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A B S T R A C T

In assistive robotics applications, the human limb is attached intimately to the robotic exoskeleton. The coupled
dynamics of the human-exoskeleton system are highly nonlinear and uncertain, and effectively appear as un-
certain load-torques at the joint actuators of the exoskeleton. This uncertainty makes the application of standard
computed torque techniques quite challenging. Furthermore, the need for safe human interaction severely limits
the gear ratio of the actuators. With small gear ratios, the uncertain joint load-torques cannot be ignored and
need to be effectively compensated. A novel disturbance observer based dynamic load-torque compensator is
hereby proposed and analysed for the current controlled DC-drive actuators of the exoskeleton, to effectively
compensate the said uncertain load-torques at the joint level. The feedforward dynamic load-torque compen-
sator is proposed based on the higher order dynamic model of the current controlled DC-drive. The dynamic
load-torque compensator based current controlled DC-drive is then combined with a tailored feedback dis-
turbance observer to further improve the compensation performance in the presence of drive parametric un-
certainty. The proposed compensator structure is shown both theoretically and practically to give significantly
improved performance w.r.t disturbance observer compensator alone and classical static load-torque compen-
sator, for rated load-torque frequencies up to 1.6 Hz, which is a typical joint frequency bound for normal daily
activities for elderly. It is also shown theoretically that the proposed compensator achieves the improved per-
formance with comparable reference current requirement for the current controlled DC-drive.

1. Introduction

Increase in elderly population in the society has driven active re-
search in field of assistive exoskeletons so to enable the elderly to stay
active and independently perform their daily activities [1,2]. Human-
exoskeleton coupled dynamics is a key consideration in developing and
realizing effective control methodologies for the needed body-worn
devices. The human limb is mostly physically attached to an exoske-
leton at the point of support. The nonlinear dynamics of the human is
therefore coupled to the dynamics of exoskeleton at the point of in-
teraction (contact) as pointed out by Hogan and Colgate [3,4]. The
dynamics of human limbs are not only nonlinear but uncertain as well,
as human tend to change their dynamics rapidly while performing their
daily tasks [5–8]. Furthermore, the dynamics of the exoskeleton (which
are essentially the dynamics of a serial manipulator) are also very
nonlinear and generally have some associated uncertainty [9,10].
Therefore, this uncertainty in human dynamics coupled with

uncertainty of the exoskeleton make the human-exoskeleton a highly
nonlinear and uncertain system. It is shown in this paper that the un-
certain dynamics of the human-exoskeleton system effectively appear
as an uncertain load-torque at each joint of the exoskeleton actuators.
DC-drives are generally selected as the joint actuators for the assistive
exoskeletons for their high controllability, efficiency and range of mo-
tion [11–13]. High performance exoskeletons for effective assistance
require actuators with high torque at considerably high speeds
[14].This torque-speed requirement should be met with minimum
possible weight, backlash and friction. Furthermore, to ensure human
safety, the joints of the exoskeleton need to be back drivable with low
reflected inertia [15,16]. All these requirements in turn require the gear
ratio of the joint actuators to be small. Therefore, for exoskeletons with
small gear ratios, the effect of load-torques containing the uncertain
human dynamics on the actuator motors cannot be ignored. The stan-
dard computed torque control techniques for robotic manipulators
[17–19], which inherently rely on an accurate inverse-dynamic model
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of the system, can therefore not be used for task space control of lower
gear ratio exoskeleton systems.

The task-space position control of the exoskeleton system can also
be achieved by using classical independent-joint-control techniques
[9,16], where task space position requirements can be translated into n
joint level desired position trajectories, which can then be tracked in-
dependently by using the joint-space controllers. To compensate for the
load-torque disturbance in this case, each joint controller should then
exhibit good tracking performance which in turn requires high loop
gain of the joint level system [20]. High loop gain lowers the joint level
sensitivity, which in turn improve the disturbance rejection perfor-
mance. Joint controllers with high gains are hence required to ensure
sufficient closed-loop-bandwidth and hence low sensitivity for the joint
level system [21]. This in turn can severely affect the quality of the
system response as saturation based nonlinearities can be introduced
into the system [22–24]. Thus, the limit on the gain of the joint-servo
system, and hence on the gain of the joint controller, limits the ability of
the controller to cancel the load-torque disturbances for the respective
actuator. For sensor-less load-torque compensation, different torque
estimators have also been proposed in literature for the DC-drive ac-
tuators [25–29]. Torque estimators based on robust techniques for DC-
drives have been discussed in [26,27] while adaptive torque estimators
have been presented in [28,29].

In our opinion, while considering both the performance and design
simplicity, an effective solution in this regard is to sense the load-torque
at each joint and then to compensate it explicitly through a joint load-
torque compensator. Several sensor based compensation techniques for
DC-drives have also been proposed in the literature. Feed forward
torque compensators are usually designed considering only the first
order dynamics of the actuator, which results in an over simplified
compensator as a static constant. A disturbance observer (DOB) based
feedback compensator was originally proposed by Ohnishi [30]. Due to
its design simplicity and performance, DOB has found good many ap-
plications in servo motion control [31–34]. The application of DOB for
the robotic manipulators and exoskeletons has also appeared in the
literature [35–37].

In contrast to the existing techniques of using only the feedback or
feedforward compensators alone, a novel load-torque compensator
structure for joint level actuator is proposed in this paper, by combining
an accurately designed feedforward compensator with an appropriate
DOB structure in feedback. The feedforward compensator is designed
by considering the high order dynamics of the actuator, while the DOB-
based-feedback structure is suggested to ensure superior performance of
the compensated system even in the presence of actuator parametric
uncertainty. If all the joint actuators of the exoskeleton are properly
compensated, it is shown here that this would effectively linearize and
decouple the joint space of the human-exoskeleton system. The line-
arized joint space thus would contain only the well-known linear dy-
namics of joint actuators. This in turn could then allow for independent
linear joint space controllers to be designed for desired stability and
robustness for the human-exoskeleton system.

In this paper, the design and analysis of a new joint level load-
torque compensator for human-exoskeleton system is presented.
Significance for this work is presented in Section 2. A detailed model-
ling of a current controlled DC (CCDC) drive is presented in Section 3.
In Section 4 a new feedforward load-torque compensator is proposed
that considers all the dynamics of the CCDC-drive and is referred here
as the Dynamic Load-Torque Compensator (DLTC). It is shown here that
when the CCDC-drive is modelled using the first order dynamics, DLTC
simplifies to a classical static torque constant, referred here as the Static
Load-Torque Compensator (SLTC). The performance of both the com-
pensators is first compared under no modelling uncertainty and it is
shown by simulation that the DLTC under this assumption significantly
outperforms the classical SLTC. For a perturbed DC-Drive model, be-
cause of the uncertainty in the drive parameters, the ability of the DLTC
to effectively cancel out the load-torque disturbance in the low

frequency range is reduced. To further improve the DLTC performance
in rejecting the load-torque under modelling uncertainties, a novel
load-torque compensation structure is then proposed in Section 5. It
uses the proposed DLTC compensator in feedforward and a tailored
DOB in feedback for the DLTC compensated CCDC-drive. The analysis
of joint level position control of the CCDC-drive with the proposed
DOB-based-DLTC is presented in Section 6. The performance of the
proposed compensators for a servo controlled CCDC-drive is simulated
and compared in Section 7 using real parameters of CCDC-drive. Since a
typical human joint frequency bound for normal daily activities of el-
derly (walking, sit to stand, picking and placing an object) is
1.6Hz [38,39], performance is compared theoretically under a rated
load-torque disturbance of 2.5 Nm at a higher frequency of 5 Hz (see
Section 7.2) with 10% parametric uncertainty in CCDC-drive para-
meters. It is shown that even under rated load-torque disturbance, the
proposed DOB-based-DLTC gives a significantly improved performance
as compared to the classical SLTC and DOB when used alone. The
performance of the proposed compensator is also compared theoreti-
cally for armature-current reference-signal requirements. The im-
provement offered by the proposed compensator is experimentally
verified in Section 8 using an x-PC-Target™ based experimental setup.
The proposed compensator structure is practically shown to give more
than 5-dB mean improvement w.r.t DOB-alone and a 12-dB mean im-
provement w.r.t SLTC-alone in rejecting the load-torque disturbance up
to 1.6 Hz.

2. Significance for human exoskeleton system

To lay the basis for the design of a novel load-torque compensator, a
4-degree of freedom (DOF) human-exoskeleton system is shown in
Fig. 1. If n is the DOF of the exoskeleton and = …j n1 represent the jth
joint. Then q, q̇ and ∈q̈ n respectively define the joint-space position,
velocity and acceleration vectors of the exoskeleton. Whereas the
components =q θj o j, = =q w θ˙ ˙

j o oj j and = =q w θ¨ ˙ ¨
j o oj j respectively re-

present the angular position, velocity and acceleration of the jth joint. If
the exoskeleton is modeled as an n-DOF serial manipulator, then its
rigid body dynamics are given by the Euler-Langrage model [8]. The
torque requirement for the exoskeleton as a vector ∈τexo

n is therefore
given by the coupled nonlinear dynamic equation as

+ + =M q q C q q q g q τ( ) ¨ ( , ˙ ) ˙ ( ) .exo exo exo exo (1)

Fig. 1. 4-DOF Upper body exoskeleton with human-limb.
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Where ∈M q( )exo
nxn is the mass matrix, ∈C q q( , ˙ )exo

nxn is the
Coriolis's matrix and ∈g q( )exo

n is the gravity vector of the exoske-
leton. If the exoskeleton is assumed to be sufficiently rigid (i.e. it allows
motions only along its DOF axes) then the DOF of supported human-
limb is also effectively n. In addition, if DOF axes of human-limb are
assumed to be perfectly aligned with those of the exoskeleton then q,q̇
and q̈ vectors would be the same for human-limb as well. If no volun-
tary human interaction is assumed, then the passive human-limb can be
modelled in terms of its inertial terms by using the rigid body dynamics
[6]. But if voluntary human interaction is considered then considering
only inertial terms of the limb is not sufficient. This is because humans
tend to not only apply a voluntary torque at each of their joints but can
also introduce variable damping and stiffness in the limb by using their
antagonist and agonist muscles [40]. Therefore, modelling human-limb
with voluntary interaction needs additional terms for voluntary human
torque, damping and stiffness [41,42]. The human-limb torque re-
quirement ∈τh

n is therefore given by the nonlinear dynamic equa-
tion as

+ + + + − − =M q q C q q B q g q K q q τ τ( ) ¨ ( ( , ˙ ) ) ˙ ( ) ( ) .hv oh h h hv hv h (2)

Where ∈M q( )h
nxn is the human mass matrix, ∈C q q( , ˙ )h

nxn is
the human Coriolis's matrix and ∈g q( )h

n is the gravity vector of the
of the human limb. Bhv and ∈Khv

nxn represents the diagonal volun-
tary damping and stiffness matrix of the human where ∈qo

n is the
most recent joint position at which any component of Khv becomes
greater that zero. is the net voluntary torque exerted by the human. The
uncertain variation in τhv, Bhv and Khv by the humans therefore in-
troduce a significant amount of uncertainty in estimation of τh [41]. For
complete assistance of the human limb by the exoskeleton, the net
torque requirement ∈τLo

n is given from (1) and (2) by a net nonlinear
dynamic equation as

+ + + − − = + =M q q C q q q g q K q q τ τ τ τ( ) ¨ ( , ˙ ) ˙ ( ) ( ) ,hv onet net net hv exo h Lo

(3)

where

= +
= + +

= +

M q M q M q
C q q C q q C q q B
g q g q g q

( ) ( ) ( ),
( , ˙ ) ( , ˙ ) ( , ˙ ) ,
( ) ( ) ( ).

hv

net exo h

net exo h

net exo h

Any uncertainty in exoskeleton kinematics and the flexibility of its
joints and links, results in uncertain estimation of the torque require-
ment for the exoskeleton τexo in (1), which in turn adds to the un-
certainty of τLo in (3). Furthermore, any misalignment between human
and exoskeleton axes of rotation (which would always be there) would
result in additional uncertain human torques, which would further

increase the uncertainty in τLo.
It is therefore clear from (3) that the dynamics of human-exoske-

leton system is highly nonlinear, coupled and uncertain. Therefore, the
standard computed torque control strategies for serial robotic manip-
ulators [17–19] which strongly rely on accurate inverse-dynamic model
of the system cannot directly be used. All the uncertain nonlinear dy-
namics of both the exoskeleton and the human are therefore contained
in the net load-torque vector τLo and hence in its components
[ … …τ τ τ, . ,Lo Lo j Lon1 ]. It is worth noting that τh cannot explicitly be mea-
sured by sensing the joint load-torques. This uncertainty and non-
linearity in τLo is hence linked to the exoskeleton, as τLo has to in-
variably be provided by the n joint actuators of the exoskeleton.

For the joint-actuator as a CCDC-drive, the approximate dynamic
model is derived in the appendix and is given by (A.18). The parameters
of the drive are defined in Tables 1–3. The model for the jth actuator in
time domain is therefore written in terms of q̇j and q̈j as

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

= −η τ
K

q
η
K

q ηi f¨ ˙ ( * ) ,A

A j
j

A j
j as j n

2
2

j
(4)

where = ( )f τ .n j
K

ηK j
Lo j

B
A

fnj in (4) represents the load-torque dependent nonlinearity of the jth

joint. It is therefore noted that the uncertain nonlinear dynamics of the
human-exoskeleton system are linked to the jth joint actuator through
its respective load-torque τLoj. This in turn makes the linear model of the

Table 1
Independent parameters for CCDC-drive.

Symbol Quantity Nominal values

Ra, Ran Armature resistance 0.583 Ω
La, Lan Armature inductance 1.191 × − H10 4

ks, ksn Motor Speed constant 30.89 −( )Vrad
s

1

i i,a a nmax max Maximum continuous current 3.62 A
Jm, Jmn Motor rotor inertia 1.75 × − Kgm10 4 2

w w,max maxn Maximum rotor velocity 733 rad/s
i0, i0n Motor No-load current 204 × −10 3 A
kt, ktn Motor Torque constant 29.20 × −10 3 −NmA 1

Jg, Jgn Gear moment of inertia 7 × −10 6 Kgm2

Fg, Fgn Gear viscous friction coefficient
× − −( )Nm1 10 rad

s
3 1

η Gear ratio 25
pmax Maximum percentage perturbation in

actual parameters from the nominal
10%

ts Sampling time 10 μs
τLR Rated load-torque at the motor 0.1 Nm

Table 2
Dependent parameters for CCDC-drive.

Symbol Quantity Relationship Nominal values

ka, kan Electrical gain ,
Ra Ran
1 1 1.7153 −Ω 1

τa, τan Electrical time
constant

,La
Ra

Lan
Ran

3.27 × − s10 4

kb, kbn Back EMF constant ,
ks ksn
1 1

32.4 − −( )Vx 10 rad
s

3 1

Tf, Tfn Motor viscous
friction torque

(i0. kt), ( i0n. ktn) 60 × −10 4 Nm

Fm, Fmn Motor viscous
friction coefficient

,
Tf

wmax

Tf n
wmaxn

8.13 × −10 6 Nm
−( )rad

s

1

Km, Kmn Motor mechanical
gain

,
Fm Fmn
1 1

1.23 × −Nm10 ( )rad
s

5 1

τm, τmn Motor mechanical
time constant

(Km . Jm ),
(Kmn . Jmn)

21.53 s

Fn, Fnn Net viscous friction
coefficient

⎛
⎝

+ ⎞
⎠

Fm
Fg
η( )2

,

⎛
⎝

+ ⎞
⎠

Fmn
Fgn
η( )2

9.72 × −10 6 Nm
−( )rad

s .

1

Jn, Jnn Net moment of
inertia

⎛
⎝

+ ⎞
⎠

Jm
Jg
η( )2

,

⎛
⎝

+ ⎞
⎠

Jmn
Jgn
η( )2

1.75 × − Kgm10 4 2

Kn, Knn Net mechanical gain ,
Fn Fnn
1 1 1.02 × 105 −Nm( )rad

s
1

τn, τnn Net mechanical time
constant

(Kn . Jn), (Knn . Jnn) 18 s

Table 3
Parameters for PWM converter for CCDC-drive.

Symbol Quantity Nominal values

fc Converter switching frequency 56.3 × 103Hz
tr Converter sample time =

fc

1 1.776 × − s10 5

Vdc Converter input DC voltage 24 V
vcmax Maximum control voltage 10 V
Kr, Krn Converter gain 2.4
Iamax Maximum armature current 15 A
Ismax Maximum sensed current 10 V
Hc Current feedback Gain 0.667 −VA 1

Kc Current Controller Gain 800
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joint actuator to become coupled, nonlinear and uncertain. Therefore,
the overall joint level nonlinear dynamics for an n-DOF human-exos-
keleton system with actuator dynamics follows from (4) as

+ = −H M q H B q Hi f¨ ˙ * ,D D as n
2 2 (5)

where











= ∈

= ⎧
⎨⎩

⎫
⎬⎭

∈

= ⎧
⎨⎩

⎫
⎬⎭

∈

= ∈
= ∈

( )
( )

H

M

B

i
f

diag η

diag

diag

vec i
vec f

{ } ,

,

,

* ( * ) ,
( ) .

j
nxn

D
τ
K j

nxn

D K j
nxn

as as j
n

n n j
n

1

A
A

A

fn in (5) represents the net uncertainty and nonlinearity in the
overall system. The effect of this term can be minimized by making the
matrix H large i.e. by increasing the gear ratio of all the n actuators.
Increase in H apart from increasing the weight and size of the actuators
increases both the apparent mass matrix MD and damping matrix BD of
the actuators by H2. Therefore, a decrease in nonlinearity is achieved at
the expense of increase in weight, size and apparent impedance of the
exoskeleton. An increased apparent impedance of the exoskeleton can
cause large human-exoskeleton interactive forces which can make the
overall system unsafe for close human interaction [3,4]. Furthermore,
as seen from the frequency domain model of the actuator in (A.18), an
increased η reduces the gain and hence the output-bandwidth of the
actuator. This in turn reduces the bandwidth and speed of response of
the overall system.

As a better alternative, it is proposed to explicitly sense the joint
load-torque τLoj and then use advanced compensation techniques to
effectively linearize the dynamics of the jth actuator. Therefore, with
effective torque compensation applied, the model for the jth joint ac-
tuator can be written as

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

= + ⎛
⎝

− ⎞
⎠

= +η τ
K

q
η
K

q ηi f f ηi e¨ ˙ ( * ) ( * ) .A

A j
j

A j
j as j j n as j uc

2
2

j j
(6)

Where fj is the compensation applied and eucj is the error in com-
pensation of the jth load-torque and represents the associated un-
compensated uncertain nonlinearity. If all the n actuators are effec-
tively compensated, then, by using the approximate model of the
actuator, the overall dynamics of a compensated n-DOF human-exos-
keleton system is given from (6) as

+ = +H M q H B q Hi e¨ ˙ * ,D D as uc
2 2 (7)

where ⎜ ⎟= ⎛
⎝

− ⎞
⎠

= ∈e vec f f vec e( )uc j n uc
n

j j .

It is noted from (7), that provided the uncompensated-uncertain-
nonlinearity vector euc is sufficiently small in magnitude as compared to
the vector Hi * ,as the overall dynamics of the human-exoskeleton system
is effectively linear and certain. Therefore, to keep euc small, advanced
compensation techniques need to be used. This requirement hence sets
the basis to develop and evaluate effective joint-level compensation
techniques for decoupling and linearization of overall human-exoske-
leton system with small or unity gear ratios. For the development and
evaluation of load-torque compensation strategies a single joint with
CCDC-drive as an actuator is considered. The j subscript is therefore
dropped for notation simplicity.

3. Modelling of current controlled DC-drive

The actuators play a key role in the control of any robotic serial
manipulator as the task space accuracy of the manipulator is mainly
dependent on the joint actuators accuracy and their resolution of con-
trol [9]. The accuracy of the actuator control in turn is primarily

dependent on its ability to reject the unwanted load-torque dis-
turbances. The ability of the CCDC-drives to reliably and efficiently
generate and control the desired torque makes them the best actuator to
use for serial manipulators, as the desired torque can be explicitly
modulated to reject the load-torque disturbances. Generally, in the
literature, first order models of the CCDC-drive have been considered
[43,44] with little attention paid to higher order models. To design an
accurate feedforward compensator, an accurate model of the CCDC-
drive is required. A four-quadrant CCDC-drive mainly consists of a four-
quadrant power converter, a geared DC motor and a current controller
to control the motor's desired armature current in feedback [45]. A
block diagram of the CCDC-drive is shown in Fig. 2. The dynamics of all
three components have been considered to accurately model the drive.
The nominal and actual parameters for the drive are defined and listed
in Tables 1–3. The detailed modelling of the CCDC-drive by using the
defined parameters is presented in Appendix A.

If i*as is the armature current reference in volts, τLo is the load-torque
at the output shaft and wo is the output angular velocity then an ac-
curate frequency domain model of the CCDC-drive is derived in terms of
its inputs i*as and τLo and is given from (A.10) as

= −w
η

G s i
η

G s τ1 ( ) * 1 ( ) ,o A as B Lo2 (8)

=

= +

=

= +

G s

G s G s G s

G s

D s H G s G s G s

where ( ) ,

( ) ( ) ( ),

( ) ,

( ) (1 ( ) ( ) ( )) .

A
G s G s G s

D s

B D

D
H G s G s G s

D s

f c r a

( ) ( ) ( )
( )

2
( ) ( ) ( )

( )

c

c r zoh

f

c c t r
f

To evaluate the performance of the proposed compensator for the
CCDC-drive, in the presence of drive parametric uncertainty, a nominal
model of CCDC-drive in terms of the nominal drive parameters is given
from (8) as

= −w
η

G s i
η

G s τ1 ( ) * 1 ( ) .o A as B Lo2n n (9)

Where G s( )An and G s( )Bn define the nominal dynamics from i*as to
wo and τLo to wo respectively, using the nominal drive parameters. All
the transfer functions defining G s G s G s( ), ( ), ( )A A Bn and G s( )Bn are
defined in Appendix A.

4. Feed-forward load-torque compensators

4.1. Dynamic load-torque compensator

A concept of a new feedforward dynamic load-torque compensator
(DLTC), using the derived higher order model of the CCDC-drive in (8),
is shown in Fig. 3. The concept is to sense the joint load-torque τLo on
the drive and then to modulate the desired current i*as, to not only
compensate the effect of τLo onwo but also to ensure that the i*as based

Fig. 2. Block diagram CCDC-drive.
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velocity control of the drive is not effected in anyway. It is hence
proposed to decompose i*as as

= +i i i* * * .as as as1 2 (10)

Where i*as1 represents the part of the desired current to be modu-
lated, to control the drive's velocity (which can be generated by a se-
parate position or velocity controller) while i*as2 is the part of desired
current to be modulated, to cancel the effect of load-torque disturbance.
It is suggested that i*as2 can be designed to be given in terms of the
dynamic load-torque compensator NDc(s), defined as

= = =N s
i
τ

G s
G s

i N s τ( )
* ( )

( )
, * ( ) .Dc

as

L

B

A
as Dc L

2
2

n

n (11)

Where τL is the load-torque at the motor shaft and is given by
=τL

τ
η
Lo . The actual dynamic of the CCDC-drive-in terms of i*as1 and τLo

can be written from (8), (10) and (11) as

⎜ ⎟= + ⎛
⎝

− ⎞
⎠

w
η

G s i
η

G s
G s
G s

G s τ1 ( ) * 1 ( )
( )
( )

( ) .o A as A
B

A
B Lo1 2

n

n (12)

It is evident from (12) that the ability of the DLTC in cancelling the
load-torque disturbance depends on how well the drive dynamics have
been modelled, i.e. how close the nominal transfer functions G s( )An and
G s( )Bn are to their actual counterparts GA(s) and GB(s) respectively, over
whole of the drive bandwidth. Under ideal modelling assumptions, i.e.
for ≈G s G s( ) ( )A An and ≈G s G s( ) ( )B Bn we have form (12)

≈w
η

G s i1 ( ) * ,o A as1 (13)

i.e. the gain for τLo input has been completely compensated by the DLTC
and the drive velocity is completely independent of the load of the
torque disturbance. To facilitate the implementation of the DLTC an
explicit expression for NDc(s) is found in terms of nominal motor
parameters from (A.1) to (A.15) and is given as

= + + + + + +

+ + +

N s t τ t s t τ t t τ t s t τ t s

t H K K k s H K K k K K k k

( ) ( (2 2 ) (2 4 2 )

(2 4) 4 )/( ).
Dc s a r s a s r a r s a r

s c c r a c c r a c r a t

4 3 2
n n n n

n n n n n n n

(14)

It is evident from (14) that NDc(s) is improper hence needs a series
low pass filter of order greater than or equal to four for its im-
plementation. A sixth-order low pass filter QDc(s), having the form
shown in (15) is suggested. This filter is characterized for its simplicity,
small phase distortion, sufficient roll-off and near unity gain over its
bandwidth. The filter QDc(s) is hence given as

=
+

+

( )
( )

Q s
s

s
( )

1

1
.Dc

ω

ω

1
0.98

1 6
c

c (15)

To select a proper cut-off frequency ωc for the filter QDc(s), it is

important to know the location of the zeroes ofNDc(s). As seen from
(14) the coefficients of the numerator-polynomial ofNDc(s), in addition
to being a function of the drive parameters are also a function of the
sampling time ts. The zeros of NDc(s) and hence their respective corner
frequencies are found as a function of ts for the nominal drive para-
meters listed in Tables 1–3. It is found that for the given drive para-
meters, NDc(s) has two real zeros and one quadratic zero. Variation of
the corner frequencies of these zeros with respect to ts is shown in Fig. 4,
with ts being varied from 10 μs to 110 μs. It is seen that the corner
frequencies of both the real zeros decrease with increase in ts, while that
of the quadratic zero remain constant at 2588 rad/s . The corner fre-
quency of the quadratic zeroes being the lowest give the dominant
dynamics of NDc(s). If the dynamics of NDc(s) are not to be altered by the
filter QDc(s), its cutoff frequency ωc should be greater than the corner
frequencies of all the zeros of NDc(s).

Also, if ωs is the sampling frequency then ωc≤ ωs/2 to satisfy the
sampling requirement. For the chosen range of ts (10 μs-110 μs) the
region satisfying both the requirements for ωc is shown shaded in Fig. 4.
A cut-off frequency value of = =ωc

ω
2
s 3.141×105 rad/s is chosen for

the filter QDc(s) in (15). For this value of ωc, the sampling time ts is
found from Fig. 4 to be 10 μs. A realizable DLTC as NDcf(s) is hence
defined from (14) and (15) as

= = =N s i
τ

N s Q s
G s
G s

Q s( )
*

( ) ( )
( )
( )

( ).Dc f
as

L
Dc Dc

B

A
Dc

2 n

n (16)

With this definition of DLTC, (12) can then be written as

= + −( )w
η

G s i
η

G s N s G s τ1 ( ) * 1 ( ) ( ) ( ) .o A as A Dc B Lo2 f1 (17)

If Guc(s)dltc is defined as

= −G s G s N s G s( ) ( ( ). ( ) ( )),uc dltc A Dc f B (18)

then using (16), (18) can be written as

⎜ ⎟= ⎛
⎝

− ⎞
⎠

G s G s
G s
G s

Q s G s( ) ( )
( )
( )

( ) ( ) .uc dltc A
B

A
Dc B

n

n (19)

|Guc(s)dltc| in (19) hence gives a measure of the frequency dependent
uncompensated gain left by the DLTC due to modelling inaccuracy and
therefore is a measure of the ability of the DLTC in cancelling the load-
torque disturbance. Eq. (12) can therefore be written in terms of

Fig. 3. Proposed DLTC scheme for the CCDC-drive.

Fig. 4. The corner frequencies of DLTC(NDc(s)) are plotted as a function of ts for
the nominal CCDC-drive parameters listed in Tables 1–3 along with the sug-
gested area for selection of the cut-off frequency ωc for the filter QDc(s).
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Guc(s)dltc as

= +w
η

G s i
η

G s τ1 ( ) * 1 ( ) .o A as uc dltc Lo1 2 (20)

By comparing (20) with (8) it is seen that DLTC reduces the fre-
quency dependent load-torque disturbance gain from GB(s) to Guc(s)dltc.
Ideal modelling ≈ ≈G s G s G s G s( ( ) ( ), ( ) ( ))A A B Bn n and filtering as-
sumption s(QDc(s)≈ 1) imply from (19) that Guc(s)dltc≈ 0 over the
bandwidth of QDc(s). Therefore, performance of the DLTC is perfect
under these assumptions.

4.2. Static load-torque compensator

For the DC-drive system, whose actual dynamics are given by (8), a
feedforward compensator can also be derived using the approximate
model of CCDC-drive (given in Appendix A by (A.18)) on the same
footing as that of DLTC. The concept is shown in Fig. 5. Therefore, i*as2
for this case is similarly given by

=
′
′

i
G s
G s

τ* ( )
( )

.as
B

A
L

n

n
2 (21)

With i*as given by (10), the dynamics of CCDC-drive-in terms of i*as1
and τLo can then be written from (8) (10) and (21) as

⎜ ⎟= + ⎛
⎝

′
′

− ⎞
⎠

w
η

G s i
η

G s
G s
G s

G s τ1 ( ) * 1 ( )
( )
( )

( ) .o A as A
B

A
B Lo2

n

n
1

(22)

The feedforward compensator NSc(s) for this case is referred as the
static load-torque compensator (SLTC) and is defined from (21) as

= =
′
′

=N s
i
τ

G s
G s

H
k

( )
* ( )

( )
.Sc

as

L

B

A t

cn

n n

2

(23)

It is hence seen from (23) that when the CCDC-drive is modelled as a
first order system by ignoring the higher order dynamics, the feedfor-
ward compensator comes out to be a static constant. Frequency re-
sponse of the unfiltered-DLTC, filtered-DLTC and SLTC are respectively
shown in Fig. 6 for the nominal drive parameters. It is seen from Fig. 6
that the frequency response of filtered-DLTC and that of the unfiltered-
DLTC are very similar within the bandwidth of filter QDc(s).

Therefore, the filter QDc(s) enables the DLTC to be realized without
altering its key dynamics. It is also seen that though the DC-gains of
DLTC and SLTC are the same, the frequency response of DLTC and SLTC
are very different, signifying that SLTC is missing some key dynamics
necessary for effective compensation of load-torque disturbance. The
frequency dependent uncompensated gain left by SLTC is hence simi-
larly given by

= −G s G s N s G s( ) ( ( ) ( ) ( )) .uc sltc A Sc B (24)

The output-velocity wo given by (22) is then written in terms of
Guc(s)sltc as

= +w
η

G s i
η

G s τ1 ( ) * 1 ( ) .o A as uc sltc Lo1 2 (25)

4.3. Un-compensated gain comparison for DLTC and SLTC

In order to validate and compare the effectiveness of DLTC and
SLTC in compensating for the load-torque disturbance, the un-
compensated frequency dependent gains |Guc(s)dltc| given by (19) and
|Guc(s)sltc| given by (24) are plotted vs frequency for comparison in
Fig. 7. The parameters of CCDC-drive used are listed in Tables 1–3. The
higher the uncompensated gain magnitude is at a frequency, the higher
the expected load-torque disturbance is for that frequency. It is seen
from Fig. 7 that for the ideal modelling case i.e. when ≈G s G s( ) ( )A An

and ≈G s G s( ) ( ),B Bn the response of |Guc(s)dltc(nominal) | is 30 dB less than
that of |Guc(s)sltc(nominal) | over the whole of the bandwidth of the filter
QDc(s). Therefore, for an accurate nominal model of the CCDC-drive, the
DLTC is expected to have a superior performance in rejecting the load-
torque disturbance as compared to SLTC. In practice though it is not
always possible to exactly model the plant. The uncertainty in the drive
parameters can effectively be considered as an additive uncertainty

Fig. 5. Static load-torque compensator (SLTC) scheme for the CCDC-drive.

Fig. 6. Magnitude and phase response of unfiltered-DLTC (NDc(s)), filtered-
DLTC (NDcf(s)) and SLTC (NSc(s)).

Fig. 7. Magnitude plots of Guc(s)sltc and Guc(s)dltc for nominal and perturbed
cases for the drive parameters listed in Tables 1–3, along with the case when no
compensator is used.
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[20]. If the actual parameters of the drive are additively perturbed at
the most by a fixed percentage pmax, then to compare the performance
of DLTC and SLTC under a worst-case scenario, it is important to first
identify the actual drive parameters that have a dominant effect on
increasing the magnitude of uncompensated gains for both the com-
pensators. As the DC-gain of Guc(s)dltc or Guc(s)sltc define the maximum
possible magnitude, the parameters effecting the DC-gains are the
dominant parameters effecting Guc(s)dltc and Guc(s)sltc. The DC-gain of
Guc(s)dltc Guc(s)sltc are derived from (19) and (24) respectively in terms
of the drive's independent parameters (listed in Table 1) and are given
as

= −G s w
i k

w i
i k w

( ) ,uc dltc dc
max

tn

max n

t maxn0

2 0

0
2 (26)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

G s w
i k k

( ) 1 1 .uc sltc dc
max

tn t0 (27)

The actual parameters wmax, i0, kt are hence the dominant para-
meters, that have a dominant effect on both |Guc(s)dltc| and |Guc(s)sltc|. If
the dominant parameters are perturbed from the nominal as

= +

= −

= −

w w w
p

i i i
p

k k k
p

100
,

100
,

100
,

max max max
max

max

t t t
max

0 0 0

n n

n n

n n (28)

then both the DC-gains in (26) and (27) are a maximum. The plots of
|Guc(s)dltc| and |Guc(s)sltc| are plotted in Fig. 7 for a worst case perturbed
scenario, where the dominant actual drive parameters are given a fixed
maximum perturbation as per (28). The rest of the actual drive para-
meters listed in Tables 1–3 are randomly perturbed form the nominal,
at the most by pmax. It is seen that there is a small change in magnitude
of both the plots with random variation of the non-dominant para-
meters. Hence plots of |Guc(s)dltc| and |Guc(s)sltc| under these perturba-
tion conditions define the limit of uncompensated torque gains that can
be expected at any frequency for the respective compensator. It is also
seen from Fig. 7 that under these perturbed conditions, the performance
of DLTC for low frequencies (< 16Hz) deteriorates to that of SLTC. For
frequencies greater than 16 Hz, DLTC outperform SLTC in rejecting the
load toque disturbance. If no compensator is used then the un-
compensated torque gain is maximum possible and is given by

=G s G s( ) ( )uc max B , which is also plotted in Fig. 7.

5. Disturbance observer based dynamic load-torque compensator

Even though DLTC is expected to give a good performance in
compensating the load-torque in medium to high frequency range, its
low frequency performance is seen to be effected by the drive's para-
metric uncertainties. To further improve the performance of DLTC in
the presence of uncertainties, a novel compensator structure is sug-
gested that uses the proposed DLTC as a feedforward compensator in
conjunction with a feedback DOB for the DLTC compensated CCDC-
drive. The concept is shown in Fig. 8.

5.1. Disturbance observer for DLTC compensated CCDC-drive

If τ*e is the electromegnatic torque to be generated, ktn is the torque
constant of the motor and Hc is the current feedback gain of the drive,
then i*as1 similar to i*as2 can also be given from (23) as

=i H
k

τ* *.as
c

t
e

n
1 (29)

If w is the motor-shaft velocity then =wo w/η. Therefore for CCDC-
drive with feedforward DLTC,w can then be written from (20) and (29)
as

= +w G s τ
η

G s τ( ) * 1 ( ) ,T e uc dltc Lo
(30)

where =G s G s( ) ( ) .T A
H
k

c
tn

If GTn(s) represents the nominal forward torque dynamics then the
actual forward torque dynamics GT(s) is represented as a multiplicative
uncertainty model as [34] = +G s s G s( ) (1 Δ( )) ( )T Tn , for ‖Δ‖∞ ≤ 1.
GT(s) can then be written in terms of disturbance dynamics as

= +G s G s D s( ) ( ) ( ),T T Tn (31)

= ′

=

G s G s

D s s G s

where ( ) ( ) ,

( ) Δ( ) ( ).

T A
H
k

T T

n n
c

tn

n

′G s( )An in (31) is derived in Appendix A and is given by A.13). DT(s)
in ((31) represents the part of the dynamics of GT(s) which is not in-
cluded in the nominal GTn(s). The motor-shaft velocity w can then be
written in terms of GTn(s) and disturbance do as

= + + = +w G s τ d d G s τ d( ). * ( ) * .Tn e o o Tn e o1 2 (32)

Where do is the total output disturbance, =d D s τ( ) *o T e1 is the part
of do due to mismatch between GT and GTn and =d G s τ( )o η uc dltc Lo2

1 re-
presents the part of do due to uncompensated load-torque, left by DLTC.
Since the output disturbance do should be compensated by manip-
ulating the torque input τ*,e the corresponding input disturbance di is
hence given from (32) in terms of do as

= = −d d
G s

w
G s

G s
G s

τ
( ) ( )

( )
( )

* .i
o

T T

Tn

T
e (33)

An estimate of the input disturbance ̂di in terms of the measured
motor-shaft velocity w and the identified nominal dynamics GTn(s)
hence follows from (33) as

̂ = −d w
G s

τ
( )

*.i
Tn

e (34)

Since GTn(s) is always proper, 1/GTn(s) is not realizable. A cascaded
low pass filter Qo(s) is hence required for its proper implementation. A
realizable disturbance observer that can give an estimate of the input
disturbance ̂di follows from (34) as

̂ = −d G s w Q s τ( ) ( ) *,i o o e (35)

where =G s( ) .o
Q s
G s

( )
( )

o
Tn

If τ*a is the desired input acceleration torque, then the estimate of
input disturbance ̂di must be subtracted from τ*a to obtain the electro-
magnetic torque τ*e to be generated by the drive as

̂= −τ τ d* * .e a i (36)

Fig. 8. An overview of the proposed DOB-based-DLTC structure for the CCDC-
drive.
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This formulation of DOB along with DLTC for the CCDC- drive is
given by (30) and (35) and is shown in detail in Fig. 9. For the closed-
loop system in Fig. 9 to be internally stable with the DOB given by (35)
in feedback, it is required that the magnitude of the filter Qo(s) is
bounded as [31]

≤Q s
s

( ) 1
Δ( )

.o
(37)

Whereas for good tracking reponse of the system it is required that
|Qo(s) |≈ 1. Therefore the filter Qo(s) has to be carefully selected to
ensure both stability and performance.

The filter Qo(s) is hence choosen to be of the form

= +
+

Q s ω s ω
s ω

( ) 1.1 ( 0.9 )
( )

.o oc
oc

oc

2
3 (38)

The associated multiplicative uncertainity in GT(s) is given from
(31) as

=
−s

G s
G s G s

1
Δ( )

( )
( ) ( )

.Tn

T Tn (39)

The corresponding plots of s
1

Δ( ) are shown in Fig. 10, for actual

parameters of the drive being additively perturbed at random, at the

most by pmax. For the stabililty condition in (37) to be satisfied for all

s
1

Δ( ) curves, the cut-off frequency ωoc for Qo(s) is chosen to be 0.2ωn.

Where ωn is the bandwidth of the nominal forward system GTn(s). For
Qo(s) given by (38) and at chosen ωoc, it is seen from Fig. 10 that the

stability condition in (37) is satisfied for all s
1

Δ( ) curves. Therefore, the

DOB based closed-loop system in Fig. 9 is expected to be internally
stable. For nominal drive parameters listed in Tables 1–3, the band-
width ωn is found to be 5.7×103 rad/s(910Hz), which in turn gives

=ωoc 2.85×103 rad/s(453 Hz).
The motor-shaft velocity w of the drive, in terms of GT(s) and

Guc(s)dltc is given by (30). This in-turn is used to simplify the DOB-
based-DLTC structure of Fig. 9. The simplified scheme is shown in
Fig. 10. The referred electromagnetic torque τ*e in Fig. 11 is therefore
given from (35) and (36) as

=
−

−
−

τ
τ
Q s

Q s
G s Q s

w*
*

1 ( )
( )

( )(1 ( ))
.e

a

o

o

Tn o (40)

Output angular velocity wo of the complete closed-loop compen-
sated system of Fig. 11, can then be written from (30) and (40), in terms
of the inputs τ*a and τLo as

= +w
η

G s τ
η

G s τ1 ( ) * 1 ( ) ,o T net a uc net Lo2 (41)

Fig. 9. Detailed structure of the proposed DOB-based-DLTC for the CCDC-drive.

Fig. 10. Showing |Qo(s)| is always less than all s
1

Δ( ) curves for all frequencies. Where corresponding s
1

Δ( ) is plotted for actual parameters of the drive being additively

perturbed at random at most by pmax percentage.

Fig. 11. Simplified structure for proposed DOB-based-DLTC for CCDC-drive in
terms of GT(s) and Guc(s)dltc.
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=

=

= − +

−

G s

G s

D s G s Q s Q s G s

where ( ) ,

( ) ,

( ) ( )(1 ( )) ( ) ( ) .

T net
G s G s

D s

uc net
G s Q s G s

D s

net Tn o o T

( ) ( )
( )

( )(1 ( )) ( )
( )

T Tn
net

Tn o uc dltc
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If DLTC is used alone as compensator then in (41), =G s G s( ) ( )T net T
and =G s G s( ) ( )uc net uc dltc . If SLTC-alone is used then =G s G s( ) ( )T net T
and =G s G s( ) ( )uc net uc sltc. If DOB-alone is used then GT(s)net is given by
(42) and = = −G s G s( ) ( ) .uc net uc dob

G s Q s G s
D s

( )(1 ( )) ( )
( )

Tn o B
net

5.2. Un-compensated gain of DOB-based-DLTC

For the system in (41), Guc(s)net represents the net uncompensated
gain left by DOB-based-DLTC due to modelling uncertainties and im-
perfect filtering. Under ideal filtering assumption for the frequencies
with in the bandwidth, where Qo(s)≈ 1, it follows from (41) that
Guc(s)net≈ 0 which leads to the output of the net compensated system
to be

≈ ≈w
η

G s τ
η

G s τ1 ( ) * 1 ( ) * .o T net a Tn a (42)

Therefore, for frequencies with in the bandwidth of Qo(s), the net
compensated system in behaves like a nominal system with no load
toque disturbance. Similarly, under ideal filtering assumptions for fre-
quencies greater than the bandwidth of Qo(s) where Qo(s)≈ 0, it fol-
lows from (41) that the output of the net compensated system is given
as

≈ +w
η

G s τ
η

G s τ1 ( ) * 1 ( ) .o T a uc dltc Lo2 (43)

Therefore, for higher frequencies where Qo(s)≈ 0,Guc(s)net ap-
proaches Guc(s)dltc. Since |Guc(s)dltc| is always significantly less than that
of |GB(s)|, the use of DLTC in conjunction with DOB significantly re-
duces the net uncompensated gain Guc(s)net for the load-torque.
|Guc(s)net| for the DOB-based-DLTC is plotted vs frequency in Fig. 12 in
comparison with the |Guc(s)dltc|,|Guc(s)sltc| and |Guc(s)dob |. To consider
the worst-case scenario for the additive parametric uncertainty limited
by pmax, the drive dominant actual-parameters are perturbed as per (28)
while the non-dominant actual-parameters listed in Tables 1–3 are
randomly perturbed at the most by pmax. It is seen from Fig. 12 that the

|Guc(s)net| for the DOB-based-DLTC is constant for load-torque fre-
quencies till 100 Hz, and hence in contrast to SLTC-alone and DLTC-
alone gives a uniform improved compensation performance for all
practical load-torque frequencies. The reduction in |Guc(s)net| in com-
parison with |Guc(s)sltc| is seen to be more than 25-dB for the load-
torque at low frequencies (less than 5 Hz). This significant reduction in
the un-compensated gain for the DOB-based-DLTC is expected to cause
a significant improvement in compensating the load-torque disturbance
τLo in the low frequency range with low gear ratios.

6. Joint level servo control of CCDC-drive with DOB-based-DLTC

Depending on the task space control requirement, respective desired
trajectories need to be tracked in the joint space of the exoskeleton [9].
The task space tracking performance is hence dependent on how well
these desired joint trajectories are tracked in the presence of joint load-
torque disturbance. The compensated CCDC-drive system in (41), under
position servo control is shown in Fig. 13. The closed-loop position
tracking performance of the compensated servo system is analysed for a
standard PD-controller. It is seen from (42) that under ideal conditions,
the actual forward system GT(s)net behaves like a nominal system
GTn(s). The nominal feedforward transfer function in Fig. 13 is therefore
given as =G s( )f n

G s
s

( )Tn . Using this Gfn(s), a PD controller C(s) with first
order differential filter is designed for desired closed-loop bandwidth.
C(s) is therefore given by

= +
+

C s K τ s
τ s

( ) ( 1)
( 1)

.d 1

2 (44)

Under no measurement noise assumption, the output-angular posi-
tion θo for the closed-loop system in Fig. 13, can therefore be given from
(41) and (44), in terms of sensitivity S(s) and complementary sensitivity
T(s), for a reference output-angular position θ*o as [20]

= +θ T s θ
η

S s G s τ( ) * 1 ( ) ( ) ,o o uc net Lo2 (45)

=

= +
= +

−

−

L s C s

S s L s
T s L s L s

where ( ) ( ) ,

( ) (1 ( )) ,
( ) ( )(1 ( )) .

G s
s

( )

1

1

T net

If the position-error eθ is defined as = −e θ θ*θ , where θ* represents
the desired positon of motor-shaft, then eθ can be written from (45) as

= −e S s θ
η

S s G s τ( ) * 1 ( ) ( ) .θ uc net Lo
(46)

It is seen from (46) that increasing the loop gain L(s) (by increasing
the controller gain), decreases the sensitivity S(s) which in turn de-
creases the effect of uncompensated gain Guc(s)net for the disturbance
input τLo. This results in a reduced tracking error of the closed-loop
system in Fig. 13. This reduction in tracking error comes at the cost of
increased control effort τ*a and a decreased robustness of the closed-loop
system [20].

A large τ*a dictates a large τ*e and hence a large reference armature

Fig. 12. Shows the magnitude plot of the net un-compensated gain |Guc(s)net| vs
frequency for the proposed DOB-based-DLTC in comparison with un-compen-
sated magnitude gains |Guc(s)dltc|, |Guc(s)sltc|,|Guc(s)dob| and no compensator,
with the maximum uncertainty in actual motor parameters of the drive limited
by pmax, for the motor parameters listed in Tables 1–3.

Fig. 13. A joint-level position feedback control of CCDC-drive with DOB-based-
DLTC.
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current i*as. Since the CCDC-drive is a physical system, the value of
i*as corresponding to τ*e is bounded by Ismax. Furthermore, the gain and
phase margin for the system in Fig. 13 are plotted in Fig. 14 for in-
creasing closed-loop-bandwidth, for different compensators. It is seen
from Fig. 14 that both the margins and hence in turn, the relative
stability of the compensated servo system decreases with increasing
closed-loop-bandwidth. Therefore, to ensure sufficient robustness for
the system, the loop gain L(s) and hence the closed-loop-bandwidth of
the system is to be limited [22]. For the given drive parameters, the
maximum closed-loop-bandwidth of the system is limited to 256 rad/s,
which in turn gives a gain margin of 10 dB for the proposed compen-
sator.

The maximum output-bandwidth for the system with the chosen
gear ratio is therefore limited to 10 rad/s. (output-bandwidth= closed-
loop-bandwidth / gear-ratio). With limited L(s), it is clear from (45) and
(46) that the only way to reduce the effect of the disturbing torque
τLo for a given gear ratio η, is by reducing the net un-compensated gain
Guc(s)net. Therefore, compensators that can effectively reduce the gain
Guc(s)net would be able to practically improve the joint tacking perfor-
mance in the presence of rated load-torque disturbance. The corre-
sponding desired electromagnetic torque τ*e , to be generated by the
CCDC-drive is then given form (35), (36) and (46) as

=
−

−
−

τ
Q s

τ Q s
G s Q s

w* 1
(1 ( ))

* ( )
( )(1 ( ))

.e
o

a
o

Tn o (47)

The acceleration torque reference τ*a in (47) as control effort for the
controller C(s), is given from (46) as

= −τ ηC s S s θ
η

C s S s G s τ* ( ) ( ) * 1 ( ) ( ) ( ) .a o uc net Lo
(48)

The motor-shaft angular velocity w in (47) is given from (45) as
derivative of the position θo, in terms of S(s) and T(s) as

= = = +w η dθ
dt

sηθ ηsT s θ
η

sS s G s τ( ) * 1 ( ) ( ) .o
o o uc net Lo

(49)

To effectively analyse the system in Fig. 13 for reference current
requirements, a closed form expression for the armature current

ireference signal *as (in volts) is found from (10),(11), (29),(48) and (49)
in terms of the two inputs θ*o and τLo as

= +i ηG s θ
η

G s τ* ( ) * 1 ( ) .as iθ o iτ LoL (50)

where
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−

⎛
⎝

− ⎞
⎠

G s H
k Q s

C s S s sT s Q s
G s
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(1 ( ))

( ) ( ) ( ) ( )
( )

,iθ
c

tn o

o

Tn

= − +
+

G s N s sH G s C s sQ s
k sD s C s G s G s

( ) ( ) ( ) ( ( ) ( ))
( ( ) ( ) ( ) ( ))

.iτ Dc f
c uc dltc o

tn net T Tn
L

If DOB -Alone is used as compensator in (50), then NDcf(s)=0 and
=G s G s( ) ( )uc dltc B . For DLTC or SLTC-alone, =Q s( ) 0o with appropriate

Guc(s)dltc or Guc(s)sltc. Improvement offered by the proposed compen-
sator w.r.t the armature current reference requirement is shown in
Fig. 15. G s( )iτL defined in (50) is plotted as a surface vs load-torque
frequency and the allowed closed-loop-bandwidth for different com-
pensators. It is seen that G s( )iτL for the proposed DOB-based-DLTC is
the least over nearly all the practical load-torque frequencies (< 10Hz)
and allowed closed-loop-bandwidths (< 256 rad/s) and hence is ex-
pected to require the least i*as as compared to DOB and SLTC-alone, in
compensating the load-torque disturbances.

Fig. 14. Gain-margins and phase-margin of the system in Fig. 13 for different
compensators, plotted for increasing closed-loop bandwidth.

Fig. 15. Surface plot of G s( )iτL for the system in Fig. 13, plotted vs load-torque
frequency and closed-loop-bandwidth. a) For no compensator and SLTC-alone.
b) For DOB-alone and DOB-based-DLTC.
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7. Simulation results

7.1. Exoskeleton and CCDC-drive parameters

To obtain realistic simulation results, the proposed DOB-based-
DLTC is simulated and compared for performance for a single joint, by
using the practically real parameters of the CCDC-drive. Table 1 lists the
independent parameters for the drive, along with their nominal values.
The dependent parameters for the drive are found explicitly in terms of
its independent parameters and are listed in Table 2. The parameters for
the four-quadrant power converter are listed in Table 3. The parameters
for the designed 4-DOF arm exoskeleton shown in Fig. 1 are given in the
Table 4. The human arm limb parameters are found for an 88 Kg man
with a height of 178 cm [46].

7.2. Joint level tracking performance comparison

For the closed-loop system in Fig. 13(a) position tracking response is
simulated using the proposed DOB-based-DLTC, in comparison with
SLTC-alone, DLTC-alone and DOB-alone is shown in Fig. 17. A low
magnitude sinusoidal position trajectory at 1.6 Hz (10 rad/s) is given as
a reference, to clearly see the improvement offered by the proposed
compensator. A rated sinusoidal load-torque disturbance (shown in
Fig. 16) is given as τLo. The maximum uncertainty in the non-dominant
actual motor parameters of the drive is still limited by pmax, while the
dominant actual parameters are perturbed as per (28). A PD controller
given by (44) is designed to give the maximum allowed closed-loop-
bandwidth of 256 rad/s with a gain margin of 10 dB and a phase margin
of 120°. The armature current reference signal i*as for different com-
pensators is found using (50) and is plotted in Fig. 18. It is seen from
Figs. 17 and 18 that the proposed DOB-based-DLTC in comparison with
the other compensators, gives the least tracking error for the given
reference trajectory, under rated load-torque disturbance, with the least
i*as requirement. Thus, with the proposed compensator, the CCDC-drive
based joint actuator shows significantly good servo control perfor-
mance, without compromising the linearity of the system in Fig. 13.

8. Experimental results

8.1. Experimental setup

To experimentally evaluate and compare the compensation perfor-
mance of the proposed compensator scheme for a joint level CCDC-
drive, an xPC-Target™ based torque test rig is designed to ensures both
real-time performance and Matlab/Simulink™ compatibility. The de-
signed experimental setup is shown in Fig. 19. A detailed closeup view
of the load-torque test rig is shown in detail in Fig. 20. The torque test
rig is composed of a variable load-torque generator, a load toque sensor
with signal conditioning and a CCDC-drive under test. The xPCeHost
computer hosts the Simulink™ section of the code for different com-
pensators and is linked to the xPC-Target computer through a dedicated
Ethernet link. xPC-Host computer not only generates and downloads

Table 4
Parameters for 4-DOF human-exoskeleton system in Fig. 1.

Type Quantity Symbol Value

Human arm Link Mass (Kg) m1h, m2h, m3h, m4h 0, 0, 2.64, 1.93
Exoskeleton m1e, m2e, m3e, m4e 1.73, 1.75, 1.76, 0.7
Exoskeleton D-H parameters d1, a1, αi, θo1 − π π0, 0.2, /2, /2

d2, a2, α2, θo2 −π π0, 0, /2, 3 /2
d3, a3, α3, θo3 0.33, 0.065, 0, 0
d4, a4, α4, θo4 0.25, −0.065, 0, π/6

Fig. 16. 2.5 Nm joint load-torque disturbance τLo at 5 Hz.

Fig. 17. a) Tracking response for DOB-based-DLTC scheme plotted in com-
parison for different compensators for system in Fig. 13 for a load-torque given
by Fig. 14. Additive uncertainty in actual parameters is limited by pmax. (b):
Root square tracking error for DOB-based-DLTC is plotted in comparison.

Fig. 18. Comparative plots of armature current reference i*as in volts for dif-
ferent compensators for the system in Fig. 13 with of closed-loop-bandwidth of
256 rad/s.
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the real-time code to the xPC-Target but also is used to control the x-PC
target properties, display and datalogging in real time. xPC-Target
computer on the other hand not only implements the code for different
torque compensator schemes for the CCDC-drive in real time but also
generates a rated sinusoidal load-torque at 1.6 Hz, by controlling a se-
parate DC motor acting as load-torque generator. An xPC-Target™
supported multifunction I/O card by Humusoft™ is used to provide the
necessary hardware interface for CCDC-drive, load-torque generator
and torque sensor.

8.2. Experimental results

The CCDC-drive (whose parameters are listed in Tables 1–3) is first
held at a constant fixed angular position while a variable load-torque is
applied by the load-torque generator at the output shaft of the CCDC-
drive.

An indigenously designed torque sensor and conditioning card are
used in conjunction to sense the respective generated load torques for
the different compensation schemes. These load-torques and are shown
in Fig. 21 and are seen to be comparable in magnitude and frequency.
The compensation improvement afforded by the different load-torque
compensators is then measured as deviation of the angular position
from the nominal shaft position. This deviation under respective rated
load torques is shown in Fig. 22. The performance of the proposed
compensator is also compared and verified experimentally for position
tracking, under respective experimental load torques of Fig. 24. A low
magnitude sinusoidal trajectory at 0.25 Hz is given as desired trajectory
to clearly see the improvement afforded by the proposed compensator.
The tracking results are shown in Fig. 24. It is seen that the CCDC-drive
tracks the desired trajectory very closely for the proposed compensator.
The corresponding practical instantaneous improvement in compen-
sating the load-torque offered by the proposed compensator w.r.t to

DOB-alone and SLTC-alone is shown in Fig. 23. This in turn gives a
mean improvement in compensation of 5-dB w.r.t DOB-alone and 12-dB
w.r.t SLTC -Alone.

The proposed DOB-based-DLTC hence practically shows to give a
significantly improved load-torque compensation performance.
Therefore, if the proposed compensator scheme is applied to all the n
active joints of the exoskeleton, it can more effectively compensate for
the uncertain-nonlinear coupling vector fn in (5) as compared to SLTC
and DOB-alone. Mean 5-dB improved load-torque compensation per-
formance w.r.t DOB-alone per joint is significant, as each active joint of
the exoskeleton would be able to suppress the respective load- torque

Fig. 19. Experimental setup for evaluating the torque compensation perfor-
mance of a joint level CCDC-drive using the proposed compensator.

Fig. 20. Showing component level detail of load-torque testing rig.

Fig. 21. Experimental load-torque applied by the load-torque generator at the
output shaft of CCDC-drive for different compensator schemes.

Fig. 22. Experimental results for CCDC-drive output shaft deviation from the
nominal position, for different load-torque compensators, under respective
experimental load-torques of Fig. 21.

Fig. 23. Practical instantaneous improvement offered by the proposed DOB-
DLTC in compensating the load torques as compared to DOB-alone and SLTC-
alone for experimental results shown in Fig. 22.
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disturbance 1.8 times more effectively and four times more effectively
as compared to SLTC-alone. This in turn means that the uncompensated
uncertain-nonlinear vector term euc in (7) is significantly smaller.
Therefore, the human-exoskeleton system in (7) is more effectively
linearized and decoupled with the proposed DOB-based-DLTC, in pre-
sence of uncertain-nonlinear joint load toques, due to misalignment
between human and exoskeleton axis of rotation and uncertainty in
human /exoskeleton kinematics and dynamics. This hence in turn, al-
lows linear joint controllers to be independently designed and achieve
superior tracking performance, which in turn would significantly im-
prove the task space tracking performance of the human-exoskeleton

system. The inclusion of the higher order dynamics in DLTC comes at
the cost of having shorter sampling time ts (ts<30 µs from Fig. 4). But
with modern processors, implementation of the proposed compensator
at shorter sampling time is easily possible.

9. Conclusion

In this paper, it is shown that in exoskeleton applications the un-
certain human dynamics appears as uncertain load-torques for the ac-
tuators of the exoskeleton, which cannot be ignored for low gear ratio
actuators. A DOB-based-DLTC in a feedback-feedforward structure, is
therefore proposed and analysed for compensation performance, for the
joint level servo control of CCDC-drive actuators of the exoskeleton
with small gear ratios. It is shown both theoretically and practically that
the proposed compensator gives at least a 5-dB mean improved per-
formance w.r.t DOB-alone, and a 12-dB mean improvement w.r.t SLTC-
alone for rated load-torque frequencies up to 1.6 Hz with 10% drive-
parametric uncertainty. The proposed compensator is further analysed
and shown to give comparable reference current requirements for the
compensated CCDC-drive under joint level servo control. The improved
compensation performance of the proposed DOB-based-DLTC compen-
sator for CCDC-drive is experimentally verified by using xPC-Target™
based load-torque rig. In the presence of uncertain load-torques due to
the human-exoskeleton interactions, it is strongly expected that the
improvement offered by the proposed DOB-based-DLTC in compen-
sating the joint level uncertain load torques would in turn significantly
improve the task space performance of the exoskeleton as well.
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A. Appendix

A.1. Accurate frequency domain model of CCDC-drive

For the CCDC-drive shown in Fig. 2 the dynamics of all the subcomponents are considered to find an accurate model of the CCDC-drive in
frequency domain. The model is derived for motor-shaft angular velocity ‘w` in terms of armature current reference i*as and load-torque τL for the
drive parameters listed in Tables 1–3. The effect of the gearhead is considered on the model separately.

A.1.1. PWM power converter
In Fig. 2 with vc as an input control voltage and Va as the average DC output voltage, the PWM converter is modelled as a first order system Gr(s)

as [45].

= =
+

=G s V s
v s

K
t s

K V
v

( ) ( )
( ) (0.5 1)

, where .r
a

c

r

r
r

dc

cmax (A.1)

A.1.2. Armature-current dynamics
For a CCDC-drive armature current ia of the motor is controlled in feedback. Therefore, ia in terms of Va and τL is given as

= +i G s V G s τ( ). ( ). ,a a a τ L (A.2)

= =

= + + +

+G s G s

D s τ s τ s k k k K

where ( ) , ( ) ,

( ) (1 )(1 ) .

a
τ s k

D s τ
k k K

D s

a n a b t n

(1 )
( ) ( )
n a a b n

A.1.3. Current controller
If actual armature current ia is bounded to Iamax amperes and the sensed armature current ias is bounded to Ismax in volts. Then the current sensor

gain Hc is defined as =H I I/s ac maxmax . To ensure a small steady state error in ia a PI controller Gc(s) is selected as the current controller as

=G s K s( ) /c c (A.3)

Fig. 24. Experimental tracking results of CCDC-drive for different load-torque
compensators, under respective experimental load torques of Fig. 21.
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A.1.4. Mechanical dynamics
Referring to Fig. 2 the motor angular velocity w in terms of the mechanical dynamics of the motor is given by

= − =
+

−w G s τ τ K
τ

k i τ( )( )
(1 )

( ),m e L
m

m
t a L

(A.4)

which can then be written in terms of two inputs ia and τL as

=
+

−
+

w K k
τ

i K
τ

τ
(1 ) (1 )

.m t

m
a

m

m
L

(A.5)

From (A.2)–(A.5), w can then be written in terms of Va and τL as

= +w G s V G s τ( ). ( ). ,a L1 2 (A.6)

= = + −G s G swhere ( ) , ( ) .k k K
D s

K
τ s k G s1 ( ) 2 (1 )(1 ( ))

a t n n
n t τ

A.1.5. Full closed-loop dynamics
From Fig. 2Va can also be written in terms of i*as and ias as

= −V G s G s i i( ) ( )( * ).a c r as as (A.7)

Since =i H ias ac , Va in (A.7) is then given by

= −V G s G s i H i( ) ( )( * ) .a c r as ac (A.8)

From (A.5)–(A.8), Va can be written in terms of i*as and τL as
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From (A.6) and (A.9) and by considering the zero-order hold effect in i*as, velocity w is found in terms of the inputs i*as and τL as

= −w G s i G s τ( ). * ( ). ,A as B L (A.10)
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Eq. (A.10) hence gives an accurate, higher order frequency domain model of the CCDC-drive.

A.1.6. Effect of gear head
If η is gear ratio of drive and τLo is torque at the output shaft, then output angular velocity of the drive wo is given from (A.10) in terms of i*as and

τLo as

= −w
η

G s i
η

G s τ1 ( ). * 1 ( ). .o A as B Lo2 (A.11)

It is seen from (A.11) that for smaller gear ratios 1/η2 is not a small quantity therefore to reduce the effect of τLo on wo the gain GB(s) must be small
over the effective bandwidth of the drive.

A.2. Approximate frequency domain model of CCDC-drive

A first order approximate model for the CCDC-drive can be obtained from (A.10) if it is assumed that τa≪ τn. This in turn implies that D(s) in (A.2)
can then be written approximately as

′ = ⎛
⎝

+ ⎞
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= +D s a τ
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s a k k k K( ) 1 where 1 .n
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From (A.12) while assuming tr≪ 1 and ≪ 1τ
a
n , GA(s) in (A.10) can be written as a first order approximation as
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Similarly, from the above assumptions transfer functions in (A.1), (A.2) and ((A.6) can then be written approximately as
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From (A.14), GD(s) defined in (A.10) is then approximated as
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From (A.14) and (A.15), G s( )Bn in (A.10) can be approximated as
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Therefore, a first order approximate model of the CCDC-drive can be written from (A.10), (A.15) and (A.16) as

= ′ − ′w G s i G s τ( ). * ( ). .A as B L (A.17)

With gear head included the approximate CCDC-drive model in (A.17) is given as

= ′ − ′w
η

G s i
η

G s τ1 ( ). * 1 ( ). .o A as B Lo2 (A.18)
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