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Chapter 24

Polar Regions of the Mesozoic—Paleogene
Greenhouse World as Refugia for Relict

Plant Groups

Benjamin Bomfleur', Patrick Blomenkemper', Hans Kerp' and Stephen McLoughlin”
’Westfc’ilische Wilhelms-Universitit Miinster, Miinster, Germany; 2Swedish Museum of Natural History, Stockholm, Sweden

1. INTRODUCTION

Today, a prominent effect of the decreasing amount and
increasing seasonality of solar energy input with increasing
latitude is the latitudinal gradient in species richness; that is,
the general decrease in biodiversity from the equator
toward the poles (Hillebrand, 2004; Gaston, 2000, 2007).
Although this phenomenon has long been recognized
and has fascinated some of the most celebrated minds of
ecology and evolutionary theory (Von Humboldt, 1806;
Darwin, 1859; Wallace, 1878), its underpinning mechanisms
remain poorly understood (Rohde, 1992; Gaston, 2000;
Willig et al., 2003; Hillebrand, 2004). In recent decades, it
has become increasingly clear that the latitudinal gradient
concept can be transposed to a much greater evolutionary
scale and projected deep into geological time, revealing
biogeographical patterns in the origination and extinction of
clades (Crane and Lidgard, 1989; Jablonski, 1993; Jablonski
et al., 2006; Mittelbach et al., 2007; Fig. 24.1). The cold
deserts of the polar regions today are among the most
inhospitable places on Earth. Global climates, however, have
been changing throughout Earth history, and during warmer
periods of the Phanerozoic, large parts of landmasses in
high northern and southern latitudes were covered in lush
vegetation (e.g., Heer, 1868; Halle, 1913; Taylor and Taylor,
1990; Cantrill and Poole, 2012). These past high-latitude
terrestrial ecosystems have repeatedly been shown to host
the youngest occurrences of plant taxa that had long
disappeared from lower-latitude basins (e.g., McLoughlin
et al., 2008, 2011).

Here, we present Dicroidium cuticles from Jurassic
strata of East Antarctica that significantly postdate the
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presumed extinction of this iconic plant group of the
Gondwanan Triassic. It appears that contrary to current
assertions (Pattemore et al., 2015; Pattemore, 2016),
Dicroidium did not perish in the course of the end-Triassic
biotic crisis, but survived with relictual populations in polar
refugia well into the Jurassic. On this basis, we provide a
review of case studies outlining the changing geographical
distributions of both austral and boreal plant groups
to highlight a common pattern among archaic plant
groups—that of retreat to the poles in the wake of biotic
crises.

1.1 The Dicroidium Plants

Plants with Dicroidium-type foliage are the best-known
representatives of Umkomasiaceae (=Corystospermaceae),
a group of extinct gymnosperms that were common
elements in many early and mid-Mesozoic floras worldwide.
Dicroidium plants constituted medium-sized to tall canopy
trees producing distinctive forked fronds (the name-bringing
Dicroidium) and leafless fertile branching systems, either
with terminal, recurved cupules (Umkomasia) or with short-
stalked, leafy microsporophylls with abaxial clusters
of free pollen sacs (Pferuchus) containing non-taeniate
bisaccate pollen (Falcisporites) (Taylor et al., 2006, 2009).
Dicroidium foliage is highly variable in size, architecture
(simple to tripinnate), leaflet morphology (needle-like, entire,
to variably lobed or dissected), and venation (e.g., simple,
taeniopteroid, odontopteroid, or alethopteroid; see Arch-
angelsky, 1968; Retallack, 1977; Anderson and Anderson,
1983). All frond forms, however, possess the characteristic
basal bifurcation (see Anderson and Anderson, 1983), share
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Elsner (2010), Elsner et al. (2013), and Goodge and Fanning (2010).

distinctive epidermal and cuticular features (e.g., Gothan,
1912; Thomas, 1933; Jacob and Jacob, 1950; Townrow, 1957,
Archangelsky, 1968; Bomfleur and Kerp, 2010), and are
associated with similar reproductive organs (e.g., Thomas,
1933; Anderson and Anderson, 1983). The Dicroidium seed
ferns were the dominant gymnosperm group in temperate
forest and wetland environments across most of the
Southern Hemisphere during the Middle and Late Triassic
(e.g., Anderson et al., 1999; McLoughlin, 2001). Owing to
their ubiquitous occurrence and sheer abundance in the
Gondwanan Triassic, the informal term “Dicroidium flora” is
commonly used to describe their main geographic and
biostratigraphic realm (e.g., Hirmer, 1936; Townrow, 1957,
Barnard, 1973; Gould, 1975; McLoughlin, 2001; Artabe et al.,
2003).

It has generally been assumed that the Dicroidium flora
first appeared during the Early Triassic and perished in the
course of the end-Triassic biotic crisis (Anderson and
Anderson, 1983; Pattemore et al., 2015). However, there
have also been early clues that the Dicroidium seed ferns
may not have been restricted exclusively to the Triassic
of Gondwana. Unexpected co-occurrences of supposed
Dicroidium fronds together with Glossopteris—the iconic
Permian plant fossil of Gondwana—in Madagascar
(Carpentier, 1936), India (e.g., Pant and Pant, 1987), and
Antarctica (e.g., Rigby and Schopf, 1969) cast doubt about
the abrupt replacement of the Permian Glossopteris flora
with the Triassic Dicroidium flora. Whereas there is now
evidence that most of these unusual mixed assemblages

Timber Peak Section Peak
(74°11'S 163°23'E) (73°14'S 161°55'E)
A = (<198 + 2 Ma’
: E L SPP30b v
=
£ & <191 + 4 Ma’
fra c <214 + 3 Ma’
4 o
5 unexposed 5
o &
c
S
g <2021 3Ma
3 52 a

V

Main lithologies

E= sill intrusion

Pillow lava

£l
I Coal

Mafic volcaniclastic deposit

(Reworked) silicic tuff

v Dicroidium fossils
D Palynological sample
(__) Radiometric age data

Mudstone

wog

Sandstone

Crystalline basement

Geographic and stratigraphic setting of the studied material. Modified from Bomfleur et al. (2014); radiometric age data adopted from

contain the latest Glossopteris survivors rather than
precocious Dicroidium occurrences (see Section 4.3.2),
well-preserved Dicroidium fronds occur in reliably dated
Permian deposits of Jordan (Kerp et al., 2006; Abu Hamad
et al., 2008, 2017). Conversely, the possible occurrence
of Dicroidium in the Jurassic of Antarctica has also been
reported (Rees and Cleal, 2004), but the fragments are
incomplete and assignment has been considered tentative.

2. MATERIAL AND METHODS

This study is based primarily on new occurrences of
Dicroidium fossils in Jurassic deposits of the Victoria Group
at two localities in North Victoria Land, Transantarctic
Mountains: Section Peak and Shafer Peak (Bomfleur et al.,
201 1c; Fig. 24.1). Well-preserved cuticle-bearing compres-
sion fossils of Dicroidium fronds from Triassic deposits at
Timber Peak, North Victoria Land (Bomfleur and Kerp,
2010) are illustrated for comparison (Fig. 24.1). The material
was collected during the austral summer 2005/2006 in the
course of the Ninth German Antarctic North Victorialand
Expedition (GANOVEX IX). Rock samples for analysis of
cuticle and other mesofossil content were treated using 48%
hydrofluoric for up to 2 months until sufficient amounts
of organic residues were obtained, depending on sample
material. The organic residues were then carefully
neutralized via repeated steps of decanting and adding
distilled water, then macerated using Schulze’s reagent (40%
HNO; + a few crystals of KClO3) for up to 3 h, rinsed



thoroughly in water, and then cleaned and bleached by
immersion in a mild potassium hydroxide solution (2%
KOH) for a few seconds. The residues were washed in water
again until neutral, dehydrated in pure glycerol, and
mounted on permanent slides using glycerol jelly. The
material is stored in the collection of the Forschungsstelle
fir Paldobotanik, Westfilische  Wilhelms-Universitiit
Miinster (Miinster, Germany).

2.1 Dispersed Cuticles From Section Peak

Cuticles were recovered from a bulk-macerated sample of a
carbonaceous fine-grained sandstone bed (SPP30b) from
the upper part of the Section Peak Formation at Section
Peak, Lichen Hills (Fig. 24.1; see also left part of Schoner
et al., 2011, Fig. 6a). The bed contains mass accumulations
of organic debris smaller than 1cm, most of which
represent fragments of coalified wood or of conifer needles
(Bomfleur et al., 2011c; see Pertusati et al., 2006 and
Kerp and Bomfleur, 2011, Plate 12). A combination of
radiometric and palynological age data (see Bomfleur et al.,
2014) indicates a Sinemurian (most likely late early or
middle Sinemurian) age for the host deposit.

2.2 Dispersed Cuticles From Shafer Peak

Cuticles were recovered from an up to 1.4-m-thick bed
of tuffaceous siltstone to fine-grained sandstone (SHC32)
in the upper part of the Shafer Peak Formation at the
type section on the northern flank of Shafer Peak, Deep
Freeze Range (Fig. 24.1; see also Fig. 5a of Bomfleur
et al., 2011b). The SHC32 bed is a fluvially reworked silicic
tuff, and is rich in clay-gall rip-up clasts, charcoal debris, and
variably sized other plant remains, including large fronds
and frond fragments of bennettitaleans (Otozamites spp.,
Zamites sp.) and dipterid ferns (Clathropteris meniscioides)
(Bomfleur et al., 2011b,c). Bulk macerations have
yielded various additional plant remains, including conifer
twigs and leaves (Bomfleur et al., 2011b) and the single
cuticle fragment described here. Palynostratigraphy
(Bomfleur et al., 2014) and radiometric age data from
correlative deposits of reworked silicic tuff in the central
Transantarctic Mountains (182.7 4+ 1.8 Ma: Elliot et al.,
2007; 186.2 + 1.7 Ma: Elliot et al., 2017) and Tasmania
(182 £ 4 Ma: Bromfield et al., 2007) provide strong
evidence to suggest a middle or late Pliensbachian age
(~ 185 Ma) for the plant-bearing SHC32 bed at Shafer Peak.

2.3 The Dicroidium Assemblage From
Timber Peak

The upper portion of a crevasse-splay deposit (TI13/5)
capping a coal seam in the middle part of the Section
Peak Formation at Timber Peak, northern Eisenhower
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Range, yielded a well-preserved and remarkably diverse
Dicroidium assemblage (Bomfleur and Kerp, 2010) that we
use here for comparison with the dispersed cuticles. The
deposit also yielded a rich palynomorph assemblage
(Norris, 1965; Bomfleur et al., 2014). Based on the
dominance of non-taeniate bisaccate pollen grains and on
the co-occurrence of the stratigraphically significant paly-
nomorphs Craterisporites rotundus, Polycingulatisporites
crenulatus, Polycingulatisporites radiatus, Antulsporites
varigranulatus, and Cadargasporites reticulatus, the flora
has been assigned a Rhaetian age (Bomfleur et al., 2014),
making this one of the most diverse and youngest securely
dated Dicroidium assemblages known.

3. RESULTS

Family Umkomasiaceae Petriella, 1981

Genus Dicroidium Gothan, 1912

Dicroidium odontopteroides (Morris) Gothan, 1912
(Plate I, 1, 2, 5, and 7—9)

Material: Four cuticle fragments GIX-SPP30b-001(00
1—004).

Locality, unit, and age: Section Peak, Lichen Hills (North
Victoria Land, East Antarctica); Section Peak Formation,
late early or middle Sinemurian (Early Jurassic).
Description: Cuticle on one leaf surface slightly thicker than
on the other (Plate I, 1). Epidermal cells usually elongate,
rounded-rectangular and up to three times longer than wide,
rarely longer or square to isodiametric polygonal; venation
weakly discernible with cells above and below vein courses
slightly more strongly cutinized and mainly arranged parallel
or transverse to vein course (Plate I, 5 center left); cells in
intercostal fields more irregularly oriented (Plate I, 5 right).
Cuticle surface of each regular epidermal cell with one to
four (typically two) even-sized, dome- or lens-shaped
thickenings of about 25 um diameter; numbers, shapes,
and arrangements of these thickenings variable among
cells depending on cell size and shape, but thickenings
altogether evenly and regularly distributed over the cuticle
surface excluding the stomata. Intercellular flanges uneven,
commonly buttressed, or nodose (Plate I, 5 and 7). Leaves
unevenly amphistomatic with stomata more common on one
leaf surface than the other (Plate I, 1). Stomata irregularly
distributed over leaf surfaces, oriented mainly parallel or
transverse to vein courses in costal fields and oriented
inconsistently in intercostal fields (Plate I, 5); most of the
longitudinally or transversely oriented stomata asymmetri-
cally bowtie- or hourglass-shaped with two undifferentiated
polar cells similar to surrounding regular epidermal cells and
with two to four lateral subsidiary cells that are much more
thickly cutinized, lacking dome-shaped thickenings but
bearing a series of longitudinal wrinkles (Plate I, 5, 7, and 8);
some stomata surrounded by an incomplete ring of up to
five similarly, differentiated subsidiary cells (Plate I, 5).
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PLATE | Dicroidium odontopteroides from the Lower Jurassic (1, 2, 5, and 7—9) and Upper Triassic (3, 4, 6, and 10—12) of North Victoria Land, East
Antarctica. (1 and 2) Overviews of dispersed cuticle fragments GIX-SPP30b-001(003) (1) and GIX-SPP30b-001(001) (2); (3) Cuticle-bearing frond
compression (GIX-TI13/5-001a); (4) Cuticle of complete pinna (GIX-TI13/5-001a-sl-1); (5 and 6) Comparison of cuticle overviews from Early Jurassic
(5: GIX-SPP30b-001(001)) and Late Triassic (6: GIX-TI13/5) specimens; (7 and 10) Comparison of groups of stomata on cuticles of Early Jurassic
(7: GIX-SPP30b-001(003)) and Late Triassic (10: GIX-TI13/5-) specimens; (8 and 11) Comparison of details of individual stomata on cuticles of Early
Jurassic (8) and Late Triassic (11) specimens; (9 and 12) Comparison of hair bases on cuticles of Early Jurassic (9) and Late Triassic (12) specimens.
Specimen numbers: (1) = GIX-SPP30b-001(003); (2, 5, 7, and 8) = GIX-SPP30b-001(001); (3, 4, and 6) = GIX-TI13/5-001a; (9) = GIX-SPP30b-001(004);
(10) = GIX-TI13/5—026; (11) = GIX-TI13/5-011a(66); (12) = GIX-TI13/5-011a(47). Scale bars: (1 and 2) =500 pm; (3) =1 cm; (4) = 1 mm; (5 and
6) =200 um; (7 and 10) = 50 pum; (8, 9, 11, and 12) = 20 pum.




Stomatal pit rounded rectangular to elliptic, typically
20—30 pm long and three times longer than wide; guard cells
apparently only slightly sunken; guard-cell cutinizations
thin and membranaceous (Plate I, 7 and 8), commonly
lacking (Plate I, 11). Hair bases present but rare, circular to
oval in outline, up to ~50 pm in diameter, with very thin
cuticle in the center surrounded by a thickened rim with sharp
edges; hairs biseriate at least basally.

Comparison and remarks: The diagnostic epidermal and
cuticular features of these fragments match precisely those of
the cuticles obtained from Dicroidium odontopteroides from
Timber Peak (Plate I, 3, 4, 6, and 10—12). Slight differences
include the overall somewhat thicker cutinization of the
Section Peak cuticles and their more pristine preservational
quality as evident in, for example, attached remnants of the
delicate guard-cell cutinizations (Plate I, 7 and 8 vs. Plate I,
10 and 11) and the much smoother appearance of the cuticle
under low magnification (Plate I, 5 vs. Plate I, 6). We
consider these differences to result either from contrasting
taphonomic contexts or to fall into the expected range of
natural variation.

Dicroidium elongatum (Carruth.) S. Archang., 1968
(Plate II, 1, 5, and 7)

Material: One cuticle fragment GIX-SPP30b-001(005).
Locality, unit, and age: Section Peak, Lichen Hills (North
Victoria Land, East Antarctica); Section Peak Formation,
late early or middle Sinemurian (Early Jurassic).
Description: Cuticle fragment moderately thick compared
to co-occurring gymnosperm cuticles. Regular epidermal
cells rounded rectangular, fusiform, or irregularly elongate,
longitudinally oriented and aligned forming irregular,
discontinuous rows throughout the preserved -cuticle
portion; no differentiation into costal and intercostal fields
discernible (Plate II, 1). Anticlinal walls straight or gently
curving with even, relatively thick intercellular flanges;
outer cuticle surface smooth (Plate II, 5). Stomata evenly
distributed over leaf surface; most stomata oriented
longitudinally, characteristically butterfly-shaped with a
rounded-rectangular stomatal pit flanked by two or three
differentiated lateral subsidiary cells; lateral subsidiary cells
much smaller than surrounding regular epidermal cells and
of rounded-to curved-trapeziform shape, commonly flanked
lengthwise by an encircling cell; subsidiary-cell cuticle not
or slightly thinner than that of adjacent regular epidermal
cells (including encircling cells); walls forming the stomatal
pit heavily cutinized (Plate II, 5 and 7).

Comparison and remarks: The fragment is essentially
identical to the cuticles of the leaf margins of D. elongatum
from Timber Peak (Plate II, 2—4, 6, and 8) based on (1) the
conspicuous longitudinal elongation and (2) alignment of
epidermal cells throughout the preserved cuticle portion;
(3) the lengthwise orientation and (4) the characteristic
butterfly shapes of stomata resulting from (5) usually two
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opposite, small, rounded to curved trapeziform lateral
subsidiary cells that are (6) about as thickly cutinized as
surrounding regular epidermal cells; (7) the gently curving
anticlinal walls with smooth and evenly cutinized inter-
cellular flanges; and (8) the smooth outer cuticle surface
(see Bomfleur and Kerp, 2010). Although the specimen
is just a small fragment, the remarkable similarity to
D. elongatum cuticles from Timber Peak in all diagnostic
epidermal and cuticular features warrants assignment to this
species.

Dicroidium sp.

(Plate II, 9—12)

Material: One cuticle fragment on slide GIX-SHC32-
000(36).

Locality, unit, and age: Shafer Peak, Deep Freeze Range
(North Victoria Land, East Antarctica); Shafer Peak
Formation, middle or late Pliensbachian (Early Jurassic).
Description: Cuticle moderately thick compared to co-
occurring cuticles of other gymnosperm taxa. Ultimate
veins reaching the margin at an acute angle (Plate II, 9).
Epidermal cell pattern weakly differentiated into costal
fields with more slender cells that are longitudinally aligned
and oriented mainly parallel or transverse to vein course,
and into intercostal fields with larger, broader cells that are
oriented less consistently (Plate II, 9). Anticlinal walls
generally straight or only slightly curving, with uneven,
nodose to buttressed intercellular flanges; outer cuticle
surface smooth (Plate II, 10—12). Most cells stout rectan-
gular (usually less than two times longer than wide) or
about isodiametric polygonal. Stomata evenly distributed
over leaf surface (Plate II, 9 and 10); most stomatal com-
plexes oriented longitudinally or transversely to adjacent
vein courses, butterfly- or bowtie-shaped (Plate II, 10—12)
with a rectangular pit flanked by two or three differentiated
lateral subsidiary cells; some stomata surrounded by an
incomplete ring of three or four differentiated subsidiary
cells; subsidiary cells smaller and more slender than
surrounding regular epidermal cells, sporadically flanked
lengthwise by an encircling cell; subsidiary-cell cuticle
with curved wrinkles and furrows concentric around the
stomatal pit, overall thicker than that of adjacent regular
epidermal cells including encircling cells; guard cells only
slightly sunken; inner guard-cell walls with membranous,
curved-trapeziform cutinizations bearing indistinct radial
striae (Plate II, 11 and 12).

Comparison and remarks: The sum of characteristic
epidermal and cuticular features, notably, the differentiation
and the arrangement of subsidiary cells in relation to
the orientation of the stoma (see Jacob and Jacob,
1950; Bomfleur and Kerp, 2010), enables assignment
of this fragment to Dicroidium. Other individual
features typical of Dicroidium cuticles are the uneven,
nodose, or buttressed cutinization of intercellular flanges



PLATE Il Additional Dicroidium cuticles from the Lower Jurassic (1, 5, 7, and 9—12) and Upper Triassic (2—4, 6, and 8) of North Victoria Land, East
Antarctica. (1 and 2) Dispersed cuticle fragments of Dicroidium elongatum from the Lower Jurassic (1) and Upper Triassic (2); (3 and 4) Cuticle-bearing
frond compressions of D. elongatum; (5 and 6) Comparison of cuticle overviews from Early Jurassic (5) and Late Triassic (6) specimens of D. elongatum;
(7 and 8) Comparison showing details of stomata from Early Jurassic (7) and Late Triassic (8) specimens of D. elongatum; (9) Overview of dispersed
cuticle fragment of Dicroidium sp. from the Pliensbachian Shafer Peak Formation at Shafer Peak; (10) detail of (9) showing epidermal cell pattern and
distribution, orientation, and organization of stomatal complexes; (11 and 12) details of (9) showing well-preserved stomata with preserved guard-cell
cutinizations (12). Specimen numbers: (1, 5, and 7) = GIX-SPP30b-001(005); (2) = GIX-TI13/5-011a(38); (3) = GIX-TI13/5-010a; (4) = GIX-TI13/
5-008a; (6 and 8) = GIX-TI13/5-011a(25); (9—12) = GIX-SHC32-000(36). Scale bars: (1 and 9) = 500 um; (2) = 1 mm; (3 and 4) = 1 cm; (5, 6, and
10) = 100 pm; (7 and 8) = 50 um; (11 and 12) = 20 pum.




(see, e.g., Anderson and Anderson, 1983, Figs. 6.3 and
6.4, Plates 107, 3,4,8 and 108, 3,5; Cantrill et al., 1995,
Fig. 3e and f; Barale et al., 2005, Figs. 24—28); the thicker
cutinization but lack of papillae on differentiated
subsidiary cells (see Anderson and Anderson, 1983,
Figs. 6.2 and 6.4; Bomfleur and Kerp, 2010); the stomata
scattered irregularly over the lamina irrespective of vein
courses (see Anderson and Anderson, 1983; Abu Hamad
et al., 2008; Bomfleur and Kerp, 2010); and the relatively
little-sunken guard cells (see Anderson and Anderson,
1983; Bomfleur and Kerp, 2010). The particular
combination of features in the present specimen is,
however, unknown among the Dicroidium cuticles studied
so far (Jacob and Jacob, 1950; Archangelsky, 1968;
Anderson and Anderson, 1983; Cantrill et al., 1995; Abu
Hamad et al.,, 2008; Bomfleur and Kerp, 2010). We
suggest it represents probably a distinct species, but
refrain from a formal systematic treatment because of the
fragmentary nature and limited sample size of the material.

4. DISCUSSION

4.1 Relictual Dicroidium Occurrences in
the Jurassic of Antarctica

The apparent occurrence of Dicroidium in Jurassic deposits
warrants particular scrutiny regarding the proper identifi-
cation of the material, the age determination of the host
deposits, and the possibility of reworking or sample
contamination. First, Dicroidium cuticles and epidermal
morphologies are very well known and have early on been
recognized as distinctive for the group (Thomas, 1933;
Jacob and Jacob, 1950; Townrow, 1957; Archangelsky,
1968; Bomfleur and Kerp, 2010). Hence, even though the
sample material includes only small cuticle fragments, the
striking similarity in all observable features of these
fragments compared to the cuticles obtained from the
Triassic Dicroidium compressions is so significant that we
consider their systematic affiliation beyond doubt. Second,
the age assignments for the host deposits are robust, being
constrained via a combination of palynostratigraphy
(Norris, 1965; Pertusati et al., 2006; Bomfleur et al., 2014),
radiometric ages of detrital and juvenile volcanic zircons
(Elsner, 2010; Goodge and Fanning, 2010; Elsner et al.,
2013), lithostratigraphic correlation, and biostratigraphic
ranges of co-occurring plant macrofossils (Bomfleur et al.,
2011b,c). Third, any significant effect of reworking is
unlikely because the dispersed Dicroidium cuticles have
a similar state of preservation compared to those of co-
occurring (characteristically Jurassic) gymnosperm taxa.
Moreover, the Dicroidium cuticles—though fragmented—
appear well preserved, and the fine details preserved
on some of the fragments (e.g., the delicate guard-cell
cutinizations on the cuticles of D. odontopteroides) would
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not have survived repeated erosion and transport. Finally,
the dispersed Jurassic cuticles of D. odontopteroides and of
D. elongatum do differ noticeably from the Triassic in situ
cuticles in overall preservational aspect (e.g., in having
deformations caused by the much larger grain size of the
sedimentary matrix) and in those cuticle features that we
consider to fall into the range of intraspecific variability
(e.g., absolute cuticle thickness). Taken together, the cuticle
fragments presented here provide the first robust evidence
of Dicroidium seed ferns in the Jurassic, and may
provide further circumstantial evidence to support earlier
identifications of Dicroidium fragments in the Lower
Jurassic of the Antarctic Peninsula (Rees and Cleal, 2004).

4.2 Distribution of Dicroidium Through
Space and Time

These youngest occurrences of Dicroidium in Antarctica
complement a remarkable pattern in the distribution of
Dicroidium plants through space and time (Fig. 24.2).
The group apparently originated some time during the
late Palaecozoic in seasonally dry and disturbance-prone
environments of the palacoequatorial regions, with the
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FIGURE 24.2 Distribution of Dicroidium through space and time. Base
maps and climates based on the Paleomap Project (Scotese, 2002);
Dicroidium occurrences compiled primarily from Anderson and Anderson
(1983) with additional data from Artabe et al. (2003), (3) Rees and Cleal
(2004), (1) Abu Hamad et al. (2008), Bomfleur and Kerp (2010), Pal et al.
(2014), Pattemore et al. (2015), (2) Schneebeli-Hermann et al. (2015), and
(4) this study.
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oldest reliable fossil records from the Lopingian (Upper
Permian) of Jordan (Kerp et al., 2006; Abu Hamad et al.,
2008) and Pakistan (Schneebeli-Hermann et al., 2015).
As global temperatures rose toward the end of the
Palaeozoic, Dicroidium migrated southward along the
Tethys margin and began to invade the extensive lowlands
of the Gondwanan high latitudes that were vacated by
the gradual demise of the once dominant, cool-adapted
glossopterid swamp forests (McLoughlin, 2001). By the
later Early Triassic, Dicroidium vegetation had extended
across most of eastern Gondwana, reaching far into polar
latitudes beyond 80°S, and then made its first appearance in
western Gondwana at the beginning of the Middle Triassic
(Artabe et al., 2001). Dicroidium distribution reached
its heyday with increasingly humid climates during the
early Late Triassic (Simms and Ruffel, 1990), when the
characteristic leaf type had become the most dominant
macrofloral element across the entire extratropical regions
of Gondwana (Anderson and Anderson, 1983). Regional
climates during that time were humid and warm temperate,
with high rainfall throughout the year and without extended
periods of frost even at high latitudes (Escapa et al., 2011).
Nevertheless, even without low-temperature environmental
stresses in these ancient high-latitude habitats, the annual
phases of continuous summer daylight and continuous
winter darkness may have lasted for up to several months.
The Dicroidium plants were apparently well adapted to
cope with this extreme seasonality: they were seasonally
deciduous and entered dormancy to endure the long, warm
winter darkness (Meyer-Berthaud et al., 1992; Cineo
et al., 2003; Bomfleur and Kerp, 2010); modified, early
leaf-ontogenetic foliar outgrowths of the fronds may have
served to boost the restoration of metabolic activity during
spring flush (Bomfleur et al., 2012); and a specialized leaf
physiology with short-lived “high-performance foliage”
maximized assimilation rates during the growth season
(Bomfleur and Kerp, 2010), which is also reflected in the
remarkable thickness of growth rings in corresponding
fossil wood (Decombeix et al., 2014). Altogether, life mode
and ecological characteristics rendered the Dicroidium
plants remarkably successful competitors in the mesic
high-latitude environments of Gondwana, where they
formed the dominant canopy elements in old-growth forest,
woodland, and forested mire vegetation.

Our results indicate that toward the end of the Triassic,
Dicroidium plants only gradually began to disappear and
lingered on in Jurassic floras as minor relictual elements
in more modern vegetation communities dominated by
conifers, Bennettitales, and various ferns. It remains
difficult to resolve the precise mechanisms for this gradual
demise of the Dicroidium seed ferns. Certainly, the
immense magmatism of the Central Atlantic Magmatic
Province around the Triassic—Jurassic boundary and of the
Ferrar-Karoo Large Igneous Province around the

Pliensbachian—Toarcian boundary must have triggered
complex cascades of effects on the Earth System and the
biosphere (see Bond and Grasby, 2017). Massive release of
greenhouse gases during these magmatic episodes, for
instance, is argued to have increased seasonal aridity in the
continental interior of Pangaean landmasses (Bonis and
Kiirschner, 2012). In the face of such changing environ-
mental conditions, more stress-tolerant conifer groups and
Bennettitales may have eventually gained adaptational
advantages over the Dicroidium plants, which gradually
declined as other gymnosperms rose to dominance (see
McLoughlin, 2001).

4.3 Plant Relictualism in the High
Latitudes of a Greenhouse World

These youngest relictual occurrences of Dicroidium in
polar habitats provide an important further contribution to
the emerging picture that during times of global warmth,
high-latitude regions may have provided climatically stable
last refugia for relict populations of plant groups in the
wake of biotic crises. Here we summarize key examples
of plant groups that show such younger-than-expected
high-latitude occurrences including isoetalean lycopsids,
various groups of extinct seed ferns, Bennettitales, and
conifers.

4.3.1 Isoétales

Herbaceous Isoétales have a long fossil record extending
back to the Devonian (Pigg, 1992, 2001), and they were
probably related closely to the arborescent Lepidodendrales
of the late Palaeozoic coal-forming mires. Paurodendron
was an early herbaceous isoétalean plant that grew widely
in the Pennsylvanian equatorial coal swamps of North
America and Europe (Fry, 1954; Schlanker and Leisman,
1969; Phillips and Leisman, 1966; Rothwell and Erwin,
1985). McLoughlin et al. (2015a) extended the stratigraphic
and geographic range of Paurodendron to ~70° south
palaeolatitude in Wordian strata of the Lambert Graben,
Antarctica (Plate III, 1 and 2). Paurodendron apparently
disappeared from the palaeotropics around the end of
the Carboniferous as the western equatorial regions of
Pangaea transitioned from humid (peat-forming) to semi-
arid conditions. Peat accumulation persisted in high
southern latitudes until the close of the Permian, and
Paurodendron appears to have tracked southward with
the poleward contraction of glossopterid-dominated peat-
forming environments toward the end of the Palaeozoic.
There is a 35 million year gap between the youngest
equatorial records and the southern high-latitude records of
Paurodendron, but McLoughlin et al. (2015a) noted that
this may be a function of strong preservational biases—the
genus only being recognized from three-dimensionally
preserved (permineralized) fossils.



PLATE IIl  Selected examples for plant taxa with relictual occurrences in high palaeolatitudes. (1 and 2) Longitudinal (1) and transverse (2) sections
through stems of Paurodendron stellatum (Isoétales) from the Guadalupian of the Prince Charles Mountains, East Antarctica (McLoughlin et al., 2015a);
(3) Mat of notably small Glossopteris leaves from the Lopingian Newcastle Coal Measures of the Sydney Basin, New South Wales, Australia (AMF
1242248); (4) probable Peltaspermales from the Upper Jurassic or lowermost Cretaceous of Clack Island, Queensland, Australia; note intercalary pinnules
on the frond (arrows) and Peltaspermum-like ovuliferous disk in the lower right of the image; (5 and 6) frond compression (5) and cuticle with stoma (6)
of Komlopteris eocenica, and Eocene seed fern from Tasmania (McLoughlin et al., 2008); (7) Sagenopteris leaf (Caytoniales) from the Triassic of
Kyrgyzstan; (8 and 9) Ptilophyllum muelleri (Bennettitales) from the Oligocene of Emmaville, New South Wales, Australia (McLoughlin et al., 2008).
Scale bars: (1) = 1 mm; (2) = 250 um; (3 and 4) = 1 cm; (5 and 7—9) = 5 mm; (6) = 25 pm.
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Notably, also the youngest occurrences of pleuromeian
lycophytes—the dominant plants of many Lower and lower
Middle Triassic plant assemblages worldwide (Retallack,
1997)—are from Norian—Rhaetian (Late Triassic) deposits
of the central Transantarctic Mountains (Bomfleur et al.,
2011a). Although the fossils are incomplete fragments,
fertile features and a characteristic internal leaf structure
indicate affinities with Pleuromeia. The unusual occurrence
of these fossils in carbonaceous flood-basin deposits has
been interpreted to indicate that Pleuromeiales migrated
far south during the Middle Triassic and adapted to peat-
swamp environments, where they persisted well into the
Late Triassic when they had long disappeared from their
typical lower-latitude habitats (Bomfleur et al., 201 1a).

4.3.2 Glossopteridales

Glossopterids were a distinctive group of gymnosperms
that occupied southern middle to high latitudes in the
Permian. They are most typically represented in the fossil
record by their spathulate, reticulate-veined leaves,
uniquely segmented roots, taeniate bisaccate pollen, and
axillary or leaf-borne, winged, multiovulate reproductive
organs. During the early Permian (Cisuralian) glossopterids
rapidly occupied lowland habitats vacated by the retreating
ice sheets of the Late Palacozoic Ice Age. The group
reached its acme in the Guadalupian to Lopingian at which
time it overwhelmingly dominated mire environments from
middle to near-polar southern latitudes. Glossopteris and its
allies were clearly adapted to cool temperate, strongly
seasonal climates, evidenced by the group’s restriction
to palaeolatitudes greater than 30°S (McLoughlin, 2001),
the deciduous nature of the plants (McLoughlin, 2011),
adaptations to consistently humid mire habitats (Balme
et al., 1995; McLoughlin, 1993), and association with
marine sediments bearing cold-water sedimentary indices,
such as glendonites and ice-rafted dropstones (Retallack,
1980; Shi and McLoughlin, 1997). Glossopterids appear to
have persisted to the end of the Permian. It is unclear
whether they survived locally into the earliest Triassic. It is
notable that the stratigraphic spacing of coals and coal
bed thickness declines in the uppermost Permian of the
Amery Group, East Antarctica (McLoughlin and Drinnan,
1997a,b), and this appears to signal a general decline in the
conditions suitable for supporting the mire-dominating
Glossopteris flora. Remarkably, the youngest Permian
assemblages in the Parana Basin, Brazil (Rio do Rasto
Formation: Rohn and Rosler, 1992), the Karoo Basin,
South Africa (Normandien Formation: Anderson and
Anderson, 1985), and the Bowen Basin, Australia (Black-
water Group: McLoughlin, 1993, 1994a,b) all host large
numbers of small-leafed species (Plate III, 3). A few
large-leafed forms are still present but typically restricted to
local deposits that may have characterized nutrient-rich

and/or very moist habitats. By the Changhsingian, coal-
forming environments had disappeared from the northern
sectors of Gondwana and are best represented in the
southernmost palaeolatitudes, then occupied by eastern
Australia and Antarctica. This suggests a general poleward
contraction of the core domain dominated by glossopterids
as the supercontinent experienced dramatic warming and
marked seasonal drying with the intensification of the
Gondwanan monsoon around the Permian—Triassic
boundary (McLoughlin et al., 1997).

The youngest records of glossopterid leaves are from
putative basal Triassic strata in East Antarctica (Rigby and
Schopf, 1969; McManus et al., 2002; see Elliot et al., 2016)
and South Africa (Gastaldo et al., 2015) and from the
Nidpur beds in central India (Pant and Pant, 1987).
Moreover, some dispersed fossil pollen typically attributed
to glossopterids persists into Lower Triassic strata
(Lindstrom and McLoughlin, 2007; Gastaldo et al., 2015).
However, many of these records have been considered
equivocal. The Nidpur beds have been subject to faulting
juxtaposing Permian and Triassic strata such that the
source rocks of past sampling are uncertain; dispersed
palynomorphs are subject to considerable reworking
making the last appearance datum for any one pollen type
unreliable for dating the disappearance of the parent plants;
some putative Glossopteris leaves may have been mis-
identified, and instead potentially belong to other tongue-
shaped leaves with reticulate venation, for example,
Gontriglossa (see Holmes et al., 2010); and the placement
of the Permian-Triassic boundary, especially in the
Transantarctic Mountains and the Karoo Basin successions,
is uncertain. Nevertheless, recent high-resolution radio-
metric dating of a volcaniclastic sandstone bed 37 m below
the stratigraphically highest Glossopteris assemblages at a
section in Antarctica yielded a maximum depositional age
of 250.3 £ 2.2 Ma (Elliot et al., 2016), indicating that at
least some of the Antarctic Glossopteris records may
indeed be earliest Triassic in age. Moreover, detailed
analysis of fossil assemblages across the Permian—Triassic
transition in the Eastern Cape Province (Gastaldo et al.,
2017) appear to confirm that Glossopteris may have also
persisted there into the earliest Triassic.

4.3.3 Peltaspermales

Peltaspermales originated during the Late Carboniferous
and are well represented in some Northern Hemisphere,
particularly Angaran, Permian floras (Taylor et al., 2006).
In Gondwana, they made their appearance around the end
of the Permian and were prominently represented by
Scytophyllum and the Lepidopteris-Peltaspermum-Antevsia
association of organs throughout the Triassic (Anderson
and Anderson, 1989, 2003). The group appears to have
become extinct in most areas, together with a broad range



of other seed plants, at the end of the Triassic (McElwain
and Punyasena, 2007; Kustatscher et al., 2018). However,
Lepidopteris foliage, together with Peltaspermum-like
ovuliferous disks and Amntevsia-like pollen organs, have
recently been found in Lower to Middle Jurassic deposits of
the Cafiadon Asfalto Formation at the Pomelo locality in
Chubut, southern Argentina (Elgorriaga et al., 2016).
Moreover, Rozefelds (1988) and McLoughlin et al. (2015b)
illustrated latest Jurassic or earliest Cretaceous Pachypteris
leaves from eastern Australia that are possibly peltas-
permalean. Although dismissed by Pattemore et al. (2015)
as fern fronds, the leaves bear conspicuous zwischenfiedern
(intercalary pinnules or rachis leaflets) and apparently had a
blistery rachis and a thick lamina, facilitating complex
lepidopteran-like leaf-mining attack typical of seed plants
(Plate III, 4); moreover, the dispersed umbrella-shaped
structures (fern croziers according to Pattemore et al.,
2015) occurring immediately adjacent to the foliage
remains are very similar to typical Peltaspermum
ovuliferous discs (Plate III, 4). Together, these records
indicate persistence of this group well beyond the Triassic
in southern high latitudes.

4.3.4 Caytoniales

In the Northern Hemisphere, some similar patterns of
contraction to high latitudes are apparent among Mesozoic
gymnosperm groups. Among the most remarkable exam-
ples is the Caytoniales, an extinct group of gymnosperms
most commonly represented by their distinctive, palmately
compound leaves (Sagenopteris; Plate 11, 5) with two pairs
of mesh-veined leaflets (Taylor et al., 2006). Their main
stratigraphic distribution extends from the Middle Triassic
to the Early Cretaceous. However, Hollick (1930) and
Herman (2013) noted the persistence but progressive
decline of Caytoniales together with Ginkgoales and
Nilssoniales (a group superficially similar and possibly
related to Cycadales) in floras of the Bering Strait region,
reaching palaeolatitudes beyond 80°N, through the Late
Cretaceous as angiosperm dominance increased in the
region. Krassilov (1978) also recorded Caytoniales and
Nilssoniales extending to at least the Santonian and
Bennettitales to the latest Maastrichtian on Sakhalin. Boyd
(1992) recognized the similar persistence of Caytoniales
together with Bennettitales well into the Late Cretaceous of
Greenland, long after these groups had declined at lower
latitudes. Notably, more continuous landmasses at high
latitudes of the Northern Hemisphere enabled movement
of ancient gymnosperm groups with fewer constraints
from open sea barriers compared to the fragmented
Gondwanan terranes. Continuous landmasses in the north
also facilitated movement of newly evolved plant groups
(e.g., angiosperms) such that it might be expected that if
intergroup competition were an important factor in the
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contraction of some seed plants, then such decline might
have occurred earlier and been more abrupt in the Northern
Hemisphere compared to the Southern Hemisphere.

4.3.5 Bennettitales

Bennettitales was a group of seed plants with complex
flower-like reproductive structures and either stocky
cycad-like or thin divaricate-branching stems (Pott and
McLoughlin, 2014). Their origins and phylogenetic
relationships remain obscure. They were clearly present in
Gondwana by the Middle Triassic (McLoughlin et al.,
2018) and were relatively common and cosmopolitan by
the Carnian (Kustatscher et al., 2018). After the disap-
pearance of the Dicroidium-dominated mire communities at
the end of the Triassic, Bennettitales became one of the
chief plant groups of lowland ecosystems across Gondwana
from the Early Jurassic to mid-Cretaceous. Following the
Aptian cool phase and the appearance of angiosperms,
bennettitalean foliage becomes sparse in the fossil record.
The youngest Cretaceous examples are again from south-
eastern Gondwana (New Zealand and eastern Australia;
Daniel et al., 1990; McLoughlin et al., 2010) and from the
Russian Far East (Gnilovskaya and Golovneva, 2018), all
then positioned at relatively high latitudes. This group
also appears to have survived the end-Cretaceous mass
extinction and is represented in Oligocene deposits
of northern Tasmania and northern New South Wales
(Australia) by the single species Ptilozamites muelleri
(Plate III, 8 and 9; McLoughlin et al., 2011).

4.3.6 Cheirolepidiaceae

Cheirolepidiaceac was a group of scale-leafed shrub- to
tree-sized conifers that appeared in the Late Triassic,
underwent a surge in relative abundance (based on the
records of their distinctive Classopollis pollen) around the
Triassic—Jurassic boundary, and were consistent elements
of global floras through the Jurassic and Early Cretaceous.
Although some representatives (e.g., frenelopsids) probably
typified low-latitude semi-arid and saline coastal settings
(Alvin, 1982), some members of the family with Brachy-
phyllum-type foliage were apparently adapted to cooler and
wetter environments of higher latitudes (Tosolini et al.,
2015). Cheirolepidiaceae were consistent (although steadily
declining in importance) elements of dispersed cuticle and
pollen floras in Gondwana until the Maastrichtian (Helby
et al., 1987; Pole, 2000), but the group appears to have
disappeared from most regions of the world by the close of
the Cretaceous. Significantly, Barreda et al. (2012) noted a
short-lived resurgence of this group (represented by a
Classopollis pollen spike) in lowermost Paleocene strata of
Patagonia (then at ~50°S) before their eventual demise in
the Danian (Alvin, 1982).
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4.3.7 Komlopteris

Whereas the Dicroidium seed ferns apparently vanished
some time during the Jurassic, other foliage genera
tentatively assigned to Umkomasiales (=Corystospermales;
e.g., Rintoulia, Komlopteris, Pachypteris, Pachydermo-
phyllum, and Archangelskya) persisted in Gondwanan
vegetation in modest numbers and diversity through the
Jurassic and Early Cretaceous (McLoughlin et al., 2002; Rees
and Cleal, 2004; Turner et al., 2009). Following the Aptian
cool phase, corystosperm foliage is generally absent from
Albian—Late Cretaceous floras. Most remarkably, however, a
final representative of this group (Komlopteris eocenica; Plate
III, 5 and 6) is recorded from Eocene strata of Tasmania
based on foliage with well-preserved cuticle (McLoughlin
et al., 2008). Alisporites-type bisaccate pollen of putative
corystospermalean affinity is also known elsewhere in Eocene
strata of southeastern Australia (Harris, 1965).

4.3.8 Podozamitaceae

Podozamites encompasses broad multiveined conifer
foliage with thin cuticle and unique, transversely oriented
paracytic stomata. The leaves were commonly shed
attached to whole short shoots and the plant is interpreted
to have been seasonally deciduous (Pole et al., 2016).
Podozamites has been linked tentatively to the reproductive
structures Cycadocarpidium and Swedenborgia (Harris,
1979; Bugdaeva, 1995) and placed within a distinct family:
Podozamitaceae Nemejc (1950). A recent survey of
Podozamites distributions in Asia carried out by Pole et al.
(2016) noted that the genus appeared in the Early Triassic
and ranged from 15° to over 80°N during the later part of
that period with particularly strong representation in middle
latitudes. In the Early Jurassic, the genus maintained a
broad latitudinal range (at least 30—70°N). It slightly
contracted in the Middle Jurassic to a range of around
30—60°N, and persisted predominantly in maritime settings
at around 20—60°N in the Late Jurassic (with a center of
representation around 35°N) in tandem with drying of the
continental interior. The group’s range extended to
15—75°N in the Early Cretaceous, retaining a predomi-
nantly maritime distribution but with a center of represen-
tation around 50°N. During the Late Cretaceous, however,
the distribution of the last remaining Podozamites in East
Asia contracted rapidly northward into polar latitudes
with the onset of angiosperm dominance in the regional
vegetation. The genus disappeared from the region some
time after the Santonian—Campanian (Pole et al., 2016).
Pole et al. (2016) noted that the demise of Podozamites was
contemporaneous with, and potentially linked to, the
poleward expansion of angiosperms and scale-leafed
conifers, but that additional factors, such as regional

climatic shifts and intensifying herbivory on broad-leafed
plants, may have also contributed to the group’s extinction.

4.3.9 Palissyaceae

Palissyaceae is an enigmatic conifer family that includes
cones attributed to Palissya (and the synonymous
Knezourocarpon), Stachyotaxus, and Metridiostrobus.
Foliage similar to Elatocladus has been inferred to be
affiliated with these organs. As yet, it cannot be confirmed
whether the cones of this group represent ovuliferous or
polleniferous organs since ovules have been interpreted to
be associated with some specimens (Florin, 1951;
Delevoryas and Hope, 1981) but pollen sacs and mono-
sulcate pollen grains have been identified on other material
(Schweitzer and Kirchner, 1996; Van Konijnenburg-van
Cittert, 2008). It is likely that Palissya has been
employed for two distinctly different cone types and a
thorough review of the group is needed. Nevertheless,
palissyacean cones with distinctive cup-shaped structures
on the adaxial surface of the sporophylls have a peculiar
geographic and stratigraphic range. They appear in the low
to middle latitudes of the Northern Hemisphere in the Late
Triassic (Delevoryas and Hope, 1981) and spread rapidly
through Laurasia. They persisted in Europe in the Early
Jurassic (Nathorst, 1908; Florin, 1958) but also make their
first appearance in Australia at that time. Thereafter,
Palissyaceae appears to have become predominantly a
high-latitude Gondwanan clade, with common representa-
tion of cones in Early Jurassic to Aptian strata of New
Zealand, Australia, and Antarctica (Von Ettingshausen,
1891; Edwards, 1934; Parris et al., 1995; Cantrill, 2000;
McLoughlin et al., 2002; Jansson et al., 2008; Pattemore
et al., 2014). The youngest occurrences of the group appear
to be in Aptian strata of the Antarctic Peninsula region
(Cantrill, 2000) and in the Koonwarra Fossil Bed of the
Gippsland Basin, southeastern Australia (Drinnan and
Chambers, 1986), the latter unit hosting the earliest
angiosperms in the region. Putative younger examples are
based on fossil foliage of uncertain affinity.

4.3.10 Gondwanan Equisetales

Equisetaleans (horsetails) have a long stratigraphic record
extending from the Devonian to present (Taylor et al.,
2009), and occurred on Gondwanan landmasses from at
least the Carboniferous (Gutiérrez, 1995; Morris, 1985).
The group was diverse through the late Palaeozoic,
incorporating some arborescent forms (Rossler and Noll,
2002, 2006), but steadily declined in diversity and
abundance through the Mesozoic, at which time it was
represented by mainly herbaceous taxa. Today, the group is
represented by Equisetum—an almost cosmopolitan genus



of about 15 extant species and several extinct forms
(Hauke, 1963, 1978). Indigenous Equisetum is notably
absent from New Zealand, Australia, Antarctica, and some
Pacific islands, although some species thrive in these
regions today as exotic weeds (Clifford and Constantine,
1980; Brownsie and Perrie, 2015). Pole and McLoughlin
(2017) proposed that a combination of substantial envi-
ronmental change (particularly drying and abrupt warming/
cooling) and competition from diversifying angiosperm
groups probably contributed to the demise of equisetaleans
across the New Zealand—Australian—Antarctic region
through the late Mesozoic and Paleogene. Until recently,
the youngest equisetaleans reported from Australasia were
from Cenomanian to Maastrichtian strata (see McLoughlin
et al.,, 2010). However, Pole and McLoughlin (2017)
illustrated Equisetum fossils from two Miocene deposits
in New Zealand indicating that the group survived the
end-Cretaceous mass extinction and persisted in wetter
parts of this region until its probable demise from late
Cenozoic warming and drying (in Australia) and cooling
(in New Zealand).

4.3.11 Gondwanan Ginkgoales

Ginkgoales have a long fossil record in Gondwana,
initiating at least as early as the Cisuralian (Early Permian:
Cineo, 1987), although some Ginkgo-like flabellate
leaves are known from even older (Carboniferous) strata
(Archangelsky and Leguizamén, 1980). They were
widespread and abundant during the Middle and Late
Triassic (Anderson and Anderson, 1989, 2003; Holmes and
Anderson, 2007) but disappeared from some regions
(e.g., Australia) during the Jurassic, apparently in
conjunction with a prolonged interval of global warmth
(Turner et al., 2009). Ginkgoales returned in moderate
abundance to the Gondwanan floras in the Aptian in
association with an interval of cooler temperatures
(Walkom, 1919; Douglas, 1969; Drinnan and Chambers,
1986; Dettmann et al., 1992). They persisted in low
numbers and diversity into the mid-Cretaceous (Douglas,
1970; Daniel et al., 1990; McLoughlin et al., 1995; Mays
et al., 2015) but seem to have disappeared from most parts
of the southern continents some time after the Turonian. In
southern Gondwana, they appear to have survived the end-
Cretaceous mass extinction and are preserved in lower
Paleogene strata in Tasmania (Ginkgo sp. cf. G. australis:
Carpenter and Hill, 1999). A similar pattern is evident in
southwestern Gondwana with the last sparse occurrences of
Ginkgoales represented in lower—middle Eocene strata of
Patagonia (Ginkgoites patagonica: Berry, 1935, see Villar
de Seoane et al., 2015). Notably, these last occurrences in
South America are from plant assemblages that probably
represent humid, possibly montane rainforest vegetation
surrounding high-altitude caldera lakes (Wilf, 2012).
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4.4 Analogies With Low- and Mid-Latitude
Montane Refugia

In the icehouse world today, where polar landmasses are
covered by thick continental ice sheets, relict gymnosperm
taxa—such as Ginkgo and Sciadopitys—typically occur in
montane refugia in low and middle latitudes. Similar to past
high-latitude terrestrial ecosystems, these environments are
characterized as equable mesic, with overall lower energy-
input and low water-stress. Humid forests in modern
regions that formerly constituted the southeastern corner of
Gondwana (southeastern Australia, Tasmania, New Zea-
land, and New Caledonia), for instance, host a range of
conifers that can be considered to have relictual distribu-
tions (Brodribb and Hill, 1999). Members of several major
Mesozoic conifer families (Araucariaceae, Podocarpaceae,
Cupressaceae) are represented in this region by genera with
narrow geographic ranges and climatic envelopes. Notable
among these are Wollemia, Microcachrys, Pherosphaera,
Parasitaxus, Halocarpus, Manoao, Lagarostrobus, Dis-
elma, Athrotaxis, Papuacedrus, and Libocedrus. Several
other genera, including Araucaria, Agathis, Phyllocladus,
Prumnopitys, Dacrydium, and Dacrycarpus, have their
centers of extant diversity in this region but include some
species from southern South America or have representa-
tives that appear to have re-radiated recently into tropical
regions. Therefore, it would seem reasonable to assume that
mesic high-elevation forests at lower and middle latitudes
may have acted as biodiversity refugia in the geological
past as well; however, such patterns may be difficult to
detect since any rare taxon with patchy distribution in
montane settings, away from lowland depositional centers,
is unlikely to be recorded in fossil assemblages.

5. CONCLUSIONS

The imperfection of the fossil record (Darwin, 1859; see
Kidwell and Holland, 2002) impedes any attempt at a
precise reconstruction of the distribution of extinct plant
groups through space and time. Nevertheless, we are
confident that the examples outlined above demonstrate
that despite these limitations, identifying geographic and/or
stratigraphic outlier occurrences of plant taxa will
contribute to a better understanding of the dynamics of
vegetation turnover through geologic time. There is
mounting evidence to confirm that plants in general were
less dramatically affected by global environmental crises
than animals (Traverse, 1988; see Lucas and Tanner, 2015).
Stratigraphic ranges of many plant groups thus turn out to
cross system boundaries that mark some of the greatest
faunal mass extinctions in Earth history (see Fig. 24.3):
Glossopteris may have survived the Permian—Triassic
extinction; Dicroidium even thrived through both the



606 SECTION |V Antarctic Paleobotany

=4
®
jo))
. ®
P
S
s § ®
o 9 S
@ £
o s
SR
g <
o
2
()
g ©
.98
7] H
n S 3
o B
5& . 2
= i 5 B
@ =2
S s
o o =
7 S
3 S X
g =
i 8 8
Iy e
5 g = & £ 2
I= S & & 9 ¢
= c c =
5 3 § § £ 2
o S 2 % 2 &5
B%c\:m
a 8§ ©

O Youngest outliers

Glossopterids

Connecting ghost lineage

| Main temporal distribution

i i o
| | z
e L
| |
| |
| | jo)]
I I o
| |
| |
; ;
® |
5, © * :
®) | 3
% I 3
S I
| | (&}
| | E
| | o
| i O
| |
| |
T i
i i kS)
| | >
| I (72}
| | 2
| | ]
| I >
| | -
| |
| |
— | -
I I
! ! o0
| | ]
| | ®
| | (=
| ;
| | c
I I o
| | £
i | £
| I (o)
| | o

high ' mid |
N

[ Hot, perhumid  [_] Cool temperate
(1 (Seasonally) dry [*] Cold
1 Warm temperate

equatorial | mid | high
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Permian—Triassic and the end-Triassic extinctions; and
some of the most iconic plant groups of the Mesozoic,
including Bennettitales, Cheirolepidiaceae conifers, and
“Mesozoic seed ferns”, are now known to have persisted
well into the Cenozoic era. In many cases, these plant
groups did not vanish in the course of a single catastrophic
event, but rather were in gradual decline, eventually
eluding documentation in the fossil record—perhaps even
long before their actual extinction. Key factors for the
decline of plant groups certainly involved the dramatic
environmental changes associated with some of the sudden
devastating events that punctuated Earth history at major
system boundaries, such as asteroid strikes or flood-basalt
volcanism (McElwain and Punyasena, 2007). However,
instead of representing direct kill mechanisms like in faunal
extinctions, these changes may more likely have had indi-
rect effects, remodeling the framework of abiotic factors
that govern biotic interaction and competitive success (see
Wing and Boucher, 1998). A remarkable example of the
power of biotic factors as driving forces in plant evolution
is the mid-Cretaceous, a time interval without any cata-
strophic geological (or extraterrestrial) events but with
dramatic turnover in plant communities (Fig. 24.3) caused
presumably by the increasing coevolutionary success of
angiosperms and insects (Friis et al., 2011). In many cases,
these gradual turnovers in vegetation composition follow
an intriguing latitudinal pattern in that they sweep from
equatorial regions toward the poles (e.g., Crane and

Lidgard, 1989; Wing and Boucher, 1998). High-latitude
regions of the Mesozoic—Paleogene greenhouse world
thus acted as “evolutionary museums” (Stebbins, 1974) that
provided refugia for relictual lineages that had already
disappeared from lower-latitude lowlands. Most likely,
such last surviving polar populations eventually dis-
appeared as they became outcompeted by newly emerging
plant groups in the face of environmental change.

A promising avenue for future investigation will be to
elucidate to what degree there are recurring patterns in
ecological characteristics between high-latitude relictual
lineages and those that take over dominance. By analogy to
the rise of angiosperms (see Wing and Boucher, 1998), we
assume that warm, humid, high-latitude forests would
provide equable mesic environments with low total energy
input, favoring competitive (K-strategist) groups that—
once established—could maintain dominance throughout
periods of stable climatic conditions. In the present case at
least, this hypothesis agrees well with the reconstructed
habit and ecology of the Antarctic Dicroidium plants as
typical competitors, i.e., long-lived, deciduous canopy trees
with copious litter production and seasonal dispersal of
large seeds (see Grime, 1977; Wing and Boucher, 1998).
During contrasting icehouse intervals, high-latitude settings
become inhospitable for most woody plants. At these times,
mesic montane forests and humid middle latitude forests
may provide equivalent favorable conditions for the
persistence of relict gymnosperms.



In order to reveal such patterns and processes in plant
evolution more precisely in the future, an important
additional source of information to be tapped should be the
palynological record. However, many of the plant groups in
question produced universal pollen types whose systematic
affinities are difficult to resolve even at high taxonomic
ranks. The non-taeniate bisaccate Alisporites/Falcisporites
pollen types—ubiquitous in late Palaeozoic and -earlier
Mesozoic deposits worldwide—may have been produced
by peltasperms, corystosperms, or various groups of
conifers (e.g., Balme, 1995); and the general Cycadopites
pollen type may be affiliated with a particularly broad
range of parent plants, including Bennettitales, Cycadales,
Ginkgoales, Peltaspermales, Pentoxylales, and Gnetales
(Balme, 1995). To this end, we argue that an important step
forward will be a systematic, detailed analysis of in situ
pollen for selected groups using combined light and
scanning-electron microscopy (see e.g., Bouchal et al., 2016)
and possibly chemotaxonomy (see e.g., Julier et al., 2016) in
order to resolve the taxonomy of these pollen types more
precisely, such that the distribution of the parent plants can
be more fully documented in the absence of macrofossils.

Finally, we concur with Mittelbach et al. (2007, p. 324)
that, “[...] the full potential of palaeontological data for
understanding the evolutionary dynamics underlying the
latitudinal diversity gradient has yet to be realized.”
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