applying a voting system based on 

kernel density estimation. 

3.3 Feature extraction 

After the signal was filtered from the noise and QRS complexes were extracted, it is crucial 

to get the features that will carry enough information to be used for the AF detection. In our 

work we tried two approaches to extract features. The first one was based on the Poincare 

plot divided into 8 sectors, where each feature was related to the concentration of points in 

the sector. The second approach was based on one of the works [33] from the Phyisonet/Cinc 

Challenge 2017. 

3.3.1 Poincare plot-based features 

Being very practical and applicable in the AF detection among two types of signals: AF and 

normal, we used Poincare plot to extract features and apply them in solving our problem. 

Since one of the main characteristics of the AF presence is the irregularity in RR intervals, 

it is well reflected in the Poincare plot, where every point represents the values of the 

successive RR intervals (Figure 3.2). The number of points varies from the signal to signal 

and depends on the duration of the signal and the corresponding number of RR intervals in 

it. Since most of the machine learning algorithms require a fixed-size feature vector to train, 

we divided Poincare plot into sectors, where each of them was represented by the number of 

points it contained. The division was based on the relative position of the points. 

 

From the Figure 3.2 we can see that the signal having AF has more spread points along the 

main diagonal compare to the others, where the points are mostly concentrated in the central 

region. Therefore, we tried to extract features based on the plot division into sectors (figure 

3.3). The whole process of extracting features from the divided Poincare plots is illustrated 

in the Figures 3.4 -3.7. 
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Figure 3.2: Poincare plot of signals having AF (left top corner), normal signal (right top 

corner), other signal (left bottom signal) and noisy one (right bottom corner) 

 

 

Figure 3.3: Suggested feature regions on the Poincare plot. 



 

33 

 

 

Figure 3.4: Feature extraction for an AF signal. 

 

Figure 3.5: Feature extraction for a normal signal. 
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Figure 3.6: Feature extraction for the other signal. 

 
Figure: 3.7: Feature extraction for a noisy signal. 
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Thus, by dividing the plot into 8 sectors, the concentration of the points in each of the sectors 

represented each of the 8 features. In addition to 8 features, based on previous studies results 

[46] standard deviation of the distances of RR(i) from the lines y = x and y = -x + 2RRm, 

where RRm is the mean of all RR(i) were also considered as features. The ratio of two 

standard deviations was also calculated as a feature. 

 

3.3.2 Extended feature extraction 

 

Feature extraction included [33] retrieving features from HRV analysis (time domain, 

frequency domain and non-linear metrics), features based on Signal Quality Indices (SQI), 

as well as morphological and residual features. It resulted in 171 features extracted from 

filtered segmented ECG signals, where the number of segments depended on the length of 

the recording. Therefore, for each recording the mean values across all segments were used 

for further processing. Some of the feature examples is shown in Table 3.1.  

 

HRV is a variation over time of the period between consecutive heartbeats [21]. HRV 

analysis provides a deeper understanding of cardiac condition which can hardly be achieved 

by manual ECG signal examination. It is a significant tool for the detection of heart diseases, 

which includes several methods of analysis: time domain, frequency domain and non-linear 

method [14]. 

 

Time domain analysis includes two different HRV indices [21]: long term variability (LTV) 

and short term variability (STV), which correspond to fast and slow fluctuations in HR 

respectively. Both calculations are based on the RR intervals in a specified time window. 

Additionally, some statistical parameters may be calculated from the RR intervals: the 

standard deviation of the NN intervals (SDNN),  the standard error, or standard error of the 

mean of NN intervals (SENN), the standard deviation of mean of NN intervals in 5 min 

(SDANN) [33], the root mean square successive difference of intervals (RMSSD), the 

number of successive difference of intervals which differ by more than 50 ms expressed as 

a percentage of the total number of ECG cycles analyzed (pNN50), the standard deviation 

of differences between adjacent NN intervals (SDSD). 
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Frequency domain methods are applied because of the inability of time domain analysis to 

discriminate between sympathetic and para-sympathetic contributions of HRV [21]. This 

method is related with the spectral analysis of HRV, which carries more information about 

the cardiac diseases presence in ECG signals. It might be concluded from the ratio of low 

frequency to the high frequency, which is much higher in case of cardiac abnormalities.  

 

It was studied that signals from the non-linear living systems may be analyzed more 

effectively by the methods from the theory of nonlinear dynamics. These techniques include 

parameters like correlation dimension (CD), largest Lyapunov exponent (LLE), standard 

deviation (SD) relation (SD1/SD2) of Poincare plot, Approximate Entropy (ApEn), Hurst 

exponent, fractal dimension, a slope of DFA and recurrence quantification analysis. 

 

Table 3.1: Extracted features 

Type of features Examples 

Time domain SDNN, SDANN, RMSSD, SDNN index, SDSD, 

NN50, pNN50 etc. 

Frequency domain Low Frequency (LF) power, High Frequence (HF) 

power, LF/HF etc. 

Non-linear Sample Entropy (SampEn), ApEn, Poincare plot, 

Recurrence Quantification Analysis (RQA) 

SQI bSQI, iSQI, kSQI, rSQI 

Morphological P-wave power, T-wave power, QT interval etc. 

Residual Features extracted out of QRS cancelled ECG signals 

 

However, extracting 171 features on the real-time predicting systems in a fast manner is 

highly doubtable due to computational and time constraints. Therefore, it is important to 

choose which features are most useful with the consideration of introduced constraints. Thus, 

in this work we used one of the feature selection techniques, called Recursive Feature 

Elimination (RFE) used for reducing the number of feature [47]. 

 

RFE is a greedy optimization technique used for finding the best performing subset of 

features [48]. It repeatedly builds models and keeps the worst or the best feature subsets 
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aside until all features are exhausted. Afterwards this algorithm evaluates and ranks all 

features based on the order of their elimination. Finally, it provides the best performed 

feature subset of initially specified size. We used this algorithm to reduce the number of 

features so that it can take less time to extract them from new signals during the operation 

phase. RFE implementation was realized by using provided RFE function from Python 

scikit-learn machine learning library [47].  

 

In our simulations, to receive the best feature subset we trained Random Forest Classifier on 

the whole feature set. We varied the number of features to obtain the best feature subset 

ranging in size between 5 and 20 (Table 3.2). After specifying the desired size of reduced 

feature subset, Random Forest Classifier was trained on the whole feature set. Afterwards it 

assigned weights to each of them. After these steps were completed, features having the 

smallest weights were pruned from the feature set. This procedure was repeated on the 

remaining feature set until the desired number of features was reached. Table 3.2 describes 

only three subsets, since there was no significant difference in the training results using 15 

and 20 features subsets (explained more in detail in the following chapter). And as it was 

mentioned by I. Guyon et al [47] the features that are chosen for the best features subset by 

means of their ranking are not necessarily individually most important. They perform well 

only in conjunction with the other features in the corresponding subset. The reduced feature 

subsets (5, 10, 15) included features mostly from non-linear HRV metrics, SQI based 

features, plus some of the residual and morphological features. On the other hand, 20 features 

subset also included few features from time and frequency domain HRV metrics. 

 

Table 3.2: Top ranked features for best feature subsets 

Name of a feature 5 features subset 10 features subset 15 features subset 

SampleAFEv + + + 

RR - + + 

TKEO1 - + + 

medRR - - + 

iqrdRR - - + 

DistNext - + + 

ClustDistSTD - - + 
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rad2 - + - 

rad1rad2 + + + 

DistNextnS + - - 

rsqi3 + + - 

rsqi5 - - + 

csqi2 - - + 

csqi5 - + - 

res1 + + + 

res2 - - + 

Pheight - + - 

QRSpow - - + 

PheigtNorm - - + 

RRlen - - + 

 

 

Figure 3.8: Plots illustrating distributions of 15 features selected by the RFE for each class 

in the dataset. Lines show medians. Bars depict and interquartile ranges between 25\% and 

75\% percentiles. For visual purposes, the hyperbolic tangent function was applied to all 

values of the features. Next, each feature was scaled using z-score method. The plots 

depict statistics for the scaled features. 
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Figure 3.8 presents distribution of 15 features selected by the RFE for each class. Feature 

numbers correspond to the order in Table 3.2. In general, not all the features demonstrate 

distinct separation between the classes (e.g., #2), however, it is clear that there are features 

(e.g., #1, #6) where classes have different values. 

3.4 Implemented machine learning classification algorithms 
 

Besides extracting meaningful features, it is also important to choose an appropriate machine 

learning algorithm which will detect AF highly accurately. Machine learning algorithms are 

recommended to use because of their ability to learn from data and make predictions on the 

dataset. In our proposed solution we tried several classifiers for training, however, for 

visualization in the web-based application, we used only two of them due to higher accuracy 

and better representation reasons. 

 

Random Forest is a supervised ensemble machine learning algorithm, which uses several 

machine learning classifiers by building a group of decision trees. Ensemble modeling is a 

powerful machine learning technique for obtaining higher prediction results. According to 

[49] the random vectors are generated to grow the tree in the forest. Each of the trees then 

gives a vote for the most popular class for the given input.  

 

Artificial Neural Network (ANN) is a computational structure [24] biologically inspired by 

the human brain processes. This structure is represented by highly interconnected processing 

units - neurons. One of the major features of ANN is “learning by example”, which increases 

the applicability of this algorithm in solving problems with inadequate or incomplete 

understanding for users. The complexity of the Neural Network, i.e. the number of layers 

and units in it, is fully related to the problem difficulty.  

 

We implemented a Random Forest of 100 trees in it and a Neural Network with two hidden 

layers and 150 hidden units (neurons) in each of them. These parameters were empirically 

chosen to avoid overfitting, which may happen when the classifiers are too complex and 

biased to the training set. For better visualization reasons we also employed one linear layer 

with SoftMax function in the Neural Network classifier, which provided the activations of 
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the output layer in the form of the probability distributions. The training of the classifiers 

was realized with 15 features subset from Table 3.2 and 5-fold cross-validation for both and 

for 170 epochs for Neural Network.  

 

The implementation of both classifiers was realized with Python machine learning libraries: 

scikit-learn (Random Forest) and keras (Neural Network). Both are free machine learning 

libraries for Python programming language. Scikit-learn is built upon the SciPy (Scientific 

Python), which is required to be installed beforehand [50]. This library provides a wide range 

of supervised and unsupervised machine learning algorithms. Keras is an open source high-

level Python library for building Neural Networks, which is usually running on top of 

TensorFlow, Microsoft Cognitive Toolkit or Theano [51]. 
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4 PERFORMANCE EVALUATION AND RESULTS 

 

In this chapter we will first describe the performance metrics for the evaluation of the chosen 

approaches. Then by using the introduced metrics we will discuss how well the machine 

learning algorithms performed. We will also discuss whether the computations reduction 

realised by the feature reduction influenced the performance of the classifiers.  

4.1 Performance metrics 

 

It is highly important to choose appropriate performance metrics to properly evaluate the 

effectiveness of the proposed solution. One of the possible techniques for testing and 

evaluating machine learning algorithms is k-fold cross-validation. By means of this 

technique the dataset is splited into k non-overlapping subsets, where one of the k subsets is 

used for testing and the rest k-1 subsets form the training set [52]. Performance statistics are 

averaged across all k folds. It provides an indication about how well the classification will 

be on the new data. 5-fold cross-validation was used in our experiments and the following 

performance metrics were computed: 

 

 Confusion matrix is usually used to better describe the performance of the classifier, 

where each row represents the instances of the actual classes and each column 

corresponds to the predicted ones (Figure 4.1). 

 Accuracy, which shows the percentage of the correctly classified instances over the 

total number of instances. 

 F1 score  is the weighted average of the precision and recall, in the case of three and 

more classes classification it is an average of F1 score  of each class. Precision [53] 

is the fraction of correctly classified instances over the total number of the retrieved 

instances. Recall [54] is the fraction of the relevant instances that have been retrieved 

over the total amount of the relevant instances. 
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Figure 4.1: Confusion matrix for four different classes (AF, Normal, Other and 

Noise). 

 

Based on the presented confusion matrix, the below equations show the way of calculating 

the accuracy and F1 score.  

The Accuracy is calculated according to the Formula 4.1. 

 

        Accuracy = 
𝐴𝑎+𝑁𝑛+𝑂𝑜+𝑃𝑝

∑𝐴+∑𝑁+∑𝑂+∑𝑃
           (4.1) 

 

The final F1 score is calculated as an average of the individual F1 scores corresponding to 

the each of the four classes [27].  

 

 Normal rhythm: F1n = 
2 × 𝑁𝑛

∑𝑁 + ∑𝑛
  (4.2) 

 AF rhythm: F1a = 
2 × 𝐴𝑎

∑𝐴 + ∑𝑎
    (4.3) 

 Other rhythm: F1o = 
2 × 𝑂𝑜

∑𝑂 + ∑𝑜
   (4.4) 

 Noisy: F1p = 
2 × 𝑃𝑝

∑𝑃 + ∑𝑝
    (4.5) 

 Final F1 = 
𝐹1𝑛+𝐹1𝑎+𝐹1𝑜+𝐹1𝑝

4
  (4.6) 

 

 



 

43 

 

4.2 Performance evaluation of machine learning classifiers on different 

feature subsets 

 

Features obtained after the separation of Poincare plot into sectors were trained with Random 

Forest Classifier with 5-fold cross-validation. The results were averaged for ten simulations 

and are shown in Table 4.1. However, the accuracy and F1 score are quite low (0.72 and 0.55 

respectively) and it is also seen in the confusion matrix (Table 4.2) that the number of 

misclassifications is high in all 4 classes (Table 4.2). Therefore, it was necessary to review 

other methods for the feature extraction. Thus, the extended feature set based on work [33] 

was used. 

 

In our simulations we compared the performance of Random Forest Classifier on the best 

feature subsets with different sizes ranked by RFE. The performance was measured with 

accuracy and mean F1 score using 5-fold cross-validation. The accuracy and mean F1 score 

on the full set of 171 mean valued features were 0.83 and 0.75 respectively. The results 

(Table 4.1) showed  that  in  comparison  to  the  usage  of  all  171  features  using  the set 

of only 5 best features worsened the accuracy by 6.0 % and F1 score  by 6.7 %. On the other 

hand, the difference to the full classifier when using 10 features was only 2.4 % and 1.3 % 

respectively. There was no significant performance degradation for 15 and 20 features. The 

subset of 15  features was chosen as the resulting one for future feature extraction from new 

signals and for training other classifiers. This subset was more appealing to use, since its 

feature extraction did not require any frequency domain computations. It included features 

extracted from RQA, Poincare plot, SQI metrics, 3 morphological and 2 residual  features.  

Using only  8  features  extracted  from  the  temporal  domain  was  comparable  to  5  best  

features  in  terms  of  accuracy  but  was  7.1 %  worse  in  terms  of  F1 score .  

 

We also tried combining features derived from the Poincare plot and 171 features from [33] 

to see if it would increase the performance of the classifier. In some cases, more features can 

carry more valuable information in conjunction with each other, thus, resulting in higher 

accuracy and F1 score. However, in our case combining features from these two different 

sets did not result in any significant performance improvement (Table 4.1). 
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Table 4.1: Classification performance of Random Forest Classifier for different number of 

features. 

Number of features Accuracy F1 score  

13 (Poincare plot based) 0.72 0.55 

5 0.78 0.70 

8 (only time domain) 0.78 0.65 

10 0.81 0.74 

15 0.82 0.75 

20 0.83 0.75 

171 0.83 0.75 

Combined 171 and 13 Poincare plot 

features 

0.83 0.75 

 

Table 4.2 presents the confusion matrix obtained on 5-fold cross-validation for a single run 

of the Random Forest Classifier trained on 13 Poincare plot based features. The cross-

validation accuracy on the data was 0.72 while mean F1 score was 0.55. 

 

Table 4.2: Confusion matrix for 13 Poincare plot based features. 

 Predicted 

AF Normal Other Noise 

A
ct

u
a
l 

AF 485 54 201 16 

Normal 40 4532 482 20 

Other 130 1153 1109 17 

Noise 69 83 80 38 

 

Table 4.3 presents the confusion matrix obtained on 5-fold cross-validation for a single run 

of the Random Forest Classifier trained on all 171 features. The cross-validation accuracy 

on the data was 0.83 while mean F1 score was 0.74. 
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Table 4.3: Confusion matrix for all 171 features. 

 Predicted 

AF Normal Other Noise 

A
ct

u
a
l 

AF 575 36 135 12 

Normal 16 4698 339 23 

Other 83 647 1655 30 

Noise 10 72 66 131 

 

Table 4.4 presents the confusion matrix obtained on 5-fold cross-validation for a single run 

of the Random Forest Classifier trained on the best 15 features selected by RFE. The cross-

validation accuracy on the data was 0.83 while mean F1 score was 0.74. 

 

Table 4.4: Confusion matrix for 15 features selected by the RFE method. 

 Predicted 

AF Normal Other Noise 

A
ct

u
a
l 

AF 572 32 143 10 

Normal 23 4692 341 20 

Other 102 640 1638 35 

Noise 14 71 51 143 

 

 

Tables 4.3 and 4.4 are resembling each other. Even though the performance of the classifiers 

was relatively high, there was still a large overlap between Normal and Other classes in the 

matrices. In fact, two largest sources of misclassifications are predicting instances of Normal 

class as Other (339 and 341respectively) and predicting instances of Other class as Normal 

(647 and 640 respectively). The second largest overlap is between AF and Other classes. 

Finally, the least represented class (Noise) gets the lowest F1 score per class. It is not 

surprising as the classifier is maximizing the overall accuracy, thus, it is more important to 

correctly classify as many as possible of the examples of the most representative class (i.e., 

Normal). The least representative class becomes the least important one from the point of 

view of the average accuracy. Note, however, that for the considered task the goal is to 

maximize the mean F1-score, which is negatively affected by low individual F1 scores. In 
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all tables there are many instances of Noise class which were predicted either as Normal or 

Other. Therefore, for the future work it will be important to improve the correctness of 

predicting instances from Noise class. 

 

Additionally, we implemented an artificial Neural Network with two hidden layers and 100 

hidden units (neurons) in each hidden layer. For better visualization reasons we also 

employed one output layer with SoftMax function, which provided the activations of the 

output layer in the form of the probability distributions. The training of the classifier was 

realized with 15 features subset for 170 epochs and with 5-fold cross-validation. However, 

the average accuracy (0,75) of this Neural Network was significantly lower than the one 

achieved by Random Forest. Nevertheless, we used this classifier, since the usage of 

SoftMax layer provides more detailed information about the predicted class probability of 

the signal. 
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5 WEB APPLICATION PROTOTYPE 

 

This chapter describes the web application built for the visualization of the resource-

constrained AF detection. Based on the objectives of our work, the introduced requirements 

and the review of the State-of-the-Art, we built a web-based visualization tool to demonstrate 

how a potential resource-constrained AF detection tool might work. 

5.1 Implemented technologies 

 

The whole application was written using Django web-development framework in Python. 

This framework implies to follow the model-view-controller (MVC) design pattern [55], 

which allows separating the main functionality of the application from the overall view. 

Django framework allows creating a development server, where the server-side logic uses 

the Structured Query Language (SQL) for communicating with the database and getting the 

related information. It also enables easy access to html files by creating templates which 

form the user interface. The ability of Django to customize templates on the fly with the data 

passed to them from the server-side makes the whole development process much easier. All 

templates are written in HyperText Markup Languages (HTML) and Javascript (for better 

functionality of the application). The advantages of using this framework are the re-usability 

of components, low coupling, rapid prototyping and the main one is that it follows the 

principle of “don't repeat yourself”. 

 

To run the server and emulate the ECG recording device Amazon Web Services (AWS) 

Elastic Compute Cloud (EC2) instances were used. The ElastiCache from AWS, which 

provides a fully managed Redis, was used as an in-memory store for Django server.  

5.2 Design of the system 

 

All the system components, i.e. pre-processing, feature extraction and the machine learning 

classifiers, were written in Python for easier integration with each other. The pre-processing 

and feature extraction parts were initially written in Matlab due to the availability of the 

WFBD toolbox, which supports various computations for ECG signals. However, due to the 

complications of running Matlab application automatically after the signal reception without 

human interference, it was hard to use Matlab code in the design of the system. Therefore, 
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the parts for the pre-processing and feature extraction were converted into the Python 

application that can be used outside the Matlab environment. It was done with the Library 

compiler available in Matlab. The created Python application can be used in the other Python 

applications. Thus, we used created Python package for the pre-processing and feature 

extraction in the web application prototype. Both machine learning classifiers were also 

written in Python and trained separately on the available dataset. As soon as the classifiers 

were saved to the trained models, we could call them in the corresponding part of the 

application code.  

 

The application itself was running on the AWS EC2 instance, as well as the imitation of the 

device was realised by means of another virtual machine by AWS.  

5.3 Scenario description 

 

The visualization of the AF detection was realized by designing a web application, which 

supported a device connection, a reception of the ECG signal from it, further pre-processing 

on the server and displaying the prediction on a user side. The process flow of the interaction 

between the user, a device and the server is shown in the Figure 5.1 as a sequence diagram. 

 

 

Figure 5.1: Sequence Diagram of the interaction between the user, the device and the server. 
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After the registration or login (Figure 5.2 and 5.3) the user has a possibility to connect the 

device by IP address (Figure 5.4). With a connection of the device a websocket opens for 

the further requested signal forwarding. The device then is staying in the listening mode. 

Due the absence of the real physical ECG recording sensor, the device in our work was 

emulated by creating and running a virtual machine by means of AWS EC2 instance. 

 

Figure 5.2: The screenshot of the registration page. 

 

 

Figure 5.3: The screenshot of login into the created account. 

 

The user account information is stored in the default SQLite, which is already configured 

and installed along with the framework. This database is included in Python, so it does not 

require any additional installations.  
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Figure 5.4: The screenshot of the page with entering IP address of the device. 

 

When the user entered a valid IP address, the connection to the device is created with the 

initially hardcoded port number (10001). To run the device the user need to use the 

implemented command “python manage.py readSensorEcg”, which will start the emulated 

device and will wait for the request from the server. As soon as the device gets the request, 

it sends the prestored signal in a JSON file format. 

 

 

Figure 5.5: The screenshot of the main functionality page. 

  

After the connection was open, the user may decide when to start the reception of the ECG 

signal from the device by pressing START button. Since the device was emulated, it already 

had a prestored ECG recording, which was then sent via the websocket as an array of values 

in a JSON format. As soon as the signal was recorded and displayed on the screen, it was 

saved on the server for the pre-processing, i.e. filtering and feature extraction. Once the 
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features were extracted they were fed into two trained classifiers (Random Forest and Neural 

Network), which made the final decision for either AF presence or absence. The Figure 5.5 

illustrates the final page after the signal reception and the computed predictions. The result 

of the prediction is visualized as a pie chart with the possibilities distribution and one column 

graph for the corresponding class from the Neural Network and Random Forest Classifiers 

respectively.  

 

Figure 5.6: The screenshot of the predictions visualization (classifier1). 

 

Since the classifier 1 corresponds to the Neural Network and shows the prediction as the 

probability distribution, the probability for each class was rounded to hundredths. Therefore, 

in some cases the resulting accuracy should be rounded as well.  

 

 

Figure 5.7: The screenshot of the predictions visualization (classifier2). 
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The resulting prediction is also shown as a gauge chart on the page. The Figure 5.6 shows 

the example of the prediction visualization from Neural Network Classifier, while the Figure 

5.7 corresponds to the prediction from Random Forest Classifier. 

Both figures illustrate one of the possible predictions and correspond in this case to the class 

``other''. Both classifiers predicted class ``other'' for the same signal, thus the gauge chart 

also shows the same class. The third graph was added for the visualization purposes, i.e. for 

displaying the final result based on both classifiers (Figure 5.8). 

 

However, two classifiers may show different predictions, which can more likely to happen 

to “Normal'' and “Other'' classes or “AF” and “Noise”. It was empirically proven that the 

misclassifications are more likely to happen in these exact pair of signals. In that case the 

resulting prediction will incline to “Other” and “Noise” classes. It is done for the safety 

reasons. Since in the first case the user will know that there is a potential danger of having 

AF and will double check the records with a medical staff. As for the second case the user 

will be recommended to repeat the signal recording, since it was more likely that the first 

one could be too noisy to detect.  

 

Figure 5.8: The screenshot of the resulting prediction. 
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6 DISCUSSION 
 

Being a serious heart disease AF was studied by many researchers before, and different 

approaches were proposed to detect it.  After the conducted literature review, it is concluded 

that most of the studies were lacking either the bigger sized datasets or the diversity in the 

signals samples or the duration of signals were too long. These issues were solved in the 

Physionet/CinC Challenge 2017. However, the complexity of the proposed approaches was 

not considered. Since the complexity places restrictions on the applicability of the solutions 

to be used on the inexpensive devices outside the hospital, in our study we reduced the 

complexity by reducing the number of extracted features, thus decreasing the amount of the 

transforms applied to raw signals without causing the performance degradation. This, in turn, 

increases the feasibility of deploying such solutions on the resource-limited devices. 

Moreover, by analysing the previous works, we decided on using two less complex machine 

learning algorithms, which performed as well as the ones with a higher complexity. 

 

A web application prototype was developed as a final representation of this study. This 

application was built in a way that it could be easy in use, where the users can upload their 

ECG signals for the analysis of AF presence.  As soon as the signal is uploaded to the system, 

it is pre-processed, and the features are extracted. After the features were fed into the 

classifiers, the machine learning algorithms determine whether the signal is having AF.  

 

According to the introduced delimitation, this study was based on using the existing dataset 

taken from the Physionet/CinC Challenge 2017 [26] and not on the signals received in a real-

time from the sensors. A web prototype was developed to show how the computationally 

less solution might work in practice. Therefore, the deployment on a handy device was out 

of the scope of this thesis.  

6.1 Sustainability evaluation  

 

Being a part of PERCCOM program [56], which purpose is to increase the sustainability 

awareness by integrating it in ICT and thus developing a greener world, we also evaluated 

the sustainability of this work. We conducted a sustainability analysis illustrated on the 

Figure 6.1 in five various dimensions with the 3 levels in each of the dimension.  These five 
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dimensions include individual, social, economic, environmental, and technical aspects. Three 

different effects were introduced in each of the dimensions: structural, enabling and immediate.  

 

 
Figure 6.1: The sustainability analysis 

 

From the individual point of view such application provides an opportunity for people to 

regularly check their health, which increases the awareness of their health conditions and 

thus decreases the level of accidents related to the heart problems. Regarding the social 

aspect, regular monitoring of the health leads to the reduction of the frequent visits to the 

hospital, thus eliminating time spent in the queues waiting for the medical check-up. This, 

in its turn, has a positive effect on the whole healthcare system in general. The resulting 

decrease in the number of accidents leads to the corresponding reduction of healthcare costs, 

which positively impact economical aspect as well. By the achieved reduced number of 

features and corresponding computations, this system has a beneficial impact both in terms 

of technical and environmental sustainability.  



 

55 

 

7 CONCLUSION AND FUTURE WORK 
 

The growing integration of ICT advances into the healthcare sector contributes to the 

development of the preventative healthcare tools for the early diagnostics of the serious 

diseases. This work was limited to studying the detection of one of the cardiovascular 

diseases -Atrial Fibrillation.  

 

By reviewing the previous studies approaches and results and considering an introduced 

constraint, this work proposed a machine learning assisted system for the resource-

constrained AF detection with the web-based prototype for visualization. The presented 

results allow concluding that it is quite hard to accurately detect cardiovascular disease when 

the number of signal types exceeds two and done by only single lead ECG. However, the 

results show that it is possible to achieve performance comparable to the current state-of-

the-art and at the same time significantly decrease the complexity of the existing solutions 

to AF classification problem both in terms of the extracted number of features and the 

transforms applied to the raw signals. This, in turn, increases the feasibility of deploying 

such solution on the resource-limited devices. Therefore, the achieved results enable future 

development of the whole real-time system for the resource-constrained AF detection. 

 

Future work may cover the development of the full resource-constrained AF detection 

system including the real-time recording and the reception of the ECG signal. The 

enlargement of the signal database with the newly recorded signals may improve the 

classification performance of the trained models. The idea of testing the proposed system in 

the real time will increase the potential of such solution to be used in everyday routines of 

the patients. Additionally, the extension to the broader number of users, including the 

medical staff will positively influence on the applicability of such system. 
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APPENDIX 1.  Feature reduction with RFE 

import scipy.io as sc 
import numpy as np 
from sklearn.feature_selection import RFE 

from sklearn.ensemble import RandomForestClassifier 
    # load the feature dataset and labels 
np.random.seed(seed=8)  # set fixed seed to get deterministic results 
X=sc.loadmat('171meanvalues.mat') #initial feature set 
X=np.array(X['meanvalues']) 

print(type(X)) 
y=sc.loadmat('trueclass.mat') #labels 
y=np.array(y['trueClass']) 
y = y.ravel() 
    # create a base classifier used to evaluate a subset of newly chosen 

features 
model = RandomForestClassifier() 
    # create the RFE model and select 15 features 
rfe = RFE(model, 15) 
rfe = rfe.fit(X, y) 

    # summarize the selection of the features 
  
result=rfe.support_ #result of RFE       
#sc.savemat('RFE_result.mat', {'result': result})  # saves the selected 

features to .mat file 
print(rfe.support_) 
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APPENDIX 2.  Implemented machine learning classifiers 

Random Forest Classifier 

import scipy.io as sc 

import numpy as np 

from sklearn import datasets, linear_model 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import cross_val_score 

from sklearn import metrics 

from sklearn.model_selection import StratifiedKFold 

from sklearn.metrics import accuracy_score, f1_score 

 

# Call the features and labels sets specifying the paths with the files 

data = sc.loadmat('/home/anara/Downloads/Github_Features/rfe.mat')  

meanvalues=data['rfe15_and_trueclass'] 

signals=meanvalues[:,0:15] 

trueclass=sc.loadmat('/home/anara/Downloads/Github_Features/trueclass.mat') 

labels=trueclass['trueClass'] 

 

seed = 7 

np.random.seed(seed) 

 

#5-fold cross-validation 

kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed) 

cvscores = [] 

for train, test in kfold.split(signals, labels): 

    Y=labels.ravel() 

    model = RandomForestClassifier(n_estimators=100, max_depth=None, 

    max_features='auto', min_samples_leaf=1, min_samples_split=2,  

bootstrap=True) 

model.fit(signals[train], Y[train]) 

 

#Predictions, Accuracy and F1 score 

predictions=model.predict(signals[test]) 

print(accuracy_score(Y[test], predictions)) 

print(f1_score(Y[test], predictions, average='macro')  ) 

 

Neural Network Classifier 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler, OneHotEncoder 

from keras.layers import Dense, Input, concatenate, Dropout 

from keras.models import Model 

from keras.optimizers import rmsprop 

import scipy.io as sc 

from sklearn.model_selection import StratifiedKFold 

 

seed = 7 

np.random.seed(seed) 

 

# Call the features and labels sets specifying the paths with the files 

data = sc.loadmat('/home/anara/Downloads/Github_Features/rfe.mat') 

meanvalues=data['rfe15_and_trueclass'] 

meanvalues=meanvalues[:,0:15] 
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trueclass=sc.loadmat('/home/anara/Downloads/Github_Features/trueclass.mat

') 

labels=trueclass['trueClass'] 

 

ensemble_num = 10 # number of sub-networks 

training_size = 0.7 # 70% for training, 30% for testing 

 

num_hidden_neurons = 150 # number of neurons in hidden layer 

dropout = 0.25 # percentage of weights dropped out before softmax output 

(this prevents overfitting) 

 

epochs = 170 # number of epochs (complete training episodes over the 

training set) to run 

batch = 41 # mini batch size for better convergence 

 

temp = [] 

scaler = MinMaxScaler() 

one_hot = OneHotEncoder() # one hot encode the target classes 

signals = scaler.fit_transform(signals) 

 

# 5-fold cross-validation  

kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed) 

cvscores = [] 

for train, test in kfold.split(signals, labels): 

    Y=labels.ravel() 

    Y = one_hot.fit_transform(np.reshape(Y, (-1,1)) ).toarray() 

    sub_net_outputs = [] 

    sub_net_inputs = [] 

    for i in range(ensemble_num): 

        # two hidden layers to keep it simple 

        # specify input shape to the shape of the training set 

        net_input = Input(shape = (signals[train].shape[1],)) 

        sub_net_inputs.append(net_input) 

        y = Dense(num_hidden_neurons)(net_input) 

        y = Dense(num_hidden_neurons)(y) 

        y = Dropout(dropout)(y) 

        sub_net_outputs.append(y) # sub_nets contains the output tensors 

 

    # now concatenate the output tensors 

    y = concatenate(sub_net_outputs) 

 

    # the final softmax output layer 

    y = Dense(Y[train][0].shape[0], activation='softmax')(y) 

 

    # the whole functional model 

    model = Model(inputs=sub_net_inputs, outputs=y) 

    model.compile(optimizer='adam', loss='categorical_crossentropy',  

    metrics=['accuracy'])    

 

model.fit( [signals[train]] * ensemble_num, Y[train], epochs=epochs, 

batch_size=batch) 

 

scores = model.evaluate([signals[test]] * ensemble_num, Y[test], 

verbose=0) 

print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

cvscores.append(scores[1] * 100) 
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APPENDIX 3.  The connection of the device to the server 

The server side  

import numpy as np 

import asyncio 

import socket 

from websocket import create_connection 

 

'''server_address ip should be filled in by django form''' 

 

CLIENT_PORT = 10001  # Do not change this, hardcoded in the client.py file 

 

sock = 0 

server_address = 0 

 

def hello(ip, channel_id): 

    global sock 

    global server_address 

    ip = str(ip) 

    print(ip,"IPIPIPIPIPIPIPIP") 

    print(channel_id, "channel_idPleaseWork") 

    print("ws://" + str(ip) + str(CLIENT_PORT)) 

    websocket = create_connection("ws://" + str(ip) +":" + 

str(CLIENT_PORT)) 

    name = "Aloha " 

    websocket.send(name) 

    greeting = websocket.recv() 

    websocket.close()    

    return greeting      

 

The device side 

from django.core.management import BaseCommand 

from channels import Group 

import scipy.io 

import asyncio 

import websockets 

import numpy as np 

import scipy.io 

import json 

 

#The class must be named Command, and subclass BaseCommand 

class Command(BaseCommand): 

     

    # A command must define handle() 

    def handle(self, *args, **options): 

        print("this is a device") 

 

    async def hello(websocket, path): 

        name = await websocket.recv() 

        print("< {}".format(name)) 

        data = scipy.io.loadmat('/home/ubuntu/archive/mywebsite/sleep/A00004.mat') 

        values=data['val'] 

        length=values.size 

        y=values[0,0:length] 
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        indicator=1 

        prepareJson = {'initData': y.tolist(), 'indicator': indicator} 

        greeting=json.dumps(prepareJson) 

        await websocket.send(greeting) 

         

 

    start_server = websockets.serve(hello, '0.0.0.0', 10001) 

    print ("server started") 

    asyncio.get_event_loop().run_until_complete(start_server) 

    asyncio.get_event_loop().run_forever() 
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