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Abstract

A procedure to switch the order of accuracy of finite difference schemes is developed. The de-
velopment is based on existing Summation-By-Parts operators and a weak interface treatment.
The resulting scheme is proven to be stable and accurate.

Numerical experiments verify the theoretical accuracy for smooth solutions. In addition shock
calculations is performed, using a scheme where the developed switching procedure is com-
bined with the MUSCL technique for shock capturing.

1 Introduction

The most common and perhaps most intuitive way of imposing boundary condition is to use
strong implementation, also called injection. Then the numerical solution has exactly the same
value at the boundary as the continuous solution, by construction.

Weakly implemented boundary conditions means that the numerical solution not necessarily
equal the data at the boundary but is allowed to deviate somewhat. The deviation from the
boundary data decreases with increased resolution, so that the design order of the scheme is
preserved. The deviation should not be interpreted as a drawback, on the contrary it can serve
as an error estimate for the solution in the interior. However, the most important advantage with
weak boundary treatment is that combined with the Summation-By-Parts (SBP) operators, one
can prove that it yields a stable and accurate boundary treatment, [1, 2, 3, 4].

The technique of using penalty terms to make the solution fulfill the boundary conditions can
be generalized to hold also for block interfaces, although instead of data the solution in the
other block is used, [5, 6, 7]. Block interfaces can be useful when generating grids for complex



geometries - or as in our case - if one wants to change the properties of the scheme from one
computational domain to another.

At a block interface the grid points come in pairs of two. This has the benefit of producing
two solution values at the same position, where the difference between the two solutions can be
used (just as for ordinary boundaries) to estimate the error for the rest of the solution. However,
if one needs to move the interface, e.g. to keep track of a moving shock, one can use the multi-
valued interface treatment as a basic procedure, merge the double points into single ones and
obtain a sliding interface treatment. This will be the procedure used in this paper.

The procedure can be used when the order of a numerical scheme has to be lowered in a small
region (e.g. at a shock). Another possible application is to instead increase the order of the
scheme in regions of interest, for example when following a propagating wave pulse.

2 Interface treatment for a hyperbolic problem

To introduce our technique we consider the hyperbolic scalar partial differential equation

ut + aux = 0, −1 ≤ x ≤ 1 (1)

which have an interface at x = 0, such that uL
t + auL

x = 0 holds in the left domain (−1 ≤
x ≤ 0) and uR

t + auR
x = 0 holds in the right domain (0 ≤ x ≤ 1). The interface condition is

uL(0, t) = uR(0, t). Since we have the same equation in both domains the interface is just an
imaginary barrier.

We want to mimic the continuous case above numerically, and we start by describing the
original multi-valued interface treatment. Let vL,R denote the semi-discrete vector represen-
tations of uL,R, such that vL,R

i (t) corresponds to uL,R(xi, t). The grid points have index i =
0, 1, . . . , NL − 1, NL in the left domain and i = 0, 1, . . . , NR − 1, NR in the right domain. For
simplicity we use vL

N as notation for the NLth element of vL.

The interface condition uL(0, t) = uR(0, t) will be imposed weakly, such that vL
N − vR

0 is small
(goes to zero with decreased grid spacing). The differential operator d/dx is represented by the
difference operator on matrix form P−1

L QL in the left domain and P−1
R QR in the right domain.

The operators P−1
L QL and P−1

R QR can be designed to have the order of accuracy 2, 4, 6 or 8 in
the interior and 1, 2, 3 or 4 at the boundary. This will lead to a global order of accuracy of 2, 3,
4 or 5, see [1, 2]. The resulting numerical approximation of (1) is

vL
t + aP−1

L QLv
L = τLP

−1
L eN(vL

N − vR
0 )

vR
t + aP−1

R QRv
R = τRP

−1
R e0(v

R
0 − vL

N)
(2)

in the left and right domain, respectively (ignoring outer boundary conditions). The vectors
eN = [0 · · · 0 1]T and e0 = [1 0 · · · 0]T ensures that the penalty parameters τL,R correct
the scheme where they should. If τL = τR + a, then (2) will be conservative. Hence we let
τL = (a− θ)/2 and τR = (−a− θ)/2.

After assuring conservation we check the stability properties. Note that the SBP properties of
the operators gives PL,R > 0 and that QL,R are skew-symmetric, except for Q00

L,R = −1/2
and QNN

L,R = 1/2. The energy estimate is formed by multiplying (2) by vT
L,RPL,R from the left,



adding the transpose, and thereafter adding the two estimates. Defining ‖v‖2P ≡ vTPv yields

(
‖vL‖2PL

+ ‖vR‖2PR

)
t

=

[
vL

N

vR
0

]T [ −a+ 2τL −(τL + τR)
−(τL + τR) a+ 2τR

] [
vL

N

vR
0

]
= −θ

[
vL

N

vR
0

]T [
1 −1
−1 1

] [
vL

N

vR
0

]
(3)

which is stable if θ ≥ 0. The choice θ = |a| will give a fully up-wind implementation of
the interface condition. Note that we have omitted the outer boundaries, only taking the terms
originated from the interface into consideration.

2.1 Transformation to a scheme with adjustable accuracy

Using the original operators from (2) we define

V =

[
vL

vR

]
P̄ =

[
PL 0
0 PR

]
Q̄=

[
QL 0
0 QR

]
(4)

where P̄ and Q̄ are (NL +NR +2)× (NL +NR +2) matrices. Observe that vL
N and vR

0 are both
approximations of the same continuous solution value, i.e. u(x = 0, t). Now our ambition is
to be able to move the interface, and hence we need to modify the scheme such that it operates
without double grid points at the interface. This require a new discrete solution vector W ,
which is one element shorter than the vector V , i.e. W is an (NL +NR + 1)× 1 vector.

Theorem 2.1. Consider solving the partial differential equation in (1) numerically. It is possi-
ble to construct a finite difference scheme

Wt + aP̃−1Q̃W = 0 (5)

on Summation-By-Parts (SBP) form, such that the differential operator D̃ = P̃−1Q̃ has design
order L in the left part of the computational domain and design order R in the right part of the
computational domain. On the interface the order will be min (L/2, R/2). For details on SBP
properties, see [2, 6]. The scheme in (5) is conservative and stable, given that outer boundary
conditions are imposed correctly.

The derivation of theorem 2.1 will not be given here, we will just present the final form of the
new operators. The difference matrix is Q̃ = ĨQ̄ĨT , where the matrix Ĩ is similar to the identity
matrix, except it has dimensions (NL +NR + 1)× (NL +NR + 2) and is slightly modified in
the interior. Ĩ and Q̃ are given below,

Ĩ =



1
. . .

1 0 0 0
0 1 1 0
0 0 0 1

. . .
1


, Q̃ =



. . . ...
...

. . . QN−1,N−1
L QN−1,N

L

. . . QN,N−1
L QN,N

L +Q0,0
R Q0,1

R . . .

Q1,0
R Q1,1

R . . .
...

... . . .

. (6)



In the same way we obtain the norm P̃ = ĨP̄ ĨT = diag(P 0
L, . . . , P

N−1
L , β, P 1

R, . . . , P
N
R ),

where P i
L,R ≡ (PL,R)ii and β = PN

L + P 0
R.

The new scheme is perfectly stable since P̃ > 0 and Q̃ is skew-symmetric in the interior just
as QL and QR, since Q̃NN = QN,N

L + Q0,0
R = 1/2 − 1/2 = 0. Moreover, the SBP properties

automatically leads to a conservative scheme.

3 Numerical simulations

In the computations we use the spatial domain 0 ≤ x ≤ 1, letting N + 1 be the total amount of
grid points, indexed as i = 0, 1, . . . , N . At the locations i = iL and i = iR we switch the order
of the scheme from higher (4th) order to second order. First we will present some simulations
verifying the theory, and thereafter show some results from shock calculations to demonstrate
applicability.

3.1 Verification of the method on a hyperbolic test problem

Consider the time-independent problem ux = S(x) with boundary condition u(0) = g0, having
u = sin(7x)−cos(4x) as the manufactured solution. We solve this equation using the adjustable
scheme

P̃−1Q̃v = S + τ P̃−1e0(v0 − g0) (7)

where e0 = [1 0 · · · 0]T and S is the discrete representation of S(x) such that Si ≡ S(xi).
As penalty parameter we use τ = −1 (for the time-dependent problem τ ≤ −1/2 guarantees
stability, τ = −1 gives the up-wind implementation).

We solve (7) using a scheme that changes order at iL = N/4 and iR = 3N/4. Thus the scheme
will be 2nd order for 0.25 . x . 0.75 and 4th order outside. The resulting solution and error
(using N = 32 and N = 64) are shown in Figure 1 below. Figure 1(b) shows the error and
it is clear that the scheme has changed at x ≈ 0.25 and x ≈ 0.75. Table 1 shows the same
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Figure 1: For 0.25 . x . 0.75 the scheme is 2nd order accurate, while 4th order outside.

simulations as in Figure 1 for various number of grid points N . In the first columns we have
used iL = N/4 and iR = 3N/4 (as in Figure 1) and in the last two columns iL = N/2− 8 and



iR = N/2+8, such that the number of lower order points in the scheme remains constant as the
mesh is refined. If the proportions of lower (2nd) and higher (4th) order points in the scheme

For iL,R = N/2±N/4 For iL,R = N/2± 8
N L2(v − u) RoC L2(v − u) RoC
32 6.9149e-03 - 6.9149e-03 -
64 2.0015e-03 1.79 2.1092e-03 1.71

128 5.3109e-04 1.91 3.2130e-04 2.71
256 1.3617e-04 1.96 4.3156e-05 2.90
512 3.4435e-05 1.98 5.7368e-06 2.91
1024 8.6558e-06 1.99 7.8469e-07 2.87

Table 1: Rate of convergence (RoC) for two different approaches of adjusting the order.

do not change, the overall order of accuracy will be the lower one. If the amount of 2nd order
points in the schemes remains constant as the mesh is refined we obtain third order accuracy,
which is what a non-modifed 4th order scheme would give. Both these results coincide with
the theoretical results, see [2].

4 Shock calculations

The most obvious application for this methodology is shock calculations. For scalar one-
dimensional conservation laws (ut + Fx = 0), we have the MUSCL scheme converted into
SBP-form, see [8],

vt + P−1QF = −P−1DT
1 BMD1v. (8)

Here D1 is a first order undivided difference operator, and BM = diag(b1, b2, , . . . , bi, . . . ) is
a diagonal matrix constructed such that (8) corresponds to the standard MUSCL formulation.
The terms involving BM will be referred to as the MUSCL dissipation. This scheme is second
order accurate in smooth regions and goes to first order near a discontinuity/shock to avoid
non-physical oscillations.

Since the MUSCL scheme in Eq. (8) is on SBP-form, it can be coupled to the adaptive scheme
derived above. In the vicinity of a shock, the scheme is first turned from 4th to 2nd order by
the adjustable scheme. Next, we add the MUSCL treatment in form of a dissipative term close
to the discontinuity. This yields

vt + P̃−1Q̃F = −P̃−1DT
1 B̃MD1v (9)

where B̃M = ΦBM . We have constructed a matrix Φ which limits the MUSCL scheme, such
that it is applied only in the shock region. In (9), which we will refer to as the Hybrid scheme,
the MUSCL dissipation is turned on in the shock region leading to a standard MUSCL scheme
and it is turned off in the smooth region leading to a higher order scheme.

Recall that the norm P̃ differs from the standard norm P , and for the (4-2-4)th-order switching
it is visualized in Figure 2(a). The complete switching procedure including the limiter Φ is
visualized in Figure 2(b).

After finding the shock at grid index iS , we switch scheme from 4th order to 2nd order at index
iL = iS − w and back at iR = iS + w. This leads to a scheme with 2w + 1 grid points with
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Figure 2: (a) P̃ (normalized with grid size) for a (4-2-4)th-order switching with iL ≈ N/2 and iR ≈
3N/4. (b) The switching procedure depicted, including the role of the discrete function Φ.

first to second order accuracy around the shock (at iL and iR it is first order). In the second
order region, we can choose to activate the MUSCL scheme (by having Φi = 1) in the domain
i = iS ± wM , where wM < w. The variables w and wM can be varied. For example, in Figure
2(b) we have w = 5 and wM = 2.

As described above, we use Φ to prevent MUSCL to activate outside the 2nd order region. In
addition the MUSCL scheme has a standard limiter φ which determines where it should be 2nd
order and where it should be 1st order. Here the MUSCL scheme is based on a minmod limiter,
which is defined as φ(r) = max[0,min(1, r)], where r is the ratio between two successive
upstream gradients. If φi = 1 the solution is considered smooth and the scheme is 2nd order,
and if φi = 0 the scheme is 1st order.

In the following simulations we have considered linear and non-linear scalar one-dimensional
hyperbolic test problems. All the computations are performed using the classical 4th-order
Runge-Kutta method for the time integration.

4.1 Linear problems

We study the advection equation

ut + ux = 0, 0 ≤ x ≤ 1

u(0, t) = g0(t) u(x, 0) = u0(x)

with boundary condition g0(t) and initial condition u0(x). We will compare the results obtained
using the new hybrid scheme with the ones obtained using the standard MUSCL scheme. We
consider a combination of a Gaussian pulse and a step function as the initial solution, i.e.

u0(x) =

{
e−100(x−0.2)2 + 1, 0 ≤ x ≤ 0.6

0.5, 0.6 < x ≤ 1.
(10)

This means that we have both smooth and discontinuous data in the domain.
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Figure 3: Solution and error using the MUSCL scheme.
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Figure 4: Solution and error using the Hybrid scheme.

Figure 3 is done using the MUSCL scheme, whereas Figure 4 is showing the solution and error
obtained from the Hybrid scheme. Here we have considered w = 10 and wM = 6. Looking at
Figures 3 and 4 we observe that the MUSCL scheme cuts of the top of the Gaussian pulse. The
Hybrid scheme does not. Close to the discontinuity the solutions in both figures are similar,
since in that region the schemes are the same.

4.2 Non-linear problems

We have considered the Burgers equation (F = u2/2), i.e.

ut +
(
u2/2

)
x

= 0, 0 ≤ x ≤ 1, (11)

with a sine wave as initial condition. The solutions are computed until t = 0.1 which is just
before a shock has formed. An analytical solution is computed using a Newton iteration method
[9]. It can be seen in Figures 5 and 6 that the solution obtained from the Hybrid scheme is more
accurate than the one from the non-modified MUSCL.



0 0.2 0.4 0.6 0.8 1
!1

!0.5

0

0.5

1
T=0.1000, N=81

x

so
lu

tio
n 

ve
ct

or

 

 
Initial soluton
Exact solution
Numerical solution

(a) Solution

0 0.2 0.4 0.6 0.8 1
!0.02

!0.01

0

0.01

0.02

0.03
T=0.1000, N=81

Domain x

u!
v

(b) Error

Figure 5: Solution and error from the MUSCL scheme.
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Figure 6: Solution and error from the Hybrid scheme, w = 6 and wM = 5.

MUSCL Hybrid w = 6, wM = 5
N l2-error p l2-error p
21 0.0209 - 0.0250 -
41 0.0083 1.38 0.0069 1.94
81 0.0027 1.64 0.0020 1.83

161 0.0008 1.69 0.0005 1.89
321 0.0003 1.68 0.0002 1.21

Table 2: L2-error and rate of convergence at T = 0.1 for the Burger’s equation

The l2-norm of the errors and the order of convergence from the two schemes are shown in
Table 2. From the table we can see that the Hybrid scheme produces a solution that is slightly
more accurate than the one from the MUSCL scheme. For the Hybrid scheme the order of
convergence p drops suddenly in the last row of Table 2. Presently we have no clear explanation
for that. Note that most of the errors are generated where the gradients are large. Here the



scheme will be the same and hence the maximum errors in the solution will be approximately
the same.

5 Conclusion

We have developed a stable way to locally change the order of a finite difference scheme. The
resulting scheme has at least the same overall accuracy as the lowest included scheme, which
is verified by numerical experiments.

This procedure can serve as a very efficient way of doing accurate calculations even in the pres-
ence of shocks. We combine our adaptive accuracy scheme with the MUSCL shock capturing
technique and compare the results with the ones obtained using only MUSCL.

Future work include adaptive meshing, such that the mesh is coarse and the scheme high or-
der in smooth domains whereas highly resolved and first order accurate close to shocks. The
extension to parabolic equations such as the heat equation can be done.
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