
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Scaling cloud-native Apache Spark
on Kubernetes for workloads in
external storages

PIOTR MROWCZYNSKI

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Master Thesis

European Institute of Innovation & Technology, Cloud Computing and Services
KTH Stockholm & TU Berlin

Scaling cloud-native Apache Spark on
Kubernetes for workloads in external

storages

Piotr Mrowczynski

Examiner: Sarunas Girdzijauskas

Academic supervisor: Mihhail Matskin

Supervisors at CERN: Prasanth Kothuri, Vaggelis Motesnitsalis

September 21, 2018

�#bi`�+i

CERN Scalable Analytics Section currently offers shared YARN clusters to its users as
monitoring, security and experiment operations. YARNclusterswith data inHDFSare dif-
ficult to provision, complex to manage and resize. This imposes new data and operational
challenges to satisfy future physics data processing requirements. As of 2018, there were
over 250 PB of physics data stored in CERN’s mass storage called EOS. Hadoop-XRootD
Connector allows to read over network data stored in CERNEOS. CERN’s on-premise pri-
vate cloud based on OpenStack allows to provision on-demand compute resources. Emer-
gence of technologies as Containers-as-a-Service in Openstack Magnum and support for
Kubernetes as native resource scheduler for Apache Spark, give opportunity to increase
workflow reproducability on different compute infrastructures with use of containers, re-
duce operational effort of maintaining computing cluster and increase resource utilization
via cloud elastic resource provisioning. This trades-off the operational features with data-
locality known from traditional systems as Spark/YARN with data in HDFS.

In the proposed architecture of cloud-managed Spark/Kubernetes with data stored in ex-
ternal storage systems as EOS, Ceph S3 or Kafka, physicists and other CERN communities
can on-demand spawn and resize Spark/Kubernetes cluster, having fine-grained control
of Spark Applications. This work focuses on Kubernetes CRD Operator for idiomatically
defining and running Apache Spark applications on Kubernetes, with automated schedul-
ing and on-failure resubmission of long-running applications. Spark Operator was intro-
duced with design principle to allow Spark on Kubernetes to be easy to deploy, scale and
maintain - with similar usability of Spark/YARN.

The analysis of concerns related to non-cluster local persistent storage and memory han-
dling has been performed. The architecture scalability has been evaluated on the use case
of sustained workload as physics data reduction, with files in ROOT format being stored
in CERNmass-storage called EOS. The series of microbenchmarks has been performed to
evaluate the architecture properties compared to state-of-the-art Spark/YARN cluster at
CERN. Finally, Spark onKubernetesworkload use-cases have been classified, and possible
bottlenecks and requirements identified.

Keywords: Cloud Computing; Spark on Kubernetes; Kubernetes Operator; Elastic Re-
source Provisioning; Cloud-Native Architectures; OpenstackMagnum; DataMining

_272`�i

ApacheSparköverKubernetesochOpenstack för storskaligdatareduktion

CERN Scalable Analytics Section erbjuder för närvarande delade YARN-kluster till sina
användare och för övervakning, säkerhet, experimentoperationer, samt till andra grupper
som är intresserade av att bearbeta data med hjälp av Big Data-tekniker. Dock är YARN-
kluster med data i HDFS svåra att tillhandahålla, samt komplexa att hantera och ändra
storlek på. Detta innebär nya data och operativa utmaningar för att uppfylla krav på dat-
aprocessering för petabyte-skalning av fysikdata.

Från ochmed 2018 fanns över 250 PB fysikdata lagrade i CERNsmasslagring, kallad EOS.
CERNs privata moln, baserat på OpenStack, gör det möjligt att tillhandahålla beräkn-
ingsresurser på begäran. Uppkomsten av teknik som Containers-as-a-Service i Openstack
Magnumoch stöd för Kubernetes som inbyggd resursschemaläggare för Apache Spark, ger
möjlighet att öka arbetsflödesreproducerbarheten på olika databaser med användning av
containers, minska operativa ansträngningar för att upprätthålla datakluster, öka resur-
sutnyttjande via elasiska resurser, samt tillhandahålla delning av resurser mellan olika
typer av arbetsbelastningar med kvoter och namnrymder.

I den föreslagna arkitekturen avmolnstyrda Spark /Kubernetesmeddata lagrade i externa
lagringssystem som EOS, Ceph S3 eller Kafka, kan fysiker och andra CERN-samhällen på
begäran skapa och ändra storlek på Spark / Kubernetes-klustrer med finkorrigerad kon-
troll över Spark Applikationer. Detta arbete fokuserar på Kubernetes CRD Operator för
idiomatiskt definierande och körning av Apache Spark-applikationer på Kubernetes, med
automatiserad schemaläggning och felåterkoppling av långvariga applikationer. Spark
Operator introducerades med designprincipen att tillåta Spark över Kubernetes att vara
enkel att distribuera, skala och underhålla. Analys av problem relaterade till icke-lokal
kluster persistent lagring och minneshantering har utförts. Arkitekturen har utvärder-
ats med användning av fysikdatareduktion, med filer i ROOT-format som lagras i CERNs
masslagringsystem som kallas EOS.

En serie av mikrobenchmarks har utförts för att utvärdera arkitekturegenskaperna såsom
prestanda jämfört med toppmoderna Spark / YARN-kluster vid CERN, och skalbarhet för
långvariga dataprocesseringsjobb.

Keywords: Cloud Computing; Spark över Kubernetes; Kubernetes Operator; Elastic Re-
source Provisioning; Cloud-Native Architectures; Openstack Magnum; Containers; Data
Mining

�##`2pB�iBQMb

AWS Amazon Web Services

CERN Conseil Européen pour la Recherche Nucléaire

CMS Compact Muon Solenoid Detector

CRD Custom Resource Definition

HDFS Hadoop Distributed File System

HEP High Energy Physics

JVM Java Virtual Machine

K8S Kubernetes

LHC Large Hadron Collider

RBAC Role Based Access Control

S3 Simple Storage Service

TPC Transaction Processing Performance Council

YARN Yet Another Resource Negotiator

�+FMQrH2/;K2Mib

I would like to thank my examiner Sarunas Girdzijauskas, associate professor at the Soft-
ware and Computer System department of the Royal Institute of Technology (KTH), for
the guidance essential to define proper objectives and research course of this master the-
sis project. I would like to express gratitude tomy academic supervisor, professorMihhail
Matskin, for advising on proper structure of the thesis.

I wish to express sincere thank to my industrial supervisors and collegues at CERN, Pras-
anth Kothuri, Vaggelis Motesnitsalis, Zbigniew Baranowski and Luca Canali, for the help
in properly understanding context of the thesis, continuous feedback, support in all stages
of the project and for ensuring quality and correct objective of the work. Special thanks to
my family and friends far away in Poland, for the unconditional understanding.

Finally, I would like to thank my girlfriend Karolina for the support and making the dif-
ference.

h�#H2 Q7 *QMi2Mib
List of Figures 1

List of Tables 3

1 Introduction 4
1.1 Background . 4
1.2 Problem statement . 7
1.3 Goals and contributions . 7
1.4 Purpose . 8
1.5 Methods . 8
1.6 Delimitations . 9
1.7 Ethical and Sustainability context . 9
1.8 Stakeholders . 10

2 Theoretical framework and literature study 11
2.1 Separating compute and storage for Big Data 11
2.2 Kubernetes cloud deployments of Apache Spark 11
2.3 Performance evaluations of microservices with containers 12

3 Kubernetes over Openstack private-cloud 13
3.1 Openstack Containers-as-a-Service . 13
3.2 Essential Kubernetes concepts . 16
3.3 Kubernetes Controllers - Operator Pattern 19
3.4 Scaling the cluster, Cluster Autoscaler and Pod Autoscaler 19
3.5 Multi-cloud cluster federation . 20

4 Spark on Kubernetes Operator 21
4.1 Spark cluster operational features of Kubernetes compared to YARN . . . 21
4.2 Spark Kubernetes Operator as controller for Spark Applications 23
4.3 Persistent Storage concerns in cloud-native Spark 28
4.4 Handling Out of Memory in Spark on Kubernetes 30

5 Evaluation and analysis 32
5.1 Apache Spark with external storage: resource schedulers comparison . . . 32
5.2 Synthetic TPC-DS benchmark for Spark/YARN and Spark/K8S 34
5.3 Scalability tests for large-scale LHC data reduction 37
5.4 Discussion on use cases for Spark Kubernetes and Kubernetes Operator . . 44

6 Conclusions 47

7 Future work 49

References 50

GBbi Q7 6B;m`2b
1 LHCComputingGrid tier structure. Source: www.hep.shef.ac.uk/research/e-

science.php . 4
2 CERNdata reductionuse case -Ntupling, Skimming andSlimming. Source:

Big Data in HEP: A comprehensive use case study [1] 6
3 Comparison of Virtual Machines to Containers. Source: Openstack Docu-

mentation [2] . 13
4 Openstack Container-as-a-Service architecture for both Virtual Machines

and Baremetal clusters. Source: Openstack Documentation [2] 14
5 Openstack Magnum architecture. Source: Openstack Documentation [2] . 15
6 Kubernetes architecture. 16
7 Kubernetes in a federation example. 20
8 Comparisonof Spark/YARNandSpark/K8S for data stored in external stor-

age. 21
9 Top-Level architecture comparisonof Spark resource schedulers as on-premise

YARN, on-premise Kubernetes and cloud-managed Kubernetes, according
to DevOps and deployment effort. 22

10 Spark-as-a-Service design based on Spark Kubernetes Operator 23
11 Spark Kubernetes Operator workflow and architecture. Interoperability of

Kubernetes, Spark, Monitoring, Logging and External Storage. 24
12 Spark Operator architecture . 25
13 Client tools used to manage Spark/Kubernetes clusters over Openstack. . . 26
14 Kubernetes Minion and Spark Executor memory structure 30
15 Overview of benchmarking test for different Apache Spark cluster infras-

tructures (resource schedulers) . 35
16 I/O Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB

(EOS-UAT) for YARN and Kubernetes resource schedulers. Results for 6
iterations. 35

17 CPU Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB
(EOS-UAT) for YARN and Kubernetes resource schedulers. Results for 6
iterations. 36

18 Shuffle Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB
(EOS-UAT) for YARN and Kubernetes resource schedulers. Results for 6
iterations. 37

19 Input workload size scaling for Kubernetes and YARN resource managers. 38
20 Cluster read throughput with scaling number of executors for Kubernetes

and YARN resource managers. Data reduction of 40TB stored at EOS-UAT
and EOS-PUBLIC instances. 39

21 Job profile for physics data reduction of 20TB of ROOT data, taken from
Graphana Monitoring Dashboard for Kubernetes cluster. Run with 30 ex-
ecutors, 3 CPU and 12GB RAM each running on Spark on Kubernetes. . . . 42

22 Executors scaling for physics data reduction of 20TB of ROOT data. Fixed
executor parameters of 2 CPU and 12GB RAM running on Spark on Kuber-
netes. Job execution time and corresponding network traffic observed. . . 43

1

23 Executors scaling for physics data reduction of 20TB of ROOT data. Fixed
executor parameters of 2 CPU and 12GB RAM running on Spark on Kuber-
netes. Job execution time with prediction for further scaling 43

24 Use-case analysis for Spark on YARN/Kubernetes in terms of cost/perfor-
mance effectiveness, networking, data locality and type of workload. 44

2

GBbi Q7 h�#H2b
1 Comparison of available Persistent Storages for Spark on Kubernetes for

parallel writes from multiple pods
29

2 Comparison of different Apache Spark resource schedulers in the context
of cluster management
32

3 Executor configurations used in benchmarking test for different Apache
Spark cluster infrastructures (resource schedulers)
34

4 Executor configurations used in initial scalability test for data reduction for
different Apache Spark cluster infrastructures (resource schedulers)
38

5 Comparison of different read ahead configurations. Data reduction Spark
job parameters and results for 500GB input dataset stored at EOS-PUBLIC
instance.
40

6 Comparison of different CPU/RAM configurations. Data reduction Spark
job parameters and results for 500GB input dataset stored at EOS-PUBLIC
instance, with 128kB read-ahead.
41

7 Comparison of different executors number configurations. Data reduction
Spark job parameters and results for 20TB input dataset stored at EOS-
PUBLIC instance, with 128kB read-ahead.
42

8 Analysis of workload type use-cases for Spark on Kubernetes
45

3

R AMi`Q/m+iBQM

This section is to introduce reader to the problem approached in the topic of the thesis,
and related background required to understand the use-case of the problem which can be
solved by discussed solution. Goals, purpose, delimitation of the solution and methods
used to solve the problem will be described.

RXR "�+F;`QmM/

The European Organization for Nuclear Research (CERN) is the largest particle physics
laboratory in the world. It hosts largest and most complex scientific instruments used to
study the fundamental particles. Example of such experiment is Large Hadron Collider,
within which particles collide 600million times per second. The collision events are sum-
marized in the form of over 30 PBs of data yearly stored in EOS Storage Service at CERN,
and with 12 PB stored on-disk or on-tape only in October 2017.

Figure 1: LHC Computing Grid tier structure. Source: www.hep.shef.ac.uk/research/e-
science.php

Grid computing is a currently most used model to process physics data at CERN and
within physics collaborations. It is multi-tier system of datacenters within WorldWide
LHC Computing Grid, as presented on Figure 1. Tier-0 is used for experiment operation
use-cases and analysis, and consists of over 200,000 cores. The main tool to orchestrate
jobs is HTCondor, and programming framework is ROOT Data Analysis Framework [3].
As the particle accelerators at CERN are delivering collisions with high performances and
very high rate, the experiments are expected to record a growing size of the datasets that
posses a threat that producing new scientific results will not be timely and efficient. This
is caused by state-of-the-art complex methods of analysis, including programming and
computing framework - GRID framework has limited orchestration, failure tolerance and
bookkeeping capabilities, which are design principles of cluster computing frameworks as
e.g. Apache Spark.

4

Cluster computing model explored and leveraged at CERN for Tier-0 use-cases (CERN
datacenter as shown on Figure 1) is based on Big Data technologies. Scalable Analytics So-
lutions section at CERN provides Hadoop and analytics services to European and World-
wide CERN collaborations. It works closely with the LHC experiments, accelerators, mon-
itoring, security and other CERNcommunities interested in analysing data at scale. Exam-
ples of such offered services are HDFS,MapReduce-based libraries (Hive, Pig and Sqoop),
HBase scalable NoSQL database and Spark distributed framework for big data analytics.
To perform data-intensive computation within cluster computing model, CERN currently
uses Apache Spark. It is an open-source distributed and parallel processing framework
that allows for sophisticated analytics, real-time streaming andmachine learning on large
datasets. It also offers interactive analysis capabilities, and build-in failure tolerance at
scale. It is a compute engine that requires some data management system to get the data
from - typically HDFS, and resource managers dedicated for Spark/Hadoop clusters as
YARN [4] to schedule CPU and Memory resources to jobs. HDFS is a distributed data
storage infrastructure for massive data collections, stored over multiple nodes within a
cluster of commodity servers - which means no expensive custom hardware needed.

Apache Spark in general can run on the cluster of machines regardless of underlying stor-
age system used. When storage system other than HDFS is used, Hadoop Connectors are
required. Hadoop Connectors for storage systems as S3, Kafka or XRootD (EOS) allow to
read (stream) files directly from external storage services. Due to the fact that data is in
an external storage service, there is no longer a data locality preserved in the Spark clus-
ter. Data locality is a principle design solution in Hadoop Map-Reduce used to limit the
network bottleneck by executingMapCode (if possible) on the nodewhere the correspond-
ing chunk of data resides. With external storage systems data needs to be transferred over
network to CPU directly, instead of computation (map task) being allocated to node with
corresponding HDFS blocks and reading directly from disk.

Example of analysis which has hard requirement on data being stored in a dedicated stor-
age system is physics analysis at CERN. Mass storage used at CERN is storage system
called EOS [5]. It is exabyte-scale on-disk storage system providing low-latency, non-
sequential file access and a hierarchical namespace, optimized for ROOT file format and
access through XRootD protocol. Additionally, EOS scales horizontally with number of
data-storagemachines, overwhichdata is randomlydistributed tomaximize read through-
put over dataset of files.

One of the large-scale physics workloads use-cases which requires reading data from a
mass storage system EOS is data reduction and dimuonmass calculation. In general prin-
ciple, ”data reduction is the transformation of numerical or alphabetical digital informa-
tion derived empirically or experimentally into a corrected, ordered, and simplified form.
The basic concept is the reduction of multitudinous amounts of data down to the mean-
ingful parts” [6].

5

Figure 2: CERN data reduction use case - Ntupling, Skimming and Slimming. Source: Big
Data in HEP: A comprehensive use case study [1]

The example of data reduction at high-energy physics is Ntupling, skimming and slim-
ming (”Dark Matter workflow”) used to reduce the size of the input dataset by a factor
of 100, as presented on Figure 2. The input dataset coming from CMS Detector used in
search for Dark Matter is too large for interactive analysis (in range of 10TB to 1 PB)[1].
The CMS collaboration started to explore modern tools of computing as Apache Spark in
order to build a data reduction facility, with the goal of reducing extremely large datasets
to the sizes suitable for iterative and interactive analysis using e.g. web-based interac-
tive data analysis. In the workflow, the pre-processed datasets in the specialized format
(ROOT) are stored in EOS Storage Service at CERN. Around four times a year, from a col-
lisions events dataset of 200 TB, analysts translate the generalized class structure of data
into so called ”flat ntuples” (Ntupling), producing output dataset reduced to 2TB. The pro-
duced ”flat ntuples” are often too big for interactive analysis, and analysts, around once
perweek, further reduce a dataset to size of 10s of GBs applying skimming and slimming to
”flat ntuples”, prefiltering and extracting relevant dataset. In the result, such a workflow
produces bursty and resource demanding workload [1], which is mostly compute inten-
sive as mostly consists of filtering (delivering data directly to CPU, little shuffling and I/O
operations).

6

RXk S`Q#H2K bi�i2K2Mi

In some cases, organizations are bound to usage of external mass storage systems for data
analysis use-cases - Amazon S3, Google Cloud Storage in public clouds or on-premise
mass storageswith example of CERNEOS. These reasons are usually already existing large
datasets at rest in external storage systems, growing amount of data which cannot be han-
dled cost-efficiently on traditional systems as HDFS, system complexity, data format or
lack of experience for running large scale storage system.

One of such cases is current data-processing pipeline architecture at CERN, where Spark
runs over Hadoop/YARN cluster with existing massive data collections at HDFS from sta-
ble production-grade use cases. CERN ITDatabase group periodically characterizes work-
loads for sizingHadoop/Spark clusters, which are required to achieve highest possible uti-
lization for production workloads [7]. Due to high load on the existing dedicated Hadoop
cluster, and increasing need for large scale physics analysis of files stored at external stor-
age service at up to 1 PB scale, there is a need for increased flexibility and faster capacity
provisioning for Apache Spark clusters - specifically for workloads operating on datasets
coming from external and elastic storage services. In this architecture of Spark/Hadoop, it
is very difficult to scale cluster dynamically according to users need, due to the fact Spark
operates on physical machines containing HDFS data. Additionally, YARN clusters are
difficult to configure, maintain and have limited reproducibility and portability across in-
frastructures.

Emergence of cloud-native and container-centric technologies as Kubernetes are expected
to leverage cloud rapid resource provisioning and elasticity [8]. Kubernetes popularity
and demand in industry triggered contributions to upstreamApache Spark to allow cloud-
native data processing using Spark on Kubernetes [9]. There is thus a following research
question:

Given the problemof limited resource elasticity and capacity ofHadoopYARNcluster for
Apache Spark workloads requiring data being read from external storages, can cloud-
native deployment model of Spark with Kubernetes efficiently and comparably scale,
satisfying resource elasticity and reproducibility properties?

RXj :Q�Hb �M/ +QMi`B#miBQMb

The goal of the thesis is to prototype and test a new architecture for executing large-scale,
bursty Apache Sparkworkloadswith data being stored externally to the computing cluster.
In this architecture, Apache Spark runs over elastic cloud resources in Docker containers,
orchestrated by cloud-native resource scheduler calledKubernetes. Data storage and com-
putation are separate microservices, running on separate software stacks, and data is no
longer local to computation. This model allows to achieve dynamic resource scaling of
the cluster, and give operational benefits provided by self-healing and simplified deploy-
ment, cluster sharing features of Kubernetes cluster in the cloud with Docker containers.
The operational benefits are however being trade-off with data-locality and possible com-

7

puting cluster to storage system or computing node to node network throughput bottle-
necks.

This project involves contributing to and experimenting with new resource scheduler for
Apache Spark, released in February 2018 - Spark on Kubernetes. Computations are to be
performed over cloud-native flavor of Spark, deployed over Openstack cloud. The scope
is to develop and experiment with components of Spark on Kubernetes over Openstack
(Spark K8S Operator, Openstack Magnum, Apache Spark Core, Hadoop XRootD Con-
nector, Hadoop S3 Connector), and command-line client which will allow to dynamically
spawn, resize, monitor and delete a cluster of computing nodes, and additionally handle
Spark jobs submission.

RX9 Sm`TQb2

The purpose of the thesis is to evaluate the new cloud-native Apache Spark architecture
for datasets from external storage systems, enabled by the support of Kubernetes as na-
tive Spark resource scheduler. The focus of the master thesis will be on characterizing
operational features of the solution, possible bottlenecks, it’s scalability and performance
aspects for running sustained workload over the Spark cluster and data in external stor-
age.

RX8 J2i?Q/b

In order to answer the research question, two evaluation methods will be used - qualita-
tive and quantitative. Qualitative research will be conducted in order to compare differ-
ences between different Apache Spark resource schedulers, based on industry experiences
and opinions. Quantitative research will consists of Apache Spark microbenchmarks be-
ing executed using two resource schedulers available at CERN - Kubernetes/Cloud and
YARN/On-Premise, with data in EOS Storage - and validate properties as performance
and scalability.

Qualitative method (comparison based on industry experiences and opinions) is focused
on identifying key differences between native resource schedulers for Apache Spark, and
identifying their key strengths and weaknesses considering operational features. It was
decided to use empirical approach, rather than theoretical, as the project was focused on
understanding expected and observed operational issues or advantages. Operational as-
pects are hard to derive from theoretical architecture properties without practical experi-
ence. The advantages and issues will be thus derived from running and testing different
resource schedulers internally at CERN, using publicly available publications from indus-
try experts and research papers.

Quantitative method (microbenchmarks) is focused on identifying possible bottlenecks
with two types of infrastructures / resource schedulers with data in external storage. Two

8

microbenchmarks has been used - standardized TPCDS on three different classes of ana-
lytic SQL queries validating performance, and high energy physics data mining workload
validating scalability. It was decided to use standardized benchmark over some predefined
real-world use case, to be able to allow reproducing and validating resource schedulers on
other dedicated infrastructures. Additionally, as no actual resource-scheduling properties
are investigated in the scope of the project, only performance benchmark with bottleneck
analysis is considered. From among reproducible and general purpose benchmarks avail-
able in the industry, TPCDS Benchmark has been chosen as it is the most widely used
validation tool in Spark Community and in the analysed literature [10]. CERN data re-
duction real-world use case from physics analysis at CMS Collaboration has been selected
as a representative large scale, CPU/Memory Intensive workload. This type of workload is
expected to scale horizontally with amount of resources. It was decided to use real-world
use case rather than academic-class workload in order to test and validate what users can
expect from infrastructure, and because isolated tests were not possible in the scope of
this project.

RXe .2HBKBi�iBQMb

In the context of the thesis, to simplify analysis, CERN in-house (on-premise) mass stor-
age system EOS has been given as a representative for external storage systems. How-
ever, EOS is a technology build specifically for CERN use-case of physics data storage.
Industry standard technologies are objectstorages as AWS S3, Google Cloud Storage and
other.

Another simplification was the assumption on the good networking quality within the dat-
acenter, which is true only in public clouds or large-scale private clouds.

In order to generalize the problem, Openstack private cloud at CERN has been used as
cloud infrastructure for cloud-native Kubernetes deployment. However, industry stan-
dards areGoogleCloudPlatform, AmazonWebServices, AzureCloud andOracleCloud.

Additionally, in the measurements, two resource schedules were compared - On-Premise
Shared YARN cluster and Openstack Container-as-a-Service (Kubernetes). Both of the
systems are production environments, sharing resourceswith other demandingworkloads
coming from experiment operations and processing. Thus, methods and results presented
might not be fully representative and reproducable on other infrastructures, as tests were
not performed on isolated environments.

RXd 1i?B+�H �M/ ambi�BM�#BHBiv +QMi2ti

As the CERN Convention states, one of the organisation mission is ”to unite people from
all over the world to push the frontiers of science and technology, for the benefit of all”.
This work ethical context is to provide the industry and computing community with anal-
ysis and performance evaluations of Spark on Kubernetes use-case, and give better under-

9

standing of the used technologies. Moreover, project investigates new ways of performing
large-scale computing, with the goal of providing more sustainable model through more
resource elastic, on-demand and easier to manage technology stack.

RX3 ai�F2?QH/2`b

The topic of this thesis is commissioned by CERN, the European Organization for Nuclear
Research. The project was supervised by Prasanth Kothuri and Vaggelis Motesnitsalis,
and presented on Spark Summit Europe 2018 in London, during the talk ”Experience of
Running Spark on Kubernetes on OpenStack for High Energy Physics Workloads”.

10

k h?2Q`2iB+�H 7`�K2rQ`F �M/ HBi2`�im`2 bim/v

This section introduces theoretical framework and related works study required to under-
stand the context of the thesis, through state-of-the-art approaches and concepts.

kXR a2T�`�iBM; +QKTmi2 �M/ biQ`�;2 7Q` "B; .�i�

The reseach by Ganesh Ananthanarayanan et. al. [11] defends the hypothesis, that in
cluster computing disk-locality is becoming irrevelant. This is due to the fact, that two
fundamental assumtions - disk bandwidth higher than network bandwidth, and disk I/O
being a considerable fraction of task duration - are no longer valid. They assume, than fast
networks and good datacenter netoworkin, plus economic aspects of large-scale data stor-
age in external service are in favor of architectures in which compute nodes are decoupled
from nodes optimized for storage.

In the paper published by Accenture Technology Labs on Cloud-based Hadoop Deploy-
ments [12], the Google Cloud Storage (GCS) was compared to Hadoop Distributed File
System (HDFS) in terms of performance for processing the data in three scenarious: rec-
ommendation engine, sessionization and document clustering. They concluded that not
only external storages as GCP offer better performance-cost ratio and better data avail-
ability, but also for fine tuned workloads they achieved higher performance than reading
from HDFS preserving data-locality.

Databricks in the blog post about choosing S3 over HDFS [13], proves based on customer
research that S3 offers higher SLA (availability and durability), performance-cost ratio,
and is much more elastic data storage type than HDFS. In their benchmark of data plat-
form in the cloud [14], they also prove that while in default setup, HDFS can reach much
higher local node throughput thanks to data-locality, in the optimized setup reading from
S3 canoutperform inperformanceHDFSbased on-premise platform (Cloudera Impala).

kXk Em#2`M2i2b +HQm/ /2THQvK2Mib Q7 �T�+?2 aT�`F

In 2018, Forbes noted that ”Kubernetes is a first project to graduate from Cloud-Native
Computing Foundation” [8]. They note, that Kubernetes allows reproducable, unified and
sustainable computing, with use of cloud-native contemporary applications architectured
with microservices using containers on elastic, virtualized infrastructure. This allowed
projects to start small and grow to large scale deployments, without a change in application
development cycle.

In February 2018, Apache Spark Foundation released experimental native support for Ku-
bernetes as resource scheduler for Apache Spark 2.3.0 version. However, before the re-
lease, there were attempts to run Spark as standalone application on Kubernetes [9].

11

Initially, the attempts to run Spark using container based deployments on Kubernetes
[15][16] were replicating those on YARN and HDFS - the architecture consisted of Spark
Master Pod and multiple Spark Worker Pods, with volume mounts attached to each Pod
container using some network attached storages e.g. GlusterFS. In these Kubernetes non-
native Spark deployments the main motivation of running Spark over Kubernetes was re-
peatability of infrastructure, application portability, improved resource utilization, less
maintenance anddevops effort compared to traditional deploymentmethods (post-scripts,
Chef, Puppet).

While running Spark standalone onKubernetes hasmany benefits for clustermanagement
and resource utilization, native approach (first-class support in Spark for Kubernetes as
resource scheduler) would offer fine-grained management of Spark Applications, native
integration with logging and monitoring solutions, native elasticity and improved seman-
tics for failure and recovery [9].

kXj S2`7Q`K�M+2 2p�Hm�iBQMb Q7 KB+`Qb2`pB+2b rBi? +QMi�BM2`b

In order to compare different architectures which preserve the same functionality of ap-
plication, one requires synthetic performance benchmarks.

The research on Performance Evaluation of Microservices Architectures using Contain-
ers [17] compares performance of master-slave and nested-container architectures. The
master-slave architecture can be characterized by one master-container which is orches-
trating/managing other slave-containers (such architecture can be found e.g. in Apache
Spark on YARN). On other hand, nested-container architecture is when children contain-
ers are hierarchically created into the parent container (similar architecture can be found
inKubernetes Pod/Deployment, where Pod is smallest deployable group of containers that
are isolated from other Pod containers). In the test, creation-time, CPU and network per-
formances are compared. They conclude, that nested-containers have better isolation and
resource-sharing characteristics, but have much higher overhead in creation-time than
regular containers in master-slave architecture.

Varun Vasudevan [18] compares performance of different resource allocation policies in
Kubernetes for large datasets jobs - default Kubernetes policy and Dominant Resource
Fairness policy. Based on recorded usage patterns of system resources (CPU, Memory),
it was concluded that provisioning based on the dominant resource performs better than
the native scheduling policy of Kubernetes.

In the design research paper on Mesos [19], the two types of microbenchmarks were de-
signed - resource sharing between different frameworks, and overhead/scaling/failure-
recovery benchmark. In the scalability benchmark, they have shown that Mesos scales
nearly linear, with increasing (but small) overhead. They have also shown for different
types of frameworks and workloads, the speed-up Mesos offers compared to Static Parti-
tioning between frameworks in the cluster.

12

j Em#2`M2i2b Qp2` PT2Mbi�+F T`Bp�i2@+HQm/

This section introduces reader to basic concepts required to understand the work. Reader
will be acquainted with cloud infrastructure components required to provide elastic re-
source provisioning forKubernetes clusters asOpenstackNova,Heat andMagnum. More-
over, essential components of Kubernetes in the context of Apache Spark resource sched-
uler will be introduced.

The content of this section has been based on articles published in Openstack and Kuber-
netes documentation [20][21][2].

jXR PT2Mbi�+F *QMi�BM2`b@�b@�@a2`pB+2

Containers, deployed using e.g. Docker, are a way of managing and running applications
in a portable way, and are known to provision complex services in seconds. Containers
isolate parts of applications (microservices) which gives a possibility of granular scaling,
increased security configurations and simplified management.

Figure 3: Comparison of Virtual Machines to Containers. Source: Openstack Documen-
tation [2]

Service inside a container includes only runtime depenencies and lightweight operating
system core. This allows container images to be orders of magnitude smaller than virtual
machines.

Containers, similarly to VM share resources as disk, memory and processors. However,
containers unlike virtual machines, share the same OS kernel of the host, and keep ap-
plications, runtimes, and various other services separated from each other using kernel
namespaces and cgroups - Figure 3.

13

Figure 4: Openstack Container-as-a-Service architecture for both Virtual Machines and
Baremetal clusters. Source: Openstack Documentation [2]

Containers can run on top of Bare Metal Hosts or Virtual Machines benefiting from cloud
resource elasticity. The component responsible for such a deployments is called Nova.
In order to deploy Kubernetes on top of provisioned virtualized or bare-metal resources,
Openstack Heat and Openstack Magnum are used. Architecture diagram is presented on
Figure 4.

PT2Mbi�+F LQp� @ `2bQm`+2 T`QpBbBQMBM;

Nova is the OpenStack component used to provision compute instances (natively Virtual
Servers or using Ironic Service for Bare Metal). Nova consists of serveral components to
provisions resources. There components are scheduler (decides which host gets which
instance), compute (manages communication with hypervisor and VMs), conductor (han-
dles requests that need coordination as build/resize, acts as a database proxy, or handles
object conversions), placement (tracks resource provider inventories and usages).

Nova communicates with other OpenStack services to provision resources:

1. Keystone: Identity and authentication for OpenStack services.

2. Glance: Compute VM images repository.

3. Neutron: Provisioning the virtual or physical networks for compute instances.

4. Heat: Launching and managing composite cloud applications as Kubernetes.

14

PT2Mbi�+F >2�i @ /2+H�`�iBp2 i2KTH�i2b 7Q` +HQm/ �TTHB+�iBQMb

Heat is the main component of Openstack orchestration. It launches composite cloud
applications based on templates in the text file format (Heat Templates, AWS CloudFor-
mation Templates). Heat service provides the following functionality:

1. Heat Templates are used to describe the infrastructure used by cloud applications.
These available infrastructure resources are servers, floating ips, volumes, security
groups, users.

2. Manages the lifecycle of the cloud application, which allows via modifying the tem-
plate to update the existing stack, performing necessarily changes.

3. Provides an auto-scaling service that integrateswithTelemetry, whichwill scale com-
pute resources on demand.

PT2Mbi�+F J�;MmK @ K�M�;BM; Em#2`M2i2b +Hmbi2`b

OpenStack Magnum provides comprehensive support for running containerized work-
loads on OpenStack and simplifies the setup needed to run a production multi-tenant
container service.

Figure 5: Openstack Magnum architecture. Source: Openstack Documentation [2]

Magnummakes orchestration engines asDocker Swarm, Kubernetes, andMesos available
through first class resources in OpenStack. Figure 5 shows the detailed architecture of
Magnum Service.

15

Magnum service provides the following functionality:

1. Build-in integration with authentication service Keystone provides using the same
identity credentials for creating cloud resources and to run and interact with con-
tainerized applications.

2. Magnum uses Heat to orchestrate an OS image which contains Kubernetes and runs
that image in either virtual machines or bare metal with a defined cluster configura-
tion.

3. Magnum Networking uses Openstack Neutron capabilities. This allows each node
in a cluster to communicate with the other nodes. In the Kubernetes bay (cluster), a
Flannel overlay network is used which allows Kubernetes to assign IP addresses to
containers in the bay and allowing multihost communication between containers.

jXk 1bb2MiB�H Em#2`M2i2b +QM+2Tib

Kubernetes is open-source platform for managing containerized workloads and services.
It allows to deploy portable, automated microservices onto on-premise or elastic cloud
resources.

Figure 6: Kubernetes architecture.

The most basic building blocks of Kubernetes architecture are presented on Figure 6. It
consists of Kubernetes Master components (API Server, Scheduler, Controller Manager
and etcd), Kubernetes Worker Node componenets (Kubelet and Docker) and Kubernetes
Pods.

16

Kubectl tool (and kubectl library - Figure 6) is used tomanage the cluster and applications
running in the cluster. Helm is a wrapper for Kubectl, and serves as package manager for
Kubernetes.

Em#2`M2i2b J�bi2` �M/ LQ/2 +QKTQM2Mib

Kubernetes provides to run container-based primitives as Pods, Services and Ingress in
the cluster nodes. It also provides lifecycle clouster functions as self-healing, scaling, up-
dates and termination of workloads. In order to realize the features, many services in
Kubernetes Master and Kubernetes Nodes have to cooperate with each other.

There are following Kubernetes Master components and their functions:

1. API Server - server Kubernetes API, providing access to business logic implemented
as plugable components. server processes and validates REST requests, and updates
the corresponding Kubernetes objects in etcd.

2. Etcd - distributed cluster state storage, which provides reliable configuration data
storage, which can notify other components on updates (watch).

3. Controller Manager - application and composition manager, providing functions as
self-healing, scaling, application lifecycle management, service discovery, garbage
collection, routing, and service binding and provisioning.

4. Scheduler - watches for uncheduled pods and schedules to available nodes in the
cluster. Scheduler takes into account availability of the requested resources, affinity
and anti-affinity specifications, and quality of service requirements.

To provide very high-availability and resiliency agains failure of the master node, Kuber-
netes allows to replicate Master Nodes (in case of cloud, multiple availability zones).

Kubernetes Nodes have following components and their corresponding functions:

1. Kubelet - main component responsible for Pods and Node APIs that drive the con-
tainer execution layer. It ensures isolation of application container, but also isolation
from execution hosts. This component communicates with Schedulers andDaemon-
Sets, and decides on execution or termination of Pods. It will also ensure stability of
the Nodes regarding Node CPU and RAM resources.

2. Container Runtime (Docker) - responsible for downloading Docker Container im-
ages and running containers.

3. Kube Proxy - abstraction that provides common access policy as load-balancing to
pods. It creates a virtual IP and transparently proxies to the pods in a Kubernetes
Service.

17

Em#2`M2i2b qQ`FHQ�/b USQ/b �M/ *QMi`QHH2`bV

Pod ismost fundamental component ofKubernetes, and smallest unit that can be deployed
in the cluster. It running one or multiple same Docker containers, and encapsulates one
application logic building up together containers, volumes, networking and other runtime
settings.

Pod Controllers create and manage multiple Pods, handling replication, updates and en-
suring self-healing capabilities such as rescheduling pods on other nodes in case of node
failures. The most important controllers are:

1. Replica Set - ensures that a specified number of pods are running cluster-wide.

2. Deployment - is used to declaratively create, update and manipulate Replica Sets.

3. Stateful Set - unline stateless controllers as Replica Set and Deployment, Stateful
Set provides guarantees about the ordering and uniqueness of the Pods, allowing to
provide stable persistent storage and networking.

4. Job/CronJob - create one-time or on-schedule set of pods and controller will report
success only if all the pods it tracks successfully complete, and in case of deletion to
clean-up Pods.

�mi?2MiB+�iBQM- _"�* �M/ JmHiBi2M�M+v

In order to control access to the kubernetes cluster, three phases of request pre-processing
are performed: authentication, authorization (RBAC) and admission control (mutating or
validating).

In order to authenticate HTTP request, modules as Client Certificates, Password, Plain
Tokens, Bootstrap Token or Service Account Tokens are examined. One of the most com-
mon authenticationmethods are certificates, which can be obtained using cloud-provided
tool e.g. openstack coe cluster config.

The authorization phase checks the request against existing policy that declares if the user
has permissions to complete the requested action. RBAC (Role Based Access Control)
autorization defines 3 top-level primitives: Namespaces, Roles and RoleBindings:

1. Namespace - Namespaces are a way to divide cluster resources between multiple
users, allowing multi-tenancy. They are used to make some pods unique to some
namespace and namespace users. Resource Quota can be used to allocate resources
to the namespaces.

2. Role/ClusterRole - Roles are used to grant access to resources (pods, secrets etc.)
within a single namespace. ClusterRole are the ones which might allow to give per-
missions in all namespaces, including to administrate nodes.

3. RoleBinding/ClusterRoleBinding - binding grants the defined permissions to a list
of subjects such as users or service accounts.

18

�/KBbbBQM *QMi`QH �M/ �/KBbbBQM q2#?QQFb

Admission control is the last step of providing an access to the cluster (after Authentication
andAuthorization). Admission Controlmodify or reject requests, deciding on object being
created, deleted, updated or connected. It controls admission in two phases. It runs mul-
tiple admission controllers in parallel, and if any fails it rejects the request. First phase are
Mutating Controllers which can modify the request accordingly, and in second phase Val-
idation Controllers check if request can be passed. Example of Admission Controllers are
AlwaysImagePull (ensures that image is always pulled in the Docker) andNamespaceLife-
cycle (ensures that when namespace is deleted, all resources are cleaned up and no other
request is accepted for this namespace).

Special type of Admission Controllers are Dynamic Admission Controllers as Webhooks.
These are user-provided Admission Controllers which intercept requests and processes
them (mutating/modifying the resource before its creation, or validates the request ac-
cording to custom requirement).

jXj Em#2`M2i2b *QMi`QHH2`b @ PT2`�iQ` S�ii2`M

Operator Pattern is a concept introduced inKubernetes 1.7, which allows towrite application-
specific custom controllers (e.g. Spark Operator [22]). Due to the fact that controllers
have implicit access to Kubernetes API, the custom controller can customize pods/ser-
vices, scale application, provide failure tollerance by monitoring resources, call endpoints
of the running applications, and define rules for application operation [23].

jX9 a+�HBM; i?2 +Hmbi2`- *Hmbi2` �miQb+�H2` �M/ SQ/ �miQb+�H2`

Kubernetes applications can request amount of Pods to run in the cluster, and amount of
CPU andRAM to be allocated to pods. Kubernetes Scheduler based on request tries to find
a node to run the pod. If there is no node that has enough free capacity or does not satisfy
node affinity, then the pod has to wait until some pods are terminated or a new node is
added.

Cloud Platforms as Openstack, Google Cloud, AWS and Azure allow to resize the Kuber-
netes cluster triggered by user request. Responsible service (e.g. OpenstackMagnum)will
take care of lunching, allocation or deletion of nodes. Kubelet will register/deregister its
Node with API server to make it available/unavailable for scheduling.

Autoscaling cluster resources (nodes) is an example of automated resource provisioning.
Since Kubernetes version 1.6, cloud providers provided support for cluster resources au-
toscaling (Google Cloud, AWS, Azure). Cluster Autoscaler monitors the pods that cannot
be scheduled and conditionally adds additional node to the cluster to satisfy the require-
ment. It also scales down the cluster if some nodes are idle for a defined period of time.

19

Openstack Magnum as of 2018 does not support Kubernetes cluster autoscaling, but un-
derlying components Heat can based on Ceilometermetrics build an auto scaling environ-
ments.

Horizontal PodAutoscaler is a component of Kubernetes which allows to scale the applica-
tion on existing cloud resources (nodes) according to the needs. It automatically scales the
number of pods in a replication controller, deployment or replica set based on observed
CPU utilization or on custom application-provided metrics.

Vertical Pod Autoscalers is an Alpha Kubernetes 1.10 component which allows to scale
the containers in a pod according to past usage (rescheduling with scaled RAM and CPU).
Vertical PodAutoscaler allows to specify which pods should be vertically autoscaled aswell
as if and how the recommendations for pod resources are applied.

jX8 JmHiB@+HQm/ +Hmbi2` 72/2`�iBQM

Kubernetes allows to federate multiple kubernetes clusters into one. It allows to run in
high availability mode having two clusters in two availablity zones, and application porta-
bility between cloud providers and on-premises. The main Kubernetes primitives to be
considered in federation are location affinity, cross-cluster scheduling, service discovery
and application migration.

Figure 7: Kubernetes in a federation example.

Kubernetes Federation allows for example to run main workloads on-premises, but scale-
out with increased requirements in the cloud using autoscaling. Example of such archi-
tecture is presented on Figure 7.

20

9 aT�`F QM Em#2`M2i2b PT2`�iQ`

This section gives an overview over components required to provide cloud-native Apache
Spark deployment over Kubernetes. This also constitutes the implementation part ofmas-
ter thesis. Implementation and contribution to Kubernetes Operator for Spark and other
related components was essential for the project.

9XR aT�`F +Hmbi2` QT2`�iBQM�H 72�im`2b Q7 Em#2`M2i2b +QKT�`2/ iQ u�_L

In this section, I will follow top-down approach of describing the Spark on Kubernetes and
it’s dedicated controller, Spark Operator.

Figure 8: Comparison of Spark/YARN and Spark/K8S for data stored in external storage.

In a typical data warehouse and data analytics architecture, data-intensive computation is
performed using Apache Spark. Spark is a distributed and parallel processing framework
that requires some data management system to get the data from - typically HDFS with
data being local to computation - and some resource scheduler to allocate resources as
CPU and RAM available in the cluster of machines [4]. It is also possible in such architec-
ture to stream data to processing in Apache Spark from external storage using dedicated
connectors e.g. EOS over XRootD protocol, S3 over S3A protocol, HDFS over HDFS pro-
tocol and Kafka using Kafka subscription. Such an architecture is presented on Figure
8.

In Spark on Kubernetes architecture, compute cluster and storage clusters are separated
by design. The sole role of Spark on Kubernetes is to stream required data from data
storage, perform computations, and store over network protocol required state or output
to external storage systems.

21

Spark on Kubernetes architecture has thus several properties which are lacking in tradi-
tional Spark/YARN (HDFS) clusters [9]:

1. Isolation of user environments realized by containers.

2. Allows users to provision and maintain isolated Spark cluster with minimal opera-
tional effort.

3. Logging, Monitoring and Storage are no longer part of the monolitic architecture
as Spark/YARN and HDFS. Each of these are externaly managed services natively
integrated with Kubernetes, usually offering certain SLA and durability.

4. Portability and reproducibility. It is easy to reproduce an exact same Spark environ-
ment on completely different infrastructure.

5. Compute cluster as sole service deployedwith containers is easy tomaintain, operate
and control.

6. Separation from storage and native integration with public/private cloud providers
allows resource provisioning elasticity and possibly infinite and cost-efficient provi-
sioning capacity.

7. On-Premise YARN and Kubernetes have no build-in configuration and authentica-
tion methods. Openstack Cloud abstracts and provides configurations and authen-
tication for provisioned Kubernetes clusters.

Figure 9: Top-Level architecture comparison of Spark resource schedulers as on-premise
YARN, on-premise Kubernetes and cloud-managed Kubernetes, according to DevOps and
deployment effort.

22

Spark on Kubernetes can be deployed on-premise or as cloud-managed service over cloud
resources. Example of cloud-managed Spark on Kubernetes cluster is deployment over
Openstack private cloud. Kubernetes is being deployed using an openstack coe create
cluster command, creating in minutes in an automated way a cluster using Openstack
Magnum component. This allows to abstract from administrators DevOps effort of provi-
sioning, running andmaintaining clusters, as this is a case of Spark/YARNand Spark/K8S
with on-premise. Comparison of architectures regarding DevOps scopes is shown on Fig-
ure 9.

9Xk aT�`F Em#2`M2i2b PT2`�iQ` �b +QMi`QHH2` 7Q` aT�`F �TTHB+�iBQMb

To control andmanage Spark Applications running Kubernetes cluster, Spark Kubernetes
Operator is used. In the basic concept, Spark Kubernetes Operator has the following roles
in the cluster [22]:

1. Enables declarative application specification in YAML format and management of
applications via dedicated API call (command line tool). Allows to customize driver
and executors in a declarative way.

2. Deploys Spark Driver on random or selected node in the cluster (which later deploys
on random/selected nodes executors) on behalf of the user via API call (command
line tool).

3. Monitors driver and executors for specific application in granular way.

4. Resiliency and superivision of Spark Applications. Automated application restart
with a configurable restart policy, automated retries of failed submissions with op-
tional linear back-off, automated application re-submission for updated SparkAp-
pliation definition, allows to run applications on schedule.

Spark Operator has been developed (mainly by Google, with effort from CERN, Microsoft
and RedHat) as an open-source project - reaching Alpha Release in May 2018 [9].

Figure 10: Spark-as-a-Service design based on Spark Kubernetes Operator

The design principle of Spark Kubernetes Operator is that it has to be easy to deploy, scale
and maintain.

23

To realise it, SparkOperator and deployed Spark Applications are relying on other services
(Figure 10) namely:

1. Container Service which provisions and maintains Kubernetes cluster

2. External Storage for preserving state, dependencies, logs and data

3. Monitoring Services running in/outside the cluster

4. Spark Operator which operates submitted spark applications

Figure 11: Spark Kubernetes Operator workflow and architecture. Interoperability of Ku-
bernetes, Spark, Monitoring, Logging and External Storage.

Spark on Kubernetes Operator has multiple components which build workflow of execu-
tion as presented on Figure 10. The application definition written as text file in YAML
format is interpreted using sparkctl command. Tool submits required dependecies to ex-
ternal storage and sends asHTTP request CustomResource Definition representing Spark
Application to Kubernetes API Server.

Kubernetes API Server, upon receiving the request, notifies throughwatch event the Spark
Operator (specifically Custom Resource Definition Controller running in Spark Operator
Pod) about the request to create Spark Application according to specification defined in
YAML file. Executors and Driver then stream the required data, dependencies, update
state and send logs to/from external storage as required by application logic.

24

Due to the fact that dependecies are in high-availability external storage, andKubernetes is
a self-healing system monitoring Pods running in cluster, cluster is resilient against node
failures and allows fast recovery.

Figure 12: Spark Operator architecture

Spark onKubernetes is build from components as SparkOperator, SparkDriver and Spark
Executor. Each of these components interact with Kubernetes services as API Server,
Scheduler (Kubernetes Master Node), and Kubelet (Kubernetes Minions). The whole ar-
chitectrure overview is described in Figure 12.

Inside Spark Operator, Spark Application Controller (Custom Resource Definition Con-
troller) listens to the watch events for new requests to create spark application. It then
uses Submission Runner to create Spark Driver. Process inside Spark Operator called
Spark Pod Monitor constantly watches the Spark pods (drivers and executors) and re-
ports updates of the pods status to the controller. Controller in turn updates the status of
the application, which allows to achieve resiliency (handles application restart policies, re-
submissions). Component calledMutating AdmissionWebhook upon receiving request to
create driver/executor can customize the resource on-demand according to user require-
ments e.g. mounting custom volume or applying pod affinity.

Inside deployed Spark Driver, there are processes responsible for scheduling and alloca-
tion of executors to available nodes (Executor Allocation Manager and Spark Scheduler
Backend). Spark Application is a Custom Kubernetes Controller, which creates Docker
containers (executors) in response to requests made by Spark Scheduler. Spark than can
allocate tasks to executors.

25

Figure 13: Client tools used to manage Spark/Kubernetes clusters over Openstack.

In the cloud-native architecture of Spark on Kubernetes, there is a layered structure of
software components, which are maintained using dedicated command line tools (Figure
13:

1. Openstack Magnum (openstack coe cluster) - used to create, update, resize, delete
and access the cluster.

2. Kubectl (kubectl) - basic tool for managing Kubernetes. Used to maintain, deploy
and configuration the cluster and cluster applications.

3. Helm (helm) - Package manager for Kubernetes. Used to deploy and update Spark
Operator in the Kubernetes cluster

4. Sparkctl (sparkctl) - used to interact with Spark Operator in order to submit and
monitor applications defined in YAML files. Uses libraries from Kubectl to operate.

The main tools for cluster administrator are openstack coe cluster, helm and kubectl.
Clustera administrator is responsible for managing cloud resources for Kubernetes clus-
ters and operating openstack coe cluster to fix any operational issues related to cloud re-
sources. Higher level management of Kubernetes cluster can be done using kubectl, which
allows to maintain and debug the Kubernetes Resources running in the cluster. In order
to deploy and update the Spark Operator, helm package manager is used, which allows to
customize the Spark Operator deployment for the users. As all the Kubernetes Resources,
Spark Operator is being defined as YAML file - example of such deployment can be found
in Appendix A.

The submission of spark applications by users canbe done using sparkctl command, which
issues submission requests to Spark Operator. The command line tool allows to create,
delete, log and monitor spark applications running in the cluster. Advanced debugging of
applications in case of issues can be performed using kubectl command.

26

The Spark Applications are defined using SparkApplication API, defined by Spark Opera-
tor and translated to spark-submit command during the submission [24].

Listing 1: Defining API, Namespace and Name

apiVersion : ” sparkoperator . k8s . io / v1alpha1 ”
kind : SparkAppl icat ion
metadata :

name: tpcds
namespace : de f au l t

In the SparkApplication YAML file, user is required to specify apiVersion he wants to use,
namespace in which to run the application, and the name of the application (which will
later be used in other to manage application with sparkctl, as in the Listing 1.

Listing 2: Basic definition of Spark Application Specification

spec :
image : gr . cern . ch/db/ ss�dr/ spark : v2 .4.0�hadoop2 . 7
mainClass : ch . cern . tpcds . BenchmarkSparkSQL
mainAppl icat ionFi le : / opt / spark /examples/ j a r s / sse . j a r
arguments :

� . . .
deps :

f i l e s :
� . . .

j a r s :
� . . .

sparkConf :
. . .

r e s t a r t P o l i c y : Never
dr i ve r :

cores : 4
coreLimit : ”4096m”
memory : ”6000m”
serv iceAccount : spark

executor :
ins tances : 50
cores : 4
memory : ”5000m”

27

User has to specify also the base Docker image containing Apache Spark distribution with
other base software packages included. If there are any local dependencies to be staged
(main application file, files, jars), they will be uploaded to external storage by sparkctl.
The parameters regarding specification of the driver and executor containers, as well as
driver failure handling (restart policy of Never, OnFailure, Always) can be specified as in
the Listing 2. User can additionaly specify other parameters which are usually passed to
spark-submit command.

Listing 3: Running Spark Application in cron

spec :
schedule : ”@every 5m”
concurrencyPol icy : Allow
template :

mainAppl icat ionFi le : / opt / spark /examples/ j a r s / sse . j a r
. . .

In order to schedule application in cron, code as shown in Listing 3 can be used. Full
example of Spark Application or Scheduled Spark Application definition YAML file can be
found in Appendix B and C.

9Xj S2`bBbi2Mi aiQ`�;2 +QM+2`Mb BM +HQm/@M�iBp2 aT�`F

The cloud-native Apache Spark architecture consists of multiple microservices as Storage,
Compute andMonitoring. Spark requires persistent storage for use-cases as spark history
events, spark and kubernetes statistics, spark streaming checkpoints or software packages.
This in turn requires selection of proper services for persistent storage. Additionally, due
to the fact that storage is not local to compute cluster, there are concerns about streaming
data over network which need to be analyzed.

There are different types of persistent storages for Spark on Kubernetes, which allow si-
multaneous and parallel writes frommultiple pods. Such storage services are Kubernetes
Network Volume Mounts, Spark Native Filesystems accesible from within Spark Execu-
tors and Drivers, Objectstorages accesible from within Spark Executors and Drivers and
Log Storage integrated with Spark. Comparison is shown in the Table 1.

28

Table 1: Comparison of available Persistent Storages for Spark on Kubernetes for parallel
writes from multiple pods

Persistent
Storage
Feature

Network
Volume
Mounts

Spark Native
Filesystems

Object Stor-
age

Log Storage

Examples CephFS,
AzureDisk,
EFS, CVMFS

HDFS, EOS GCS, S3 InfluxDB,
Stackdriver,
Prometheus

Use-case Logs, Check-
points, Soft-
ware Packages

Data processing Data processing,
Logs, Check-
points

Logs

Spark Trans-
actional
Writes

No Yes Possible Yes

Eventual
Consistency
Writes

No No Yes No

Network Volume Mounts are characterised by the fact that these volumes are network
attached as mounts to the Docker containers, in each of the pods. This offers data persis-
tence, and in case of CephFS, AzureDisk, Amazon EFS, also parallel writes from multiple
pods [20]. However due to lack of transactional writes in Spark it is not recommended for
use-cases as large-scale data processing. It thus might be good solution for storing Spark
History Events, Spark Streaming Checkpoints and Read-only Software Packages.

Spark Native Filesystems, implemented as extension of Hadoop Filesystem and support-
ing atomic renames, offer transactional writes. Transactional writes are required in cases
that require efficient, highly-parallel and fault-tolerant writes to the same directory - such
as distributed data processing and streaming. Examples of such solutions are HDFS,
EOS (Hadoop-XRootD Connector) and Kafka. Regarding storage elasticity, HDFS and
Kafka offer limited elasticity, while EOS provides variable storage service levels based on
changing needs, without need of re-balancing or other operational issues [5][25][13]. Dis-
tributed Filesystem are thus best for storage of data for large-scale data processing.

Spark supports integrations with Objectstorages, implemented as extensions of Hadoop
Filesystem, building abstraction of filesystem on top of objectstorage. However, in the de-
fault configuration these cannot offer transactionalwrites throughSpark. Thismeans, that
in presence of failures data written in parallel to some directory might not be in consistent
state presented in the storage. However, additional Directory Commiters in Hadoop3.1
might allow to ensure some level of consistency [25][13]. Additionaly due to eventual
consistency of write they might cause operational problems while using Spark Streaming
Checkpointing in large scale. Due to these properties, Objectstorage might be cheap and
efficient for data processing (specifically reading in large scale), logs and spark streaming
checkpoints, however might cause operational problems.

29

Platforms as Spark and Kubernetes log information about usage of resources for the de-
ployed resources, and provide information essential to optimize the workflows. These logs
can be streamed to Log Storages as InfluxDB Database, Google Stackdriver Cloud Service
and Prometheus Monitoring Service.

Due to the fact that data-processing in Spark/K8S happens over the data which has to be
streamed to compute (instead of disk local computation as in case of HDFS), there are
several factors which has to be taken into account:

1. If other services share the same network in the cluster of machines, data-intensive
applications can cause network saturation in the routers and in the hypervisors.

2. While reading data over network, it is important to find a balance between number of
requests to the storage and size of the request (ReadAhead parameters for selective
access vs data scans)

9X9 >�M/HBM; Pmi Q7 J2KQ`v BM aT�`F QM Em#2`M2i2b

Spark is a computing framework which is designed in maximizing the resource utiliza-
tion. Very often, due to nature of Java Virtual Machine, Resilient Distrubuted Dataset
and Shuffling, Spark applications are memory intensive.

Kubernetes as resource scheduler will attempt to schedule as much Docker containers
as it is allowed by their Quality Of Service and Resource Request specification. Kuber-
netes Minion (Node) Kubelet process constantly monitors Memory usage on the node.
If the Kubelet is notified about node experiencing System Out Of Memory, it will use
scoring mechanism to kill the containers with highest score and thus reclaim memory re-
quired for system operation on the node (reference - Configure Out Of Resource Handling
[20]).

Figure 14: Kubernetes Minion and Spark Executor memory structure

In order to avoid Spark Tasks being killed with OOMKilled due to Node Out Of Memory
or Kubelet observing MemoryPressure, proper parameter values for Memory Overhead

30

Fraction, Spark Executor AllocatedMemory, Shuffle Memory Fraction and Storage Mem-
ory Fraction has to be set - as presented on Figure 14 representing memory structure of
Spark on Kubernetes Executor.

Following actions can be taken to avoid Node Out Of Memory and Kubelet MemoryPres-
sure, following the experiences of running Spark workloads on Kubernetes:

1. Spark on Kubernetes allows to set spark.kubernetes.memoryOverheadFactor pa-
rameter, which sets fraction of memory to Non-JVM Memory in Docker container.
Non-JVM memory is usually allocated to off-heap memory allocations and system
processes (e.g. Python uses off-heap and starts both Python and Java processes,
Docker Deamon requires memory to maintain the container). In some cases Non-
JVMtasks requiremore off-heap space and result in container being killed byKubelet
withOOMKilled error. This behaviour can be observed running TPC-DS Benchmark
in larger scale for queries requiring extensive shuffling.

2. There needs to be balance in amount of memory allocated to shuffle data - Shuffle
Memory Fraction - too small value will case performance drop of spill to disk, but
too large will cause OOMKilled errors.

3. There needs to be balance between number of executors and the amount of Memory
and CPU per executor (many small executors offer high-throughput from distribu-
tion but memory overhead vs few big executors offer high parallelism of many node
CPUs but extensive garbage collection).

4. Too small amount ofmemory allocated to Spark Drivermay cause performance drop
in operations which require driver intervention.

31

8 1p�Hm�iBQM �M/ �M�HvbBb

This section is focused on evaluation of Spark on Kubernetes over Openstack. Firstly,
comparison of different Spark resource schedulers will be presented in the context of re-
quired properties for physics data analysis. Next, the comparison of persistent storages
use-cases, and handling memory for Spark on Kubernetes will be presented. The final
part of the section will be focused on analysis of synthetic benchmark of state-of-the-art
Spark/YARN with data at HDFS and Spark/K8S with data in EOS, and scalability tests
performed on the data mining use-case of LHC data reduction.

The benchmarks and scalability test were performed on two types of infrastructures (re-
source managers), with the same version and setting of Apache Spark 2.3.0. One of the
resource managers were on-premise deployment of YARN cluster. It is a shared, general
purpose cluster available to researchers at CERN. Another resource scheduler used was
deployment of Kubernetes over Openstack private cloud. Both infrastructures are within
the datacenter of CERN in Mayrin, Switzerland.

8XR �T�+?2 aT�`F rBi? 2ti2`M�H biQ`�;2, `2bQm`+2 b+?2/mH2`b +QKT�`BbQM

The main motivation for using architecture based on cloud-native Spark on Kubernetes,
was to simplify resource provisioning, automate deployment, and minimize the operating
burden of managing Spark Clusters.

Table 2: Comparison of different Apache Spark resource schedulers in the context of
cluster management

Spark resource scheduler feature K8S/Cloud Mesos YARN

Resource scheduling features native scheduler implementation
Solution/architecture complexity easy complex moderate

Resource manager use-case applications data-center Hadoop
Spawning/installing cluster cloud-managed complex complex

Resizing cluster elastic complex complex
Multi-cloud native support yes yes no

Users/Developers community strong weak strong
Cloud vendors multiple single multiple

Reproducible Spark cluster containers containers manual
Installing/managing Spark containers containers manual
Spark deployment method CRD Operator DCOS manual
Spark application definition idiomatically command command

Build-in cron support CRD Operator external tool external tool
Resubmission on driver-failure CRD Operator external tool external tool

Type of user ad-hoc predictable predictable

32

In order to understand themain differences between cloud-native Spark/K8S, Spark/Me-
sos and Spark/YARN, the comparison of the operational features of each resource sched-
ulers for Spark is presented in the Table 2. The qualitative research is result of experi-
ence of running Kubernetes and YARN at CERN, and through experience and observa-
tions of other industry experts [26][27][28]. In all cases, it was assumed that the data
required for computation is already external to the cluster (in storage system as S3, EOS
or Kafka).

Firstly, all resource schedulers offer similar set of features, being integrated natively in
Spark framework. The main difference between them, is their architecture and imple-
mentation details (which impact scalability and performance). Apache Mesos has been
designed to be scalable and resilient enough to manage resources for the entire data cen-
ter. Mesos+Marathon has very complex to understand and manage 2 tier architecture,
which made it very scalable [26]. YARN on the other hand, has simpler architecture and
has been designed to schedule resources for Hadoop [27]. Kubernetes on the other hand
has very simple architecture, which has been designed for handling microservices work-
loads and containers [28].

Regarding spawning and maintaining of the cluster, both Apache Mesos and YARN are
very complex to install and resize (as they build up an entire data-center cloud). In case of
Kubernetes, most cloud providers (e.g. Openstack Magnum) allow to spawn on-demand
customizable cluster on elastic cloud resources. Additionaly, Mesos and Kubernetes allow
natively to be deployed in multi-cloud and multi-region architectures.

The important factor for decisionmaking in choosing Big Data products is large developer
community, which ensures that project will be constantly developed and supported in the
future. Kubernetes is the fastest growing and largest in terms of community Open Source
project, mostly with focus on web services. In the domain of Big Data, YARN has very
strong community of users, and became mature product. Mesos however, unlike Kuber-
netes and YARN, is single-vendor product, and therefore has smaller community of both
developers and users.

Regarding installing applications on the cluster, both Kubernetes andMesos share similar
model based on containers, which allows to reproduce the environment in the other clus-
ter. These frameworks deploy Apache Spark using Kubernetes Operator deploymentman-
aged by Helm (Kubernetes) or using Mesosphere DC/OS which operates Spark (Mesos).
In case of YARN, each node on the cluster has to have proper configuration installed, using
e.g. network attached storages or package managers as Puppet.

Spark applications on Kubernetes are being submitted via YAML files, which allow to id-
iomatically specify the job configuration, while in YARN andMesos jobs are being submit-
ted directly using command like tool.

Regarding application cronjobs and restarts on driver failures, only Kubernetes (using
Spark Operator) has these build-in features by default. Other frameworks as Mesos and
YARN need external systems e.g. Nomad.

33

Summarizing, Kubernetes appears to be more suitable operationaly for ad-hoc users, re-
quiring elastic resource provisioning or dedicated on-demand clusters which they could
easily manage themselves benefiting from microservices (being users of multiple services
as compute, storage and monitoring). On the other hand, YARN and Mesos appears to be
better-off in multi-tenant and externally managed environment, with users running inter-
active analysis over smaller datasets, or sustained, production workloads with predictable
requirements.

8Xk avMi?2iB+ hS*@.a #2M+?K�`F 7Q` aT�`Ffu�_L �M/ aT�`FfE3a

Decision support benchmarks as TPC-DS provide set of repeatable, controlled and highly
comparable tests which evaluate upward boundries of systems in aspects as CPU, Mem-
ory and I/O utilization, and ability of systems to compute and examine large volumes of
data [29]. Benchmark consists of over 100 queries in 4 categories: Reporting (periodi-
cal queries to answer predefined business questions), Ad-hoc (queries are not known be-
forehand, usually CPU or I/O intensive), Iterative OLAP (include a sequence of simple
and complex statements that lead from one to the other), and data mining queries (these
queries analyse large sets of data using joins and aggregations, producing large result sets)
[10]. Benchmark has been performed in order to demonstrate differences between the ar-
chitectures in terms of networking and temporary storage (I/O intensive queries), process-
ing power and virtualization overhead (CPU intensive queries) and overall performance of
Spark and shuffling (Iterative, Reporting and Data Mining Queries).

Table 3: Executor configurations used in benchmarking test for different Apache Spark
cluster infrastructures (resource schedulers)

Resource Manager Job Executor Containers Cluster Nodes

YARN / On-Premise 8 x 2 CPU, 7GB RAM 42 Physical Machines (1200
CPU, 3.5 TB of RAM)

K8S / Openstack 8 x 2 CPU, 7GB RAM 9 Virtual Machines (76 CPU,
270GB RAM)

TPCDSBenchmark has been performed for Apache Sparkwith two resourcemanagers and
infrastructures (YARN/On-Premise and Kubernetes/Cloud) in order to ensure compara-
ble and efficient execution for different types of workloads - the configuration is shown in
the Table 3. To ensure that each executor will be allocated to 1 server, there were 8 execu-
tors allocation to TPCSD Spark Job - Figure 3. In all cases, 8 iterations of the query have
been performed, in batches of 2 executions in different times of the day (31.07.2018).

34

Figure 15: Overview of benchmarking test for different Apache Spark cluster infrastruc-
tures (resource schedulers)

In both cases the same configuration has been applied to Apache Spark 2.3 (Spark/K8S
had included commits related to resource manager targeted at Spark 2.4.0), and dataset
stored in EOS has been used - Figure 15. Query execution time has been measured, with
median, min andmax values being extracted. Additionaly, data access related metrics has
been collected (total shuffle read/write, total input data read, shuffle fetch andwrite,mem-
ory garbage collection time, total cluster executor deserialize and computeCPU time).

Figure 16: I/O Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB (EOS-
UAT) for YARN and Kubernetes resource schedulers. Results for 6 iterations.

Analysis for I/O Intensive Query based on results in Figure 16:

1. I/O Intensive Query on Spark/Kubernetes and Spark/YARN could reach similar I/O
Performance (same minimal query duration)

2. Probability of lower I/O Performance is higher on YARN due to noisy neighbors in
general purpose cluster (longer executor cpu, shuffle fetch wait and write times).

3. Spark/YARN can reach higher performance on Executor CPU Time, which indicated
average 10% CPU loss in Spark/Kubernetes.

35

Figure 17: CPU Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB (EOS-
UAT) for YARN and Kubernetes resource schedulers. Results for 6 iterations.

Analysis for CPU Intensive Query based on results in Figure 17:

1. Spark/YARNcan reach lower execution time forCPU IntensiveQuery thanSpark/Ku-
bernetes (lower minimal query duration)

2. Due to noisy neighbors, Spark/YARN in average performs CPU intensive queries
with lower average performance and higher average execution time.

3. Spark/YARN can reach higher performance on Executor CPU Time, which indicated
average <5% CPU loss in Spark/Kubernetes.

36

Figure 18: Shuffle Intensive Query. TPCDS Benchmark for Spark SQL 2.3 with 100GB
(EOS-UAT) for YARN and Kubernetes resource schedulers. Results for 6 iterations.

Analysis for Network Shuffle Intensive Query based on results in Figure 18:

1. Spark/YARNcan reach lower execution time for Shuffle IntensiveQuery thanSpark/Ku-
bernetes (lower minimal query duration)

2. Due to noisy neighbors, Spark/YARN in average performs CPU intensive queries
with higher average execution time, and increased shuffle write time.

3. Spark/YARN can reach higher performance (10-15%) in average executor CPU time
for computing SQL JOINS.

8Xj a+�H�#BHBiv i2bib 7Q` H�`;2@b+�H2 G>* /�i� `2/m+iBQM

The CMS collaboration with support of CERN IT-DBGroup performed series of scalability
tests on very large datasets, primarily on Spark/YARN due to large impact on network,
affecting production services.

The data used for scalability test for data reduction is stored in external storage service
called EOS. In order to allow reading data from EOS Storage in Spark, XRootD-Hadoop
Connector has been used - Figure 15. The data used for the tests is 100TB of ROOT files,
with eachROOT file being around 4GB, and all in total keeping information aboutmillions
of collision events.

37

AMBiB�H H�`;2 b+�H2 b+�H�#BHBiv i2bib

Table 4: Executor configurations used in initial scalability test for data reduction for
different Apache Spark cluster infrastructures (resource schedulers)

Resource Manager Cluster
executors

Executor
memory

Executor
vcores

Read
Ahead

YARN / On-Premise 407 7GB 2 N.A (32MB
buffer)

K8S / Openstack 1000 7GB 2 N.A (32MB
buffer)

The initial test was performed using both YARN andKubernetes resource schedulers, with
the same configuration for Apache Spark (ref. Table 4). Number of executors has been set
tomaximal available in the particular computing cluster. The resources allocated for spark
application were fixed by dedicated queue. ReadAhead parameter has not been used, and
data were fetched in batches of 32MB per request.

Figure 19: Input workload size scaling for Kubernetes and YARN resource managers.

38

Figure 20: Cluster read throughput with scaling number of executors for Kubernetes and
YARN resource managers. Data reduction of 40TB stored at EOS-UAT and EOS-PUBLIC
instances.

In the first test, the scaling of workload size has been characterized in order to understand
if and how system scales with increasing workload size, and what are possible bottlenecks.
Figure 19 shows an execution time in seconds versus size of the dataset being reduced.
Both tests were performed with files being streamed directly from EOS-Public Storage In-
stance. It was found, that bothK8S and YARN scale linearly with increasingworkload size,
and at similar rate of 18 seconds per 10TB. Despite the fact Spark/K8S had nearly twice
more executors, the trend is similar in both systems. This indicates possible bottleneck
not being in amount of RAM nor CPU allocated to computation.

Median cluster read throughput were measured against number of executors used to per-
form data reduction with Apache Spark. Two storage instances has been tested, larger
instance of EOS-PUBLIC, and smaller instance of EOS-UAT. The execution tail of strug-
gler tasks were excluded from the measurements.

Figure 20 shows that scaling number of executors on YARN saturated the cluster read
throughput at 250 executors in case of EOS-UAT storage instance with 7.5GB/s, and at
300 executors in case of EOS-PUBLIC storage instance at 21GB/s. It was also confirmed
performing a test with Kubernetes (K8S) at 1000 executors with data being stored at EOS-
PUBLIC, at 20GB/s. This indicates two possible bottlenecks: the network becomes satu-
rated, or storage service cannot handlemore reads per second. While network in cloud en-
vironment is difficult to scale, on-premise storage like EOS scales horizontally with num-
ber of machines.

39

PTiBKBxBM; _2�/�?2�/ T�`�K2i2` �M/ aT�`F 2t2+miQ` *Sl �M/ _�J `�iBQ

In typical data reduction scenario for particle collisions data, the goal is to summarize
portion of parameters and to reduce complex object representation to simpler one with
only the data required for computation (reduce the dimensions). Thus, similarly to Spark
SQL queries over Parquet format, schema of the ROOT file is being extracted, and only
specific columns are extracted from the files in the dataset.

After careful diagnostic of the scaling results with network saturation, it was found that
job was requesting from storage much more data than it should. It was expected, that
from 10TB dataset of particle collision objects, only around 2TB of essential data will be
extracted and analyzed. It was found, that due to very large default value for read-ahead
for request of data from storage, more than 12TB data has been read (ref. Section 4.3 -
storage concerns in cloud-native model).

Table 5: Comparison of different read ahead configurations. Data reduction Spark job
parameters and results for 500GB input dataset stored at EOS-PUBLIC instance.

RunID RA32MB RA1MB RA100KB

ReadAhead 32MB 1MB 100kB
Elapsed Time 12min 6.3min 2.7min
Data Input 500GB 500GB 500GB
Executor CPU Time 30min 31min 31min
JVM Garbage Collec-
tion Time

2.2min 2.2min 2.0min

Tasks 369 369 369
Total Cluster Read
Throughput

5GBps 1.8GBps 130MBps

Total Cluster CPU
Used/Requested

20/90 CP 40/90 CPU 50/90 CPU

Bytes Read 851GB 231GB 57GB
Total Cluster RAM
Used/Requested

380/380 GB 380/380 GB 380/380 GB

40

Table 6: Comparison of different CPU/RAM configurations. Data reduction Spark job
parameters and results for 500GB input dataset stored at EOS-PUBLIC instance, with
128kB read-ahead.

RunID RA-3CPU-12GB RA-3CPU-18GB RA-3CPU-21GB

Elapsed Time 3.7min 3.3min 3.0min
Data Input 500GB 500GB 500GB
Executor CPU Time 30min 30min 32min
JVM Garbage Collec-
tion Time

1.8min 1.7min 1.8min

Tasks 369 369 369
Total Cluster Read
Throughput

130MBps 130MBps 130MBps

Total Cluster CPU
Used/Requested

50/90 CP 50/90 CPU 55/90 CPU

Bytes Read (with
speculation)

61GB 53GB 60GB

Total Cluster RAM
Used/Requested

380/380 GB 540/540 GB 630/630 GB

Running optimization runs over smaller dataset of 500GB - Table 5 and Table 6 - it was
found that reducing read-aheaddata request size from32MB to 100kB, cluster read through-
put from storage has been reduced by a factor of 50, while maintaining constant Number
of Tasks and Executor CPU Time (actual time to compute the data). It was also found, that
ReadAhead optimization also lowered RAM requirements for the job - more CPUs were
used maintaining the same amount of RAM. Additionally, increasing amount of RAM per
CPU (while maintaining amount of CPU) was found to improve execution time of the run
and better utilize the resources removing RAM bottleneck.

a+�HBM; /�i� `2/m+iBQM ?Q`BxQMi�HHv 7Q` aT�`FfE3a

After the optimization of the workload on the small dataset, the scaling the cluster re-
sources horizontally with number of executors was performed. Due to possible impact of
data reduction job test, it was decided not to exceed 2GB/s cluster read throughput, and
take smaller representative dataset of 20TB.

41

Figure 21: Job profile for physics data reduction of 20TB of ROOT data, taken from
Graphana Monitoring Dashboard for Kubernetes cluster. Run with 30 executors, 3 CPU
and 12GB RAM each running on Spark on Kubernetes.

It was found (ref. Figure 21) that each run characterizes by short time of high CPU uti-
lization (until memory reaches its limits), long period of moderate CPU utilization, and a
tail.

Table 7: Comparison of different executors number configurations. Data reduction Spark
job parameters and results for 20TB input dataset stored at EOS-PUBLIC instance, with
128kB read-ahead.

Executors 60 90 180

Total Cluster CPU
Used/Requested

80-120 / 120 CPU 110-180 / 180 CPU 205-290 / 360
CPU

Elapsed Time 28min 22min 13min
Executor CPU Time 19.1h 19.2h 19.6h
JVM Garbage Collec-
tion Time

55min 60min 60min

Tasks 12463 12523 12703
Total Cluster Read
Throughput

600MBps 700MBps 1450MBps

Bytes Read (with
speculation)

1488GB 1573GB 1490GB

Total Cluster RAM
Used/Requested

800/800 GB 1160/1160 GB 2320/2320 GB

42

Figure 22: Executors scaling for physics data reduction of 20TB of ROOT data. Fixed
executor parameters of 2 CPU and 12GB RAM running on Spark on Kubernetes. Job exe-
cution time and corresponding network traffic observed.

Figure 23: Executors scaling for physics data reduction of 20TB of ROOT data. Fixed
executor parameters of 2 CPU and 12GB RAM running on Spark on Kubernetes. Job exe-
cution time with prediction for further scaling

43

The scalability tests achieved the goal of 2GBps read throughput from storage with 180
executors, performing the data reduction of 20TB dataset in 13 minutes (ref. Table 7).
Figure 22 shows the relation of number of executors to job execution time. It was found
that increasing number of executors static dataset size of 6000 ROOT files (20TB dataset,
around 4GB each) decreases nearly linearly execution time. It also shows that network
traffic (amount of data delivered to CPU per second plus processing speed) is scaling lin-
early with linearly increasing amount of executors. There is however an overhead associ-
ated with too small size of the dataset for increasing number of executors. Multiple runs
for physics data reduction have shown that there is a trend to non-linearly scale further
with number of executors keeping dataset size (number of files) stable - results are shown
on Figure 23.

8X9 .Bb+mbbBQM QM mb2 +�b2b 7Q` aT�`F Em#2`M2i2b �M/ Em#2`M2i2b PT2`�@
iQ`

Data locality is a concept introduced in Hadoop (HDFS) design, which is used to limit
the network bottleneck while performing data-intensive computation by allocationg map
tasks to datanodes containing required file blocks. This allows to avoid one of the major
bottlenecks in data-intensive computing - cross-switch network traffic between storage
and compute nodes during the map operations. Data shuffling (reduce phase) however
uses memory or spills shuffle data to local disk storage on executors.

Figure 24: Use-case analysis for Spark onYARN/Kubernetes in terms of cost/performance
effectiveness, networking, data locality and type of workload.

Spark/Kubernetes does not allow by design to achieve data locality for the map tasks, as it
relies on separation of compute and storage clusters (Kubernetes cluster requires persis-
tent storage to be realised over network for workloads running in container). Spark/Ku-
bernetes is thus a good fit for batch/stream workloads which by-design require data to be
stored externally to computing cluster. Additionaly, as of version of Spark 2.3, Spark on

44

Kubernetes only allows batch/stream analysis, as interactive client mode is not yet avail-
able. Interactive mode is thus production-ready supported currently in Spark/YARN for
users at CERN.

Another important aspect to consider comparing Spark/YARN and Spark/Kubernetes for
workloads from local/external storages is the type of networking between compute nodes
and storagenodes. If there is gooddatacenter networking in-placewith goodQoSpromises
for services, both YARN and Kubernetes can well operate in case of data in external stor-
ages. The tests for data reduction of physics data (ref. Section 5.3) shown that both sys-
tems can comparably perform reading data from storage systemwithin the datacenter net-
work. However, if there is only cluster network available between the compute nodes (and
storage nodes), and clusters are poorly connected, Spark/YARN with data in HDFSmight
be preferable as reading data from external storages might cause cross-switch network
bottlenecks. If datacenter networking is available, and data is stored in externally man-
aged service, Spark/Kubernetes might be thus a better fit in terms of cost-effectiveness,
as this allows to use resource-sharing and resource-elastic cloud model in a cloud-native
architecture, additionaly reducing operational effort of operating storage cluster. Spark/-
YARN might however be better-off in cases where workloads are stable and predictable,
using dedicated on-premise infrastructure. Figure 24 illustrates the aforementioned prop-
erties.

Table 8: Analysis of workload type use-cases for Spark on Kubernetes
Matching use-case Not suitable use-case

CPU / Map-tasks Intensive I/O intensive (except external storage
data)

Shuffle intensive (many reduce
phases, limited in size)

Large shuffle writes (assumes com-
pute dedicated hardware)

Memory Intensive (in-memory pro-
cessing, clusters with GPU)

There are four types of workloads in Apache Spark, and are classified by the bottleneck
they are bound by - CPU Intensive (data filtering, advanced mathematical operations),
I/O Intensive (applications reading and writing large amounts of data, reading/writing
data is largest fraction of task duration), Memory and Shuffle Intensive (in-memory pro-
cessing of large amounts of data requiring full view on data, joining data tables, machine
learning, deep learning). Based on experiences running workloads on Spark/Kubernetes
(ref. Section 5.3 and Section 5.2), workloads types were assigned as matching or not suit-
able usacase for Kubernetes as resource manager for Apache Spark and presented in the
Table 8.

Themost intuitive Spark workload to be run on Kubernetes as resource scheduler are CPU
andMemory Intensive workloads (datamining andmachine learning workloads). As data
is stored in external storage, data is being delivered over network directly to CPU for pro-
cessing. In cloud-native architecture, users can provision virtual machines optimized for
required profiles of jobs (CPU optimized clusters, GPU clusters, Memory-Intensive VMs),

45

or use general purpose VMs and provision and downsize cluster as required. An example
of CPU and Memory intensive workload is physics data reduction (ref. Section 5.3), and
has been proven to scale efficiently on Kubernetes with scalability tests. Shuffle Intensive
workload is also amatching use case, as in both Spark/YARN and Spark/Kubernetes shuf-
fle data is transered over network, processed in memory, and spilled to disk if amount of
memory is limited.

In the architecture that relies on data being transfered over network (reading/writing data
in map phase, or shuffling data in reduce phase) I/O intensive queries might become bot-
tleneck. In cases where network throughput or storage cluster read throughput is limited,
resources as CPU and Memory might be underutilized. Thus such workloads with data
stored inHDFSmight not be amatching use-case, as thesewon’t benefit fromdata-locality
as in case of Spark/YARN and might be inefficient. Workloads with data in external stor-
ages which rely on data transfer over network, should have clusters that are well connected
and isolated from the rest of the network. The example of workload which became I/O In-
tensive was physics data reduction with overtuned read-ahead parameter (ref. Section
5.3), and caused significant traffic in datacenter network impacting other production ser-
vices. Another workload type, which might not be suitable on Spark on Kubernetes is one
which requires large shuffle writes, which might exceed storage space allocated to virtual
machines (which are compute optimized, as they are not used to run persistent storage
system). In case of Spark/YARN running on top of HDFS, shuffle data is written to HDFS
datanodes, which in principle are designed to store massive amount of data (as compute
is bound to storage).

46

e *QM+HmbBQMb

Large-scale data analysis use-cases as data mining and machine learning, relying on mas-
sive data-sets being stored in external storage systems as CERN EOS, impose operational
challanges to provide reproducible and elastic compute infrastructure for Apache Spark,
which cannot be currently addressed by existing Hadoop/YARN infrastructure at CERN.
To address these challenges for data being read/written over network, cloud-native tech-
nologies as Kubernetes are investigated.

In a cloud-native architecture of Spark deployed on Openstack Kubernetes, user is of-
fered externaly managed services as compute resource provisioning with containers-as-a-
service (Kubernetes on Openstack), monitoring (InfluxDB, Grafana) and persistent stor-
age service (EOS, S3). This limits operational effort to maintaining Spark Applications.
Due to the fact that there is no storage cluster bound to computing as in case of Spark
with HDFS, Spark on Kubernetes can scale number of cluster nodes dynamically using
first-class support for Kubernetes in the cloud (Openstack Magnum). Kubernetes intro-
duces Operator Pattern to provide custom controllers for applications. Spark Operator
on Kubernetes allows automated deployment of Spark 2.3+ cluster with Docker contain-
ers on existing resource elastic Openstack Kubernetes cluster. It proven to deploy within
seconds fully functional Spark cluster on top of existing Kubernetes cluster, with inte-
grated services as monitoring (InfluxDB and Grafana), history server and logging (Ceph
S3 Storage integration) , processing data stored in resource elastic external storages as
Ceph S3 and EOS. Spark on Kubernetes imposes separation of compute and storage. This
in turn requires that persistent storage has to be realised over network. Four types of sys-
tems have been evaluated (Network Volume Mounts, Spark Native Filesystems, Object
Storage and Log Storages) according to requirements for persistent storage as data elas-
ticity, Spark Transactional Writes and Eventual Consistency. Network Volume Mounts
as CephFS might be best for use case as log and checkpoints storage as they mount dis-
tributed filesystem to the Docker containers, however they might be suboptimal for data
processing. Spark Native Filesystems are best option for distributed and parallel data pro-
cessing, as they offer Spark transactional writes, fast data access and no eventual consis-
tency. Objectstorages could be universal for both logs, checkpoints and data processing as
they offer good price-operability ratio, and can be extended with special write commiters.
Based on experiences of running workloads on Kubernetes, it was concluded that in or-
der to avoid Spark Tasks being killed due to Kubelet observing node memory pressure,
there needs to be careful tuning of Spark parameters related to internal executor memory
structures as executor memory overhead, executor memory, shuffle memory fraction and
storage memory fraction. Openstack cloud hypervisors and Kubernetes containers intro-
duce additional overheads in terms of RAM required tomaintain additional processes and
CPU virtualization. In return, they offer networking abstraction, authentication mecha-
nisms and resource elasticity. TPCDS Benchmark has been performed for cloud-managed
Spark/Kubernetes and on-premise Spark/YARN, in order to ensure both resource sched-
ulers offer similar levels of performance for reading data, computation and shuffling. Re-
sults have shown that Spark/Kubernetes has overhead of around 5-10%, compared to
bare-metal YARN. On the other hand, due to shared and not isolated environment on

47

YARN, Spark has been experiencing longer execution time for the queries due to longer
shuffle fetch and write, and lower performance of shared cores. In order to validate that
Spark on Kubernetes can scale for workloads requiring mining massive datasets stored in
external storages, scalability tests for LHC physics data reduction facility have been per-
formed. Dataset of 20TB stored in EOS Storage Service was used. Workflow is designed
to reduce dimensionality of the particle collision events dataset of 20TB to dataset in size
of 200GB (which could be even further reduced by selecting only relevant datasets or pre-
serving data for histograms). It was shown, that optimizing read requests parameters and
selecting proper ratio of CPU and RAM for executor, very high utilization of resources can
be achieved (ensuring that workload is CPU/Memory bound and scales horizontally). It
was also shown, that due to the fact that data is read over network, simple overtuning of
workload parameter can make CPU/Memory bound workload being I/O Intensive, and
cause significant network traffic between compute nodes and storage.

Concluding, the project successfully shown that Spark on Kubernetes can scale efficiently
and comparably to Spark on YARN for workloads with datasets stored in external storage,
while providing additional operational features. However, it imposes trade-off of opera-
tional featureswith additional networking bottleneck andpossibly performance. Spark/Ku-
bernetes is thus good in environments with good datanceter networking, and for use-cases
which require by design to read data over network from storage services. The resource
elasticity, flexibility and possible network bottleneck makes Spark on Kubernetes good
for workloads as machine learning, data mining, in-memory processing, and not suitable
for workloads stored already in HDFS, requiring massive I/O throughputs or large local
persistent storage on executors. Finally, Spark on Kubernetes offers similar operational
benefits as Spark on Mesos in terms of reproducable and isolated user environments with
use of containers, unlike on-premise YARN. Kubernetes Operator for Apache Spark addi-
tionaly adds usability features known from Spark/YARN and Spark/Mesos.

48

d 6mim`2 rQ`F

The scope of this thesis has been limited to single workload in the cluster, with overview
onmain principles of the architecture. Future work in the context of Spark on Kubernetes
should define and experiment with Multi-Tenancy in the Kubernetes cluster (including
mixed workloads of different types). Additionally, constrains related to Spark Streaming,
Interactive Spark Analysis andMonitoring of Spark Applications should be expanded and
investigated. Performance and operational considerations of federated and multi-cloud
Kubernetes clusters would be valuable extension of this work.

49

_272`2M+2b

[1] O. Gutsche,M. Cremonesi, et al., “BigData inHEP: A comprehensive use case study,”
Journal of Physics: Conference Series, vol. 898, no. 7, 2017.

[2] K. Cacciatore, P. Czarkowski, et al., “Exploring opportunities: containers
and Openstack,” 2015. https://www.openstack.org/assets/marketing/OpenStack-
Containers-A4.pdf.

[3] “Computing at CERN.” CERN CDS, 2012. http://cds.cern.ch/record/1997391.

[4] K. Noyes, “Five things you need to know about Hadoop v. Apache Spark,”
2015. https://www.infoworld.com/article/3014440/big-data/five-things-you-need-
to-know-about-hadoop-v-apache-spark.html.

[5] A. Peters and L. Janyst, “Exabyte scale storage at CERN,” Journal of Physics: Con-
ference Series, vol. 331, 2011.

[6] “Data reduction.” Wikipedia, 2017. https://en.wikipedia.org/wiki/Data_reduction.

[7] L. Canali, “Performance analysis of a CPU-Intensive Workload in Apache
Spark.” CERN IT Blog, 2017. https://db-blog.web.cern.ch/blog/luca-canali/2017-
09-performance-analysis-cpu-intensive-workload-apache-spark.

[8] J. MSV, “Kubernetes becomes the first project to graduate from the cloud
native computing foundation.” https://www.forbes.com/sites/janaki-
rammsv/2018/03/07/kubernetes-becomes-the-first-project-to-graduate-from-
the-cloud-native-computing-foundation.

[9] A. Ramanathan and P. Bhatia, “Apache Spark 2.3 with Native Kubernetes Support,”
2018.

[10] M. Poess, R. Nambiar, and D. Walrath, “Why you should run TPC-DS: A Workload
Analysis,” pp. 1138–1149, 2007.

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Disk-locality in datacen-
ter computing considered irrelevant,” Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, 2011.

[12] A. Wendt, “Cloud-based Hadoop deployments: benefits and considerations.” Accen-
ture Technology Labs, 2017. https://goo.gl/ZhNbVy.

[13] R. Xin, J. Rosen, et al., “Top 5 reasons for choosing S3 over HDFS.”
Databricks Blog, 2017. https://databricks.com/blog/2017/05/31/top-5-
reasons-for-choosing-s3-over-hdfs.html.

[14] R. Xin, “Benchmarking Big Data SQL Platforms in the cloud.” Databricks
Blog, 2017. https://databricks.com/blog/2017/07/12/benchmarking-big-data-sql-
platforms-in-the-cloud.html.

50

[15] S. Watt, “Running Apache Spark in Kubernetes.” Proceedings of the Global Big Data
Conference. http://www.globalbigdataconference.com/austin/big-data-bootcamp-
55/speaker-details/stephen-watt-30816.html.

[16] R. Arora, “Why Kubernetes as a container orchestrator is a right choice
for running spark clusters on cloud?,” 2018. http://www.globalbigdata-
conference.com/austin/big-data-bootcamp-55/speaker-details/stephen-watt-
30816.html.

[17] M. Amaral, J. Polo, et al., “Performance evaluation of microservices architectures
using containers,” IEEE 14th International Symposium onNetwork Computing and
Applications, 2015.

[18] V. Vasudevan, “Performance evaluation of resource allocation policies on the Kuber-
netes containermanagement framework,” Computer Science - Undergraduate Final
Year Projects. City University Hong Kong, 2016.

[19] B. Hindman, A. Konwinski, M. Zaharia, and A. Ghodsi, “Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center,” Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation, pp. 295–308, 2011.

[20] S. Perry, A. Chen, et al., “Kubernetes reference documentation,” 2018. https://ku-
bernetes.io/docs/reference.

[21] T. Fifield, A. Jaeger, et al., “Openstack API documentation,” 2018. https://-
docs.openstack.org/queens/api.

[22] A. Ramanathan and S. Suchter, “Apache Spark on Kubernetes Clusters.” Databricks
Spark+AI Summit, 2018.

[23] D. Rosa, “Why Kubernetes Operators are game changer.”

[24] Y. Li, P. Mrowczynski, et al., “Spark K8S Operator - Spark Applica-
tion API,” 2018. https://github.com/GoogleCloudPlatform/spark-on-k8s-
operator/blob/master/docs/api.md.

[25] E. Liang, S. Shankar, and B. Chambers, “Transactional writes to cloud storage on
Databricks,” 2017. https://databricks.com/blog/2017/05/31/transactional-writes-
cloud-storage.html.

[26] C. Wright, “Kubernetes vs Mesos + Marathon,” 2017. https://plat-
form9.com/blog/kubernetes-vs-mesos-marathon.

[27] J. Scott, “A tale of two clusters: Mesos and YARN,” 2015. https://www.or-
eilly.com/ideas/a-tale-of-two-clusters-mesos-and-yarn.

[28] D. Norris, “Kubernetes vs. Mesos – an Architect’s Perspective,” 2017.
https://www.stratoscale.com/blog/kubernetes/kubernetes-vs-mesos-architects-
perspective.

[29] M. Barata, J. Bernardino, and P. Furtado, “An overview of decision support bench-
marks: TPC-DS, TPC-H and SSB,” vol. 353, pp. 619–628, 2015.

51

�TT2M/Bt � @ 6mHH 2t�KTH2 Q7 aT�`F PT2`�iQ` .2THQvK2Mi
/2}MBiBQM }H2 BM u�JG 7Q`K�i

apiVersion : apps/ v1beta1
kind : Deployment
metadata :

name: sparkoperator
namespace : sparkoperator
l a b e l s :
app . kubernetes . io /name: sparkoperator
app . kubernetes . io / vers ion : v2 .3.0� v1alpha1

spec :
r e p l i c a s : 1
s e l e c t o r :

matchLabels :
app . kubernetes . io /name: sparkoperator
app . kubernetes . io / vers ion : v2 .3.0� v1alpha1

s t r a t egy :
type : Recreate

template :
metadata :

l a b e l s :
app . kubernetes . io /name: sparkoperator
app . kubernetes . io / vers ion : v2 .3.0� v1alpha1

i n i t i a l i z e r s :
pending : []

spec :
serviceAccountName : sparkoperator
conta iners :
� name: sparkoperator

image : gcr . io / spark�operator / spark�operator : v2 .3.0� v1alpha1�l a t e s t
imagePul lPol icy : Always
command: [” / usr / bin / spark�operator ”]
args :
� �l o g t o s tde r r

52

�TT2M/Bt " @ 6mHH 2t�KTH2 Q7 aT�`F �TTHB+�iBQM /2}MBiBQM
}H2 BM u�JG 7Q`K�i

apiVersion : ” sparkoperator . k8s . io / v1alpha1 ”
kind : SparkAppl icat ion
metadata :

name: tpcds
namespace : de f au l t

spec :
type : Scala
mode : c l u s t e r
Use s tag ing (tpcds image)
image : g i t l ab�r e g i s t r y . cern . ch/db/ spark�s e r v i c e /docker�r e g i s t r y / spark : v2 .4.0�hadoop3 . 1
imagePul lPol icy : I fNotPresent
mainClass : ch . cern . tpcds . BenchmarkSparkSQL
mainAppl icat ionFi le : ” { { path�to�examples }}/ l i b s / spark�serv i ce�examples_2 .11 �0.2 .0 . j a r ”
mode : c l u s t e r
By defau l t , using cern provided spark�operator ,
you are authent ica ted to use bucket of your c l u s t e r {{ c lus t e r�name }} using s3a : / /
arguments :
working d i r e c to r y where data t ab l e res ide (must e x i s t s and have t ab l e s d i r e c t l y)

� ” s3a : / / / { { c lus t e r�name }}/TPCDS�TEST”
loca t i on to s to re r e s u l t s

� ” s3a : / / / { { c lus t e r�name }}/TPCDS�TEST�RESULT”
Path to k i t in the docker image

� ”/ opt / tpcds�k i t / t oo l s ”
Scale f a c t o r (in GB)

� ” 1 ”
Number of i t e r a t i o n s

� ” 1 ”
Optimize quer ies

� ” f a l s e ”
F i l t e r queries , w i l l run a l l i f empty � ”q23a�v2 .4 , q23b�v2 .4 ”

� ” ”
Logging se t to WARN

� ” true ”
deps :

j a r s :
� {{ path�to�examples }}/ l i b s / sca la�logging_2 . 1 1 �3 .9 .0 . j a r
� {{ path�to�examples }}/ l i b s / spark�sql�perf_2 .11�0.5.0�SNAPSHOT. j a r

sparkConf :
Enable event log
” spark . eventLog . enabled ” : ” true ”
” spark . eventLog . d i r ” : s3a : / / { { c lus t e r�name }}/ spark�events

53

Cloud s p e c i f i c � need to run with specu la t ion to avoid s t rugg l e r s
” spark . specu la t ion ” : ” true ”
” spark . specu la t ion . mu l t i p l i e r ” : ”3”
” spark . specu la t ion . quant i l e ” : ”0 .9”
TPCDs Spe c i f i c
” spark . sq l . broadcastTimeout ” : ”7200”
” spark . sq l . c rossJoin . enabled ” : ” true ”
S3 Spe c i f i c conf ig (remove i f s3 not used)
We need i t to speed up uploads , and outputcommiter / parquet to have cons i s t en t wr i t es due to specu la t ion
” spark . hadoop . f s . s3a . connection . timeout ” : ”1200000”
” spark . hadoop . f s . s3a . path . s t y l e . access ” : ” t rue ”
” spark . hadoop . f s . s3a . connection .maximum” : ”200”
” spark . hadoop . f s . s3a . f a s t . upload ” : ” true ”
” spark . sq l . parquet . mergeSchema ” : ” f a l s e ”
” spark . sq l . parquet . f i l terPushdown ” : ” true ”
” spark . hadoop . f s . s3a . committer . name” : ” d i r e c to ry ”
” spark . hadoop . f s . s3a . committer . s tag ing . c on f l i c t�mode” : ” append”
” spark . hadoop . mapreduce . outputcommitter . f a c t o r y . scheme . s3a ” : ” org . apache . hadoop . f s . s3a . commit . S3ACommitterFactory ”

dr i ve r :
cores : 4
coreLimit : ”4096m”
memory : ”6000m”
l ab e l s :

vers ion : 2 .4 .0
serv iceAccount : spark

executor :
ins tances : 50
cores : 4
memory : ”5000m”
l ab e l s :

vers ion : 2 .4 .0
r e s t a r t P o l i c y : Never

54

�TT2M/Bt * @ 6mHH 2t�KTH2 Q7 a+?2/mH2/ aT�`F �TTHB+�iBQM
/2}MBiBQM }H2 BM u�JG 7Q`K�i

apiVersion : ” sparkoperator . k8s . io / v1alpha1 ”
kind : ScheduledSparkApplicat ion
metadata :

name: spark�pi�schedule
namespace : de f au l t

spec :
schedule : ”@every 5m”
concurrencyPol icy : Allow
template :

type : Scala
mode : c l u s t e r
image : g i t l ab�r e g i s t r y . cern . ch/db/ spark�s e r v i c e /docker�r e g i s t r y / spark : v2 .4.0�hadoop3 . 1
imagePul lPol icy : I fNotPresent
mainClass : ch . cern . sparkroo tapp l i ca t i ons . examples . SparkPi
mainAppl icat ionFi le : ” l o c a l : / // opt / spark /examples/ j a r s / spark�serv i ce�examples . j a r ”
mode : c l u s t e r
dr i ve r :

cores : 0 .1
coreLimit : ”200m”
memory : ”512m”
l ab e l s :

vers ion : 2 .4 .0
serv iceAccount : spark

executor :
cores : 1
ins tances : 1
memory : ”512m”
l ab e l s :

vers ion : 2 .4 .0
r e s t a r t P o l i c y : Never

55

TRITA TRITA-EECS-EX-2018:609

www.kth.se

