
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Emulating a Native Mobile
Experience with Cross-platform
Applications

RASMUS FREDRIKSON

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Emulating a Native Mobile Experience with
Cross-platform Applications

Emulering av en naturlig mobil-upplevelse med plattformsoberoende
applikationer

RASMUS FREDRIKSON

Master in Computer Science, DA222X
Supervisor: Pedro Afonso Nunes Sanches

Examiner: Eva-Lotta Sallnäs Pysander

EECS, KTH. Stockholm, Sweden. June 05, 2018.

iii

Abstract

This thesis compares a native Android application with two different classes
of cross-platform applications, an interpreted application developed in React
Native and a Progressive Web-App (PWA). The main contribution of the thesis
is a comparison table, placing application features on the y-axis and the evalu-
ated frameworks on the x-axis. This table in conjunction with the cost analysis
provide clear framework selection guidance. The evaluated applications were
created to evaluate the frameworks’ fulfillment of the enumerated features. A
user study was performed to learn if there was any discernible difference be-
tween the evaluated applications. Qualitative data obtained from a think-aloud
in the user study, indicates a slight preference for the PWA, despite a smaller
feature set. However, quantitative analysis from a User Experience Question-
naire (UEQ) failed to show any systematic UX performance difference over the
evaluated applications. Therefore, it is concluded that cross-platform applica-
tions are able to both emulate and even outperform a native experience in some
regards, with the added advantage of significantly offsetting both development
and maintenance costs. Finally, we recommend using a cross-platform mobile
application framework if it provides all the features required by the intended
application.

iv

Sammanfattning

Denna rapport jämför en “Native Android”-applikation med två olika klas-
ser av plattformsoberoende applikationer, en “Interpreted”-applikation utveck-
lad i React Native och en “Progressive Web”-Applikation (PWA). Det största
bidraget från denna rapport är en jämförelsetabell, där applikationsfunktioner
placeras på y-axeln och de utvärderade ramverken på x-axeln. Denna tabell,
i konjunktion med en kostnadsanalys, förser läsaren med en tydlig guide vid
val av ramverk. De utvärderade applikationerna skapades för att utvärdera
ramverkens tillgänglighet till de uppräknade funktionerna. En användarstudie
utfördes för att utreda huruvida det existerade någon märkbar skillnad mellan
de utvärderade applikationerna. De kvalitativa data som erhölls från en “think-
aloud” i användarstudien indikerar en liten preferens för PWA:n, trots att den
har tillgång till färre funktioner. Den kvantitativa analysen från ett “User Ex-
perience Questionnaire” (UEQ) misslyckades med att visa någon systematisk
skillnad i UX mellan de utvärderade applikationerna. Slutsatsen är därför att
plattformsoberoende applikationer både kan emulera, och till och med över-
träffa, en naturlig upplevelse i vissa avseenden, med en ytterligare fördel av
att både utvecklings- och underhållskostnader väsentligt minskar. Slutligen re-
kommenderar vi användandet av ett plattformsoberoende applikationsramverk
förutsatt att det har tillgång till alla funktioner som krävs för den avsedda
applikationen.

Emulating a Native Mobile Experience with Cross-platform
Applications

Rasmus Fredrikson
KTH - Royal Institute of Technology

Stockholm, Sweden
rasmuf@kth.se

ABSTRACT
This thesis compares a native Android application with two
different classes of cross-platform applications, an interpreted
application developed in React Native and a Progressive Web-
Application (PWA). The main contribution of the thesis is a
comparison table, placing application features on the y-axis
and the evaluated frameworks on the x-axis. This table in
conjunction with the cost analysis provide clear framework
selection guidance. The evaluated applications were created
to evaluate the frameworks’ fulfillment of the enumerated
features. A user study was performed to learn if there was
any discernible difference between the evaluated applications.
Qualitative data obtained from a think-aloud in the user study,
indicates a slight preference for the PWA, despite a smaller
feature set. However, quantitative analysis from a User Ex-
perience Questionnaire (UEQ) failed to show any systematic
UX performance difference over the evaluated applications.
Therefore, it is concluded that cross-platform applications are
able to both emulate and even outperform a native experience
in some regards, with the added advantage of significantly off-
setting both development and maintenance costs. Finally, we
recommend using a cross-platform mobile application frame-
work if it provides all the features required by the intended
application.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; See http://acm.org/about/class/1998/ for the
full list of ACM classifiers. This section is required.

Author Keywords
Cross-platform application; React Native; Progressive Web
Application; UEQ; Android.

INTRODUCTION
Today many companies are struggling with the maintenance
of two codebases for their mobile applications, iOS and An-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

droid. Due to this problem, cross-platform development is
increasingly used at companies looking for ways to reuse
their codebase to lower both development costs as well as
the total cost of ownership drastically. These companies will
be interested by the results of examining and comparing dif-
ferent cross-platform techniques. The gains of only having
one shared codebase is reduced maintenance time while mak-
ing it easier to find and fix bugs, since they only need to be
fixed once. Furthermore, only one programming language and
framework need to be used, which makes it easier to find and
hire developers while keeping down the amount of teams at
the company.

Xanthopoulos and Xinogalos [20] compare four different
classes of cross-platform mobile application frameworks: web,
hybrid, interpreted and cross-compiled. Since their publica-
tion, the frameworks evaluated have been improved and new
ones have been added to the aforementioned classes. There-
fore, a new comparison is relevant where this study will expand
on their study by taking new frameworks into consideration.
In order to conclude this study we will attempt to answer the
following research questions:

• How close can a cross-platform application emulate a native
experience?

• What set of features can effectively describe the capabilities
needed for a mobile application framework to be able to
facilitate a native experience?

• Out of the evaluated frameworks, how do they compare as
to the fulfillment of above features?

THEORY AND RELATED RESEARCH
The four different framework classes mentioned in the pre-
vious section are explained in detail in this section. Other
user-studies carried out prior to this study which compare
different cross-platform applications are also described.

Native applications
A native application is an application developed directly for
a certain mobile Operating System (OS) e.g. iOS or Android.
When developing for iOS the code is written in Objective C
or Swift while Android is written in Java or Kotlin [4]. Since
the applications are written in two different programming
languages, two completely separate applications need to be
developed. The applications however are thereby optimized

http://acm.org/about/class/1998/
10.1145/1235

to their respective OS and can access all of the native features
described in the corresponding native API, presuming the user
allows it.

Web applications
Web applications use the mobile phone’s web browser as its
runtime environment and are implemented using JavaScript
(JS), Cascading Style Sheets (CSS) and Hypertext Markup
Language (HTML). Due to this web applications are never
installed on the device and therefore no updates are needed to
be shipped to the device. However, Internet access is needed to
use such applications and due to the visible browser artifacts,
such as the address bar, they lack a native look and feel. Other
drawbacks with web applications are their restricted access to
the mobile device’s native features and their slow rendering of
components compared to native applications [10].

Progressive Web-Applications (PWAs)
PWA is a new concept which expand on the web applications
and effectively deal with their drawbacks. Thanks to PWAs
and new concepts and requirements advocated by Google
[14] regular websites can now act, look and feel more like
an installed application, especially on Android devices. With
the help of web-app manifests, web-sites in PWA supported
browsers can be added to the user’s device’s home screen,
where the browser artifacts have been stripped from the ap-
plication. By implementing a background JS-script (Ser-
vice Worker) logic and background tasks can be cached [14],
thereby allowing the application to work offline. Since the
application’s data is cached offline, the application can render
its GUI faster than an ordinary web application, which needs
to fetch its data from the Internet first [14].

Not much research has been done on PWAs so far, due to their
short time on the market [14]. Biørn-Hansen, Majchrzak and
Grønli [5] compare a PWA implemented in ReactJS with an in-
terpreted application in React Native and a hybrid application
in Ionic. They compare each application’s installation size,
start-up time and first activity launch-time. The PWA had the
smallest installation size, the shortest launch-time and second
lowest start-up-time of the three applications. The authors
reckon that PWAs could be a potential solution for web-native
development without using cross-platform frameworks.

Fransson and Driaguine [7] created a PWA in ReactJS and
compared it with a native Android application. Since a com-
mon problem with web applications before was their inability
to access the mobile device’s hardware, they wanted to inves-
tigate whether this was still a problem with the introduction
of PWAs. They realized that this was no longer an issue and
decided to compare the PWA’s performance of the camera
and geolocation with the Android application. It showed that
the PWA’s geolocation was faster than the Android applica-
tion’s geolocation, whereas the opposite was true regarding
the camera.

Several researchers [5, 7, 14] recommend that further research
should be done due to the lack of scientific research within
the area. Furthermore no User Experience (UX) research has
been done concerning PWAs as of now and should therefore
be an interesting contribution to the field.

Hybrid applications
Hybrid applications are a mix between native and web appli-
cations and are packaged and installed on the mobile device
like a normal native application. However instead of being
developed in a native language they are built using web tech-
nologies, where the application creates web-views employed
on the standard OS’s design, to make it look and feel native.
The views are packaged into the native binary along with
the hybrid framework, where the framework then renders the
views into a web-view at runtime.

The pros and cons are similar to the web applications, however
an Internet connection is no longer needed for the application
to work. The rendering of hybrid applications’ web-views
are faster than web applications, but still slower than native
applications’ component rendering [10]. Examples of hybrid
frameworks are PhoneGap and Ionic [18].

Much research has already been done regarding hybrid appli-
cations and most new articles evaluates Ionic [5, 13, 18, 19].
Ionic uses Cordova plugins to gain access to native features
like notifications and file storage and are more focused on
performance than other hybrid solutions [10].

Interpreted applications
Interpreted applications use a technique which renders the
native components directly instead of creating a web-view like
the hybrid applications. Interpreted applications are developed
with a common language, such as JS and uses an abstract layer
which translates the common language code at runtime to
access the native features of the mobile device. By rendering
native components these applications create a native user-
interface, however they rely completely on the framework and
if new native features are created the framework’s features
need to be updated as well [10]. React Native, NativeScript
and Titanium are examples of interpreted frameworks. React
Native is as of now the most popular interpreted framework on
GitHub with over 64 000 stars and more than 14 000 forks1.

There are several scientific articles evaluating interpreted ap-
plications using React Native [3, 5, 8, 9, 17], but only two
of those [3, 8] evaluate them from a UX perspective. Both
of these articles consider React Native as a potential game-
changer within cross-platform frameworks since it both looks
and feels similar to native applications. However as both Hans-
son and Vidhall [8] and Axelsson and Carlström [3] state in
their discussion, the framework was still young when the ar-
ticles were published and has since then updated frequently.
It is therefore possible that the framework has gone through
such changes that the articles’ results may no longer be of
relevance. Furthermore, Hansson and Vidhall [8] recommend
a more detailed user-study with more test subjects together
with a think-aloud or a longitudinal study since their study
could not statistically confirm their UX-results.

Cross-compiled applications
Cross-compiled applications are written in a common, usu-
ally statically typed and compiled application programming
language and then transformed into targeted native code by
1https://github.com/facebook/react-native

a cross compiler [10]. Since the code is retargeted to use the
native UI toolkit the performance of the application is equal to
that of a native application as well as the look and feel. It also
has access to most of the native features except for platform
dependent features such as the camera and geolocation since
the access differs between platforms [10]. A downside with
this approach is that it is focusing on mobile development and
cannot easily be transformed into a website. This approach
is more costly for the many companies following a web-first
approach when developing, due to the need of developing two
separate codebases, one for the web and one for the mobile ap-
plication. Xamarin is a popular framework for cross-compiled
applications [10].

Delimitations
Due to time constraints not all of the previous mentioned
application classes were implemented. This work aims to
compare applications able to share code between themselves
as well as the web. Therefore cross-compiled applications
were not included in this study, since they have no connection
to web development. Since a lot of UX research has already
been done regarding hybrid applications, such applications
will not be included in this study either.

Due to lack of recent UX-research regarding PWAs and in-
terpreted applications this project aimed to compare a PWA’s
UX with an interpreted and native application. The frame-
works’ accessibility to a mobile device’s hardware was also
investigated. A native application was developed as a baseline
when comparing the cross-platform applications. Android
was chosen as the native application, since at the start of this
project the iOS platform did not support PWAs. The inter-
preted application was developed in React Native due to its
wide popularity. To make the comparison easier between the
PWA and the React Native application, the PWA was devel-
oped in ReactJS to make sure the programming paradigm and
execution model did not affect the comparison between the
two cross-platform applications.

Related work
The comparison of cross-platform applications’ UX have been
approached rather differently during the years. Some have
conducted longitudinal studies and some used questionnaires.

Longitudinal studies
Angulo and Ferre [2] performed a laboratory study where
they compared a hybrid application created in Titanium with a
native application. They created both an iOS and an Android
version of the application where the users tried either version.
After the laboratory study they carried out a longitudinal study
where half of the users started with the native application
and the other half the cross-platform application and then
switched after five days. They concluded that a good level of
UX could be obtained by using a cross-platform application if
the development framework is chosen carefully.

Similarly, Andrade et al. [1] carried out a longitudinal study
where they compared a native application with a hybrid appli-
cation developed in Phonegap. A number of their test subjects
used the native application and the rest tested the Phonegap
application. After a few days they told their test subjects that

they had updated their application and that they should try
them for a few more days. The updated version was a switch
between the two applications depending on which application
the user had used from the beginning. However, the authors
only installed the other application on some of the devices,
thereby letting some of the test subjects keep the same applica-
tion without knowing it. This was to avoid a tainted test result
since the test subjects now thought they had got a new version.
The result was that only eight out of sixty noticed a difference
between the applications.

Questionnaire studies
Hansson and Vidhall [8] used questionnaires to compare an in-
terpreted application in React Native with a native application.
Their test subjects carried out their assigned tasks and then
completed a User Experience Questionnaire (UEQ) afterwards.
They discussed the use of System Usability Scale (SUS) but
chose to use a UEQ since it was easier to use when compar-
ing two products. Their users tried either the React Native
application or the native one. Their study showed that Re-
act Native had similar user experience compared to its native
correspondent.

Axelsson and Carlström [3] performed a similar study, how-
ever they made use of a cognitive study while performing their
user-study and then let the user complete a Single Ease Ques-
tion (SEQ) and a SUS after performing their assigned task.
They based most of their UX method on a paper by Tom Albert
and Bill Tullis recommended by their supervisor. Furthermore,
they started the project with a survey where people answered
whether they preferred mobile applications or websites and
why. Their final conclusion was that React Native was not
as good as its native correspondent but demonstrates well the
capabilities of cross-platform applications.

The UEQ used in the study by Hansson and Vidhall [8] was
created by Laugwitz, Schrepp, and Held [11, 12] and focuses
on measuring UX quickly in a simple and immediate way
while still being comprehensive. The questionnaire was cre-
ated with the help of usability experts who gave their opinion
on which aspects were most important to investigate when
conducting quantitative UX research. The questionnaire con-
sists of 26 items were each item is categorized into one out of
six categories. These categories are attractiveness, perspicuity,
efficiency, dependability, stimulation and novelty and were
chosen to best represent a product’s overall UX. Each item in
the UEQ is represented by two terms with opposite meaning
and are on the opposite side of each other on a seven-stage
scale. The order of terms is randomized for each item, where
half of the negative terms are on the left side of the scale
and the other half on the right side. This is to make sure the
user stays alert during the entirety of the UEQ. The authors
recommend that the questionnaire is complemented with a
qualitative study to make the study fully comprehensive.

PRE-STUDY
To answer the second research question, a comparison ta-
ble was created which attempts to span the space of mobile
features with focus on the most used native features. This
table was created to easily compare which native features each
framework can access and thereby giving parties interested in

Features Android PWA React Native

Native Behaviors
Local Notifications X X X

Push Messages X X X
Home Screen Installation X(T) X(T) X(T)

Foreground Detection X X X
Permissions X X X

Surroundings
Bluetooth X X* 3rd

USB X X 3rd
NFC X X 3rd

Ambient Light X X X

Device Features
Network Type & Speed X X* X

Online State X X X
Vibration X(T) X(T) X(T)

Battery Status X X 3rd
Device Memory X X 3rd

Camera & Microphone
Audio & Video Capture X(T, camera) X(T, camera) X(T, camera)

Advanced Camera Controls X X 3rd
Recording Media X X 3rd

Real-time Communication X X 3rd

Operating System
Offline Storage X(T, Shared Preferences) X(T, Local Storage) X(T, Async Storage)

File Access X(T) X(T) X(T)
Contacts X X (No longer in development) X

SMS X X X
Storage Quotas X X(Only an estimate) 3rd
Task Scheduling X X (No longer in development) 3rd

Input
Touch Gestures X(T, swipe/touch) X(T, swipe/touch) X(T, swipe/touch)

Speech Recognition X X* 3rd
Clipboard (Copy & Paste) X X* X

Seamless Experience
Offline Mode X(T) X(T, Service Worker) X(T)

Background Sync X X 3rd
Inter-App Communication X X(Possible with web share) X

Payments X X 3rd
Credentials X X 3rd

Location & Position
Geolocation X X* X
Geofencing X X (No longer in development) 3rd

Device Position X X* 3rd
Device Motion X X* 3rd

Proximity Sensors X X (No longer in development) 3rd

Screen & Output
Virtual & Augmented Reality X X* 3rd

Fullscreen X X* 3rd
Screen Orientation & Lock X(T) X(T, not possible to lock) 3rd (T)

Wake Lock X X* 3rd
Presentation Features X X X

Table 1. Comparison table
(T): Implemented in the developed applications.
3rd: Third-party solution exists.
X*: Partially accessible.
X* Possible, but too easy to abuse, therefore not implemented.

(a) Android application. (b) Progressive Web Application. (c) React Native application.

Figure 1. The profile-picture selection menu in the developed applications.

application development a good overview over which frame-
work might suit them best, depending on which features are
crucial for their application.

To present the features a table structure was chosen, mainly
because it gives a good overview of each application’s feature
accessibility where comparison of the applications remains
easy. Several others have also chosen this structure [1, 3, 5,
14, 15], however the created table in this study is more ex-
tensive than those tables. To find which native features were
most common in today’s mobile applications, seven applica-
tions were explored. The selected applications were Facebook,
Google Maps, Instagram, Slack, Snapchat, Tinder and Tink
and were chosen due to their wide use in the mobile commu-
nity and their difference compared to each other, see Appendix
B. The table got extended further by exploring each frame-
work’s API23 and a detailed summary4 of the PWA’s access
to native features.

Table 1 summarizes the most important native features com-
mon in most popular applications today. As seen in the table
Android has access to all of the mobile device’s native fea-
tures. React Native lacks access to the presentation feature,
which allows users to connect their application to an external
device such as a monitor. The React Native API however does
2https://facebook.github.io/react-native/docs/components-and-
apis.html
3https://developer.android.com/reference/classes.html
4https://whatwebcando.today/

not support all of the native features as of now and instead
third-party solutions have been created to fill most of this gap.
Links to the third-party sources that access the specified fea-
tures in the table can be found in Appendix A. The PWA lacks
access to a few of the native features and have only partially
integrated a few others, but still have access to most of them.
Each feature is explained in detail in the summary4 previously
mentioned.

DEVELOPED APPLICATIONS
Three applications were also developed, one native in Android,
one interpreted application in React Native and one PWA in
ReactJS. They were developed to look as similar to each other
as possible while still incorporating the most common compo-
nents based on the previously mentioned popular applications.
These developed applications acted as a complement to the
comparison table to be able to decide whether there were any
subjective differences between the applications.

Selection and implementation of features
Based on the comparison table eight of the native features
were chosen to be implemented in the developed applications
to see how they performed and how hard they were to imple-
ment. The selected features are marked with a (T) in Table
1. These applications were however mainly developed to dis-
cover whether or not people noticed if they were using a native
or a cross-platform application. Due to this, it was impor-
tant to make sure that all aspects of native components were

(a) Android application. (b) Progressive Web Application. (c) React Native application.

Figure 2. The developed applications’ Discovery views.

tested as well. Therefore, an investigation of seven widely
used applications was conducted, where the main components
used in these applications were: 1) Navigation bar, either top,
side or bottom. 2) Scroll functionality. 3) Listview. 4) Go
back-functionality. 5) Swipe around elements. 6) Select. 7)
Text-input. 8) Button. 9) Switch. 10) Checkbox. 11) Calendar-
picker. 12) Clock-picker. 13) Seekbar. 14) Lightbox.

One of the investigated applications found in Appendix B was
Tinder, an application where people meet others by swiping
right on those profile pictures that they want to match with
and left on those they do not. Tinder incorporated all of the
eight chosen native features from the comparison table, while
still using the most common components described in the list
above. Due to these facts, Tinder was chosen as a template
for the developed applications in this study. The developed ap-
plications incorporated the same main functionality as Tinder,
but instead targets the gaming community. The application’s
goal is to make it easier for people to find new friends or team
members to play games with. The name of the application
thus came to be Teamfinder.

All of the native components found in Appendix B were im-
plemented in the developed applications with the exception
of some of the more unusual components such as the seekbar,
calendar-picker and clock-picker. The checkbox and switch
were not implemented either since they already exist on many
places on the web and had no obvious place in the developed

application. With specific CSS5 these components can look
native since it is rather a question of design than interaction
and overall feeling. Instead focus was put into making the
different applications behave native overall with natural inter-
action and navigation. A bottom navigation was chosen since
a majority of the investigated applications employed one.

The native features chosen from the comparison table were
implemented according to each framework’s API. They all
worked as expected, except for the screen orientation lock
in the PWA which was not supported on the selected device,
however it was still possible to get the screen orientation of
the device. The source code can be found at GitHub6.

Teamfinder
There are four views in the application Teamfinder: "My pro-
file", "Discovery", "Matches" and "Matched player". 30 test
subjects tested the three applications and gave their opinion
on each.

My profile
In "My profile" the user is able to change her profile picture
and nickname by tapping them. The player then chooses
whether she wants to use an existing image on the mobile
device or take a new one with the camera. This menu differs
between the three applications as seen in Figure 1. In Android

5https://github.com/styled-components/styled-components
6https://github.com/rasmusfredrikson/teamfinder

the menu is black and stays at the bottom of the screen with
three options: Photos, Gallery and Camera. In the PWA the
user is immediately shown all images the phone has access to
with the camera option in the upper left corner. In React Native
the user may choose between the Camera and the Gallery
represented by a white lightbox menu centered on the screen.
Five people thought the Android application was the best
application partly because of this selection menu, two people
chose React Native due to this and three people chose the
PWA. This menu was also the main reason why people thought
Android was the native application, where a total of eight out
of eleven people were able to guess it solely on this factor.

The interaction when editing the nickname is the same on all
applications with the small anomaly that the Android’s key-
board was not shift sensitive. One person noticed this bug and
therefore thought a lot worse about the Android application
which might have affected the person’s overall opinion.

The user also has the possibility to filter which players she
wants to match with. In the application there are three drop-
down settings for the user to choose amongst: Game, Position
and Rank. The dropdown design is a bit different between
the three applications. In the PWA and React Native a light-
box pops up with all the different alternatives whereas in the
Android there is just an ordinary dropdown. No clear con-
sensus could be found on which dropdown looked best in the
qualitative study. Two people thought the dropdown in the
PWA looked most native, while one user thought the Android
dropdown had the most native design.

Discovery
The Discovery view as shown in Figure 2 is where the main
action takes place. Here the user gets to swipe yes (right) or
no (left) for each player the user sees. A match will occur
if both the user and the opposite player swipe right. These
players are just mock data for now and therefore a simple
random function was implemented to decide whether or not
the user matched with the player. A vibration is felt when the
user gets a match. The swipe was a bit different between all
the applications. The "Nope" and "Like" that appeared when
people liked or disliked a person showed directly after the
user started moving the card in the Android application. In
React Native it showed when reaching a certain point on either
side of the screen, and in the PWA it appeared after the user
had swiped the card. The card wiggled a lot in the Android
version, whereas in React Native it only tilted the direction the
user moved the card and in the PWA it was completely static
in its movements. The users had different opinions on which
application had the best swiping, where five users thought the
PWA was best due to the swiping, two thought React Native
and one user thought Android.

Matches and Matched player
In the Matches view the user can see all of her matches and
scroll if there are more than five. The user also has the possi-
bility to click on a matched player to get a more detailed view
of the player. This view represents the last view: Matched
player. From this view it is possible to go back to the previous
view by tapping the back button in the upper left corner. Both

views were very similar between the applications and no user
noticed any real difference here.

USER-EVALUATION

Method
The first research question was answered with the help of
a quantitative study and complemented with a qualitative
study as suggested by Hansson and Vidhall [8] and Laugwitz,
Schrepp, and Held [12] to make the study as comprehensive as
possible. 30 test subjects took part in the study and were sepa-
rated into six test groups where each group tested a different
order of the applications than the one before them. This was
to avoid the study’s result being affected by the ordering of
the applications rather than by the applications’ performances.

A UEQ was used as the quantitative method due to it being
fairly comprehensive while still being a quick method to evalu-
ate the test subjects. As suggested by Hansson and Vidhall [8]
a hint was added to the item "secure" and "not secure" since it
was common that this item was misinterpreted as "how safe
the user’s data was" instead of the more correct interpretation
"how safe and controllable the interaction is" [12]. The test
subjects completed the UEQ after they had performed the as-
signed tasks for each application. The tasks and their order
are listed below.

• Task 1: Change your profile-picture and nickname.

• Task 2: Go to the discovery view and swipe through the
card-deck until you reach the end.

• Task 3: Change all of your discovery settings to only find
players who play League of Legends with a rank and po-
sition of your choice. Match with at least three of these
players and keep swiping until you reach the end.

• Task 4: Find out more about your first and last matched
player.

To complement the quantitative method a think-aloud session
took place while the test subjects performed their task. This
was to understand why they were doing certain things and
what they were looking for. The users did not know that
they were testing cross-platform applications, but instead just
thought they were trying out three different versions of the
same application. After testing all of the applications the users
were asked which application they liked best and why. After
answering that question, it was revealed to them that two of the
application were cross-platform and were then asked which
one they thought was native and why. The think-aloud was
transcribed and the essence of it was summarized into a graph
found in the next section.

Result
The quantitative data from the UEQ is summarized in Figure
3 and 4 where the mean values for each of the six categories
for each application is presented. In Figure 3 the applications
are compared to the UEQ’s benchmark values. Aside from
the novelty category all applications perform above average or
better. In Figure 4 a confidence interval for each category was
calculated [6, Chapter 12.3] and is represented by the error
bars in the graph.

Figure 3. The developed applications in comparison to the UEQ’s benchmark values.

Figure 4. Result from the quantitative study.

Categories React Native
vs Android

React Native
vs PWA

Android
vs PWA

Attractiveness 0.2843 0.1349 0.4367
Perspicuity 0.9406 0.1946 0.3313
Efficiency 0.9015 0.9088 1.0000
Dependability 0.1398 0.2489 0.8903
Stimulation 0.4888 0.1096 0.2366
Novelty 0.9263 0.1081 0.1217

Table 2. Two-sided paired t-test values. T-value less than 0.05 indicates
a significant systematic difference.

A t-test was performed to test if a significant difference existed
between any of the applications’ categories. The samples from
each test subject are not pairwise independent whereas the
mean value for each category could be either higher or lower
than another test subject’s category sample. Due to these facts
a two-sided paired t-test was used to calculate whether or
not a significant difference exists between the applications’
categories. The calculated T-value must be lower than an alpha
value of 0.05 [6, Chapter 13.6] to be of any useful significance.
The result from the t-test can be found in Table 2. With an
alpha value of 0.05 no significant difference could be proven
for any of the categories, but one could still exist.

The results from the think-aloud can be found in Figure 5. The
users got to choose which application they preferred in the
qualitative study as shown by the first bar group in the graph.

The second bar group shows how many users preferred two
applications. The best application in the quantitative study for
each user was chosen as the one which performed best in most
categories. If two applications performed equally well they
were both chosen the best. If a user had the same preferred
application in both the qualitative and the quantitative study,
they had a consistent result as presented in the third bar group.
If a user preferred two applications in the qualitative study and
one or both matched with the quantitative study, the matched
application was counted for in the third bar group.

The most preferred application with ten people voting for it
was the PWA, with the Android and React Native applications
on a tied second place with seven people voting for them each.
The Android and React Native application were however each
chosen three times together with another application when
the user could not decide on which application was best. The
PWA got chosen twice together with another application as
seen in the second bar group. People were most consistent
when picking the React Native as their preferred application,
where seven out of ten were consistent. The Android had five
out of ten consistent users and the PWA six out of twelve.

The fourth and fifth bar groups are similar to the first and
second bar groups, with the difference that they represent the
test subjects’ opinions on which application felt most native.
Eleven users thought the Android application looked most
native, whereas seven thought the PWA was the native appli-
cation. Only two people thought the React Native application

Figure 5. Result from the qualitative study.

was the native application. The Android looked most native
according to eleven users, however eight of these only thought
that because the selection of the profile picture looked most
native. When asked if they would have guessed it was native
when ignoring this selection menu, none of these eight would
have been able to guess. Five of those who thought the PWA
was the most native chose it due to the smoothness and overall
familiar feeling of the application.

The three last bar groups tell which application was preferred
most regarding to if it was tested first, second or last. The
React Native application performed equally when tested first
and last with four people voting for it, and only one preferred
it when tested second. The Android application performed
equally well when tested first and second with two users, and
best when tested last with three users voting for it. Lastly the
PWA performed worst when tested first where only one user
preferred it, whereas much better when tested second and last
where four respectively five people preferred it. This shows
that all applications performed better when tested last, which
might suggest that the order of the application testing is a
more prominent factor than the actual difference between the
applications.

Other things taken into consideration was whether the person
had used Tinder before, if the user used iOS or Android and
their previous Android experience. The age-span of the user
was also noted as well as whether they had ever developed an
application before. However none of these factors showed any
correlation with their answers and were therefore not shown
in Figure 5.

DISCUSSION

Comparison Table
The comparison table shown in Table 1 tries to summarize
which native features each framework has access to. It is fairly
extensive and covers all of the features in the investigated
popular applications and more. The table helps to answer

the second research question "What set of features can effec-
tively describe the capabilities needed for a mobile application
framework to be able to facilitate a native experience?"

The Android application can access all native features,
whereas React Native lacks access to a rarely used one, the
presentation feature. Since the presentation feature is the only
feature found so far, which React Native does not have access
to it suggests that React Native can emulate a native experience
in terms of access to native features. However, to access some
of the native extensions not supported by the framework the
native code for the different platforms need to be altered. This
results in a codebase not entirely cross-platform dependent,
since that code differs a bit between iOS and Android. The
PWA lacks access to a few features, however most of them are
rarely used in today’s applications. The PWA has access to
the most important features such as offline mode and storage,
file access etc., which makes it a likely candidate to be able to
emulate a native experience in terms of native features. Unlike
React Native no third-party solutions are needed to gain access
to these features. The PWA has been tested on an iPhone and
works as it should, however no evaluation has been done since
this was not in the study’s scope.

When choosing a framework it is important to make sure that
the framework actually supports all of the feature that are to
be implemented. If not, the company will need to reconsider
whether this feature is important enough to switch framework
or if they can use an alternative solution instead. Overall the
comparison table shows that the most important features are
accessible by all three frameworks which implies that they are
all able to emulate a native application in terms of access to
native features. However, if some of the more obscure features
are needed then the PWA might not be up to the challenge.
This comparison helps to answer the third research question
"Out of the evaluated frameworks, how do they compare as to
the fulfillment of above features?".

User-study
The PWA was most popular when tested in the qualitative
study, but when compared with React Native in the quantitative
study it performed worse in all categories except perspicuity.
However, since no significant difference could be established
in the quantitative study there is still a chance that the PWA is
better. The qualitative study showed that those who preferred
the PWA chose it due to its general feeling and smoothness.
This is interesting since that is probably the hardest part to
emulate and in part proves the first research question in regard
of whether it is possible to emulate a native experience with
cross-platform applications.

It is difficult to find a definite answer to the first research
question "How close can a cross-platform application emulate
a native experience?". The fact that no significant difference
could be established hints that all the applications were able
to emulate a native experience. Additionally, the gains of only
maintaining one codebase, as mentioned in the introduction,
should be enough for companies to consider switching to a
cross-platform application. Taking this into consideration, the
PWA should perform best since its code-sharing percentage
is higher than the other platforms, due to it being developed
solely in a web programming language. React Native is not
completely platform independent since websites cannot be
developed with React Native and if native extensions are to be
accessed, the codebase will slightly differ between Android
and iOS as well. However, presuming the mechanism and
policy code are separated accordingly [16], the policy code
which is developed in ReactJS should be consistent between
all three platforms. The mechanism code will be different
between the web and the mobile applications since React
Native does not run on the web. The only code that should
differ between iOS and Android is the code developed for
native extensions. Therefore, React Native is still a viable
alternative even if a website would be part of the codebase.

What is also interesting is that the actual native Android ap-
plication never performed best in either the qualitative or the
quantitative study. This implies that native applications do
not necessarily have to be better than cross-platform ones,
especially since many people guessed which one was native
but still preferred a cross-platform application. This could
of course also be due to the fact that each application was
developed in two weeks and if further developed, greater dif-
ferences might appear. However, the differences might also
lessen if more time was put into making the applications more
similar. A possibility would be to compare three already exist-
ing applications implemented with each framework. It would
however be difficult to avoid the result being tainted by com-
paring applications which were not developed with the same
unique selling point in mind. It is possible to argue that the
applications developed in this study have not been developed
by a professional and therefore cannot be used as proof that
cross-platform can emulate a native experience. However as
can be seen in Figure 3 all applications performed better than
the UEQ’s benchmark in all categories except novelty. This
indicates that the usability factor is high and the result gained
from this study should reflect usage in the real world.

The question stands whether this is a good way to compare
such similar applications. Neither this nor Hansson and Vid-
hall’s [8] studies were able to show any significant differences
between the applications even though 30 or more users partici-
pated in each study. The reason could be that the applications
are actually so similar that they do not differ in any of the
categories, however more test subjects would be needed to be
able to say whether or not this is the case. Laugwitz, Schrepp,
and Held [12] recommend that at least 20 test subjects are re-
cruited, therefore 30 should be sufficient for an accurate result,
especially since both this study and Hansson and Vidhall’s [8]
show similar results. React Native was a new framework when
they conducted their study and has now existed and grown
for two years. React Native performs equally or better than
the Android in almost all categories in this quantitative study,
however no significant results could be established. They do
equally well in the qualitative study. These results hint that
React Native performs better now than it did when Hansson
and Vidhall [8] and Axelsson and Carlström [3] performed
their study in terms of UX.

Longitudinal study such as the ones Andrade et al. [1] and
Angulo and Ferre [2] conducted might give more accurate
results since users tend to discover more of the bugs and get
a more extensive feel of the general UX. This study however
aimed to see whether users noticed a difference when just
using a cross-platform application for a few minutes. The
qualitative data shows their conscious opinions whereas the
quantitative study shows their subconscious opinions. More
work needs to be put into each application to give enough
material for a longitudinal study.

Future work
At the start of this study PWAs were not supported on the iOS
platform, which is why iOS was not a part of the research
done in this project. However, Apple recently released an
update where they added support for service workers and
web-app manifests7. These features are crucial for a PWA to
work and are a good hint that PWAs might be the future of
application development. An interesting study would be to
investigate whether the developed applications in this study
would perform equally well on the iOS platform.

The work can also be expanded upon by improving the indi-
vidual applications with more information and design. Due to
time constraints only two weeks of development were put into
each application and therefore only the most common features
were implemented. However, if a more extensive application
was to be created a longitudinal study could be conducted
instead which might give different results since people will
grow accustomed to the applications and might find small
differences not noticed upon first inspection.

CONCLUSION
To summarize this study, it seems like the cross-platform
frameworks have finally caught up with the native applica-
tions in terms of UX possibilities. No significant difference
could be found between the different developed applications in
7https://medium.com/@firt/progressive-web-apps-on-ios-are-here-
d00430dee3a7

the quantitative study. The React Native application performed
slightly better than the other applications in the quantitative
study, but this might just as well been a coincidence since no
significant differences were established. The PWA performed
better than the other applications in the qualitative study. In
terms of access to native features the Android application is
the best, but React Native only lacks access to one feature,
which is rarely used in today’s modern applications. The PWA
comes up short in this comparison and lacks access to a few
of the features, however it still has access to the most common
ones.

If a party wants to create an application where not all native
features are needed, a PWA might be the perfect choice. It
is easy and fast to deploy, and its codeshare percentage is
the highest of the compared frameworks. Furthermore, if the
developers already maintain a website, the code will most
likely be completely re-usable and no new knowledge will
be needed, resulting in a fast learning-curve. However, if
the party needs access to more native features a React Native
application could be recommended. It has a similar learning
curve to the PWA, provided the company uses ReactJS as
their framework. Presuming the code is well separated, the
policy-code will be re-usable between all platforms, whereas
the mechanism code will be different between the web and
the mobile applications since React Native does not run on
websites. If a native extension is needed, some alteration of
the code might be needed which results in a lower code-share
percentage between iOS and Android. The gains of a shared
codebase are decreased development cost and maintenance
time which result in a drastically lower total cost of ownership.
If a more delicate application is needed which needs access to
all of the native features a native application might however be
the correct choice. This is due to cross-platform applications
not having complete access to all of the mentioned features.
The downside with this approach is the need of two completely
separate codebases. Finally, considering the huge gains of only
maintaining one codebase and most companies not needing
all of the features a cross-platform application is strongly
recommended.

ACKNOWLEDGEMENTS
I would like to express my great appreciation to the company
Challengermode where I have conducted this study and es-
pecially to my supervisor Fredrik Lilkaer who has given me
much support and feedback during this project. Furthermore, I
would like to give my special thanks to my supervisor at KTH
Pedro Sanches who has given me great feedback whenever I
have asked for it. Lastly, I would like to send an extra thanks
to all of the participants in this study.

REFERENCES
1. P. Andrade, A. Albuquerque, O. Frota, R. Silveira, and F.

da Silva. 2015. Cross platform app: a comparative study.
CoRR abs/1503.03511 (2015), 33–40.

2. E. Angulo and X. Ferre. 2014. A Case Study on
Cross-Platform Development Frameworks for Mobile
Applications and UX. In Proceedings of the XV

International Conference on Human Computer
Interaction (Interacción ’14). ACM, New York, NY,
USA, Article 27, 8 pages. DOI:
http://dx.doi.org/10.1145/2662253.2662280

3. O. Axelsson and F. Carlström. 2016. Evaluation
Targeting React Native in Comparison to Native Mobile
Development. Master’s thesis. Lund University, Faculty
of Engineering.

4. A. Biørn-Hansen and G. Ghinea. 2018. Bridging the Gap:
Investigating Device-Feature Exposure in Cross-Platform
Development. Proceedings of the 51st Hawaii
International Conference on System Sciences (01 2018).

5. A. Biørn-Hansen, T. Majchrzak, and T. Grønli. 2017.
Progressive Web Apps: The Possible Web-native Unifier
for Mobile Development. Proceedings of the 13th
International Conference on Web Information Systems
and Technologies (2017), 344–351.

6. G. Blom, J. Enger, G Englund, J. Grandell, and L. Holst.
2004. Sannolikhetsteori och statistikteori med
tillämpningar (5 ed.). 9, Vol. 5. Studentlitteratur AB.

7. R. Fransson and A. Driaguine. 2017. Comparing
Progressive Web Applications with Native Android
Applications : An evaluation of performance when it
comes to response time. (2017).

8. N. Hansson and T. Vidhall. 2016. Effects on performance
and usability for cross-platform application development
using React Native. Master’s thesis. Linköping University,
Human-Centered systems.

9. T. Lawler Karvonen. 2017. Native versus non native : A
comparison of React Native and Angular NativeScript to
native mobile applications Parallelism in Node.js
applications. (2017).

10. M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai.
2016. Cross platform approach for mobile application
development: A survey. In 2016 International
Conference on Information Technology for Organizations
Development (IT4OD). 1–5.

11. B. Laugwitz, M. Schrepp, and T. Held. 2006.
Konstruktion eines Fragebogens zur Messung der User
Experience von Softwareprodukten. In Mensch und
Computer 2006: Mensch und Computer im
Strukturwandel, Andreas M. Heinecke and Hansjürgen
Paul (Eds.). Oldenbourg Verlag, München, 125–134.

12. B. Laugwitz, M. Schrepp, and T. Held. 2008.
Construction and Evaluation of a User Experience
Questionnaire. In HCI and Usability for Education and
Work, Andreas Holzinger (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 63–76.

13. T. Majchrzak, A. Biørn-Hansen, and T. Grønli. 2017.
Comprehensive Analysis of Innovative Cross-Platform
App Development Frameworks. Proceedings of the 50th
Hawaii International Conference on System Sciences (1
2017).

http://dx.doi.org/10.1145/2662253.2662280

14. T. Majchrzak, A. Biørn-Hansen, and T. Grønli. 2018.
Progressive Web Apps: the Definite Approach to
Cross-Platform Development? Proceedings of the 51st
Hawaii International Conference on System Sciences (1
2018).

15. M. Palmieri, I. Singh, and A. Cicchetti. 2012.
Comparison of cross-platform mobile development tools.
In 2012 16th International Conference on Intelligence in
Next Generation Networks. 179–186. DOI:
http://dx.doi.org/10.1109/ICIN.2012.6376023

16. Jerome H. Saltzer and M. Frans Kaashoek. 2009.
Principles of Computer System Design: An Introduction.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

17. D. Vesely. 2017. Analysis and experiments with
NativeScript and React Native framework. Master’s
thesis. Masaryk University, Faculty of Informatics, Brno.

18. T. Vilček and T. Jakopec. 2017. Comparative analysis of
tools for development of native and hybrid mobile
applications. In 2017 40th International Convention on
Information and Communication Technology, Electronics
and Microelectronics (MIPRO). 1516–1521.

19. N. Wang, X. Chen, G. Song, Q. Lan, and H. R. Parsaei.
2017. Design of a New Mobile-Optimized Remote
Laboratory Application Architecture for M-Learning.
IEEE Transactions on Industrial Electronics 64, 3 (3
2017), 2382–2391.

20. Spyros Xanthopoulos and Stelios Xinogalos. 2013. A
Comparative Analysis of Cross-platform Development
Approaches for Mobile Applications. In Proceedings of
the 6th Balkan Conference in Informatics (BCI ’13).
ACM, 213–220.

http://dx.doi.org/10.1109/ICIN.2012.6376023

APPENDIX

THIRD-PARTY SOURCES
Third-party sources that access native API with React Native

• Bluetooth
• USB
• NFC
• Battery Status
• Device Memory
• Advanced Camera Controls
• Recording Media
• Real-time Communication
• Storage Quotas
• Task Scheduling

• Speech Recognition
• Background Sync
• Payments
• Credentials
• Geofencing
• Device Position
• Device Motion
• Proximity Sensors
• Virtual & Augmented Reality
• Fullscreen
• Screen Orientation & Lock
• Wake Lock

https://github.com/Polidea/react-native-ble-plx
https://github.com/mik3y/usb-serial-for-android
https://github.com/whitedogg13/react-native-nfc-manager
https://github.com/oojr/react-native-battery
https://github.com/rebeccahughes/react-native-device-info
https://github.com/react-native-community/react-native-camera
https://github.com/futurice/react-native-audio-toolkit
https://github.com/oney/react-native-webrtc
https://github.com/sunnylqm/react-native-storage
https://github.com/vikeri/react-native-background-job
https://github.com/wenkesj/react-native-voice
https://github.com/jamesisaac/react-native-background-task
https://github.com/naoufal/react-native-payments
https://github.com/fullstackreact/react-native-oauth
https://github.com/surialabs/react-native-geo-fencing
https://github.com/react-native-sensors/react-native-sensors
https://github.com/react-native-sensors/react-native-sensors
https://github.com/williambout/react-native-proximity
https://github.com/react-native-ar/react-native-arkit
https://github.com/Anthonyzou/react-native-full-screen
https://github.com/wonday/react-native-orientation-locker)
https://github.com/corbt/react-native-keep-awake

FEATURES IN POPULAR APPLICATIONS

Facebook
1 000 000 000+ downloads on Google Play

• Top-navigation, fixed, swipe between views
• Scroll
• Text-input
• Back-button
• Lightbox
• Calendar-picker
• Clock-picker
• Checkbox
• Listview
• Button
• Switch

Google Maps
1 000 000 000+ downloads on Google Play

• Side-navigation, on click to open, swipe or click to re-
move

• Scroll
• Text-input
• Back-button
• Lightbox
• Calendar-picker
• Listview
• Button
• Switch

Instagram
1 000 000 000+ downloads on Google Play

• Bottom-navigation, fixed, no swipe between views
• Scroll
• Text-input
• Back-button
• Lightbox
• Checkbox
• Listview
• Button

Slack
5 000 000+ downloads on Google Play

• Side-navigation, on click to open, swipe or click to re-
move

• Scroll

• Text-input
• Back-button
• Lightbox
• Listview
• Button
• Switch
• Select

Snapchat
500 000 000+ downloads on Google Play

• Bottom navigation, fixed, swipe between views
• Scroll
• Text-input
• Back-button
• Lightbox
• Checkbox
• Listview
• Button
• Swipe around an object

Tinder
100 000 000 downloads on Google Play

• Top-navigation, fixed, swipe between views
• Scroll
• Text-input
• Back-button
• Lightbox
• Swipe around an object
• Listview
• Button
• Switch
• Seekbar

Tink
100 000+ downloads on Google Play

• Bottom navigation, not fixed on scroll, no swipe between
views

• Scroll
• Text-input
• Back-button
• Lightbox
• Listview
• Button
• Vertical seekbar

www.kth.se

