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Abstract

Modeling and failure prediction is an important task in many engineering

systems. For this task, the machine learning literature presents a large va-

riety of models such as classi�cation trees, random forest, arti�cial neural

networks, fuzzy systems, among others. In addition, standard statistical

models can be applied such as the logistic regression, linear discriminant

analysis, k-nearest neighbors, among others. This work evaluates advan-

tages and limitations of statistical and machine learning methods to predict

failures in industrial robots. The work is based on data from more than �ve

thousand robots in industrial use. Furthermore, a new approach combining

standard statistical and machine learning models, named hybrid gradient

boosting, is proposed. Results show that the a priori treatment of the

database, i.e., outlier analysis, consistent database analysis and anomaly

analysis have shown to be crucial to improve classi�cation performance

for statistical, machine learning and hybrid models. Furthermore, local

joint information has been identi�ed as the main driver for failure detection

whereas failure classi�cation can be improved using additional information

from di�erent joints and hybrid models.

Keywords: statistical modeling, machine learning, gradient boosting
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Abstract
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Abstract

Modeling and failure prediction are important tasks in many engineering
systems. For these tasks, the machine learning literature presents a large
variety of models such as classification trees, random forest, artificial neu-
ral networks, fuzzy systems, among others. In addition, standard statistical
models such as the logistic regression, linear discriminant analysis, k-nearest
neighbors, among others, can be applied . This work evaluates advantages
and limitations of statistical and machine learning methods to predict fail-
ures in industrial robots. The work is based on data from more than five
thousand robots in industrial use. Furthermore, a new approach combin-
ing standard statistical and machine learning models, named hybrid gradi-
ent boosting, is proposed. Results show that the a priori treatment of the
database, i.e., outlier analysis, consistent database analysis and anomaly
analysis, have been shown to be crucial to improve classification perfor-
mance for statistical, machine learning and hybrid models. Furthermore,
local joint information has been identified as the main driver for failure
detection, whereas failure classification can be improved using additional
information from different joints and hybrid models.

Keywords: statistical modeling, machine learning, gradient boosting

1. Introduction

In 2001, Leo Breiman published the paper Statistical modeling: The two
cultures, describing the two different approaches for data modeling: the data
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modeling culture and the algorithm modeling culture. The data modeling
culture first assumes a parametric, statistical model, hereafter named the
white box model, and then uses available data to estimate the parameters
of the model and provide statistical inference. The parameters of white box
models may have physical meanings. Nonetheless, white box models apply,
in general, simple mathematical and statistical structures, such as the linear
regression equation. Consequently, the parameters of white box models, also
known as coefficients, have meaningful interpretations.

The algorithm modeling culture is mostly interested in finding the most
predictive model, hereafter named the black box model, which may have a
complex structure and use a large number of variables. In general, black
box models comprise general function approximators, which rely on non-
linear functions and/or transformations. In general, the parameters of black
box models do not have a straightforward interpretation as compared to
white box models. However, the parameters of black box models can be
tweaked in order to adjust the fitness of the function to different databases.
Furthermore, in order to adjust the model complexity and/or select vari-
ables, cross-validation techniques are applied. Both white and black box
approaches have advantages and limitations. Nonetheless, both rely on basic
statistical principles (Friedman et al., 2001). For instance, linear regression
theory (Seber and Lee, 1977) shows that the larger the number of predic-
tors in a multiple linear regression, the more likely the multicollinearity and
the more inconsistent the statistical inference about the parameters of the
model. One approach is to select a small subset of predictors, therefore
improving statistical properties. Another approach is to include a penalty
in the optimization function, with no variable deletion; thus, compromis-
ing statistical inference but improving predictive error. Examples of white
box models are linear regression models and generalized linear models. Ex-
amples of black box models are neural networks, support vector machines,
fuzzy systems, among others.

Black box models may produce more reliable information about the
structure of the relationship between inputs and outputs than white box
models, mostly because they do not assume any prior parametric structure
about the underlying structure of the data. On the contrary, white box mod-
els produce a simple and understandable picture of the relationship between
the input variables and the output variable. For example, logistic regression
is frequently used in classification problems because it produces a linear
combination of the variables with parameters that indicate the variables’
importance.

The basic tool to evaluate prediction performance of both white and
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black box models is cross validation. According to Breiman et al. (2001),
cross-validation is a natural route to the indication of quality of any data-
deriving quantity. Briefly, the original data set is divided into two disjoint
groups. The first group, named the training set, is used to estimate the
parameters of the model. The second group, named the test set, is used to
evaluate the error prediction of the previously adjusted model. Models with
lower predictive errors are preferable. Finally, it is worth mentioning that
Breiman et al. (2001) point out that the best available solution to a data
problem may be a data model, or an algorithmic model, or a combination.
The data and the problem should guide the solution.

This work evaluates a database comprising failures in industrial robots
and production variables. Failure data is available for six joints. The goal is
twofold: to find main drivers (features) or main predictors of failures, and
to estimate the best predictive model. As previously mentioned, the two ob-
jectives are, in general, conflicting. On one side, selecting a few components
highly correlated to failure is of utmost importance for good maintenance
practices. On the other side, predicting failures as accurately as possible
may save production resources and avoid unexpected interruptions in pro-
duction. Standard statistical and machine learning models are proposed and
evaluated.

In addition, a hybrid gradient boosting (HGB) method is proposed. HGB
first uses a logistic regression model as a base line model. Therefore, it
produces a simple statistical model which indicates variable importance.
Furthermore, using a statistical framework based on the gradient boosting
algorithm (Friedman, 2001), the HGB creates multiple layers of non-linear
(black box) models on top of the logistic regression thereby achieving ad-
ditional accuracy. As a result, the HGB model share both white and black
box optimal properties.

It is worth mentioning that, due to natural degradation of the production
machines, failures will inevitably happen. Possibly, different failures might
happen several times. Thus, up to a certain time, which is unknown, all
production machines will fail. Therefore, the available database represents
a snapshot of the production robots in a specific time frame. Conclusions
with respect to failure drivers are, therefore, constrained to the specific time
frame in which the data was collected.

Furthermore, industrial robots are primarily designed to operate under
pre-defined conditions, i.e., specific speed range, temperature range, among
others. Thus, robots operating under critical or non-expected conditions are
more likely to fail. Therefore, outlier detection techniques can be applied
to data before using white or black box models. Domingues et al. (2018)
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presents a comparative evaluation of outlier detection algorithms. Results
show that the Isolation Forest (Liu et al., 2008) is an excellent method to effi-
ciently identify outliers. Briefly, Isolation Forest is a non-parametric method
which estimates data density using random partitions and tree based struc-
tures. Therefore, given the data, it is expected that observations located in
low density regions are more prone to failure.

The following classification models were evaluated: logistic regression,
regularized logistic regression (glmnet), random forest, extreme gradient
boosting (xgboot) and neural networks with extreme learning machine train-
ing. In addition, HGB models were evaluated by combining logistic, xgboost
and random forest. Results show that, for lower proportion of failures, sim-
pler methods such as logistic and glmnet achieve best results. Whereas, for
larger proportion of failures, xgboost, random forest and HGB achieve best
results.

This paper is organized as follows. Proposed classification methods,
anomaly score analysis, classification performance and the database de-
scription are presented in Section 2. Results are presented in Section 3.
Discussion and conclusion are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Basic concepts and notation

Following Friedman et al. (2001), let x = {x1, . . . , xp} be a vector of p
input variables, hereafter named as predictor variables. Given the predictor
variables, the objective is to predict an output variable Y , hereafter named
as the response variable. This problem is called supervised learning since
both inputs and output are known in advance. In addition, let {yi,xi}Ni=1

be the observed predictor vector and response variables, where N represents
the sample size. If the response variable comprises two-level categorical
information, for example, Y = {A, B}, then the problem is also known as a
supervised classification problem in which the response variable is regularly
coded as a binary variable written as Y = {0, 1}.

2.2. The logistic regression model

The logistic regression model is a standard statistical model for classi-
fication. It assumes that the response random variable follows a Bernoulli
distribution, Y ∼ Bernoulli(µ), where Y ∈ {0, 1} and µ is the probability
that the random variable Y is equal to one, P (Y = 1) = µ. If predictor
variables are available, say x1, . . . , xp, then the µ parameter can be written
as a function of a linear predictor using the logistic function:
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P (Y = 1|x1, . . . , xp) =
exp (β0 + β1x1 + · · ·+ βpxp)

1 + exp (β0 + β1x1 + · · ·+ βpxp)
(1)

where 0 < P (Y = 1|x1, . . . , xp) < 1 and β’s are the parameters of the model
which are estimated using maximum likelihood. Further details about the
logistic model are found in Dobson and Barnett (2008).

The coefficients associated with each predictor represent the effect of the
predictor in increasing or decreasing the probability of Y = 1. Alternatively,
Equation 1 can be written as:

P (Y = 1|x1, . . . , xp)
P (Y = 0|x1, . . . , xp)

= exp (β0 + β1x1 + · · ·+ βpxp) (2)

Equation 2 provides a proper interpretation for the parameters of the
logistic model. If one unit is added to a specific predictor, say xj + 1, then
the ratio between P (Y = 1) and P (Y = 0) is multiplied by eβj , as shown in
Equation 3.

P (Y = 1|xj + 1)

P (Y = 0|xj + 1)
=
P (Y = 1|xj)
P (Y = 0|xj)

× eβj (3)

eβj is known as the Odds ratio. In practice, positive parameters increase
the change of P (Y = 1), whereas negative parameters increase the chance
of P (Y = 0). Therefore, a weak predictor has the Odds ratio close to one,
or βj ≈ 0. Statistical inference provides P-values under the null hypothesis
of H0 : βj = 0.

2.3. Lasso and Elastic-Net Regularized Generalized Linear Models

As mentioned, the parameters of the logistic regression model are es-
timated using maximum likelihood function. The Bernoulli log-likelihood
function is shown in Equation 4.

logLik = −
N∑
i=1

[
yi ln (1 + e−µi) + (1− yi) ln (1 + e+µi)

]
(4)

where µi =
exp (xT

i β)

1+exp (xT
i β)

, x = (1, x1, . . . , xp) is the predictor vector, β =

(β0, β1, . . . , βp) is the vector of parameters and N is the sample size. In gen-
eral, the larger the number of predictors the more likely the data overfitting.
Furthermore, standard statistical inference of the predictors are sensitive to
multicollinearity among the predictors. See Nelder and Baker (1972) for
further details. Adding a penalty function to Equation 4 helps minimize
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the overfit of the data and improves the model prediction. The lasso (least
absolute shrinkage and selection operator) method proposed by Tibshirani
(1996), known as the l1-norm, and the ridge regression methods(Hoerl and
Kennard, 1970), also known as the l2-norm, are the most widely used penalty
functions. The basic difference between l1-norm and l2-norm is that when
using the l1-norm, some of the estimated parameters might be equal to
zero, whereas when using the l2-norm, the estimated parameters have re-
duced absolute values but they are unlikely to be equal to zero. Therefore,
the l1-norm achieves predictor selection. The l1-norm penalty is written as
l1 =

∑p
j=1 |βj | and the l2-norm penalty is written as l2 =

∑p
j=1 β

2
j . See

Friedman et al. (2001) for further details.
Zou and Hastie (2005) proposes the elastic net penalty function which

combines the l1- and l2-norms as written in Equation 5.

Pλ(β) =

p∑
j=1

[
1

2
(1− λ)β2j + λ|βj |

]
(5)

where λ is the regularization parameter, 0 ≤ λ ≤ 1. From Equations 5 and
4, given a fixed value of λ, the parameters of the logistic model are estimated
by minimizing the following objective function,

β̂ =argmin
β

N∑
i=1

[
yi ln (1 + e−µi) + (1− yi) ln (1 + e+µi)

]
+ (6)

p∑
j=1

[
1

2
(1− λ)β2j + λ|βj |

]
The glmnet package (Friedman et al., 2010) implements the elastic net

penalty and estimates the λ parameter using cross-validation.

2.4. Classification Tree and Random Forest

The classification tree model (CART - Classification And Regression
Tree) is a local mean model which creates partitions of the original data
and estimates P (Y = 1) using the local mean, ȳ (Murthy, 1998; Breiman,
2017). The CART model can be represented as a binary tree. Each branch
of the tree is generated by partitioning the data using one of the available
predictors. Each predictor is evaluated separately. The predictor and its
decision threshold are chosen based on error minimization, or maximum
likelihood, among other criteria. A statistical decision rule, such as the Chi-
Squared test (for classification) (Fisher, 1922), or a simple mean t-test (for
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regression) (Snedecor and Cochran, 1989), among others, is used to stop the
tree growing process. Briefly, if there is no statistical evidence that the av-
erage values between two new partitions are different, then the tree growth
stops.

Figure 1 illustrates a classification tree model using simulated data with
two predictors, x1 and x2. Figure 1(a) shows that x1 and the threshold τ1 =
1.8 were primarily selected based on error minimization; thereby creating
two partitions of the data set: the observations in which x1 < 1.8 and
the observations in which x1 ≥ 1.8. This procedure is known as the best
split. After creating the first two branches of the tree, the partitioning
algorithm is applied separately to each partition. In the right partition
(x1 ≥ 1.8) there was no statistical evidence, using the available predictors,
that a new partition creates two statistically different groups. In the left
partition (x1 < 1.8), statistical evidence based on minimization criteria
identified x2 and the threshold τ2 = 1.4 as the best predictor and cutting
point, respectively. Therefore, a new partition of the data set was created.
A final predictor and cutting point was detected in the subgroup data in
which (x1 < 1.8) ∩ (x2 ≥ 1.4). The final predictor space partition is shown
in Figure 1(a). Figure 1(b) shows the decision tree. Percentages indicate
the proportion of the database in each partition. Local means are indicated
above the percentages.
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(a) Generated partitions using CART.
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(b) Classification tree.

Figure 1: Illustration of CART method using simulated data.

Random Forests (Breiman, 2001) are combinations of CART models.
Each tree or CART model is adjusted using a random sample of the pre-
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dictors. For example, suppose m predictors are available, then k predictors
from m (k << m) are randomly chosen. These k predictors are used to fit
a CART model. In sequence, this procedure is repeated n times. There-
fore, a total of n CART models (or trees) are available. The outcome of
the Random Forest is a combination of the outcome of each CART model.
Either, the mean or the median statistic of the n CART models are the most
common aggregation statistics. In addition, the average contribution to the
maximization of the likelihood for each predictor is calculated. This statis-
tic, known as the feature importance, is used to identify the most important
predictors.

2.5. Isolation Tree and Isolation Forest

Although isolation trees (iTree) and CART models are based on binary
trees, the iTree aims at detecting data anomalies using an unsupervised
approach, i.e, there is no response variable Y . The iTree algorithm creates
binary trees by randomly choosing x variables, or features, and randomly
choosing thresholds τ . The iTree algorithm requires one parameter which is
the maximum height of the tree l. The basic iTree algorithm, adapted from
Liu et al. (2008), is shown below.

Algorithm 1 iTree(X,e,l)

Input: X input data, e current tree height, l height limit
Output: an iTree
if e ≥ l or |X| ≤ 1 then

return exNodeSize← |X|
else

let Q be a list of variables in X
randomly select a variable q ∈ Q
randomly select a split point τ from max and min values of
variable q in X
Xl ← filter(X, q < τ)
Xl ← filter(X, q ≥ τ)
inNode{Left ← iTree(Xl, e+ 1, l),

Right ← iTree(Xr, e+ 1, l)
SplitAtt ← q,
SplitValue ← τ}

end if

Briefly, the algorithm randomly creates partitions in the data until the
maximum height parameter of the tree is reached, or stops earlier if, in each
leaf of the tree, there is only one observation. Similar to random forests, a
set of isolation trees is created by randomly selecting subsets of data and
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fitting a new iTree to each subset. After creating a large number of iTrees,
hereafter known as isolation Forest, or simply iForest, the complete database
is presented to each iTree. For each observation, the path length for each
iTree is estimated and a final anomaly statistic is calculated by averaging
the path length among the iTrees. Anomalies are those observations with
short average path lengths on the iTrees. Furthermore, Liu et al. (2008)
proposes an anomaly score based on the average path length. The anomaly
score lies between zero and one. If the anomaly score is greater than 0.6
then the observation is classified as an anomalous observation. It is worth
mentioning that Domingues et al. (2018) claims that iForest is an efficient
method to identify outliers.

Figure 2 illustrates the use of the iForest using real data. The scatterplot
of the two features (x1 and x2) are shown in Figure 2(a). Figure 2(b) shows
the kernel density of the data set and the points identified as anomalies.
According to Domingues et al. (2018), anomalous points have anomaly scores
greater than 0.6. It can be seen that anomalous points are located in a
low density region, which is identified using iForest without requiring any
parametric assumption about the underlying statistical density distribution
of the data.
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(a) Scatterplot of the data.
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(b) Kernel density and observations iden-
tified as anomalies using iForest.

Figure 2: Illustration of the anomaly score using iForest.

The iForest has been applied in anomaly detection applications (Puggini
and McLoone, 2018). However, as opposed to detect anomalous data, the
present work proposes the use of the anomaly score as a new predictor
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variable for failure detection. This is because, in failure detection problems,
observations located in low density regions may represent observations under
extreme conditions and, therefore, more likely to failure.

2.6. eXtreme Gradient Boosting

The eXtreme Gradient Boosting, or xgboost, is a fast implementation
of the gradient boosting decision tree algorithm (Friedman, 2001). xgboost
uses more regularized model formalization to control overfitting, which gives
it better performance. The general gradient boosting algorithm is presented
below. Let Equation 7 be an additive function,

F (x; {βm,am}Mm=1) =
M∑
m=1

βmh(x,am) (7)

where h(x,am) is a simple parameterized function of the input variable x.
For example, h(x,am) may represent a classification tree in which am is the
parameter vector of the m-th classification tree. Friedman (2001) proposes
the following Gradient Boost algorithm to fit Equation 7 using a training
set.

Algorithm 2 Gradient Boost

1: F0 = argminρ
∑N
i=1 L(yi, ρ)

2: for m = 1 to M do
3: ỹi = −

[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, . . . , N.

4: am = arg mina,β

∑N
i=1 [ỹi − βh(xi;a)]

2

5: ρm = arg minρ
∑N
i=1 L (yi, Fm−1(xi) + ρh(xi;am))

6: Fm(x) = Fm−1(x) + ρmh(x;am)
7: end for

where L(yi, F (xi)) is the loss function which may represent the minimum
least square function or the negative likelihood function.

Briefly, the Gradient Boost algorithm applies a greedy stagewise adjust-
ment to function F (x; {βm,am}Mm=1), which can be written as Fm(x) =
Fm−1(x) + ρmh(x;am). At each m step, function Fm(x) is updated in order
to minimize the loss function

∑N
i=1 L(yi, Fm(xi)).

xgboost (Chen et al., 2018) proposes a general framework for the gradi-
ent boost algorithm in order to improve optimization. The basic idea is to
take the Taylor expansion of the loss function up to the second order and,
therefore, approximate the minimization of the loss function as a minimum
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squared error problem. In addition, the objective function includes a regu-
larization term, or a model complexity term, thus creating a structure score.
The structure score is used to optimize the size of classification trees, which
is the standard classification model used by xgboost. Consequently, using
xgboost, feature importance statistics are also estimated for each predictor.

2.7. Neural Networks

The general structure of a two-layer perceptron neural network with a
linear output is shown in Equation 8

g(x) =
H∑
h=1

w2h · φ

 N∑
j=1

w1jh · xj + b1h

+ b2 (8)

where H is the number of neurons in the hidden layer, φ is the activation
function, w2, b2, w1 and b1 are the output and the input weights, respec-
tively; and N is the input (x) dimension. Equation 8 can be represented
as a network, shown in Figure 3. Neural networks are universal approxi-
mators. It has been shown that feed forward networks with a single hidden
layer and with a finite number of neurons can approximate continuous func-
tions (Gybenko, 1989). Nevertheless, neural network training may be time
consuming.

Huang et al. (2006) proposes the extreme learning machine (elm) algo-
rithm for single-hidden layer feed forward neural networks. The algorithm
creates random values for the input weights of the neural networks. For in-
stance, w1 and b1 weights are randomly generated from a standard normal
distribution. Therefore, Equation 8 reduces to a linear model, as shown in
Equation 9.

g(x) =

H∑
h=1

w2h · φh + b2 (9)

where φh = φ
(∑N

j=1w1jh · xj + b1h

)
. The remaining parameters of the

neural network, w2h and b2, are estimated using minimum least squares.
The elm neural network requires more hidden neurons as compared to neu-
ral networks using standard gradient based algorithms. In addition, stan-
dard regularization techniques for linear models, such as the elasticnet (Zou
and Hastie, 2005), described in Section 2.3, can be combined with the elm
algorithm. Huang et al. (2006) shows that elm achieves much faster con-
vergence of the neural network as compared to standard neural network
training algorithms.
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Figure 3: Two layer perceptron neural network with five inputs, six hidden neurons and
one output neuron.

2.8. Hybrid gradient boosting

The proposed hybrid gradient boosting (HGB) aims at creating a general
framework for boosting a base line model, such as the standard logistic
regression model. In order to boost the base line model, non-linear models
such as random forest, xgboost, extreme learning machines, or combined
models, can be applied. For instance, random forests or xgboost models can
be applied in order to estimate the feature importance and, therefore, to
identify additional variables which are used to improve prediction.

The HGB approach is based on the exponential family distribution used
in the generalized linear models (Nelder and Baker, 1972). A random vari-
able Y belongs to the exponential family distribution if its density distribu-
tion can be written as

log fY (y|θ, φ) =
yθ − b(θ)
a(φ)

+ c(y, φ) (10)

where θ is the canonical parameter, φ is the dispersion parameter, and
b(θ), c(y, φ) and a(φ) are functions related to the density distribution of
Y . The exponential family distribution has very interesting properties, such
as E(Y ) = b′(θ) and V ar(Y ) = a(φ)b′′(θ). In general, a linear predictor can
be incorporated into the exponential distribution by assuming θ(x) = xTβ,
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where xTβ = β0 + β1x1 + . . . + βpxp is the linear predictor. Density dis-
tributions such as Normal, Poisson, Binomial, Bernoulli, Multinomial and
Gamma can be written using equation 10. Further details about exponential
family distribution and generalized linear models are found in Nelder and
Baker (1972), Dobson and Barnett (2008), and elsewhere.

Following Friedman (2001), we propose an additive expansion for the
canonical parameter θ(x), shown in Equation 11.

θ(x) =
M∑
m=0

θm(x;βm) (11)

For instance, θ0(x;β0) represents the standard linear predictor, i.e., the
logistic regression solution; whereas θ1(x;β1), . . . , θM (x;βM ) may represent
different models such as classification and regression trees and neural net-
works, among others. βm represents the vector of parameters associated
with each model or boost.

Using the exponential family representation and the additive expansion
shown in Equation 11, the HGB algorithm is presented below.

Algorithm 3 Hybrid gradient boosting

1: θ0 = argmaxθ logLik(y, θ(X))
2: for m = 1 to M do
3: ỹi = −

[
∂ logLik(yi,θ(xi)

)

∂θ(xi)

]
θ(x)=θm−1(x)

, i = 1, . . . , N.

4: βm = arg minβ
∑N
i=1 [ỹi − hm(xi;β)]

2

5: θm(x) = θm−1(x) + hm(x;βm)
6: end for

Line 1 represents the base line model, which is adjusted using maximum
likelihood. Using the exponential family representation, Line 3 can be writ-
ten as ỹi = yi − E(Yi|xi, θm−1(xi)). Line 4 shows that the m-boost model
hm(xi;β) is fitted using a least square minimization problem. Therefore,
hm(x;β) comprises a non-linear regression model. It is worth mentioning
that the additive expansion shown in Equation 11 can generate positive or
negative values, as expected using the exponential family. Nonetheless, the
estimated mean is E(Yi|xi, θm(xi)) = b′(θm(xi)). For instance, if Y follows a
Bernoulli distribution, then b′(θm(xi)) is the logistic function.

2.9. k-fold cross validation

According to Breiman et al. (2001), cross-validation is a natural route to
the indication of quality of any data-deriving quantity. Prediction accuracy
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of the proposed statistical and machine learning models was estimated using
a 10-fold cross validation procedure, illustrated in Figure 4. Initially, the
original database is randomly partitioned into 10 disjoint folds. In sequence,
the database and the respective partitions are replicated 10 times. Each
replicate represents the original database. For each replicate, one fold is the
test set and the remaining 9 folds are the training set. Therefore, 10 models
are adjusted and 10 predictions are generated. The resulting prediction for
each fold is combined into a new database, which is exactly the same size
as the original data. From the predicted database, a final test statistic, or
prediction statistic, is calculated. In order to account for the randomness of
the 10-fold partition process, the entire procedure is repeated, say 10 times,
and the average prediction statistic is evaluated.

Figure 4: 10-fold cross validation procedure.

The k-fold cross validation procedure, illustrated in Figure 4, has advan-
tages and limitations. The main advantage is that the prediction statistic is
estimated using the entire database. The main limitation is that each eval-
uated model must be adjusted to each replication; therefore, each model is
adjusted k-times. If k equals the sample size, then the k-fold cross validation
is known as the leave-one-out cross validation. The k-fold cross validation
procedure is a standard procedure for prediction accuracy estimation.

2.10. Sensitivity and Specificity analysis

Sensitivity and specificity statistics are widely applied in medical tests
(Altman, 1994). In binary classification tests, these statistics are used as
performance measures (Christopher, 2011). Sensitivity, also known as true
positive rate, measures the proportion of observed positive classes (yi = 1)
which is correctly identified by the classification model. Specificity, also
known as true negative rate, measures the proportion of observed negative
classes (yi = 0) which is correctly identified by the classification model.
Thus, sensitivity and specificity are performance measures related to ob-
served positive and negative classes, respectively.

14



In general, statistical classification models and machine learning models
estimate the probability of a new observation being classified as a positive
class given a vector of predictors, P̂ (Y = 1|x1, . . . , xp) < 1, the analyst must
decide whether the event Y = 1 will eventually happen. Thus, a threshold
τ is selected and the decision rule, shown in Equation 12, is applied.

ŷ0 =

{
1, if P̂ (Y = 1|x0) ≥ τ
0, if P̂ (Y = 1|x0) < τ

(12)

Both sensitivity and specificity statistics are affected by threshold τ .
Figure 5 illustrates sensitivity and specificity estimates using simulated data
and a logistic model with one predictor (x). Figure 5(a) shows the model
outcome if threshold τ = 0.25 and Equation 12 are applied. All observed
responses in which yi = 1 are correctly classified. Therefore, the sensitivity
statistic is 100%. On the contrary, most of the observed responses in which
yi = 0 are incorrectly classified. Therefore, the specificity is close to 0%.
If threshold τ = 0.80 is applied, then the sensitivity decreases and the
specificity increases as shown in Figure 5(b).
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Figure 5: Sensitivity and specificity analysis for varying thresholds.

Figure 6(a) illustrates the trade-off between sensitivity and specificity.
Smaller values of τ increase sensitivity and decrease specificity; whereas
larger values of τ decrease sensitivity and increase specificity. Consequently,
there is an optimal value of τ∗ in which sensitivity = specificity. Figure
6(b) shows the sensitivity on the y-axis against 1 − specificity on the x-
axis, known as the receiver operating characteristic (ROC) curve (Bradley,
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1997; Fawcett, 2004). The area under the ROC curve (AUC area under
the curve) is widely used as a classification performance statistic. Optimal
classification models have large AUC. In addition to the AUC, this work
proposes the use of the intersection point between sensitivity and specificity
as a classification performance statistic, hereafter named as classification
rate.
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Figure 6: Sensitivity and specificity analysis for varying thresholds and ROC curve.

2.11. ABB robot data

ABB robotics is a leading supplier of industrial robots. The ABB data
available for the analysis comprise approximately 6,000 observations, one ob-
servation per unique robot. For each robot, data for the movements of the
six joints are available. In total, 275 variables are available in the database
for each robot. Variables can be categorized into two major groups: (a)
operational features and (b) robot type. Variables in the operational fea-
tures group can be further divided into joint operational features and robot
operational features. For each joint, the following information is available:
average speed (avg speed), average torque (avg torque), accumulated fea-
ture combining angle and speed (angle speed comb), accumulated absolute
position (moved distance), number of emergency stops (nr E stops), run
time in hours (r time), wait time in hours (w time) and failed information
(has failed). The failed information comprises the presence (y = 1) or ab-
sence (y = 0) of failure in each joint. It is worth mentioning that the data
do not represent random samples from the total fleet of robots. Therefore,
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the observed proportion of failures may be different if another set of data is
collected from a different group of robots.

Figure 7 illustrates the robotic arm and indicates the six joints. Joint 1
comprises the rotating base of the robot. Joint 2 comprises the horizontal
movement of the arm set. Joint 3 is known as the elbow and comprises
the vertical movement of the arm. Joint 4 comprises the forearm rotation
movement. Joint 5 comprises the wrist movement of the robotic arm and
joint 6 comprises the movement of the hand tool, which may be a welding
tool, grip tool, among others.

Figure 7: Configuration of the robotic arm.

Figure 8 illustrates the pairwise correlation between joint operational
features (or variables). The narrower the ellipse the larger the correlation.
Blue ellipses have positive slopes and indicate positive correlations, whereas
red ellipses have negative slopes and indicate negative correlations. White
circles indicate weak correlations. Figure 8 shows clusters of correlated
variables in the center and at the top of the figure.

The robot operational features comprise the following variables: time
when the system was first started (date start), time of the last service
(date service), production time in hours (p time), robot type (r type) and
accumulated energy consumption (sys energy). A new variable was created
by dividing the accumulated energy consumption by the production time.
This variable, named SysDivPtime, represents the energy consumption rate
by production hour.

In addition to the joint variables, previously mentioned, histogram infor-
mation for each joint is also available. This information represents sequen-
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Figure 8: Correlation matrix using average torque, run time, average speed, combined
angular position and speed, number of emergency stops, moved distances and wait time
for joints 1 to 6.

tial measures for angles, torque and speed; it comprises relative frequen-
cies in pre-specified range intervals, or bins. For instance, suppose speed
information is available for joint 1. The variable ax1 avg speed is the av-
erage speed. The entire range of observed values for ax1 speed are divided
into a series of adjacent and non-overlapping intervals (bins). Therefore,
ax1 hist speed bin 0 is the lower bound of the observed relative frequency
of speed in joint 1. There are 216 histogram variables in the database.

The proportion of failure for each joint is 0.2% for joint 1, 1.1% for joint
2, 1.6% for joint 3, 6.3% for joint 4, 2.4% for joint 5 and 5.7% for joint
6. Joints 4 and 6 present the largest proportion of failures as compared
to the remaining joints in the dataset. Each observation, i.e., each robot,
can be classified into one of 5 different robot type categories. 58.9% of
the observations comprise robot type 1, 33.1% comprise robot type 2, 7.9%
comprise robot type 3 and the few remaining observations comprise robot
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types 4 or 5. Empirical analysis, using the proportion of failure for each
robot type, indicates the robot type as a potential predictor variable, which
is included as a dummy variable.

Data consistency analysis identified a few negative observations for the
number of emergency stops. Negative values were replaced by missing data
(NA Not Available). In addition, the number of emergency stops presented
heavy-tailed empirical distributions with many extreme values. Thus, the
logarithm of the number of emergency stops plus one was used as the new
predictor variable, as opposed to the raw number of emergency stops.

2.12. Proposed classification models

Six classification models are initially proposed: the standard logistic
regression model (logistic); the logistic regression model using elasticnet
penalty (glmnet); two neural network models with 75 and 350 hidden nodes,
respectively, using a combined elm and elastic net algorithm (glmNNET75
and glmNNET350); the random forest model (RandomForest); and, the
extreme gradient boosting model (xgboost).

The anomaly score is estimated using only local joint production vari-
ables, i.e., average speed in revolutions per minute (avg speed rpm), aver-
age torque (avg torque), accumulated feature combining angle and speed
(angle speed comb), accumulated absolute position (moved distance), loga-
rithm of the number of emergency stops plus one (log nr E stopsPlus1), run
time in hours (r time) and wait time in hours (w time). For instance, to es-
timate a classification model for joint 4, only local joint production variables
are used to calculate the anomaly score. Therefore, separate anomaly scores
are calculated for each joint. The anomaly score is sensitive to the num-
ber of variables and the number of trees (Liu et al., 2008). Stable anomaly
scores are generated using a smaller set of variables and a larger number of
trees. The anomaly scores are estimated setting the number of trees equal
to 1,000.

The standard logistic regression model is estimated using a white-box
modeling approach. The local joint production variables and the anomaly
score are evaluated. Empirical evidence using frequency plots shows that
the proportion of failures is larger for robot types 2 and 3. Therefore, two
dummy variables are also included in the logistic regression model. Variables
are selected based on statistical inference, i.e., the P-value. Variables which
are not statistically significant at the α = 0.05 level are gradually removed
from the model. Thus, the final model comprises statistically significant
variables.
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The glmnet, glmNNET75, glmNNET350, RandomForest and xgboost
constitute the black box models. Even though glmnet applies a logistic
function, it achieves variable selection, as presented in Section 2.3. These
models are estimated and evaluated using the 10-fold cross validation proce-
dure presented in Section 2.9. Initially, all 276 available predictors, including
the anomaly score, are used.

3. Results

Table 1 presents the estimated logistic regression coefficients using the
total database for failure detection in joint 4. Joint 4 has the largest num-
ber of failures (6.3%). The local predictors (joint level), the anomaly score
and the robot types 2 and 3 are evaluated. Results show that average
speed, combined angle and speed, number of emergency stops and wait
time have positive coefficients, as expected. On the contrary, the anomaly
score presents a negative coefficient. Thus, the model indicates that the
lower the anomaly score, the larger the chance of a failure. As previously
described, the anomaly score represents the density of the data. Larger
anomaly scores indicate observations in lower density regions. In an indus-
trial setting, large anomaly scores comprise observations under non-normal
operating circumstances, as previously illustrated in Figure 2. However, the
database comprises a time snapshot of the operating robots. It is expected
that, eventually, all robots will present failure. Furthermore, the average
speed, combined angle and speed, number of emergency stops and wait time
also capture non-normal conditions. The anomaly score coefficient points
towards the large density region, i.e., the lower anomaly score. This result
suggests that some of the failures are randomly scattered in the predictors
space. Consequently, the larger the density, the larger the number of failures,
as expected.

One may claim that the anomaly score is highly correlated to average
speed, combined angle and speed, number of emergency stops and wait
time. Therefore, results presented in Table 1 are subject to multicollinearity.
Figure 9 shows the correlation plot between the predictors presented in Table
1. Pairwise correlations are represented as ellipses. The narrower the ellipse,
the larger the correlation. Figure 8 shows that the anomaly score variable
is positively correlated to combined angle and speed (ρ = 0.6531) and wait
time (ρ = 0.5599). Nevertheless, a Variance Inflation Factor (VIF) analysis
(Montgomery et al., 2012) shows that the largest VIF statistics are 2.0141
for the anomaly score and 2.8114 for combined angle and speed. In general, a
critical value of 5 (VIF>5) or 10 (VIF>10) is used to indicate strong evidence
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Table 1: Logistic regression results for failure detection in joint 4.

Coefficient Estimate Std. Error P-value

Intercept -2.3134 0.6778 0.0000
ax4 avg speed rpm 0.8162 0.1519 0.0000
ax4 angle speed comb 0.0587 0.0161 0.0003
log ax4 nr E stopsPlus1 0.3137 0.0563 0.0000
ax4 w time 0.2240 0.0498 0.0000
anomaly score -8.9441 1.9956 0.0000
robot type 2 0.3897 0.1164 0.0008
robot type 3 0.5704 0.1805 0.0016

of multicollinearity among the predictor variables. Therefore, there is no
evidence of strong correlation between the anomaly score and the evaluated
predictors. As previously described, the anomaly score measures the density
of the data rather than a linear combination of the predictors. The logistic
regression model, using the total number of observations, achieves an AUC
of 0.7083 and a classification rate of 0.6473.
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Figure 9: Correlation matrix using average speed, combined angle and speed, number of
emergency stops, wait time and anomaly score for joint 4.

Figure 10 shows the statistically significant predictors, using the lo-
gistic regression model for each joint. It can be seen that average speed

21



(avg speed rpm) is the common predictor. For joint 1, which has the lowest
proportion of failures, only average speed and accumulated absolute position
(moved distance) are statistically significant. Furthermore, for joints 2 to 6
the anomaly score is also a common predictor.

Figure 10: Statistically significant predictors using the Logistic model.

Figure 11(a) shows the boxplot of the AUC statistic for each classifica-
tion method for joint 4. For comparison purposes, the logistic regression
was included in the 10-fold cross validation analysis using the statistically
significant predictors. Results show that xgboost achieves the largest AUC,
followed by Random Forest. It is worth mentioning that the logistic regres-
sion achieved the lowest standard deviation, thereby achieving the greatest
precision. Figure 11(b) shows the boxplot of the classification rate statistic
for each classification method. Results also show that xgboost achieves the
largest classification rate, followed by glmnet and Random Forest.

Table 2 summarizes AUC, classification rates and computing times for
all evaluated methods used to predict failure in joint 4. Best results are
shown in bold type. It can be concluded that xgboost achieves the best
AUC and classification results, whereas the logistic regression achieves lower
AUC standard deviation. Regarding computing time, the logistic regression
is the fastest method, followed by xgboost and glmNNET75.

It is worth comparing the logistic regression results using the white-box
and the grey-box approaches. The white-box approach achieved an AUC of
0.7083 and a classification rate of 0.6473. The grey-box approach, using the
white-box predictors and the 10-fold cross-validation, achieved an average
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Figure 11: AUC (Area Under the Curve) statistic (a) and classification rates (b) for failure
detection in joint 4 using the selected classification methods in 10 runs.

Table 2: AUC, classification rates and computing times, evaluated in 10 runs of the
selected classification methods for failure detection in joint 4. Best results and minimum
standard deviations are indicated as bold type.

AUC Classification rates Computing time (min)
method mean sd mean sd mean sd
glmnet 0.6929 0.0074 0.6486 0.0064 32.2128 4.8953
glmNNET350 0.6891 0.0047 0.6481 0.0067 103.4436 184.2138
glmNNET75 0.6888 0.0062 0.6459 0.0076 13.1653 2.2524
logistic 0.6965 0.0013 0.6421 0.0039 0.0138 0.0012
Random Forest 0.6990 0.0043 0.6486 0.0040 65.9301 14.4743
xgboost 0.7216 0.0067 0.6593 0.0056 0.1468 0.0071

AUC of 0.6965 and an average classification rate of 0.6421, as presented
in Table 2. It can be seen that the white-box results are slightly better
than using cross-validation. However, as previously discussed, white-box
statistics (AUC and classification rates) measure data fitting, while cross-
validation statistics measure error prediction.

Table 3 shows the AUC, classification rates and computing times for fail-
ure detection in joint 6. Joint 6 has the second largest rate of failures (5.7%).
The anomaly score was estimated using the local variables for joint 6. Re-
sults show that xgboot achieved the best AUC statistic, followed by Random
Forest and glmnet. The xgboost achieved the best classification rate, fol-
lowed by Random Forest and glmnet. The logistic regression achieved the
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best computing time, followed by xgboot. In general, xgboot, Random For-
est and glmnet achieved the best AUC and classification rates.

Table 3: AUC, classification rates and computing times evaluated using 10 runs of the
selected classification methods for failure detection in joint 6. Best results and minimum
standard deviations are indicated in bold type.

AUC Classification rates Computing time (min)
method mean sd mean sd mean sd
glmnet 0.7432 0.0029 0.6785 0.0031 48.4502 3.9208
glmNNET350 0.7292 0.0044 0.6613 0.0052 48.8511 14.8300
glmNNET75 0.7285 0.0047 0.6581 0.0058 13.0907 2.6724
logistic 0.7218 0.0014 0.6648 0.0024 0.0147 0.0031
Random Forest 0.7470 0.0039 0.6846 0.0039 57.5615 1.8703
xgboost 0.7516 0.0072 0.6887 0.0076 0.1463 0.0081

Table 4 shows the AUC, classification rates and computing times for fail-
ure detection in joint 5. Joint 5 has the third largest rate of failures (2.4%).
The anomaly score was estimated using the local variables for joint 5. Re-
sults show that the glmNNET350 model achieved the best AUC statistic,
followed by xgboost and glmNNET75. The xgboost achieved the best clas-
sification rate, followed by Random Forest and glmNNET350. The logistic
regression achieved the best computing time, followed by xgboost.

Table 4: The AUC, classification rates and computing times, evaluated in 10 runs of the
selected classification methods for failure detection in joint 5. Best results and minimum
standard deviations are indicated in bold type.

AUC Classification rates Computing time (min)
method mean sd mean sd mean sd
glmnet 0.7772 0.0034 0.7075 0.0097 46.6676 2.8222
glmNNET350 0.8134 0.0044 0.7295 0.0087 79.9149 21.4667
glmNNET75 0.8118 0.0049 0.7260 0.0085 23.3417 5.1136
logistic 0.7118 0.0051 0.6500 0.0051 0.0163 0.0024
Random Forest 0.7991 0.0032 0.7397 0.0072 48.5733 12.7230
xgboost 0.8124 0.0086 0.7404 0.0075 0.1371 0.0095

Table 5 shows AUC, classification rates and computing time for failure
detection in joint 3. Joint 3 has the proportion of failures of 1.6%. The
anomaly score was estimated using the local variables for joint 3. Results
show that the glmnet model achieved the best AUC statistic, followed by
logistic and Random Forest. The glmnet achieved the best classification rate,
followed by logistic and Random Forest. The logistic regression achieved the
best computing time, followed by xgboost.
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Table 5: The AUC, classification rates and computing times, evaluated in 10 runs of the
selected classification methods for failure detection in joint 3. Best results and minimum
standard deviations are indicated in bold type.

AUC Classification rates Computing time (min)
method mean sd mean sd mean sd
glmnet 0.8672 0.0049 0.8111 0.0068 120.5789 10.8479
glmNNET350 0.8138 0.0079 0.7535 0.0136 104.5456 18.0655
glmNNET75 0.8092 0.0071 0.7495 0.0080 36.4443 6.7516
logistic 0.8667 0.0018 0.8071 0.0032 0.0142 0.0015
Random Forest 0.8360 0.0111 0.7879 0.0117 47.5031 2.4083
xgboost 0.8074 0.0123 0.7778 0.0158 0.1385 0.0122

Table 6 shows AUC, classification rates and computing time for failure
detection in joint 2. Joint 2 has the proportion of failures of 1.1%. The
anomaly score was estimated using the local variables for joint 2. Results
show that the glmnet model achieved the best AUC statistic, followed by
logistic and xgboost. The glmnet achieved the best classification rate, fol-
lowed by logistic and xgboost. The logistic regression achieved the best
computing time, followed by xgboost.

Table 6: The AUC, classification rates and computing times evaluated in 10 runs of the
selected classification methods for failure detection in joint 2. Best results and minimum
standard deviations are indicated in bold type.

AUC Classification rates Computing time (min)
method mean sd mean sd mean sd
glmnet 0.8745 0.0094 0.8299 0.0104 218.7813 23.7175
glmNNET350 0.8229 0.0085 0.7567 0.0123 150.7080 16.2985
glmNNET75 0.8215 0.0124 0.7567 0.0142 47.2849 14.4059
logistic 0.8737 0.0015 0.8179 0.0063 0.0168 0.0081
Random Forest 0.8534 0.0119 0.7806 0.0101 37.4156 2.3232
xgboost 0.8605 0.0126 0.8134 0.0106 0.1322 0.0098

Table 7 shows the best three classification methods for each joint and
each performance measure. Results do not include joint 1, due to the lower
rate of failures. In general, there is no single method that achieved the best
AUC or classification rate performance for all joints. In general, the black-
box models performed better for larger rate of failure. For lower proportion
of failures, the regularized logistic (glmnet) and logistic models performed
better. The logistic and xgboost were the fastest methods in all joints.
This is because these methods are compiled into lower level programming
language, whereas the remaining method uses higher level language. The
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methods were evaluated using the i7 Intel core and the R language (R Core
Team, 2017).

Table 7: Best classification models for failure detection in joints 2 to 6. Observed propor-
tion of failures are indicated in parenthesis.

Joint AUC Classification rates Computing time
2 (1.1%) glmnet, logistic, xgboost glmnet, logistic, xgboost logistic, xgboost
3 (1.6%) glmnet, logistic, glmnet, logistic, logistic, xgboost

Random Forest Random Forest
4 (6.3%) xgboost, Random Forest, xgboost, Random Forest, logistic, xgboost

glmnet glmnet
5 (2.4%) glmNNET350, xgboost, xgboost, Random Forest, logistic, xgboost

glmNNET75 glmNNET350
6 (5.7%) xgboost, Random Forest, xgboost, Random Forest logistic, xgboost

glmnet

Figure 12 shows HGB cross validation results for failure prediction in
joint 5, in 10 runs. Joint 5 achieved the largest difference, of 9.04% between
the logistic and the best classification rate result, using xgboost. There-
fore, the HGB was applied to boost the logistic regression and to identify
the additional predictors. Both xgboost and Random Forest were used to
boost the logistic regression because they achieved the best classification
rate results, as shown in Table 4. Figure 12(a) shows HGB classification
rate results using logistic and xgboost. In general, after 20 boosts, the HGB
model achieves the same classification rate result obtained using only xg-
boost. Figure 12(b) shows HGB classification rate results using logistic and
Random Forest. In general, after 25 boosts, the HGB model achieves the
same classification rate result obtained using only xgboost. Therefore, us-
ing xgboost, the HGB requires fewer boosts as compared to Random Forest.
Nevertheless, HGB using either xgboost or Random Forest achieves similar
final results.

Figure 13 shows the additional predictors selected by xgboost and Ran-
dom Forest using HBG. Predictors were sorted in decreasing order of feature
importance. In general, predictors with larger feature importance are asso-
ciated with global variables such as production time (p time), consumed
energy (sys energy) or rate of consumed energy (logSysPtime). Remain-
ing predictors are associate with relative frequency of speed and torque
(histogram variables) in different joints. It is worth mentioning that both
xgboost and Random Forest rely on random partitions of the predictors.
Furthermore, most of the predictors are highly correlated. Therefore, fea-
ture importance results may change in different runs.
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(b) Hybrid gradient boosting with Logistic
and Random Forest.

Figure 12: Classification rates results using hybrid gradient boosting and logistic regression
as the base line model. Original logistic and xgboost results are shown as horizontal lines.
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Figure 13: Feature importance analysis using hybrid gradient boosting with logistic re-
gression as the base line model and xgboost.

HGB can also be used to boost a base line model, with a subset of the
original data base. This is illustrated in Figure 14. As opposed to using
the total of 276 predictors, the HGB was applied using logistic as the base
line model and xgboost with a subset of 45 predictors. Local joint predic-
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tors and robot operational features were used. Histogram predictors were
not included. Results indicate that HGB may improve classification results
if a smaller number of predictors is applied. Compared to Figures 12(a)
and 12(b), the HGB, using a smaller number of predictors, achieved better
classification results. Figure 14(b) shows the xgboost feature importance
index. Results show that robot production time (p time), rate of consumed
energy (logSysPtime) and average speed on axis 1 (ax1 avg speed rpm) are
the main additional predictors for improving failure detection in joint 5,
using a non-linear black-box.
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Figure 14: Feature importance analysis using hybrid gradient boosting, logistic regression
as the base line model, xgboost and a smaller subset of predictors.

4. Discussion

There is a natural scheme for data analysis, which is data consistency
analysis followed by data modeling. Data consistency analysis, also known
as data cleaning, comprises outlier analysis and statistical description of
all available variables. Data consistency also includes careful evaluation of
the data generation process and checking whether the available information
comprises the current beliefs of engineers and analysts with respect to the
problem at hand. This is one of the most important steps in data modeling.

Although not reported in this work, the available data set was primarily
evaluated using simple descriptive statistics, histograms, correlation matri-
ces, scatter plots, among other exploratory statistical techniques. Further-
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more, these results were presented to, and systematically discussed with,
engineers and analysists. Future work aims at evaluating additional informa-
tion in the model. Nevertheless, current findings provided some important
insights with respect to failure detection in robotic arms. First, local infor-
mation is a strong predictor. For instance, the logistic regression achieved a
classification cross validation performance of 66.48% for joint 6 using only
local variables, while the xgboost achieved an additional improvement per-
formance of 2.39% using all 276 variables. For joint 2, glmnet, logistic and
xgboost achieved very similar results, providing evidence that failures in
joint 2 are driven mostly by local variables. Second, there is evidence that
information from different joints improves prediction for a specific joint.
For instance, logistic regression classification rates using local information
for joint 5 is 65%, whereas xgboost achieves 74% using information from all
joints.

The proposed hybrid gradient boosting model presented very interest-
ing results by creating a black-box model on top of a white-box model,
thereby improving cross-validation performance and separating predictors
into white- and black-box contributors. In the present study, both xgboost
and random forest achieved best results for joints having large proportions
of failures. An interesting finding is the improvement of HGB results if a
smaller data set is applied in the boosting procedure. This might be related
to the tree-based models. As indicated by Liu et al. (2008), the isolation
forest performs better with a smaller number of predictors. This may be
the case for both the xgboost and random forest models.

A critical point, in assessing classification performance, is the selection of
the appropriate statistical measure. Although AUC is a common choice for
evaluating classification models, in practice, predictive classification error
or classification rate is a suitable choice. As previously discussed, most
classification models estimate the chance of failure, from which the analyst
must decide whether the failure will happen based on a threshold. The
AUC statistic is robust for the threshold choice. However, results show
major differences between AUC and classification rate. For instance, the
xgboost AUC result for joint 6 is 75.16%, whereas for the classification rate
it is 68.87%. Therefore, it worth mentioning that AUC should not be used
as a proxy for predictive classification rates. Results show that AUC and
classification rates are different classification measures, which may or may
not achieve similar results.

Regarding the logistic regression results, one may claim that white-box
models, such as the logistic regression, do not require cross-validation evalu-
ation because they rely on consistent statistical theory/statistical inference.
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In general, this statement is true. Nonetheless, results show that, in gen-
eral, the white-box model (logistic) resulted in prediction errors. However,
for joint 2, both glmnet and logistic achieved the best predictive results, as
shown in Table 6. Furthermore, joint 2 has a lower rate of failures (1.1%).
This may suggest that, for rare failure events, a simpler white-box model
may outperform sophisticated black-box models.

It is worth mentioning that the logistic model can be estimated using a
black-box approach. For instance, one may evaluate hundreds or thousands
of different logistic models and select the few models with the best error
prediction. For example, assuming a fixed number of variables, say 5 vari-
ables, and assuming a database with only 50 variables, there are 2,118,760
different models. In this case, a white-box approach saves time and may
achieve reasonable results.

5. Conclusion

The present work has proposed classification models for failure detection
in industrial robotic arms, using statistical and machine learning methods.
The standard logistic regression model was adjusted using the white-box
approach, i.e., with the available data set and selecting variables using sta-
tistical inference. In addition, four machine learning models were adjusted
using the black-box approach, i.e., with all available variables and cross-
validation performance. Finally, a hybrid approach, using both white- and
black-box models, was evaluated. The white-box component indicates the
importance of each variable, whereas the black-box component further im-
proves the error prediction.

As expected, the different methods performed differently for the different
joints. In general, simple methods achieved better performance for joints
with lower rates of failures using local joint information. Furthermore, using
anomaly scores as an additional variable helped to improve classifications.

It is worth mentioning that the construction of white-box, black-box and
hybrid models for failure detection must rely on data analysis and technical
knowledge of the production process. Therefore, decisions, with respect to
selection of variables for anomaly score estimation, were based on local joint
information previously discussed with engineers and analysts.

In general, the development of failures and wear is dependent on the
accumulated usage of the robot. By including several sensors and provid-
ing different measurements per robot, a natural step is to correlate these
measurements with the failures and, therefore, develop predictive failure
classification models. The current database provided some very interesting
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insights into the main drivers of failures in robotic arms. However, we be-
lieve more data are required in order to continue to improve the classification
results.
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