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Abstract

The binding of heterochromatin protein 1 (HP1) to lysine 9–methylated histone H3

(H3K9me) is an essential step in heterochromatin assembly. Chp2, an HP1-family protein in

the fission yeast Schizosaccharomyces pombe, is required for heterochromatic silencing.

Chp2 recruits SHREC, a multifunctional protein complex containing the nucleosome remo-

deler Mit1 and the histone deacetylase Clr3. Although the targeting of SHREC to chromatin

is thought to occur via two distinct modules regulated by the SHREC components Chp2 and

Clr2, it is not clear how Chp2’s chromatin binding regulates SHREC function. Here, we show

that H3K9me binding by Chp2’s chromodomain (CD) is essential for Chp2’s silencing func-

tion and for SHREC’s targeting to chromatin. Cells expressing a Chp2 mutant with defective

H3K9me binding (Chp2-W199A) have a silencing defect, with a phenotype similar to that of

chp2-null cells. Genetic analysis using a synthetic silencing system revealed that a Chp2

mutant and SHREC-component mutants had similar phenotypes, suggesting that Chp2’s

function also affects SHREC’s chromatin binding. Size-exclusion chromatography of native

protein complexes showed that Chp2-CD’s binding of H3K9me3 ensures Clr3’s chromatin

binding, and suggested that SHREC’s chromatin binding is mediated by separable func-

tional modules. Interestingly, we found that the stability of the Chp2 protein depended on the

Clr3 protein’s histone deacetylase activity. Our findings demonstrate that Chp2’s H3K9me

binding is critical for SHREC function and that the two modules within the SHREC complex

are interdependent.

Introduction

Epigenetic changes affect genome function without an alteration of the DNA sequence, and

they can be inherited by daughter cells and sometimes by offspring. Epigenetic changes in the

genome are important in many diseases, including cancer, diabetes type II, and obesity [1,2].
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Still, our knowledge about changes in the epigenome and the mechanisms that effect those

changes is limited. In epigenetic regulation, various chromatin modifications confer diverse

properties and functions to different types of chromatin. The basic unit of chromatin is the

nucleosome, a complex between the DNA and the histone proteins [3]. The two basic types of

chromatin are heterochromatin, which has low transcriptional activity, and euchromatin,

which is actively transcribed [1,4]. Heterochromatin is characterized by low levels of histone

acetylation and by the methylation of histone H3 lysine 9 (H3K9me), which provides a binding

platform for chromodomain (CD) proteins such as the heterochromatin protein 1 (HP1)-

family proteins [5,6].

The fission yeast Schizosaccharomyces pombe (S. pombe) is an excellent model system for

studying the molecular mechanisms behind the transitions from one type of chromatin to

another [5]. Several locations in the genome of fission yeast—the pericentromeres, the telo-

meres, and the mating-type region—are heterochromatic, and genes introduced into these

regions are generally silenced. Heterochromatin formation and maintenance requires multiple

steps; key among these are histone-tail deacetylation by deacetylases (Clr3, Clr6, and Sir2 in S.

pombe) and the dimethylation or trimethylation of H3K9 (H3K9me) by methyltransferases

(Clr4 in S. pombe), which provides a physical platform for HP1-family proteins [7–9]. S. pombe
cells express two HP1 proteins, Swi6 and Chp2, and CDs in these proteins bind H3K9me in
vitro with similar affinities [5,9,10]. The histone deacetylase Clr3 acts specifically on histone

H3K14ac [7,11]. A fraction of the Clr3 protein joins the Snf2-related chromatin-remodeling

factor Mit1, the Zn-finger-containing protein Clr1, the CD protein Chp2, and the Clr2 protein

to form the SHREC complex [12,13]. Recent studies show that the SHREC complex can be

divided into two distinct functional modules held together by the Clr1 protein: a remodeling

module consisting of Mit1 and Chp2, which is thought to target chromatin via the Chp2-CD,

and a histone deacetylase (HDAC) module consisting of Clr3 and Clr2, which is thought to

target chromatin via a newly identified DNA/RNA-binding domain in Clr2 [12,14].

Here, we used genetic and biochemical approaches to examine Chp2’s role in heterochro-

matin assembly and in the SHREC complex in particular, and thereby demonstrated that

Chp2’s binding to H3K9me is essential for its function in heterochromatin assembly in fission

yeast. We also show that Chp2’s H3K9me binding is required for Clr3 to bind chromatin, and

that Clr1 is important to the integrity of the SHREC complex. Surprisingly, we also found that

Clr3’s HDAC activity was necessary for not only its own stability, but also that of Chp2. These

results confirm SHREC’s modular chromatin targeting and reveal previously unidentified

interactions between SHREC components.

Materials and methods

Constructs, strains, and media

Media was prepared as previously described [7]. To construct the plasmid for producing

recombinant Chp2-CD proteins in Escherichia coli (E. coli) cells, the coding sequence was

amplified by PCR and cloned into the pCRII vector with the TOPO-TA Cloning Kit (Invitro-

gen). After sequencing, the PCR product was subcloned into the pCold I vector (TaKaRa). To

express Chp2-CD with the W199A mutation (Chp2-CD-W199A), the resultant plasmid was

subjected to site-directed mutagenesis as described previously [15]. To obtain strains express-

ing FLAG-tagged Chp2, a portion of the chp2+-coding region (between –515 and +1700) was

PCR-amplified and cloned into a pUC-derived plasmid with an ura4+ marker gene. Site-

directed mutagenesis was used to introduce a BamHI restriction site immediately after the

ATG codon, and the DNA fragment for a 4× FLAG epitope was inserted into the BamHI site.

The W199A mutation was introduced by site-directed mutagenesis. The resultant plasmids
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were cleaved by BglII and introduced into the original chp2+ locus. To replace the wild-type

chp2+ allele with the mutant chp2 allele, strains that lost the ura4+ gene through internal

homologous recombination were isolated using a counter-selective medium containing

5-fluoroorotic acid (FOA). All strains used in this study are listed in S1 Table.

Recombinant protein production

The recombinant 6×His-tagged proteins used in isothermal titration calorimetry (ITC) analy-

ses were expressed in E. coli BL21 (DE3) and purified by TALON Metal Affinity Resin (Clon-

tech) according to the manufacturer’s instructions. Recombinant proteins were further

purified by anion-exchange chromatography (Source 15Q; GE Healthcare).

ITC

ITC was conducted using a MicroCal VP-ITC calorimeter (GE Healthcare) at 20˚C. Recombi-

nant Chp2-CD proteins were dissolved in phosphate buffer (20 mM KPO4 [pH 6.8] and 100

mM NaCl). A typical titration consisted of injecting 1-μl aliquots of ligand (H3K9me3;

ARTKQTAR(Lys[Me]3)STGGKAPRY) into the protein sample at 3-min intervals to ensure

that the titration peak returned to baseline. ITC data were analyzed using the Origin program.

Silencing assays and images of yeast colonies

Spot tests were performed as previously described [16] using the following procedure: mid-

log-phase cultures were adjusted to 3.2 × 106 cells/ml, serially diluted in five steps, and applied

to plates in 5-μl drops. A Canon EOS 1100D with a Canon EF 50-mm lens or MP-E 65 mm

f/2.8 1–5× Macro Lens objective was used to take pictures of the yeast colonies.

Real-time quantitative reverse transcription PCR (RT-qPCR)

S. pombe strains were grown in minimal medium (EMM) as shaken liquid cultures at 200 rpm,

at 30˚C, until log phase (1 × 107 cells/ml). From each culture, 2 × 107 cells were harvested by

centrifugation at 3,000 ×g for 3 min at 4˚C. Total yeast RNA was isolated with the RNeasy

Mini Kit (Qiagen) according to the manufacturer’s instructions. RNA quality and concentra-

tions were determined using 1% agarose gel electrophoresis and the NanoDrop™ 1000 spectro-

photometer (Thermo Scientific). cDNA was synthesized with the Maxima First Strand cDNA

Synthesis Kit for RT-qPCR (Thermo Scientific). Experiments were done in biological tripli-

cates, with technical duplicates for each biological sample. For RT-qPCR, we used an MJ

Mini™ Thermal Cycler (Bio-Rad) or a MiniOpticon™ Real-Time PCR System (Bio-Rad) with

SYBR Green technology and the 5 × HOT FIREPol1 EvaGreen1 qPCR Supermix (Solis Bio-

Dyne). We used the following primers: ura4-Fw, 5’-CGTGGTCTCTTGCTTTTG-3’,
ura4-Rv, 5’-GTAGTCGCTTTGAAGGTTAGG-3’; act1-Fw, 5’-GGTTTCGCTGGA
GATGATG-3’, act1-Rv, 5’-ATACCACGCTTGCTTTGAG-3’ [17]. Data were presented

as the fold enrichment in ura4+ transcript levels relative to the wild-type strain. Briefly, the

threshold-cycle (CT) values were used to calculate Mean Normalized Expression (MNE) val-

ues, which were converted into fold-change values and normalized to gene expression in the

wild-type strain [18]. Error bars indicated standard error of the mean (S.E.M.).

Chromatin immunoprecipitation (ChIP) assay

The ChIP assay was modified from a previously described protocol [19,20]. Yeast cells were

grown at 30˚C until log phase (1 × 107 cells/ml) in EMM shaken at 200 rpm. Cells (2 × 108)

were fixed with 1% formaldehyde (Merck) for 30 min at room temperature with gentle shaking
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at 120 rpm. Glycine was added to the cells to a final concentration of 125 mM while shaking

gently for 5 min. Cells were collected by centrifugation at 3,000 ×g, for 5 min at 4˚C and subse-

quently washed three times with 40 ml ice-cold phosphate-buffered saline (PBS). Pelleted cells

were resuspended in 400 μl ice-cold lysis buffer (50 mM HEPES-KOH [pH 7.5], 150 mM

NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate [DOC], 1 mM phenylmethylsul-

fonyl fluoride [PMSF], and 1× protease inhibitor cocktail [Complete™ EDTA-free; Roche]).

Cell suspensions were combined with 500 μl of ice-cold glass beads (0.5-mm diameter, BioSpec

Products) in 2-ml skirted micro tubes (Sarstedt) and lysed four times for 20 sec with Fas-

tPrep1 FP120 Cell Disrupter (BIO 101/Savant). Cell lysates were collected in 2-ml DNA

LoBind tubes (Eppendorf), resuspended, and transferred to 1.5-ml DNA LoBind tubes

(Eppendorf) before sonication using a Bioruptor™ Next Gen (Diagenode) at 4˚C for 10 cycles,

30 sec on/60 sec off, with the power set to high. The samples were centrifuged at 16,000 ×g for

5 min at 4˚C. The supernatant, which contained the soluble chromatin, was transferred to

1.5-ml DNA LoBind tubes. The pellet was resuspended in 400 μl of ice-cold lysis buffer and

sonicated again, and the supernatants were pooled after centrifugation. The pooled chromatin

samples were centrifuged one more time at 16,000 ×g for 10 min at 4˚C, and the lysates

(~800 μl) were placed in new 1.5-ml DNA LoBind tubes and kept on ice. DNA concentrations

were measured with a NanoDrop™ instrument (Thermo Fisher Scientific).

In the ChIP assays, we used an anti-FLAG (F1804, Sigma-Aldrich) or anti-Myc (MA1-980,

Thermo Fisher Scientific) antibody and Pierce ChIP-grade protein-A/G magnetic beads

(Thermo Scientific/Pierce). Usually, each immunoprecipitation used 50–100 μg of lysate

(50 μg of chromatin) and 20 μl of beads (50% slurry) bound to 2 μg of antibody, and total vol-

umes were adjusted to 250 μl with the lysis buffer. Unbound magnetic beads were used for

control immunoprecipitations. Input fractions (10%) were removed from the chromatin

lysates prior to immunoprecipitation, adjusted to the total volumes of 250 μl with 50 mM Tris-

HCl (pH 8.0), 10 mM EDTA, and 1% SDS, incubated overnight at 65˚C, cooled to room tem-

perature, and treated with DNase-free RNase A (Thermo Fisher Scientific) for 1 h at 37˚C and

Proteinase K (Thermo Fisher Scientific) for 3 h at 56˚C. The immunoprecipitated chromatin

beads (bound fraction) and control (unbound, no antibody) beads were washed twice with

lysis buffer, once with wash buffer I (10 mM Tris-HCl [pH 8.0], 250 mM LiCl, 0.5% NP-40,

0.5% DOC, and 1 mM EDTA), and once with TE buffer (10 mM Tris-HCl [pH 8.0] and 1 mM

EDTA) containing 0.05% Tween 20. DNA was extracted twice using TES elution buffer

(50 mM Tris-HCl [pH 8.0], 10 mM EDTA, and 1% SDS) for 30 min at 65˚C. The elution frac-

tions were mixed, incubated overnight at 65˚C, and treated as described for input fractions.

DNA was extracted from the solutions using the QIAquick PCR Purification Kit (Qiagen) or

MiniElute PCR Purification Kit (Qiagen).

To amplify immunoprecipitated ura4+, act1+, and centromeric dg DNA sequences, real-

time qPCR was performed in duplicates for each technical replicate using the same primers

as for RT-qPCR. Relative DNA quantification was carried out at least for two biological repli-

cates and technical duplicates for each biological replica. Real-time PCR data were analyzed

by the percent input method [18]. Briefly, the CT values for input and bound (IP) fractions

were averaged. The input DNA CT values for the ura4+ and act1+ genes were adjusted from

10% (starting input fraction) to the 100% equivalent by subtracting 3.32 CT (Log210). The per-

cent input was calculated by 100 x AE^(CT [adjusted Input]–CT [IP]), where AE is the amplifi-

cation efficiency for a given pair of primers. We normalized the % input values for the ura4+

and act1+ genes relative to the wild-type strain; data were represented as the relative fold-

change in % input for the corresponding gene, with error bars indicating the standard devia-

tion (SD).
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Native yeast-cell protein extracts

Yeast cells were grown at 30˚C to late log-phase (1.5 × 107 cells/ml) in 100 ml of rich-growth

YEA medium shaken at 200 rpm. Cells were harvested by centrifugation at 3,000 ×g for 3 min at

4˚C, washed twice with 40 ml of ice-cold 1× stop buffer (150 mM NaCl, 50 mM NaF, 10 mM

EDTA, and 1 mM NaN3), and finally transferred into 3 × 2-ml micro tubes (Sarstedt) and cen-

trifuged at 3,000 ×g for 5 min at 4˚C to remove the stop buffer. The pelleted cells were combined

with 750 μl of ice-cold glass beads (0.5-mm diameter, BioSpec Products) along with 400 μl of

ice-cold native lysis buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 50 mM NaF, 10% glyc-

erol, 2 mM EDTA, 10 mM EGTA, 0.5% Triton X-100, 0.5% IGEPAL1 CA-630 [Sigma-

Aldrich], 5 mM ß-glycerophosphate, 0.1 mM Na3VO4, 1 mM ß-mercaptoethanol, 2 mM dithio-

threitol [DTT], 1 mM PMSF, and 2.5 × protease inhibitor cocktail [Complete™ EDTA-free;

Roche]) and were lysed twice for 20 sec at 4˚C with a FastPrep1 FP120 Cell Disrupter (BIO

101/Savant) on maximum power. An additional 400 μl of ice-cold native lysis buffer was added

to the samples, and the crude native lysates were incubated for 15 min in a rotating wheel at 4˚C

(for RNase A treatment, DNase- and protease-free RNase A [Thermo Scientific] was added to

the native lysis buffer to a final concentration of 1 mg/ml). After incubation, the lysate was

transferred to DNA LoBind tubes (Eppendorf), and the samples were centrifuged for 10 min at

16,000 ×g at 4˚C. The supernatants were carefully transferred to a glass beaker, mixed together,

filtered with a 0.20-μm filter unit (Sarstedt), and kept on ice before loading into columns for

size-exclusion chromatography. The protein concentration in the lysates, measured with a

NanoDrop™ 1000 (Thermo Fisher Scientific), was typically 20–25 mg/ml.

Gel filtration chromatography

Native protein extracts were fractionated by fast protein liquid chromatography (FPLC).

Briefly, 1 ml of pre-cleared native protein extract was loaded onto a HiLoad 16/600 Superdex

200 prep-grade column (GE Healthcare) attached to an ÄKTAxpress FPLC system (GE

Healthcare) and equilibrated with running buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl,

0.05% Tween 20, and 2 mM DTT). The column was also calibrated with a Gel Filtration

HMW Calibration Kit (GE Healthcare) at running conditions. The proteins were fractionated

at 4˚C with a flow rate of 1 ml/min. After discarding the first 30-ml flow-through, 2-ml frac-

tions were collected, and the proteins were precipitated according to the Peterson trichloroace-

tic acid (TCA)-DOC protocol with some modifications. Briefly, a 1/10 volume of 0.15% DOC

solution was added to the fraction sample and mixed by inverting the tube several times, and

the sample was incubated on ice for 15 min. Next, 1/10 of the original sample volume of chilled

72% TCA was added, and the sample was mixed by inverting the tube several times, and then

incubated on ice for 15 min. The samples were centrifuged at 16,000 ×g for 15 min at 4˚C and

the supernatant carefully discarded. Pre-chilled (–20˚C) acetone containing 10 mM ß-mercap-

toethanol was added to the samples and the tubes were vortexed for 30 sec. The samples were

left overnight at –20˚C, then centrifuged at 16,000 ×g for 15 min at 4˚C. The supernatants

were discarded, and the pellets were air-dried at room temperature for 5–10 min and solubi-

lized with 30 μl Urea-SDS buffer (50 mM Tris-HCl [pH 8.0], 8 M urea, 1% SDS, 10 mM ß-mer-

captoethanol, and 10 mM DTT).

Trichostatin A (TSA) treatment

S. pombe strain PJ1911 (V5-clr2 clr3-myc FLAG-chp2) was grown in 10 ml of rich YEA medium

containing 1% ethanol or 5–10 μg/μl trichostatin A (Sigma-Aldrich, dissolved in 99% ethanol),

from 2.5 × 106 cells/ml to the log phase (1 × 107 cells/ml). Cells were collected by centrifugation

at 3,000 ×g for 5 min at 4˚C, resuspended in 1 ml ice-cold stop buffer (150 mM NaCl, 50 mM

Chp2-CD’s H3K9me binding and heterochromatin assembly in fission yeast
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NaF, 10 mM EDTA, and 1 mM NaN3), transferred into 2-ml skirted micro tubes (Sarstedt),

and centrifuged at 3,000 ×g for 5 min at 4˚C to remove the stop buffer. Cell pellets were resus-

pended in 100 μl of ice-cold RIPA buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% Triton

X-100, 0.1% SDS, 2 mM EDTA, 50 mM NaF, 0.1 mM Na3VO4, 5 mM ß-glycerophosphate,

20 mM ß-mercaptoethanol, and 1× protease inhibitor cocktail [Complete™ EDTA-free,

Roche]), boiled for 6 min at 98˚C, cooled on ice, and frozen in liquid nitrogen. Whole-cell

extracts were prepared using 400 μl of glass beads (0.5-mm diameter, BioSpec Products) and a

FastPrep1 FP120 Cell Disrupter (BIO 101/Savant) on maximum power for 30 sec at 4˚C.

After bead beating, 200 μl of protein-extraction buffer (50 mM Tris-HCl, [pH 8.0], 3% SDS,

2 mM EDTA, and 20 mM ß-mercaptoethanol) was added to each sample (to a final concentra-

tion of 1% SDS) and mixed thoroughly by vortexing. Samples were boiled for 10 min at 98˚C

and centrifuged at room temperature for 10 min at 16,000 ×g. Supernatants were carefully

transferred to the 1.5-ml Eppendorf tubes, and 2-μl aliquots were taken out and measured for

protein concentration with a NanoDrop™ 1000 (Thermo Fisher Scientific).

SDS-PAGE and western blotting

Protein extracts (200 μg) or recovered proteins from FPLC fractions (15 μl) were loaded onto

8% SDS-PAGE gel and run at 125 V for 80 min. The proteins were transferred to PVDF mem-

branes (Thermo Fisher Scientific) by the wet-transfer method with transfer buffer (25 mM

Tris, 192 mM glycine, 10% methanol, and 0.005% SDS) at 20 mA for 60 min at 4˚C. The mem-

branes were blocked with 5% skim milk in 1× PBST buffer (1× PBS containing 0.05% Tween

20). The following primary antibodies were used for immunoblotting: anti-V5 tag (mouse,

R960-25, Invitrogen), anti-FLAG (rabbit, F7425, Sigma-Aldrich), anti-c-Myc (9E10) (mouse,

13–2500, Invitrogen), anti-ß-actin (mouse, ab8224, Abcam), and anti-histone H3 C-terminus

(rabbit, ab1791, Abcam), all diluted 1:7,500 in 1× PBST buffer, and anti-Chp2 (rabbit [10])

diluted 1:1,000 in 1× TBST buffer (1× TBS containing 0.05% Tween 20). As secondary anti-

bodies, anti-mouse IgG HRP-linked whole Ab (GE Healthcare) and anti-rabbit IgG, HRP-

linked whole Ab (GE Healthcare), diluted 1:7,500 in 1× PBST buffer, were used. Membranes

were incubated with Immobilon Western Chemiluminescent HRP Substrate (WBKLS0500,

Millipore), exposed from 5 sec to 10 min with a ChemiDoc™ MP Imaging System (Bio-Rad),

and analyzed with Image Lab™ software (Bio-Rad).

Results

A conserved tryptophan residue in Chp2’s chromodomain

is necessary for binding H3K9me

HP1-family proteins recognize histone H3 methylated on lysine 9 (H3K9me) via their CD

[6,9], which consists of four ß-strands and an α-helix and it recognizes H3K9me through an

aromatic cage formed by three conserved residues (Fig 1A, underlined) [6]. To examine

Chp2’s function in targeting SHREC to chromatin, we first characterized Chp2-CD’s binding

to H3K9me. We purified recombinantly expressed Chp2-CD (Fig 1B, WT) and tested its bind-

ing to K9-trimethylated histone H3 (H3K9me3) peptide (1–18). ITC showed that Chp2-CD

bound the H3K9me3 peptide with an affinity of KD = 4.37 ± 0.91 μM (Fig 1C, left panel),

which agrees with previous reports [10]. To determine whether Chp2-CD binds the H3K9me3

peptide through its conserved hydrophobic residues, we created a mutant Chp2-CD protein

(Chp2-CD-W199A, in which tryptophan 199, one of the three conserved residues, was

changed to alanine) (Fig 1A and 1B; W199A), and tested its affinity for H3K9me3 peptide

(Fig 1C, right panel). The W199A mutation clearly abolished Chp2-CD’s binding to the
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H3K9me3 peptide, since titrating the methylated peptide did not produce any calorimetrical

change (Fig 1C). Thus, the conserved W199 residue in the Chp2-CD was necessary for Chp2

to bind H3K9me3. We used this W199A mutation to further analyze Chp2’s function.

Chp2’s H3K9me binding is essential for its function in heterochromatic

silencing

To investigate the role of H3K9me binding in Chp2’s function, we created a strain that

expressed a mutated Chp2 protein containing W199A (Chp2-W199A) from the endogenous

Fig 1. The Chp2 chromodomain binds H3K9me. (A) Schematic of the Chp2 protein showing the amino acid sequence of the CD

domain and the W199A mutation. N: N-terminal domain; CD: chromodomain; H: hinge region; CSD: chromoshadow domain. (B)

Recombinant proteins used in (C) were resolved by SDS-PAGE and visualized by Coomassie brilliant blue (CBB) staining. (C)

Isothermal titration calorimetry (ITC) results for Chp2-CD (left) and Chp2-CD-W199A (right). The raw heat data were obtained

upon the injection of H3K9me3 peptide into solutions of each protein. The heat data were integrated with respect to time, and

injection enthalpy was determined from the best-fit curve. The binding constant (KD), enthalpy change (ΔH), and stoichiometry (N)

values are indicated below each graph. These values were not determined for Chp2-CD-W199A due to its weak binding of the

H3K9me3 peptide.

https://doi.org/10.1371/journal.pone.0201101.g001

Chp2-CD’s H3K9me binding and heterochromatin assembly in fission yeast

PLOS ONE | https://doi.org/10.1371/journal.pone.0201101 August 15, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0201101.g001
https://doi.org/10.1371/journal.pone.0201101


chp2+ locus (Fig 1A; see Materials and methods). Since the level of endogenous Chp2 expres-

sion is relatively low [10], we introduced multiple FLAG tags simultaneously into the Chp2 N-

terminus to allow us to readily detect Chp2 (F-Chp2-W199A) (S1A Fig). As a control, we also

created a strain expressing the wild-type Chp2 protein with the same FLAG tags from the

endogenous promoter (F-Chp2) (S1A Fig).

Next, we examined the impact of Chp2’s H3K9me binding on its function in heterochro-

matic silencing. The F-chp2-W199A allele or the control F-chp2 was combined with the

mat3-M::ura4+ reporter gene (Fig 2A), and the silencing states were evaluated by a spotting

assay in which cells were cultured, serially diluted, and spotted onto either non-selective plates

(N/S), plates to select for ura4+-expressing cells (–Ura), or counter-selective plates containing

5-fluoroorotic acid (FOA) (Fig 2B) [21]. The ura4+ gene inserted into the mating-type region

was tightly repressed in wild-type cells, which grew poorly on–Ura plates but grew well on

FOA plates (Fig 2B, wt). A lack of Chp2 derepressed the reporter gene, as evidenced by good

cell growth on–Ura plates and no growth on plates containing FOA (Fig 2B, chp2Δ); this agrees

with previously published data [10,12]. RT-qPCR also confirmed the derepression state of

mat3-M::ura4+ (Fig 2B, right). We confirmed that adding the FLAG tags to Chp2’s N-terminus

did not disturb its function, since the silencing state of the mat3-M::ura4+ reporter was compa-

rable to that in wild-type cells (Fig 2B, F-chp2).

Cells expressing F-Chp2-W199A showed defective silencing in the spotting assay and in

RT-qPCR (Fig 2B), although RT-qPCR revealed slightly milder derepression in F-chp2-W199A
than in chp2Δ cells, with slight variations between independent isolates (Fig 2B, last three

rows). There were two possible explanations for this partial derepression: either silencing was

alleviated at a similarly low level in all cells, or the culture contained cells with variegated dere-

pression states [16,22]. To distinguish between these possibilities, we used a mat3-M::ade6+

allele, in which the ade6+ gene was inserted into the same position as the ura4+ reporter

(Fig 2A). When wild-type cells repressing mat3-M::ade6+ were plated on a medium containing

limited amounts of adenine, the cells formed red colonies due to the accumulation of an inter-

mediate in the adenine-synthesis pathway (Fig 2C, top left) [23]. A control strain expressing

the F-Chp2 protein also formed red colonies on the plates, like the wild-type strain (Fig 2C,

bottom left), while the chp2Δ and F-chp2-W199A strains formed two types of colonies—

smaller pink and larger white colonies (Fig 2C, right panels). The existence of two cell popula-

tions in these mutant strains indicated that there was indeed an epigenetic shift between the

repressed and derepressed chromatin states at the mating-type region. However, repressed col-

onies were light pink rather than red indicating that the ade6+-reporter gene was not fully

repressed, suggesting that both chp2 mutations caused a partial derepression in all cells and

full derepression in a certain percentage of the cells.

To confirm that the two mutant strains had similar phenotypes, we restreaked pink and

white colonies and counted how many pink versus white colonies were generated in the off-

spring (Fig 2D and Table 1). A restreaked pink colony formed by the chp2Δ strain generated

78% pink and 22% white new colonies; the chp2-W199A strain formed 79% pink and 21%

white new colonies. This very similar frequency of switching indicates that the two mutations

had very similar effects on mating-type silencing.

To determine whether the chp2-W199A mutant’s phenotype was due to a reduced binding

of Chp2-W199A to the mating-type region, we conducted ChIP assays with an anti-FLAG

antibody and primers against the act1+ (control) and ura4+ genes. The strain expressing wild-

type F-Chp2 protein was strongly enriched at the mat3-M::ura4+ region (Fig 2E, F-chp2),

whereas three different isolates of the strains expressing F-Chp2-W199A were only slightly or

moderately enriched in F-Chp2-W199A bound to the mat3-M::ura4+ gene. The enrichment of

F-Chp2-W199A bound to the act1+ control gene was slightly higher than that of the wild-type
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Fig 2. Chp2’s H3K9me-binding ability is essential for its function in heterochromatin formation. (A) Schematic of

the mating-type (mat) locus, showing the position of the silencing-reporter gene (mat3-M::ura4+ or mat3-M::ade6+).

Indicated in the picture are the mating-type cassettes–mat1, mat2P, and mat3M –as well as the inverted repeat left
(IR-L), inverted repeat right (IR-R) and the region homologous to the pericentromeric region, cenH. The mat locus is

not drawn to scale. (B) Cells were serially diluted in five steps and spotted onto non-selective medium (N/S), selective
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strain, which may indicate a promiscuous association of F-Chp2-W199A with euchromatic

genes (Fig 2E; compare F-chp2 to F-chp2-W199A). Taken together, these results indicated that

Chp2’s ability to bind H3K9me is crucial for its silencing function.

Chp2’s H3K9me binding is necessary for targeted silencing

Having established that Chp2’s molecular function is to bind chromatin via H3K9me, we next

focused on Chp2’s function in the SHREC complex. We used a minimal silencing system in

which an engineered Clr4 protein lacking the CD and fused to a Gal4 DNA-binding domain

(GBD-Clr4ΔCD) silences a reporter gene placed downstream of a triple Gal4-binding site

(3×gbs) integrated at a euchromatic location (Fig 3A) [24]. In fission yeast, several distinct

pathways cooperate to assemble repressive heterochromatin, making it difficult to define the

exact role of trans-acting factors based on a reporter gene inserted into the mating-type region.

However, a minimal silencing assay allows us to define factors that are specifically required for

Clr4-mediated heterochromatin assembly. Previous studies using this system revealed distinct

roles of the RNAi pathway and demonstrated that three SHREC components—Clr2, Clr3, and

Chp2—are necessary for targeted silencing [22,24] (Fig 3B).

To examine the effect of Chp2’s H3K9me binding on SHREC’s function, we first tested

whether the SHREC-complex components are individually required in targeted silencing.

Serially diluted cells were spotted onto non-selective plates (+Ade) and plates without adenine

(–Ade) to evaluate the silencing state of the ade6+-reporter gene (Fig 3B). As previously

observed [22,24], cells expressing wild-type Clr4 protein did not silence the ade6+ gene,

whereas cells expressing GBD-Clr4ΔCD repressed the reporter gene and grew poorly on plates

lacking adenine (Fig 3B; compare the two first rows). Strains lacking any one of the SHREC

components—Clr1, Clr2, Clr3, Mit1, or Chp2—expressed the ade6+ reporter and grew well on

selective plates (Fig 3B, rows 3–7), suggesting that all components of the SHREC complex were

medium lacking uracil (–Ura), and counter-selective medium containing FOA. The amount of ura4+ transcript was

quantified by RT-qPCR and normalized to act1+ and calculated as fold change to the wild-type expression. The strains

used were PJ1811 (wt), PJ1813 (chp2Δ), PJ1815 (F-chp2), PJ1817, PJ1818, and PJ1819 (F-chp2-W199A). (C) Wild-type

and mutant strains with an ade6+ reporter gene inserted into the mating-type region were streaked on medium

containing low amount of adenine (YE medium). The strains used were PJ1044 (wt), PJ1569 (chp2Δ), PJ1770 (F-chp2),

and PJ1538 (F-chp2-W199A) (D) Red or white colonies from (C) were restreaked on YE medium. (E) Chromatin

immunoprecipitation (ChIP) assay showing relative enrichment of F-Chp2 signal at mat3-M::ura4+ and act1+. Data

were normalized to wild-type (non-tag) strain’s signals at mat3-M::ura4+ and act1+. Error bars indicate standard

deviation (SD). The strains used were FY597 (wt), PJ748 (chp2Δ), PJ1745 (F-chp2), PJ1735, PJ1736, and PJ1737

(F-chp2-W199A).

https://doi.org/10.1371/journal.pone.0201101.g002

Table 1. Epigenetic switching between different expression states.

Genotype Original colony color Number of red colonies (percentage) Number of white colonies (percentage)

Wild-type Red 66 (100) 0 (0)

White ND ND

chp2Δ Red 80 (78) 23 (22)

White 25 (33) 50 (67)

F-chp2 Red 57 (100) 0 (0)

White ND ND

F-chp2-W199A Red 174 (79) 46 (21)

White 49 (34) 97 (66)

Red and white colonies were picked and restreaked on fresh YE plates. After 3 days at 30˚C, the number of colonies of each color was counted. ND, not detected.

https://doi.org/10.1371/journal.pone.0201101.t001
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necessary for targeted silencing. We also confirmed that Clr3’s HDAC activity was crucial for

ectopic silencing; in a strain with a clr3-735 loss-of-function mutation [25], this silencing was

clearly absent (Fig 3B; compare rows 9 and 10). Importantly, the strain expressing the

F-Chp2-W199A protein also failed to silence the reporter gene; it had a derepression state

comparable to that of the SHREC-component mutants (Fig 3B, 13th row). These results con-

firmed that Chp2-CD’s H3K9me binding is important in targeted silencing, and indicated a

functional link between Chp2 and SHREC’s targeting to chromatin.

Fig 3. Chp2’s H3K9me binding is required for targeted silencing by GBD-Clr4ΔCD. (A) Schematic showing the

targeted silencing assay, in which a Gal4 DNA-binding domain (GBD)-fused Clr4 lacking its chromodomain

(GBD-Clr4ΔCD) was tethered to 3× gal-binding sites (3×gbs) upstream of an ade6+-reporter gene. (B) Serially diluted

cells were spotted onto non-selective (+Ade) or selective (–Ade) plates. The strains used were PJ1207 (wt), PJ1231

(GBD-Clr4ΔCD), PJ1327 (GBD-Clr4ΔCD clr2Δ), PJ1246 (GBD-Clr4ΔCD clr1Δ), PJ1247 (GBD-Clr4ΔCD clr3Δ), PJ1320

(GBD-Clr4ΔCDmit1Δ), PJ1314 (GBD-Clr4ΔCD chp2Δ), PJ1318 (GBD-Clr4ΔCD), PJ1316 (GBD-Clr4ΔCD clr3-735),

PJ1325 (GBD-Clr4ΔCD F-chp2), and PJ1331 (GBD-Clr4ΔCDF-chp2-W199A).

https://doi.org/10.1371/journal.pone.0201101.g003
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Chp2’s H3K9me binding affects Clr3’s chromatin targeting

SHREC was previously shown to contain two functional modules and to target chromatin

through separable recruitment mechanisms [12,14]. To test whether Chp2’s H3K9me binding

affects SHREC’s chromatin targeting, we combined yeast strains expressing myc-tagged Clr3

(Clr3-myc), V5-tagged Clr2 (V5-Clr2) [7,22], or F-Chp2 with each of the SHREC-component

mutant alleles. The protein complexes in native whole-cell lysates of these strains were sepa-

rated by gel-filtration chromatography (see Materials and methods). Proteins in the collected

fractions were resolved by SDS-PAGE and analyzed by western blotting.

Clr3-myc has an expected molecular mass of 92.4 kDa, and structural analysis suggests

that Clr3 forms a dimer [14]. Clr3-myc in the native lysate was detected in fractions 11–24

with at least two peaks: Most of the Clr3-myc was eluted in fractions 16–19, corresponding to

~500 kDa, whereas a minor Clr3-myc population was detected near the void fractions 11–14

(>600 kDa) (Fig 4A, wt). Although the molecular mass and stoichiometry of the native

SHREC complex is not clear, the faster-eluted peak probably represents Clr3-myc in the

SHREC complex. It should be noted that bulk H3 was detected in fractions near the void

(Fig 4D); thus, it is also possible that the faster-eluted peak corresponds to Clr3-myc associated

with chromatin through other SHREC components.

Clr3-myc was distributed similarly in the wild-type strain and strains lacking a SHREC

component—with the exception of the clr1Δ strain, in which the signal intensity decreased

dramatically in fractions 11–14 (Fig 4A, clr1Δ). This finding is consistent with reports that

Clr1 is important for the integrity of the SHREC complex [12,14]. The Clr3-myc levels also

decreased slightly in the chp2Δ strain in fractions 11–14 (Fig 4A, chp2Δ). Importantly, a similar

reduction was also observed in the chp2-W199A strain (Fig 4A, chp2-W199A). These results

support the idea that the faster-eluted peak includes chromatin-associated Clr3-myc, and sug-

gest that Clr3’s chromatin targeting depends in part on Chp2’s H3K9me binding.

Clr2 targets chromatin independently of Chp2’s H3K9me binding

Clr2, which has several functional domains, may serve to tether the HDAC module of the

SHREC to chromatin [14]. In gel-filtration, V5-Clr2 was widely distributed across fractions in

the wild-type strain (Fig 4B, wt) but was clearly concentrated in fractions 11–22 and 26–30,

with peaks in fractions 11–14, 16–18, and 27–29. The peak in fractions 27–29, corresponding

to an estimated molecular mass of ~120 kDa appeared to be free V5-Clr2, although V5-Clr2’s

expected molecular mass is 66 kDa. Indeed, specific single-point amino acid substitutions in

Clr2 negatively affected the transcriptional silencing [22] and significantly distorted this peak

or removed it altogether (S2B Fig); this was presumably because the point mutations changed

Clr2’s conformation and consequently its elution profiles. Interestingly, these point mutations

did not affect Clr2’s own localization to fractions with higher molecular weights (S2B Fig), but

slightly inhibited Clr3-myc’s co-fractionation with bulk histone H3 (S2A Fig) even though no

such effect was observed for the clr2Δ strain (S2B Fig).

As observed for Clr3-myc, the faster-eluting V5-Clr2 in fractions 11–14 was probably a

V5-Clr2 subpopulation associated with the whole SHREC complex or with chromatin, or

both. The V5-Clr2 distribution was not affected by the lack of Mit1 or Chp2 or by the

Chp2-W199A mutation, suggesting that Clr2 targets chromatin independently of Chp2’s

H3K9me binding. Interestingly, V5-Clr2’s distribution pattern changed in the clr1Δ and clr3Δ
mutant strains (Fig 4B). In these strains, V5-Clr2 was still present in the high molecular-weight

fractions (fractions 11–14) and in fractions 27–29, but was significantly reduced in fractions

15–21. This finding suggests that the peak in fractions 16–18 might correspond to a subcom-

plex of V5-Clr2 with Clr1 and/or Clr3-myc. Although Clr3-myc’s slower-eluted peak (Fig 4A,
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Fig 4. Chp2’s H3K9me binding affects Clr3’s chromatin targeting. (A–D) Native whole-cell lysates prepared from indicated

strains were fractionated by gel-filtration chromatography. Proteins were precipitated from collected fractions and analyzed by

8% SDS-PAGE. Elution profiles of Clr3-myc (A), V5-Clr2 (B), F-Chp2 (C) and bulk H3 (D) were analyzed by western blotting.

The first band in each panel represents the 1% input from yeast lysates (In). The strains used were PJ1911 (V5-clr2 clr3-myc F-
chp2), PJ2012 (mit1Δ V5-clr2 clr3-myc F-chp2), PJ1836 (clr1ΔV5-clr2 clr3-myc), PJ1994 (clr2Δ clr3-myc F-chp2), PJ1840 (chp2Δ
V5-clr2 clr3-myc), and PJ1917 (V5-clr2 clr3-myc FLAG-chp2W199A).

https://doi.org/10.1371/journal.pone.0201101.g004
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fractions 16–19) largely overlapped with this V5-Clr2 peak, Clr3-myc’s distribution was not

noticeably changed in clr1Δ or clr2Δ cells (Fig 4A). Thus, V5-Clr2’s peak in fractions 16–18

might correspond to a complex involving V5-Clr2 and Clr1, and Clr3 might indirectly affect

the stability of this V5-Clr2–Clr1 complex.

Clr2 possesses an MDB-like domain, and the Clr1–Clr2 complex binds RNA and DNA

through this domain [14]. Although this activity of Clr2 is thought to tether SHREC to chro-

matin, it might also help SHREC interact with cellular RNAs. To investigate whether SHREC

contains an RNA component, or whether SHREC’s association with chromatin is dependent

on RNA, native lysates were treated with RNaseA prior to chromatographic separation

(S3 Fig). However, the distribution patterns of Clr3-myc, V5-Clr2 and F-Chp2 upon RNase A

treatment did not change compared to the untreated control, indicating that RNA is not criti-

cal for the integrity of the SHREC complex (S3 Fig).

We used the same chromatographic approach to investigate the elution profile of F-Chp2

(Fig 4C). F-Chp2 was primarily detected in fractions 11–13 and 17–23. The faster-eluted peak

overlapped with the H3 peak and the faster-eluted peaks of Clr3-myc and V5-Clr2 (Fig 4D),

and thus most likely corresponded to chromatin-associated F-Chp2. Indeed, the

Chp2-W199A mutant protein was not detected in fractions 11–14 (Fig 4D, chp2-W199A).

Again, the result confirmed that Chp2-CD’s H3K9me binding was critical for its own associa-

tion with chromatin. While the estimated size of the slower-eluted peak was clearly larger than

the molecular mass calculated for F-Chp2 (47.5 kDa), a previous study using recombinant pro-

teins showed that Chp2 forms a stable dimer that is detected in fractions corresponding to a

molecular mass of 300–350 kDa, presumably due to its elongated shape [10]. Based on this pre-

vious observation, we concluded that the slower-eluted peak corresponds to the free F-Chp2

dimer. The F-Chp2 distribution was not affected by the lack of Mit1 or Clr2, suggesting that

Chp2 targets chromatin independently of Mit1 and Clr2.

To further confirm the relationship between Chp2’s H3K9me binding and Clr3’s chromatin

targeting, we conducted ChIP assays with primers against centromeric dg repeats (Fig 5A),

where Clr3’s preferential binding was previously observed [13]. The strain expressing

Clr3-myc was enriched at the dg locus, whereas the enrichment was partially decreased by the

lack of Chp2 or by the Chp2-W199A mutation, but not by Clr2 depletion (Fig 5B), which is

well consistent with the results obtained by gel-filtration chromatography (Fig 4A). Using the

same primer sets, Chp2’s centromeric dg binding was also examined. As observed for the

mat3-M::ura4+ region (Fig 2E), F-Chp2’s chromatin association was compromised by

Chp2-W199A mutation (Fig 5C). Although F-Chp2’s distribution was not noticeably affected

in gel-filtration chromatography (Fig 4C), the enrichment was moderately decreased by the

lack of Clr1 or Mit1 (Fig 5C, clr1Δ and mit1Δ), suggesting that the SHREC’s remodeling mod-

ule may facilitate Chp2’s H3K9me binding. Interestingly, F-Chp2’s chromatin association was

increased in clr2Δ cells (Fig 5C, clr2Δ). This result may suggest that Chp2 and Clr2 competes

with each other for binding to H3K9me-enriched heterochromatic regions.

The Chp2 protein’s stability depends on Clr3’s HDAC activity

In the course of experiments detecting Chp2 proteins, we found that Chp2 protein levels were

partially decreased in a strain lacking Clr3 (S1B Fig). To test whether Chp2’s stability depends

on Clr3’s presence or its enzymatic activity, we examined the effect of trichostatin A (TSA)

treatment (Fig 6). Clr3 is a class II histone deacetylase that is inhibited by TSA [7,26]. A yeast

strain expressing Clr3-myc, V5-Clr2, and F-Chp2, was treated with increasing concentrations

of TSA during the growth period, resulting in a gradual reduction in F-Chp2 (Fig 6; F-Chp2).

Interestingly, TSA treatment also gradually decreased and degraded Clr3-myc (Fig 6;
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Clr3-myc). Histone H3 was slightly reduced in a TSA-treated wild-type strain and a strain

lacking Clr3, which is consistent with previous reports [11]. Although the ß-actin level was

also somewhat reduced, which could indicate that TSA treatment decreased the protein levels

in general, there was no significant change in the V5-Clr2 level (Fig 6). These results suggested

that the Chp2 protein’s stability depends strongly on Clr3’s enzymatic HDAC activity.

Discussion

Chp2’s ability to bind H3K9me is crucial for its silencing function

ITC revealed that Chp2-CD bound the H3K9me3 peptide (Fig 1C) with an affinity similar to a

previously reported range [10]. Chp2 might bind H3K9me-containing nucleosomes in vivo
more strongly than might be expected from our ITC experiment, since Swi6’s affinity for chro-

matin increases if it forms an oligomer or is phosphorylated [27,28]. Our genetic approaches

demonstrated that Chp2’s H3K9me-binding activity is essential for Chp2’s function in hetero-

chromatin assembly (Figs 2 and 3). Interestingly, both chp2Δ and chp2-W199A mutants had an

unstable silencing phenotype, with the expression of reporter genes in the mating-type region

Fig 5. Interdependency of SHREC components to associate with heterochromatin. (A) Schematic diagram of the

left half of centromere 1. Position of the PCR product used to detect Clr3-myc in (B) and F-Chp2 in (C) is indicated by

a thick bar. (B,C) ChIP assay showing Clr3-myc (B) or F-Chp2 (C) levels at centromeric dg. The values were

normalized to input. Error bars indicate standard errors from three biological replicates. The strains used were PJ1323

(wt), PJ 1600 (clr3-myc), EO1001 (clr3-myc, chp2Δ), EO1002 (clr3-myc, F-chp2-W199), EO1003 (clr3-myc, clr1Δ),

EO1004 (clr3-myc, clr2Δ), PJ1566 (F-chp2), EO1005 (F-chp2-W199A), EO1006 (F-chp2, clr1Δ), EO1007 (F-chp2, clr1Δ),

and EO1006 (F-chp2, mit1Δ).

https://doi.org/10.1371/journal.pone.0201101.g005
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switching on and off (Fig 2B). However, the off state was incomplete, with some degree of

derepression, and the cells produced pink colonies instead of the red colonies seen for the

wild-type strain when grown on plates with low adenine levels (Fig 2B). There are other muta-

tions that produce a similar switch between different epigenetic states of the mating-type

Fig 6. The Chp2’s protein stability depended on Clr3’s HDAC activity. Cells were grown in the presence of 1% ethanol, or with 5 or 10 μg/ml TSA.

Protein levels of Clr3-myc, F-Chp2, V5-Clr2, ß-actin, and histone H3 in the whole-cell lysates were analyzed by western blotting. The strain used was

PJ1911 (wt, V5-clr2 clr3-myc F-chp2).

https://doi.org/10.1371/journal.pone.0201101.g006
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region; this observation agrees with the self-propagating model of heterochromatin formation

[16,22,29–31].

Biochemical fractionation supports a two-module model for targeting

SHREC to chromatin

Biochemical analysis of three SHREC components allowed us to determine which of these

components are important for SHREC’s integrity and chromatin targeting. All three SHREC

components analyzed in this study were cofractionated in the same fractions as histone H3,

which was eluted in the fractions with higher molecular mass (Figs 4 and 5). These findings

are consistent with the previously demonstrated association between all of the SHREC compo-

nents and chromatin [7,13]. In addition, the failure of a SHREC component to cofractionate

with histone H3 indicated a loss of association to chromatin. Our data showed that Clr3-myc

was lost from high molecular-weight fractions in a clr1Δ strain, indicating that Clr1 is neces-

sary for Clr3’s association with chromatin, the stability of the SHREC complex, or both. This

finding is consistent with reports that Clr1 is the platform upon which the other SHREC com-

ponents assemble [12,14].

Clr2 was detected in chromatin-enriched fractions, and this elution pattern was not

changed by deleting any other SHREC components, indicating that Clr2 can target chromatin

independently of other SHREC components (Fig 4B). Biochemical fractionation also revealed

V5-Clr2 peaks in fractions 16–19 and 27–29. The slower-eluted peak appeared to correspond

to free V5-Clr2, whereas the faster-eluted peak corresponded to an estimated molecular mass

of about 500 kDa, probably representing a subcomplex containing V5-Clr2. The decreased

V5-Clr2 signal in clr1Δ or clr3Δ cells would seem to indicate that this subcomplex contains

Clr1 and Clr3 in addition to V5-Clr2. However, Clr3-myc was also detected in fractions

16–19, and this elution profile did not change noticeably in clr1Δ or clr2Δ cells (Fig 4A). Thus,

it seems likely that the subcomplex consists of V5-Clr2 and Clr1, whereas Clr3 might indirectly

affect the stability of this subcomplex. The reduced association of Clr3-myc with high molecu-

lar weight fractions in the strains carrying point mutations in clr2, but not in the strains

completely lacking Clr2 (S2A Fig) was surprising. It might indicate a compensatory function

of Chp2 in the targeting of Clr3 (SHREC) when Clr2 is lacking. A more severe phenotype of a

point mutation as compared to a complete deletion is not unprecedented [32].

In chp2Δ cells or cells carrying the chp2-W199A mutation, the Clr3-myc signal diminished

substantially in high molecular-weight fractions, indicating that either Clr3’s association with

chromatin or SHREC’s stability (or both) depend partially on Chp2’s H3K9me binding

(Fig 4). As with the silencing assays (Figs 2 and 3), a chp2 deletion or chp2-W199A mutation

had a very similar effect on Clr3-myc’s elution profile (Figs 4 and 5), supporting the conclusion

that Chp2’s function relies on its ability to bind H3K9me via its CD.

Another interesting observation was that the Chp2 protein level decreased dramatically in

clr3Δ cells, indicating that Chp2 was destabilized in the absence of Clr3 (S1B Fig). Further

investigation demonstrated that treating yeast cells with TSA, which inhibits class I and class II

HDAC activity, led to the degradation of Chp2 and of Clr3 itself, strongly suggesting that

Clr3’s HDAC activity was involved in Chp2’s targeting and stability and in the stability of Clr3

itself (Fig 6).

In conclusion, data presented here along with previously published work suggest a two-step

mechanism for SHREC’s association with chromatin, in which Clr2 binds chromatin to form a

platform for recruiting Clr1 and Clr3, while Chp2 may recruit Mit1 and additionally bind and

stabilize the SHREC complex at the site (Figs 4 and 5) [14]. This mechanism means that if

Chp2 or Clr2 are missing, an incomplete, partially functional complex will form. This scenario
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agrees with an idea proposed by Job et al., that the SHREC complex functions as two separable

modules, one a remodeling module containing Mit1 and Chp2, and the other an HDAC mod-

ule comprised of Clr2 and Clr3 and held together by Clr1 [14]. The two are targeted indepen-

dently to chromatin: the remodeling module is targeted via Chp2 and the HDAC module via

Clr2, which has been shown to bind RNA and DNA [14]. However, it is well established that

all of the components of the SHREC complex are required for heterochromatin formation;

this is evidenced also by the minimal silencing system described in this study, in which the

reporter gene was not silenced if any of the SHREC proteins were absent (Fig 3) [12,13]. More-

over, Clr3’s HDAC activity greatly affected Chp2’s targeting or stability, demonstrating the

functional dependency of the two modules within the SHREC complex (Fig 6 and S1B Fig).

Supporting information

S1 Fig. Western blots of Chp2 proteins. (A) Whole-cell lysates prepared from the SPYB106

(wt), SPYB148 (chp2Δ), SPM2238 (F-chp2), and SPM2291 (F-chp2-W199A) strains were sepa-

rated by SDS-PAGE and analyzed by western blotting with antibodies against the FLAG tag

(top) or against Chp2 (middle). After western blotting, the membrane was stained by Amido

black to assess the amount of loaded proteins (bottom). Asterisk: nonspecific protein band;

arrowhead: endogenous Chp2 band. (B) Whole-cell lysates prepared from the PJ78 (wt),

SPAH101 (clr3Δ #1), and SPAH102 (clr3Δ #2) strains were separated by SDS-PAGE and ana-

lyzed by western blotting with antibodies against Chp2 (top). After western blotting, the mem-

brane was stained by Amido black to assess the amount of loaded proteins (bottom).

(TIF)

S2 Fig. Critical amino acid substitutions in Clr2 affect Clr3’s chromatin association. (A, B)

Native whole-cell lysates prepared from strains expressing Clr3-myc and V5-tagged wild-type

or mutant Clr2 were fractionated by gel-filtration chromatography. Proteins from the collected

fractions were precipitated and analyzed by 8% SDS-PAGE; elution profiles of Clr3-myc (A)

and V5-Clr2 (B) were analyzed by western blotting. The first band in each panel represents

the 1% input from yeast lysates (In). The strains used were PJ1794 (V5-clr2 clr3-myc), PJ1724

(V5-clr2-Y140G clr3-myc F-chp2), PJ1571 (V5-clr2-R170G clr3-myc F-chp2), PJ1727

(V5-clr2-E376G clr3-myc F-chp2), PJ1994 (chp2Δ clr3-myc F-chp2), and PJ1917 (V5-clr2
clr3-myc FLAG-chp2W199A).

(TIF)

S3 Fig. RNase A treatment did not affect the SHREC-complex integrity. (A–D) Native

whole-cell lysates prepared from strains expressing Clr3-myc, V5-Clr2, and F-Chp2, untreated

or treated with RNase A, were fractionated by gel-filtration chromatography. Proteins from

collected fractions were precipitated and analyzed by 8% SDS-PAGE. Elution profiles of

Clr3-myc (A), V5-Clr2 (B), F-Chp2 (C), or bulk H3 (D) were analyzed by western blots. The

first band in each panel represents the 1% input from yeast lysates (In).

(TIF)

S1 Table. List of S. pombe strains used in this study.
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