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Abstract
The archetypical topology optimization problem concerns designing the layout of material within a given region of space so
that some performance measure is extremized. To improve manufacturability and reduce manufacturing costs, restrictions on
the possible layouts may be imposed. Among such restrictions, constraining the minimum length scales of different regions
of the design has a significant place. Within the density filter based topology optimization framework the most commonly
used definition is that a region has a minimum length scale not less than D if any point within that region lies within a sphere
with diameter D > 0 that is completely contained in the region. In this paper, we propose a variant of this minimum length
scale definition for subsets of a convex (possibly bounded) domain. We show that sets with positive minimum length scale
are characterized as being morphologically open. As a corollary, we find that sets where both the interior and the exterior
have positive minimum length scales are characterized as being simultaneously morphologically open and (essentially)
morphologically closed. For binary designs in the discretized setting, the latter translates to that the opening of the design
should equal the closing of the design. To demonstrate the capability of the developed theory, we devise a method that
heuristically promotes designs that are binary and have positive minimum length scales (possibly measured in different
norms) on both phases for minimum compliance problems. The obtained designs are almost binary and possess minimum
length scales on both phases.

Keywords Topology optimization · Nonlinear filters · Size control · Mathematical morphology

1 Introduction

Given a region of space � ⊂ R
d , topology optimization

aims at determining the layout of material that extremizes
a given performance measure. In a typical topology
optimization problem there are two phases of material,
for convenience referred to as material and void, to be
distributed within the design domain. Hence, the objective
is to find a region M ⊂ � such that M is occupied by
material and V = � \ M is occupied by void. There
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are several reasons to restrict the set of feasible designs—
some of mathematical nature related to the well-posedness
of the topology optimization problem, and some of
more practical nature related to manufacturing. Constraints
on the minimum feature size can be used to ensure
manufacturability and help controlling the manufacturing
cost. Moreover, as pointed out by Allaire et al. (2016),
imposing a minimum feature size constraint can compensate
for simplified physical modeling or be introduced for
aesthetical reasons.

In density based topology optimization, M ⊂ �

is represented by its characteristic function 1M : � →
{0, 1}—often referred to as the material indicator function.
To utilize gradient based optimization algorithms, which are
suitable for handling the large-scale problem obtained after
discretization, the range of the material indicator function
is relaxed to [0, 1]. The relaxed material indicator function
ρ : � → [0, 1] is referred to as the density. By introducing a
penalty on densities in (0, 1), binary designs are promoted.
To guarantee existence of solutions, the density based
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topology optimization problem needs in general to be
suitably regularized. Borrvall (2001) presents a systematic
overview of several regularization schemes. Regularization
by density filtering, where the density is restricted to the
range of a regularizing filter operator, is frequently used
(see, for instance, the works by Bruns and Tortorelli 2001;
Bourdin 2001; Guest et al. 2004; Sigmund 2007; Lazarov
and Sigmund 2011; Svanberg and Svärd 2013). We have
previously introduced the class of generalized f W -mean
filters that provide a common framework for the vast
majority of density filters used in topology optimization
(Wadbro and Hägg 2015). In a recent paper we extended
Bourdin’s (2001) result on existence of solutions to the
linearly filtered minimum compliance problem to cascades
of generalized f W -mean filters (Hägg and Wadbro 2017).

2 Overview onminimum length scale control
in density based topology optimization

This section presents an overview of different methods
that aim at imposing minimum length scale in topology
optimization, with emphasis on the various definitions of
minimum length scales involved. A comprehensive review
on different techniques based on density filtering has
recently been given by Lazarov et al. (2016).

Early attempts to gain control over the minimum length
scales in density based topology optimization, such as
slope constraints (Petersson and Sigmund 1998) and linear
density filtering (Bruns and Tortorelli 2001; Bourdin 2001),
focused on limiting the spatial variation of the density
field. The linear filter replaces the density in one point
with a weighted linear average over some neighborhood.
The typical choice has been to use d-dimensional spherical
neighborhoods with a given diameter D > 0. Necessarily,
both methods (the addition of slope constraints and
linear density filtering) lead to blurred transitions between
material and void regions. If the slope constraint reads
‖∇ρ(x)‖ ≤ D−1 or if the filter neighborhood is a
d-dimensional sphere with diameter D > 0, then the
transitional region is at least of size D. As indicated
before (Sigmund 2007) and as will be emphasized in
this paper, other neighborhood shapes can be employed.
However to fix ideas, we will stick to d-dimensional
spherical neighborhoods with diameter D in this section.
Concentrating the weights used in the linear filter around the
center of each neighborhood, allows for sharper transitions
between material and void regions. Ultimately, when the
weights far from the center of the neighborhood become
negligible in comparison to those close to the center, we
are effectively using a smaller neighborhood—In finite
precision arithmetic, this is certainly the case. Nonlinear
density filters (Guest et al. 2004; Sigmund 2007; Svanberg

and Svärd 2013) have the advantage of allowing for almost
sharp transitions between material and void regions, even
for uniform weighting.

The underlying idea of the Heaviside projection, is to
threshold a linearly filtered density at a fixed density level
η ∈ [0, 1] (Guest et al. 2004; Sigmund 2007). When
thresholding at level η = 0, the resulting density in a point
is 0 if and only if the density within the neighborhood of
that point is identically zero. On the other hand ρ(x) > 0
implies that the resulting density will be 1 at any point that
has x in its neighborhood. Thus, any point within a material
region lies within a d-dimensional sphere with diameter
D > 0 that is completely contained in the material region.
The text in italics may be adopted as the defining property
of a material region possessing a minimum length scale not
less than D. To distinguish this overarching definition we
will denote it by NEighborhood based minimum Length
scale (NEL). Although, we have not been able to determine
the exact origins of this definition, it has been extensively
used—both implicitly and explicitly—in the literature (see,
for instance, the works by Bruns and Tortorelli (2001),
Bourdin (2001), Guest et al. (2004), Sigmund (2007), Guest
(2009), and Svanberg and Svärd (2013)). A more elaborate
definition of the NEL has been given by Zhang et al. (2014).
Given the structural skeleton S(M) of M = M , consisting
of all points in M that have at least two nearest points on
∂M , Zhang et al. (2014) define the minimum length scale as

rmin(M) = inf
x∈S(M)

sup{r ≥ 0 | B̄r (x) ⊂ M}, (1)

where B̄r (x) denotes the closed (Euclidean) ball centered at
x with radius r .

For binary densities, thresholding filtered densities at
η = 0 gives the same result as computing maxima
over neighborhoods (Sigmund 2007). Thus, for binary
densities, thresholding filtered densities at η = 0 provides
a realization of the dilate operator from mathematical
morphology. Other realizations for binary densities of the
dilate operator are given by the geometric and harmonic
dilate filters with the parameter α = 0 (Svanberg and Svärd
2013). Analogously, considering thresholding at η = 1
leads to a definition of minimum length scale for void
regions, considerations of the erode operator and its various
realizations for binary densities.

In applications using gradient based optimization algo-
rithms, thresholding is replaced by application of a dif-
ferentiable function that approximates the Heaviside step
function (Guest et al. 2004). Similarly, differentiable filters
that approximate the dilate and erode operators are used
(Sigmund 2007; Svanberg and Svärd 2013). In all cases, the
degree of approximation is controlled by a scalar parame-
ter. As pointed out by Sigmund (2007), it is important to
keep in mind that although such filters give the same result
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on binary densities in the limit where the approximation
is exact, they will in general produce different results for
non-binary densities and finite approximation errors. The
overall conclusion is that a lower bound on the NEL of
either material or void regions can be imposed by using stan-
dard filtering methods. We also note that a common feature
is that such filters approximate the morphological dilate or
erode operators on binary densities. (This also applies to fil-
ters approximating morphological open or close operators
since these are compositions of dilate and erode operators.)
By introducing two design fields, one controlling the lay-
out of material and one controlling the layout of void, Guest
(2009) was able to impose independent minimum length
scales on both phases using Heaviside projection. Strictly
speaking, the definition of the NEL is only applicable to
binary designs. However, it seems that the common under-
standing is that this is less of an issue when the designs are
almost binary with almost sharp transitions between regions
of different materials.

From a manufacturing point of view in two spatial
dimensions, designs with NEL not less than D > 0 on
the material phase could be manufactured using a circular
deposition tool with diameter D, while designs with NEL
not less than D on the void phase could be manufactured
using a circular machining tool with diameter D (Sigmund
2007). The same reasoning applies to NELs defined using
non-circular neighborhoods; for instance, if the void phase
has NEL defined using some neighborhood, one may
use a punch tool in the shape of the neighborhood in
manufacturing.

Related to constraints on minimum length scale are so
called robust formulations aiming at designs that are robust
toward geometrical uncertainties (Lazarov et al. 2016).
Robust formulations typically require multiple solves of the
state equation at each design iteration and are therefore
in general computationally demanding. Wang et al. (2011)
noted that if thresholding the filtered densities at any level
η ∈ [ηd, ηe] yields designs with the same topology, then
any design obtained by thresholding the filtered densities at
an intermediate level ηi ∈ (ηe, ηd) possesses NELs on both
phases. Later, Zhou et al. (2015) introduced geometrical
conditions aiming to guarantee that thresholding the filtered
densities within a range of levels leads to designs with the
same topology. However, the function

ρ̃(x, y) = 0.5+0.5
0.3 cos(4πx) + tanh(20(y − 0.5))

0.3 + tanh(10)
, (2)

defined on the unit square provides a counter example.
Since ∇ρ̃ 	= 0 in [0, 1]2, their conditions are vacuously
satisfied. Nevertheless, thresholding ρ̃ at ηd = 0.2, ηi =
0.5, and ηe = 0.8, respectively, yields three different
topologies, as illustrated in Fig. 1. We note that function
(2) can be excluded by requiring ∂ρ̃

∂n
= 0 at the design

Fig. 1 Thresholding function (2) at ηd = 0.2 (left),ηi = 0.5 (middle),
and ηe = 0.8 (right), respectively, yields three different topologies

domain boundary. Whether, appending ∂ρ̃
∂n

= 0 to Zhou
et al.’s (2015) conditions make them sufficient in general is
an open question. It is interesting to note that the response
of designs with NELs on both phases need not be robust
against uniform dilations and erosions of the design (Zhou
et al. 2015).

To simultaneously control the minimum length scale
of both materials, Poulsen (2003) introduced the MOLE-
method (MOnotonicity based minimum LEngth scale). For
simplicity, we state the definition of the MOLE in two
spatial dimensions. The MOLE is at least D > 0 if at any
point x ∈ � the restriction of the density to any of the
line segments x + t (cos θ, sin θ), t ∈ [−D/2, D/2], θ ∈
{0, π/4, π/2, 3π/4} is monotonic in t . Imposing that the
MOLE is at least D > 0 implies that the boundary between
material and void regions consists of piecewise straight lines
meeting at angles no less than 3π/4, and in particular that
the smallest feature is an octagon with diameter (1+√

2)D.
To enforce a lower bound on the MOLE, one extra constraint
was added to the formulation of the topology optimization
problem.

Allaire et al. (2016) work with a level set representation
of the design and make the following definition. The
thickness of M is larger than D > 0 if for each point
x ∈ ∂M and any t ∈ [0, D], it holds that x − tn(x) ∈ M ,
where n(x) denotes the outward unit normal toM at point x.
To impose minimum thickness via constraints or penalties
in the problem formulation, the definition is reformulated
using the signed distance function. For a point in the interior
of M the value of the signed distance function dM is the
negative distance from the point to the boundary, for a
point on the boundary of M the value is 0, and for a point
in the exterior of M the value is the distance from the
point to the boundary. In the level set context the NEL
can be conveniently expressed by using the signed distance
function and the skeleton of M (Guo et al. 2014b; Xia and
Shi 2015): dM(x) ≤ −D/2 for all x ∈ S(M). As pointed
out by Allaire et al. (2016), the behavior of their minimum
thickness and the NEL can be rather different. Consider,
for instance, the unit square with rounded corners with
rounding radius 0 < r � 1, then the minimum thickness is
1 while NEL = 2r � 1.



1018 L. Hägg, E. Wadbro

Within the Moving Morphable Components (MMC)
approach (Guo et al. 2014a) with trapezoidal components,
a different notion of minimum length scale considering the
individual sizes of the components and the sizes of their
intersection regions was introduced by Zhang et al. (2016).

3 Paper outline

The remainder of the paper is organized into two
main parts: Foundations of minimum size control, and
Computational approach and experiments. The first part
starts with Section 4.1 that gives an introduction to stan-
dard mathematical morphology for subsets of Rd . To han-
dle subsets of a bounded convex domain, we introduce
a modification of standard morphology in Section 4.2. In
Section 4.3, we propose definition (31) of the NEL for
open subsets of a bounded convex domain and elaborate on
its relation to the morphological operations of Section 4.2.
Section 4.4 discusses morphological operators on Carte-
sian grids, their connection to the discretized density based
topology optimization problem, and concludes with con-
dition (53) that can be used to impose independent NELs
on both phases. To quantitatively asses the NELs of an
optimized design, we introduce some quality measures in
Section 4.5. The first part concludes with a discussion in
Section 4.6. The second part starts with Section 5.1 that
introduces a method for compliance problems that heuris-
tically imposes NELs on both phases via condition (53).
Section 5.2 describes in detail the morphology-mimicking
filters used in the numerical experiments, which are pre-
sented in Section 5.3. Section 5.4 provides a discussion on
the proposed numerical method and the obtained results. A
concluding summary related to both parts of the paper is
given in Section 6.

4 Foundations of minimum size control

4.1 Preliminaries onmathematical morphology

Mathematical morphology is a branch of image analysis
originating from the works of Georges Matheron and Jean
Serra in the early sixties. The main idea of mathematical
morphology is to gain information about a set M ⊂
R

d by probing it by a smaller set B ⊂ R
d . In

mathematical morphology B is referred to as a structuring
element. In image analysis (topology optimization) the
set M represents the binary image (design) given by the
characteristic function 1M(x). Dilation and erosion are
perhaps the simplest morphological operations and they
serve as building blocks for more complex operations.

Following Heijmans (1995), we define the dilation of M

by B as

DB(M) = {m + b | m ∈ M, b ∈ B} =
⋃

b∈B

(b + M); (3)

that is, DB(M) equals the Minkowski sum M ⊕ B. An
immediate consequence of definition (3) is that dilation is
commutative, that is,

DB(M) = DM(B) =
⋃

m∈M

(m + B). (4)

The erosion of M by B is defined as

EB(M) = {y | y + b ∈ M ∀b ∈ B} =
⋂

b∈B

(−b + M); (5)

that is, EB(M) equals the Minkowski difference M � B.
Equivalently, since y ∈ EB(M) if and only if y + b ∈ M for
all b ∈ B, the erosion of M by B consists of all translations
y such that y + B ⊂ M; that is,

EB(M) = {y | y + B ⊂ M}. (6)

By taking the complement of definition (5) and using
definition (3), we arrive at the following duality relation
between DB and EB

EB(M)� = D−B(M�). (7)

The opening of M by B and the closing of M by B are
defined by

OB(M) = DB(EB(M)), (8)

CB(M) = EB(DB(M)), (9)

respectively. The open operator is anti-extensive while the
close operator is extensive, that is,

OB(M) ⊂ M ⊂ CB(M). (10)

Moreover, these operators are both idempotent, that is,

OB(OB(M)) = OB(M), (11)

CB(CB(M)) = CB(M). (12)

Figure 2 illustrates the four basic morphological operators
defined by the ball B acting on a set M .

For grayscale images (designs with intermediate values)
ρ : R

d → [0, 1], which in contrast to binary images
(designs) cannot be represented by sets, the dilate of ρ by B

is defined as

DB(ρ)(x) = sup
b∈B

ρ(x − b) = sup
y∈x+(−B)

ρ(y). (13)

We note that for all x and all M we have that

DB(1M(x)) ∈ {0, 1}. (14)

Moreover, DB(1M(x)) = 1 holds if and only if there exists
a b ∈ B such that x ∈ b + M . Hence, DB(1M(x)) =
1DB(M)(x), which shows that definitions (3) and (13) are
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Fig. 2 Illustration of the basic morphological operators

consistent for binary images. Similarly, we define the
erosion of ρ by B as

EB(ρ)(x) = inf
b∈B

ρ(x + b) = inf
y∈x+B

ρ(y). (15)

4.2 Morphological operations on bounded domains

Note that the morphological operations presented in the
previous section are defined for subsets of R

d . Here,
our main interest is however to consider morphological
operations on subsets of a bounded convex domain � ⊂ R

d .
We will also restrict our attention to structural elements
containing 0; that is, 0 ∈ B. To this end, we introduce the
operations

D�
B (M) = DB(M) ∩ �, (16)

E�
B (M) = EB(�� ∪ M) ∩ �, (17)

O�
B (M) = D�

B (E�
B (M)), (18)

C�
B (M) = E�

B (D�
B (M)), (19)

where M ⊂ �. (Note that by taking � = R
d

the morphological operators of the previous section are
retrieved, that is, DB(M) = DR

d

B (M) and so on.)
One may verify that operations (16) to (19) satisfy similar

relations as the operations on R
d presented in Section 4.1.

For example, erosion (17) satisfies the analog of relation (6):

E�
B (M) = {y ∈ � | (y + B) ∩ � ⊂ M} (20)

= {y ∈ � | y + B ⊂ �� ∪ M}. (21)

Morphological operations (16) and (17) are dual in the sense
that

� \ E�
B (M) = D�−B(� \ M). (22)

Open operator (18) is anti-extensive while close operator
(19) is extensive

O�
B (M) ⊂ M ⊂ C�

B (M). (23)

Moreover, these operators are idempotent

O�
B (O�

B (M)) = O�
B (M), (24)

C�
B (C�

B (M)) = C�
B (M). (25)

The corresponding definitions for grayscale images
(designs with intermediate values) are

D�
B (ρ)(x) = sup

y∈(x+(−B))∩�

ρ(y), (26)

E�
B (ρ)(x) = inf

y∈(x+B)∩�
ρ(y), (27)

for x ∈ �.

4.3 Minimum length scale of sets

Let the structuring element B � 0 be open, bounded,
symmetric, and convex. Then the Minkowski functional

pB(x) = inf{r > 0 | x ∈ rB}, (28)

defines a norm ‖ · ‖B on R
d for which B is the open unit

ball; that is, B = {x | ‖x‖B < 1}. We define the local length
scale relative B at x ∈ M of a nonempty open set M ⊂ �

as the radius of the largest ball with center in M containing
x such that its intersection with � lies within M . That is,

R�
B (M; x) = sup{r > 0 | ∃y ∈ M s.t. x ∈ Br(y)∩� ⊂ M},

(29)

where Br(y) = y + rB = {x | ‖x − y‖B < r} denotes
the ball obtained by scaling and translating the open unit
ball. For applications in topology optimization where some
differential equation is defined on (the design) M, it is
natural to require M to be open. Moreover, if the structuring
element is open, then the opening of any set is open and the
closing of any set is closed.

With definition (29) in mind, we define

ErB(M; x) = {y ∈ M | x ∈ Br(y) ∩ � ⊂ M}. (30)

Then, R�
B (M; x) = sup{r > 0 | ErB(M; x) 	= ∅}. Note

that if M 	= ∅, then R�
B (M; x) > 0 since M ⊂ � is by

assumption open. Furthermore, the following lemma holds;
a proof is given in Appendix A.

Lemma 1 If M 	= ∅ and 0 < r < R�
B (M; x), then

ErB(M; x) 	= ∅.
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Having defined a local length scale, we define the NEL
of M 	= ∅ relative B as the smallest local length scale of M ,
that is,

R�
B (M) = inf

x∈M
R�

B (M; x). (31)

For M = ∅, it is natural to define R�
B (∅) = 0, rather than

using definition (31) and the convention that inf ∅ = ∞ that
would lead to R�

B (∅) = ∞. We note that the case M = ∅,
is of little practical importance in topology optimization.
For bounded �, the main difference between NEL (1) and
NEL (31) lies in the treatment of regions that are close to
the boundary ∂�. By letting � = R

d in definition (31), we
essentially obtain NEL (1) in as much as the two definitions
agree for sufficiently regular sets. For future reference, we
define

RB(M) = RR
d

B (M). (32)

A set M satisfying M = O�
B (M) is called B-open

relative �, or just B-open if � = R
d . Sets M such that both

the interior and the exterior are B-open relative � are called
B-regular relative �, or just B-regular if � = R

d . The two
sets, illustrated to the left and in the middle of Fig. 3, are B-
open and B-regular, respectively; the structuring element B

is depicted in the top right corner of the same figure. When
� = R

d and B = {x ∈ R
d | ‖x‖ < 1} (the Euclidean

unit ball in R
d ) rB-regular sets are simply called r-regular

(Serra 1982, § 5; Pavlidis 1982, § 7). It can be shown that an
r-regular set must be of class C1 (Duarte and Torres 2014).

We proceed by three theorems that link B-open sets and
NEL (31).

Theorem 1 If M 	= ∅ is rB-open relative � for some
r > 0, then R�

B (M) ≥ r .

Proof By using that M 	= ∅ is rB-open, definitions (16)
and (18), as well as expression (4), we find that

∅ 	= M = O�
rB(M) = DrB(E�

rB(M)) ∩ �

=
⋃

y∈E�
rB(M)

(y + rB) ∩ �. (33)

Fig. 3 Left: a B-open but not B-regular set, middle: a set that is
B-regular, right: the structuring element B

This shows that any x ∈ M belongs to (y + rB) ∩ � ⊂ M

for some y ∈ E�
rB(M) ⊂ M . Hence R�

B (M; x) ≥ r for all
x ∈ M , which implies that R�

B (M) ≥ r .

We note that Theorem 1 makes it possible to quantita-
tively asses the NEL of a set using morphological operators.
Moreover, Theorem 1 in combination with the idempotence
(24) of the open operator provide a way to impose a lower
bound on the NEL of the designs in topology optimization.
More precisely, the NEL is guaranteed to be at least r by
requiring that the design is the morphological opening by
rB of some set. In particular, this is true if M = O�

rB(M).

Theorem 2 If M 	= ∅ and R�
B (M) > 0, then M is rB-open

for any r satisfying 0 < r < R�
B (M).

Proof Since the open operator is anti-extensive (23), we
only need to show that M ⊂ O�

rB(M). If m ∈ M , then, for
any 0 < r < R�

B (M) ≤ R�
B (M; m), by Lemma 1 there

exists y ∈ M such that m ∈ (y + rB) ∩ � ⊂ M . By (20)
we conclude that y ∈ E�

rB(M). Hence, there exists y ∈ E�
rB

and b ∈ B such that m = y + rb, so by definitions (16) and
(18) m ∈ D�

rB(E�
rB(M)) = O�

rB(M).

Theorem 2 shows that a set with positive NEL relative
B is rB-open for any r > 0 less than the NEL. We also
conclude that a set whose interior and exterior both possess
positive NELs must have a regular boundary.

Finally, we combine Theorem 1 and Theorem 2 to show
that NEL (31) could equivalently be defined using open
operator (18).

Theorem 3 For M 	= ∅, using the convention that sup ∅ =
0, it holds that

R�
B (M) = sup{r > 0 | M = O�

rB(M)}. (34)

Proof Let R̃�
B (M) = sup{r > 0 | M = O�

rB(M)}. If
R�

B (M) > 0, then Theorem 2 ensures M = O�
rB(M) for all

0 < r < R�
B (M); hence R̃�

B (M) ≥ R�
B (M). Consequently,

since R�
B (M) ≥ 0 and R̃�

B (M) ≥ 0, it holds that if
R̃�

B (M) = 0 then R�
B (M) = 0.

On the contrary, assume that R̃�
B (M) > 0. Then for each

ε > 0 there exists a strictly positive number rε that satisfies
rε ≤ R̃�

B (M) < rε + ε such that M = O�
rεB

(M). By

Theorem 1, we find that R�
B (M) ≥ R̃�

B (M) − ε. Hence,
R̃�

B (M) > 0 implies that R�
B (M) ≥ R̃�

B (M). Consequently,
if R�

B (M) = 0 then R̃�
B (M) = 0.

Expression (34) shows that NEL (31) of a nonempty open
set can in principle be estimated to any desired accuracy by
computing the morphological opening for different values
of r and applying a bisection method.
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Allowing for the possibility that the interior is rB-open
while the exterior is r ′B-open with r 	= r ′, defines a
subclass of min{r, r ′}B-regular sets. That is,

O�
rB(M) = M and O�

r ′B(V ) = V, (35)

where V = � \ M denotes the exterior of M relative �.
Using duality (22) of the morphological operators, condition
(35) takes the equivalent form

O�
rB(M) = M and C�

r ′B(� ∩ M) = � ∩ M . (36)

According to Theorem 1, the interior and exterior of a
set satisfying (36) may possess different minimum length
scales.

We could generalize further to allow for (note the prime
on B in the close operator)

O�
rB(M) = M and C�

r ′B ′(� ∩ M) = � ∩ M . (37)

Remark that, when using condition (37), the NELs of the
interior and exterior of the set are measured in different
norms. In topology optimization, the idea of imposing
minimum length scales in different norms was suggested by
Sigmund (2007). However, this idea has received little, if
any, attention in the literature.

4.4 Minimum length scale in topology optimization
usingmathematical morphology

With the aim of introducing conditions that guarantee
NELs on either or both phases of materials in density
based topology optimization, we exploit the results of the
previous section regarding minimum length scale (31) and
its connection to morphological operations on bounded
domains. We only discuss the discretized case, where the
domain � has been divided into n elements. To this end,
assume that the design domain � is a hyperrectangle
discretized using a regular grid. Moreover, we assume that
a piecewise constant function ρh is used to approximate the
design and let ρ ∈ [0, 1]n ⊂ R

n be a vector that holds
the values of the design at each element. For a generic
neighborhood shape N ⊂ R

d , we define the neighborhood
Ni of element i as all elements j with centroids xj in xi+N ,
that is,

Ni = {j | xj − xi ∈ N }. (38)

The neighborhoods are said to be symmetric if it holds that
i ∈ Nj if and only if j ∈ Ni . For symmetric neighborhoods,
the discrete counterparts of the grayscale morphological
operators (26) and (27) are given by

Di (ρ) = max
j∈Ni

ρj and Ei (ρ) = min
j∈Ni

ρj , (39)

respectively.
Analogously to the previous section, we assume that the

neighborhood shape is the open ball with radius r > 0 in

the norm ‖ · ‖B introduced in the previous section; that is,
N = rB. In this case

Ni = {j | ‖xi − xj‖B < r}, (40)

which implies that the neighborhoods are symmetric and
that i ∈ Ni for all i. In this case the discrete morphological
operations (39) satisfy

E(ρ) ≤ ρ ≤ D(ρ), (41)

where ρ ≤ η if and only if ρi ≤ ηi for all i. We note that
operations (39) are increasing; that is,

ρ ≤ η ⇒
{
D(ρ) ≤ D(η),

E(ρ) ≤ E(η).
(42)

The symmetry of the neighborhoods implies that for any
j ∈ Ni

Ej (ρ) = min
k∈Nj

ρk ≤ ρi . (43)

Hence, the discrete open operator is anti-extensive; that is,
for any i

Oi (ρ) = Di (E(ρ)) = max
j∈Ni

Ej (ρ) ≤ ρi . (44)

Analogous arguments show that the discrete close operator
is extensive

C(ρ) = E(D(ρ)) ≥ ρ. (45)

By applying E to expression (44) and using that the discrete
erode is increasing (42), we find that E(D(E(ρ))) ≤ E(ρ).
Moreover, extensivity (45) of C applied to E(ρ) shows that
E(D(E(ρ))) ≥ E(ρ). Hence, E(D(E(ρ))) = E(ρ), which
implies that the discrete open operator is idempotent

O(O(ρ)) = O(ρ). (46)

Analogous arguments show that the discrete close operator
is idempotent

C(C(ρ)) = C(ρ). (47)

We note that idempotence (47) of the discrete close operator
also follows from the idempotence of the discrete open
operator by applying expression (46) on 1 − ρ, and using
the duality

E(1 − ρ) = 1 − D(ρ), (48)

where 1 = (1, . . . , 1)T ∈ R
n.

As already indicated, the concept of minimum length
scale is naturally defined for sets; that is, for binary designs.
In the discrete case, any binary design is given by some ρ

that satisfies the relation

ρT (1 − ρ) = 0. (49)

We note that, if ρ satisfies (49), then so does M(ρ), where
M denotes any of the discrete morphological operators.
Condition (37), which expresses that both the interior and
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exterior of the design possess NELs (possibly measured in
different norms), translates to

ρ = ON (ρ), (50)

ρ = CN ′(ρ), (51)

where we display the (possibly different) neighborhood
shapes N and N ′ as subscripts on the open and close
operator, respectively. One way of guaranteeing fulfillment
of conditions (50) and (51) in the optimization process
would be to introduce two binary auxiliary design vectors
η1, η2, imposing the constraint ON (η1) = CN ′(η2), and
define the (physical) design as ρ = ON (η1) (= CN ′(η2)).
The idempotences (46) and (47) of the discrete open and
close operators imply that such ρ satisfies conditions (50)
and (51). However, as we now demonstrate, introducing one
extra design variable per element is superfluous as far as
there is no gain in design freedom. By anti-extensivity (44)
of the discrete open operator and extensivity (45) of the
discrete close operator we find that

ON (ρ) ≤ ρ ≤ CN ′(ρ) (52)

holds for any design ρ. Expression (52) implies that
conditions (50) and (51) hold if and only if

ON (ρ) = CN ′(ρ). (53)

4.5 Quality measures

Based on the theoretical development presented, we
propose four quality measures—two that measure the
difference between the opening and the closing of the
design; and two that measure how close the design is to
being morphologically open and morphologically closed,
respectively. The first of these is the measure of difference
between open and close

MDOC = 1

n
‖CN ′(ρ) − ON (ρ)‖1

= 1T (CN ′(ρ) − ON (ρ))

n
. (54)

Thus, MDOC quantifies any residual in condition (53). A
related quality measure is

FDOC = 1

n
card

{
i | (CN ′(ρ) − ON (ρ))i > 0.5

}
, (55)

that is, the fraction of elements in the vector CN ′(ρ) −
ON (ρ) that are greater than a cut off value of 0.5. In the
0–1 case, FDOC measures the number of elements that are
1 after the close operation but 0 after the open operation.
We remark that MDOC = 0 implies that FDOC = 0 but the
reverse is not necessarily true. To be specific, a purely 0–1
design satisfying MDOC = 0 has NELs on both phases.

As will be seen in the numerical results, the attained
NELs may be different for the two phases and not tight on

the imposed lower bounds. To quantify such deviations, we
introduce two more measures. The measure of difference
between identity and open

MDIO = 1

n
‖ρ − ON (ρ)‖1 = 1T (ρ − ON (ρ))

n
(56)

quantifies any residual in condition (50), while the measure
of difference between identity and close

MDIC = 1

n
‖ρ − CN ′(ρ)‖1 = 1T (CN ′(ρ) − ρ)

n
(57)

quantifies any residual in condition (51). To be specific, a
binary design satisfying MDIO = 0 (MDIC = 0) has NEL on
the material (void) phase. In the numerical experiments we
use MDIO and MDIC to estimate the attained NELs on the
material and void phases, respectively. Finally, we note that
quality measures (54), (56), and (57) are related:

MDOC = MDIO + MDIC. (58)

Here, we use the 1-norm for all quality measures. One
could, of-course, also use another norm to define these
measures. The choice of norm is dictated by how much
one wants small areas where minimum size conditions (50),
(51), or (53) are not satisfied to influence the total quality
measure. The 1-norm is rather forgiving toward having
only small areas where the minimum size conditions are
not satisfied, while, for example the max-norm would only
focus on the largest element-wise deviation. In the binary
case with exact morphological operators on a uniform mesh,
the quality measures based on the 1-norm give the relative
area (or volume) where the corresponding minimum size
condition is not satisfied.

4.6 Discussion

As pointed out before (Sigmund 2007; Guest 2009), there
are some complications regarding minimum length scales
for parts of the design that are adjacent to the design domain
boundaries. In particular, if � ⊂ R

2 is a rectangle and
B is the Euclidean unit ball, then RB(�) = 0. Hence,
M ⊂ � and V = � \ M cannot both possess NELs
defined by expression (32). Moreover, if both phases are
required to possess NELs defined by expression (32), then
only one phase can occupy the region adjacent to a flat
boundary. (Remember that NEL (32) and NEL (1) are
essentially the same.) NEL (31) handles these issues by
allowing the structuring element to be cut by �, implying
that the definition of local length scale varies within �.
Another approach to handle such issues has been presented
by Xia and Shi (2015) within the level set framework, where
they propose to trim the skeleton close to the design domain
boundary before computing NEL (1).
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Padding the design with zeros, in the optimization
process, corresponds to considering a larger convex domain
�̃ ⊃ � ⊕ rB ⊃ �. Defining Ṽ = �̃ \ M and requiring
that O�̃

rB(M) = M and O�̃
rB(Ṽ ) = Ṽ will, according to

Theorem 1, guarantee that R�̃
B (M) ≥ r and R�̃

B (Ṽ ) ≥ r ,
respectively. In fact, it will hold that OrB(M) = M , which
implies that RB(M) ≥ r . However, as will be shown in the
following example (see Fig. 4), nothing can be guaranteed
regarding R�

B (V ) or RB(V ). Let � = (0, 1)2, r = 1/6,
B be the open Euclidean unit ball, �̃ = (−r, 1 + r)2, and
M = OrB(�); then although O�̃

rB(Ṽ ) = Ṽ , it holds that
RB(V ) = R�

B (V ) = 0. The conclusion is that padding the
design with zeros, makes it possible to impose RB(M) ≥ r

and R�̃
B (Ṽ ) ≥ r (and depending on the properties of �̃

even RB(Ṽ ) ≥ r). Analogous conclusions follow when
the design is padded with ones; that is, one may impose
RB(V ) ≥ r and R�̃

B (M̃) ≥ r (and depending on the
properties of �̃ even RB(M̃) ≥ r), where we have defined
M̃ = �̃ \ V .

The problem of one node hinges is often discussed in
relation to minimum length scale control. As illustrated in
Fig. 5, imposing NELs on both phases cannot in general
prevent the formation of one node hinges. Nevertheless,
since four non-overlapping Euclidean balls cannot tangent
in one point, imposing NELs on both phases with a
Euclidean ball as structuring element excludes designs with
one node hinges (for sufficiently fine grids). We note that
Poulsen (2003) in a similar way concludes that the MOLE

Fig. 4 Padding the design with zeros in the optimization process,

corresponds to considering a larger domain �̃. Here, O�̃
rB(M) =

M and O�̃
rB(Ṽ ) = Ṽ are satisfied; thus guaranteeing that

R�̃
B (M), R�̃

B (Ṽ ) ≥ r . Moreover, the condition on M implies that
O�

rB(M) = M; guaranteeing that RB(M) ≥ r . Despite the condition
on Ṽ , we have that R�

B (V ) = RB(V ) = 0

Fig. 5 One node hinges are not excluded by imposing NELs on both
phases when square neighborhoods are employed

needs check monotonicity not only along the coordinate
axes but also along the diagonals in order to exclude one
node hinges.

5 Computational approach and experiments

5.1 Heuristic method for compliance problems

Inspired by the success of the SIMP (Bendsøe and
Sigmund 2003, § 1.1.2) and RAMP (Bendsøe and Sigmund
2003, § 1.5.4) approaches, we propose a heuristic method to
promote designs satisfying (53) for minimum compliance
problems. We modify the standard SIMP method as follows;
for a given design vector ρ, we define the physical density

ρ̃(ρ) = ρ1 + (1 − ρ) (Oh(ρ))p , (59)

where ρ > 0 is small (and ensures existence of solutions
to the linear equations describing the behavior of the
studied system), p ≥ 1 is a SIMP penalty parameter,
and Oh(ρ) is a differentiable approximation of the
discrete morphological opening. However, instead of using
Oh(ρ) in the volume constraint, we use a differentiable
approximation of the discrete morphological closing Ch(ρ).
(To increase readability, we have suppressed the index
showing the dependence of the approximate morphological
operators on the neighborhood shape.) More precisely, we
define the set of admissible designs A as

A =
{
ρ ∈ R

n | 0 ≤ ρ ≤ 1 and vT Ch(ρ) ≤ V ∗} , (60)
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where v ∈ R
n is a vector that holds the fractional

volume (|E|/|�|) of the elements, and V ∗ is the maximum
fractional volume of � allowed to be occupied by material.
The motivation for this approach is that intuitively, the
use of the SIMP penalty parameter p > 1 promotes
binary designs while the use of the open operator to
define the physical design but the close operator in the
volume constraint promotes designs satisfying condition
(53); that is, designs with NEL on both phases. More
precisely, if we use exact morphological operators, then—
by relation (52)—it holds that ON (ρ)p ≤ ON (ρ) ≤ ρ ≤
CN ′(ρ). This means that an element i where ON i (ρ)p <

CN ′i (ρ) yields a relatively small contribution to the stiffness
compared to its contribution to the volume constraint. Thus,
designs that satisfy CN ′(ρ) = ON (ρ)p are promoted. For
such designs, relation (52) implies that ρ = CN ′(ρ) =
ON (ρ) = ON (ρ)p. Hence the design satisfies relations
(49) and (53); that is, the design is binary and possesses
NELs on both material and void.

5.2 Filtering strategy

In the numerical experiments presented in this paper,
we use harmonic mean based f W -filters to approximate
morphological operators. To be explicit, in expressions (59)
and (60), Ch(ρ) is replaced with CH

α (ρ), and Oh(ρ) with
OH

α (ρ); where the harmonic close CH
α (ρ) and harmonic

open OH
α (ρ) are defined in expressions (65) and (66)

found below. Filters based on the harmonic mean were first
introduced in topology optimization by Svanberg and Svärd
(2013). We use equal weights within each neighborhood and
thus define the weight matrix W ∈ R

n×n with nonnegative
entries by

W = D−1G, (61)

where D = diag{|N1|, . . . , |Nn|} and G is a binary
neighborhood indicator matrix, with elements gij = 1 if
j ∈ Ni , else gij = 0.

By using the function fEH
α

(x) = (x + α)−1 and

letting f −1
EH

α
denote the inverse function of fEH

α
, the discrete

harmonic erode operator (Svanberg and Svärd 2013) with
parameter α > 0 is defined as

EH
α (ρ) = f −1

EH
α

(
Wf EH

α
(ρ)

)
, (62)

where the function evaluations are taken elementwise, that
is, f EH

α
(ρ) = (fEH

α
(ρ1), . . . , fEH

α
(ρn))

T ∈ R
n. Similarly,

by letting fDH
α

(x) = fEH
α

(1 − x), the harmonic dilate
operator (Svanberg and Svärd 2013) with parameter α > 0
can be written as

DH
α (ρ) = f −1

DH
α

(
WfDH

α
(ρ)

)
, (63)

where f −1
DH

α
is the inverse function of fDH

α
. Alternatively, by

using that f −1
EH

α
= 1 − f −1

DH
α

(x), we get that the harmonic

dilate and erode operators with parameter α > 0 satisfy

DH
α (ρ) = 1 − f −1

EH
α

(
Wf EH

α
(1 − ρ)

)

= 1 − EH
α (1 − ρ). (64)

That is, the harmonic morphological operators satisfy dual-
ity (48). Technically, as briefly mentioned in Section 2, the
harmonic approximations only converge to the morphologi-
cal operators as α → 0 for binary designs.

By using the harmonic erode and dilate operator, we
define the harmonic close and open operator with parameter
α > 0 as

CH
α (ρ) = EH

α

(
DH

α (ρ)
)

(65)

and

OH
α (ρ) = DH

α

(
EH

α (ρ)
)

, (66)

respectively.

5.3 Numerical experiments

We employ the heuristic method proposed in Section 5.1
to solve two standard test problems: minimizing the
compliance of a cantilever beam and the so-called heat
compliance problem. Before we present the results from
our tests, we digress on the quality measures that we will
use to judge our results. A typical quality measure used in
topology optimization is the measure of non-discreteness

MND = 4

n
CH

α (ρ)T
(
1 − CH

α (ρ)
)

(67)

suggested by Sigmund (2007). This measure is zero if the
design only consists of elements with a 0 or 1 density and
is strictly positive otherwise. Thus, MND quantifies how
close the design is to begin binary. Here, we use CH

α (ρ) in
the definition of MND since this is the design that enters
the volume constraint and thus the one that naturally would
be suggested as the design to be build. We remark that if
we achieve our goal to have CH

α (ρ) = OH
α (ρ) = ρ, we

expect a very small difference if MND would be defined
using OH

α (ρ) or ρ instead of CH
α (ρ). (This is indeed the case

for the optimized designs presented later in this section.)
In addition to MND, we will use the quality measures
introduced in Section 4.5 that quantify how close a binary
design is to satisfy NEL conditions on either or both phases
of material. When computing MDOC, FDOC, MDIO, and
MDIC, we approximate the morphological operators by their
harmonic counterparts OH

α (ρ) and CH
α (ρ) with α = 10−8.

In particular, we have a purely 0–1 design with NELs on
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both materials if MND = 0 and MDOC = 0. All quality
measures below are presented in per percent (%) instead
of dimensionless numbers; for example, if the right hand
side of expression (67) equals 0.018, then we write that
MND = 1.8%.

5.3.1 Cantilever beam optimization

The first test problem we consider is to minimize the
compliance of a cantilever beam. The beam occupies a part
of the domain � ⊂ R

2, illustrated in Fig. 6; is held fast at its
left side 
D; and subject to a vertical surface traction density
that is uniformly distributed over 
F , the middle 10% of the
domain’s right side.

We discretize � by n = nx ×ny square elements, and use
the finite element method with bilinear elements to solve
for the nodal displacements of the structure u ∈ R

N , where
N = 2(nx + 1)(ny + 1). The problem of minimizing the
compliance of the structure given a limit on the available
volume of material can be written as

minρ f T u

s.t. 0 ≤ ρ ≤ 1,

1T CH
α (ρ) ≤ nV ∗; (68)

where u solves

K (ρ̃(ρ)) u = f . (69)

In governing equation (69), the element densities ρ̃(ρ) are
defined as in expression (59) with ρ = 10−9, K (ρ̃(ρ)) is the
N × N stiffness matrix corresponding to the element
densities ρ̃(ρ), and f ∈ R

N is the load vector. More
precisely, letting ϕi , i ∈ {1, . . . , N} denote the finite element
basis functions, the element values of K (ρ̃(ρ)) are given by

Kij =
∫

�

ρ̃hEε(ϕi):ε(ϕj ), (70)

Fig. 6 Geometry for the minimum compliance problem for the
cantilever beam

where ε(u) = (∇u + ∇uT )/2 is the strain tensor (or the
symmetrized gradient) of u, the colon “:” denotes the scalar
product of the two matrices, E is a constant fourth-order
elasticity tensor, and ρ̃h is an elementwise constant function
with element values ρ̃(ρ). Similarly, the element values of
f are

fi =
∫


F

t · ϕi, (71)

where t ∈ L2(
F )d represents the surface traction density
on the boundary portion 
F .

To minimize the compliance of the cantilever beam, we
use the gradient based optimality criteria method (Bendsøe
and Sigmund 2003, §1.2) with damping parameter η = 0.5
together with a continuation approach for p, the SIMP
parameter used in definition (59), and α, the nonlinearity
parameter used to define the nonlinear filters. The contin-
uation approach starts using a fixed nonlinearity parameter
α = 10 and approximately solves problem (68) for p =
1, 1.5, . . . , 3. After that, the continuation continues using
a fixed p = 3 and approximately solves problem (68)
with α = 101−m/2 for m = 1, 2, . . . , 18. We refer to this
scheme as the cautious continuation approach. For the first
problem we employ a uniform initial guess that actively sat-
isfies the volume constraint. At each following subproblem,
we use the approximate closing of the design obtained in the
previous step as initial guess. The stopping criterion used at
each step was that either the maximum elementwise update
of the design vector ρ was less than 0.01 or that 50 iterations
had passed on that continuation step.

Figure 7 shows optimized designs obtained by numer-
ically solving minimum compliance problem (68) with
volume fraction V ∗ = 0.5 on a design domain discretized
by 768×512 elements. The (approximately) circular neigh-
borhoods used in the filtering are illustrated in the top right
corner of each sub-figure. The radii of these neighborhoods
are 4 (top row left), 6 (top row right), 8 (middle row left), 10
(middle row right), 12 (bottom row left), and 14 (bottom row
right) elements, respectively. The value of RelObj, stated
below each optimized beam, shows the corresponding rela-
tive objective function value; that is, the optimized beam’s
compliance divided by the compliance of a beam opti-
mized without filtering and without penalty (compare with
the variable thickness sheet problem). For all these results
the quality measures defined above satisfy the following
inequalities: MND < 1.2 · 10−5%, MDOC < 5.0 · 10−6%,
and FDOC = 0%. The small values of the quality mea-
sures, as well as the presented results, demonstrate that we
indeed have minimum size control of both material phases.
A closer analysis reveals that the maximum elementwise
change required to get a fully 0–1 design is less than 10−5

for all designs in Fig. 7.
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Fig. 7 Cantilever beams with volume fraction V ∗ = 0.5 optimized
for minimum compliance for different filter radii using the cautious
continuation approach

The observant reader notices that the size of the
individual beams in the optimized designs is typically larger
than the imposed minimum feature size set by the filter
neighborhood. We remark that when using the optimality
criteria method, the best we can hope for is that it finds a
local minimum to the optimization problem. The cautious
continuation approach has steered the optimality critera
method toward designs with slightly wider beams than
imposed by the filtering. By using an aggressive approach
for the continuation, using a constant p = 3 and stepping
α = 104−3m for m = 1, 2, 3, 4 and employing the same
filtering procedure as for the results in Fig. 7, yields the
designs in Fig. 8. These results satisfy similar inequalities
for the quality measures (MND < 9.7 · 10−6%, MDOC <

3.9 ·10−6%, and FDOC = 0%) as those obtained when using
the cautious continuation approach. Thus, we also have
minimum size control of both material phases in this case.
Comparing the resulting designs in Figs. 7 and 8 reveals
that, for large filter radii, the two continuation approaches
produce similar results. However for small filter radii, the
cautious continuation approach produced design with finer
features than the aggressive continuation approach. Note
however that both approaches produce designs that up to the
given tolerance satisfy the first order optimality conditions
(the KKT conditions) of the optimization problem.

Fig. 8 Cantilever beams with volume fraction V ∗ = 0.5 optimized for
minimum compliance using the aggressive continuation approach

As we now illustrate, by using the values of MDIO and
MDIC computed for various filter radii one may estimate
the actual NELs of material and void regions, respectively.
Figure 9 shows MDIO and MDIC as functions of filter radius
for the top and middle designs on the left in Figs. 7 and
8. For the top left designs in Figs. 7 and 8, each quality
measure has a distinct jump. NEL condition (50) is satisfied
(within a given tolerance) only before the jump in MDIO, and
analogously NEL condition (51) is satisfied (within a given
tolerance) only before the jump in MDIC. In accordance with
Theorem 3, we estimate the NEL of the material region as
the largest radius where MDIO is below a certain threshold;
analogously, we estimate the NEL of the void region as
the largest radius where MDIC is below a certain threshold.
Based on the values in Fig. 9, we estimate that R�

B (M) = 8
and R�

B (V ) = 4 for the top left design in Fig. 7; and that
R�

B (M) = 11 and R�
B (V ) = 4 for the top left design in

Fig. 8. In either case, the imposed lower bound on the NELs
of both phases were 4.

For some of the other designs in Figs. 7 and 8, the
situation appears more complicated as the quality measures
start out at the lower level for small radii and then jumps
up and down until they settle at the higher level for larger
radii (see, for instance, the bottom two diagrams of Fig. 9).
The reason for the oscillatory behavior may be that in the
discrete case, unlike in the continuous case, (the discrete
approximation of) a large circle may not be constructible
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Fig. 9 Computed values of
MDIO and MDIC as functions of
filter radius for the top left and
middle left designs in Fig. 7 and
for the top left and mid left
designs in Fig. 8

using translates of a (discrete approximation of a) small
circle. Nevertheless, the clear gap in the values of the
quality measures, allows us to analogously estimate the
NELs of the middle left designs in Figs. 7 and 8 based on
the corresponding values of MDIO and MDIC in Fig. 9. By
performing a similar analysis for all the designs in Figs. 7
and 8, we obtain the estimates in Table 1. Thus, for these
designs the NELs of the void regions are tight on the bound,
while the NELs of the material regions are not. Moreover,
the deviations from the lower bounds are larger for the
beams obtained using the aggressive continuation strategy.

As a final test for the cantilever optimization, we check if
the results are “mesh convergent”, that is, whether or not we
obtain the same or at least a very similar design if the mesh
is refined. Figure 10 shows optimized designs obtained
by using a constant physical filter radius and the cautious
continuation approach on a domain discretized by 1536 ×
1024 elements (top left), 3072 × 2048 elements (top right),
as well as 6144 × 4096 elements (bottom). The filter radii
are 4, 8, and 16 elements on the 1536 × 1024, 3072 × 2048,
and 6144 × 4096 element discretization, respectively. All
these results satisfy the following inequalities for the quality
measures MND < 3.9 · 10−6%, MDOC < 3.8 · 10−6%, and
FDOC = 0%. In all these cases, the maximum elementwise
change required to get a fully 0–1 design is less than 4·10−5.

Judging from Fig. 10, the obtained designs appears mesh
convergent.

5.3.2 Minimum heat compliance

We aim to minimize the heat compliance of a square plate
that occupies the computational domain �, illustrated in
Fig. 11, and is subject to uniform heating. The plate is
held at zero temperature along the boundary portion 
D

Table 1 Estimated NELs for the designs in Figs. 7 and 8. Here,
R�

B -imp, R�
B (M), R�

B (V ) refers to the imposed lower bound on the
NEL of both material and void, the obtained NEL of material, and the
obtained NEL of void, respectively

Fig. 7 Fig. 8

R�
B -imp R�

B (M) R�
B (V ) R�

B (M) R�
B (V )

Top left 4 8 4 11 4

Top right 6 7 6 9 6

Middle left 8 9 8 9 8

Middle right 10 10 10 11 10

Bottom left 12 22 12 24 12

Bottom right 14 24 14 24 14
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Fig. 10 Cantilever beams with volume fraction V ∗ = 0.5 optimized
for minimum compliance using the same relative filter radius on
resolutions of 1536 × 1024 elements (top left), 3072 × 2048 elements
(top right), as well as 6144 × 4096 elements (bottom)

and is thermally insulated along the rest of the boundary

N . For the minimum heat compliance problem, using
standard SIMP with p = 3 and standard filtering schemes
to impose NEL on one of the phases yields designs
with large MND (Lazarov et al. 2016). Moreover, there
are numerical evidence that, for this problem—unlike the
cantilever beam example—, an open–close filtering strategy
(combined with adequate penalization of intermediate
conductivities) fails to provide designs with NELs on both
phases (Hägg and Wadbro 2017). Thus, the minimum heat
compliance problem, although its apparent simplicity, is

Fig. 11 Geometry for the minimum heat compliance problem

rather challenging for methods that impose NELs in density
based topology optimization.

We discretize � by using n = n2
x square elements, and

use the finite element method with bilinear elements to solve
for the nodal thermal equilibrium temperature u ∈ R

N ,
where N = (nx + 1)2. The problem of minimizing the heat
compliance of the structure given a limit on the available
volume of material (with high thermal conductivity) is
given by problem (68) together with equation system (69).
Here, the physical element densities ρ̃(ρ) are defined as in
expression (59) with ρ = 10−3. The entries of K (ρ̃(ρ)) and
f are given by

Kij =
∫

�

ρ̃h∇ϕi · ∇ϕj and fi =
∫

�

ϕi, (72)

respectively. Here ρ̃h is an elementwise constant function
with element values ρ̃(ρ) and ϕi , i ∈ {1, . . . , N} are the
basis functions. We use V ∗ = 0.5 and the same cautious
continuation strategy for the SIMP parameter p and the
nonlinearity parameter α as employed for the cantilever
beam example. As for the cantilever beam examples, we
stopped when either the maximum elementwise update of
the design vector ρ was less than 0.01 or when 50 iterations
had passed on that step.

Figure 12 shows optimized designs from the minimum
heat compliance problem obtained on a design domain
discretized by 512 × 512 elements. These results are
optimized by using the cautious continuation approach; that
is, first raising p (p = 1, 1.5, . . . , 3) with α = 10 and then
decreasing α (α = 101−m/2 for m = 1, 2, . . . , 18) keeping
p = 3. The (approximately) circular neighborhoods used
in the filtering are illustrated in the top right corner of each
sub-figure. The radii of these neighborhoods are 4, 6, and
8 (top row); 10, 12, and 14, (second row from top); 16, 18,
and 20 (third row from top); and 22, 24, and 26 (bottom
row) elements, respectively. For all these results the quality
measures satisfy the following inequalities: MND < 0.14%,
MDOC < 0.011%, and FDOC < 0.0016%, that is, at most 4
elements differ in material when using the discrete open and
close operator. We also remark that FDOC = 0 for eight of
the optimized designs in Fig. 12.

Experiments using the aggressive continuation approach
as well as tests for mesh convergence have been performed.
Since the behavior is similar to that observed for the
cantilever beam example, these results are not presented. We
have also estimated the obtained NELs for the material and
void regions, similarly as illustrated in Fig. 9 and Table 1
for the cantilever beams. In contrast to the cantilever beam
problem, the NELs for the designs optimized with respect
to heat compliance are tight on the imposed lower bound
for the material (high conductivity) regions, while the NELs
of the void (low conductivity) regions are not. Moreover, in
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Fig. 12 Optimized designs from
the minimum heat compliance
problem with volume fraction
V ∗ = 0.5 for different filter radii

this case and in particular for the void regions, it is harder to
give an exact estimate of the obtained NEL, since the quality
measures does not have a clear gap between low and high
values in all cases.

As a final experiment, we use different shapes of
the filter neighborhoods for the harmonic open and the
harmonic close operators. The left image in Fig. 13 shows
an optimized plate obtained by using maximum volume
fraction V ∗ = 0.5, a square neighborhood (illustrated at
the top right corner of this image) to impose a length scale
on the material, and an octagonal shaped neighborhood
to impose a length scale on the void regions. These
neighborhoods are illustrated to the right of the optimized
plate. This result was obtained on a domain discretized
by 2048 × 2048 elements, and the quality measures for
this design satisfy: MND < 0.012%, MDOC < 0.0030%,

and FDOC < 5.7 · 10−4%. Thus, the design in Fig. 13
satisfies the imposed lower bounds on the NELs of both
phases. As indicated in Section 2, this design could be
manufactured using either a square deposition tool or an
octagonal punch with the same sizes as the neighborhoods
in Fig. 13. However, it could not be manufactured using an
octagonal deposition tool or a square punch with the same
sizes as the neighborhoods in Fig. 13.

5.4 Discussion

The foundation of the heuristic method comprises the fol-
lowing three main components: the theory developed in
Section 4; the SIMP methodolgy (Bendsøe and Sigmund
2003, § 1.1.2) that promotes binary designs; and the har-
monic mean based filters (Svanberg and Svärd 2013) that



1030 L. Hägg, E. Wadbro

Fig. 13 Optimized design from the minimum heat compliance
problem with volume fraction V ∗ = 0.5 using 2048 × 2048 elements
and neighborhoods with different shapes for the length scale definition
used for material and void regions

provide a family of regular approximations of morpholog-
ical operators. By combining these three components, we
obtain a method that promotes designs with small MND and
MDOC. In a similar way as the basic SIMP method cannot
guarantee convergence toward binary designs, the heuristic
method used in the numerical experiments does not guaran-
tee convergence toward binary designs with NELs on both
phases. Despite that, we obtain mesh convergent essentially
binary designs with independent NELs of both phases for
both the minimum compliant cantilever beam as well as
for the heat compliance problem—without the need of any
postprocessing or projection step. We remark that it is mis-
leading to classify the harmonic f W -mean filters, as well as
any other f W -mean filter, as projection based. The reason
for this stand point is that all f W -mean filters are internal,
that is,

min
j∈Ni

ρj ≤ f −1

⎛

⎝
∑

j∈Ni

wij f (ρj )

⎞

⎠ ≤ max
j∈Ni

ρj . (73)

Expression (73) is in contrast to projection based filtering
methods that do not respect the range of values of their
input.

As we now demonstrate, condition (53) relates to so-
called combination filters (Sigmund 2007)

F (ρ) = 1

2
(Oh(ρ) + Ch(ρ)) , (74)

where as before Oh(ρ) and Ch(ρ) denote differentiable
approximations to the morphological opening and closing,
respectively. If filter (74) produces a binary result, then
Oh(ρ) = Ch(ρ). Thus, in the limit of exact morphological
operators and when the resulting design is binary, filter
(74) imposes lower bounds on the NELs of both phases.
The combination filter was introduced as a low-cost
substitute of open-close and close-open filters (Sigmund

2007). Ironically, lower bounds on the NELs of both phases
cannot be guaranteed using open-close or close-open filters
(Schevenels and Sigmund 2016). The idea of Guest (2009),
can be captured in filters of the form

F (ρM, ρV ) = 1

2

(
Dh(ρM) + Eh(ρV )

)
, (75)

where ρM and ρV denote two independent design
vectors used for controlling the layout of material and
void, respectively; Dh(ρ) and Eh(ρ) denote differentiable
approximations of the morphological dilation and erosion,
respectively. If filter (75) produces a binary result, then
F (ρM, ρV ) = Dh(ρM) = Eh(ρV ). Thus, in the limit
of exact morphological operators and when the resulting
design is binary, filter (75) imposes lower bounds on the
NELs of both phases. Apart from not needing two design
vectors, imposing condition (53) has the advantage that the
design vector itself becomes regularized in the sense that
ρ = ON (ρ) = CN ′(ρ).

Regarding MND, the optimized designs presented in
Section 5.3 outperforms those obtained by state of the art
techniques for imposing minimum length scales presented
in the review by Lazarov et al. (2016). In what way
the proposed method benefits from extra penalization of
intermediate densities has not been fully investigated. On
one hand, for elements i where 0 < Ohi(ρ) < Chi(ρ) <

1, we are effectively using a higher value of the SIMP
parameter. On the other hand, we note that condition (53)
can be satisfied for intermediate densities; for instance c1 =
ON (c1) = CN ′(c1) for any c ∈ (0, 1), a relation which
also holds for the harmonic approximations employed in the
numerical experiments.

By using MND together with the quality measures
introduced in Section 4.5, we can quantitatively verify
that the optimized designs possess the imposed NELs, and
in principle quantitatively estimate their actual NELs. To
the best of our knowledge, quantitative estimation of the
minimum length scale has not been previously employed
in density based topology optimization. As mentioned in
Section 2, If the design is (almost) binary, then filters
that approximate the morphological dilate (erode), will
guarantee NEL on the material (void) region. In that case
quantitative verification, that the imposed lower bound on
the NEL of one of the phases is satisfied, is superfluous.
Nevertheless, quantitative estimation of the actual NELs can
still be of interest. The numerical experiments indicate that
how tight the actual NELs are to their lower bounds depends
on the continuation strategy used for the filter parameter
α and SIMP parameter p. We believe that, quantitative
estimation of the MOLE could be performed, in a similar
way as done here, by using the discrete MOLE functional
(Poulsen 2003) instead of MDIO and MDIC.
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To obtain the beams in Fig. 7 using the cautious
continuation approach, the OC algorithm required 550–
750 iterations, the corresponding number for the beams
in Fig. 8 is 90–120 iterations. The reason for the large
number of iterations is that we converged at each step in
the continuation. A much faster algorithm, that produce
similar results can be obtained by relaxing the termination
criteria for all except the last step in the continuation
approach. We remark that in particular for small filter
radii, using a continuation strategy with many stages
produces better results than using a continuation approach
with few stages. This is in line with the results by, for
example, Alexandersen et al. (2016), who remark that
using a continuation scheme typically produces better
results than starting with the end values. However, without
imposing severe design restrictions, one cannot provide
any convergence guarantees for continuation schemes in
general (Stolpe and Svanberg 2001). Apart from the
cost related to the continuation strategy, the extra cost
(compared to the standard SIMP method) associated with
the heuristic method introduced in Section 5.1 is that
related to the introduction of the approximate close operator.
If, as done in the numerical experiments, a cascade of
generalized f W -mean filters are used to approximate the
discrete morphological operators the extra computational
complexity is O(n) on a regular grid using polygonal
shaped neighborhoods (Wadbro and Hägg 2015; Hägg and
Wadbro 2017). For general neighborhood shapes the extra
computational complexity is O(n log n) by employing an
FFT-based filtering strategy (Lazarov and Wang 2017).

6 Concluding summary

In this paper, we propose definition (31) of the NEighbor-
hood based minimum Length scale (NEL) that is similar to
definition (1) of Zhang et al. (2014); the main difference lies
in the treatment of regions that are close to the boundary of
the design domain. The main contribution of this paper is to
rigorously establish the connection between NEL (31) and
(modified) morphological operators for subsets of a convex
(possible bounded) domain. We show that subsets with pos-
itive NEL are characterized as being morphologically open.
A direct consequence of that characterization is that sub-
sets whose interior and exterior both possess positive NELs
are characterized by being simultaneously morphologically
open and (essentially) morphologically closed. We show
that, in the discretized setting of density based topology
optimization, the latter translates to condition (53). We mod-
ify the SIMP-method for minimum compliance problems
so that it promotes binary designs satisfying condition (53).
The obtained designs are almost binary and possess posi-
tive NELs (possibly measured in different norms) on both

phases of material. We make no claim toward applicability
of this numerical method for other topology optimization
problems—It merely serves as a demonstrator of the devel-
oped theory, which is generally applicable. The proper
implementation of condition (53), in the optimization for-
mulation of more challenging problems, is open for future
investigation. The theory presented in Section 4 naturally
extends to multiphase topology optimization. By requiring
that each phase Mi ⊂ � is riBi-open, independent min-
imum length scales are imposed. However, how to imple-
ment such scheme in density based topology optimization is
an open problem that requires further research.
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Appendix A: Proof of Lemma 1

As was mentioned in Section 4.3, the structuring element is
the open unit ball B = {x ∈ R

d | ‖x‖B < 1} of the norm
‖ · ‖B defined by the Minkowski functional (28); and, since
M 	= ∅ is open, R�

B (M; x) > 0 for any x ∈ M . By the
definition of supremum, for each x ∈ M and each ε > 0
there exists 0 < rε ≤ R�

B (M; x) such that ErεB(M; x) 	= ∅
and R�

B (M; x) − ε < rε . Hence, there exists yε ∈ M ⊂ �

such that x ∈ Brε (yε) ∩ � ⊂ M . Moreover, yε ∈ Brε (yε)

since 0 ∈ B. We conclude that also yε ∈ Brε (yε) ∩ �. By
assumption, B and � are convex; which implies that

yλ := yε + λ(x − yε) ∈ Brε (yε) ∩ �, (76)

for any λ ∈ [0, 1]. For each such λ, we define

rλ := rε − λ‖x − yε‖B ∈ [rε − ‖x − yε‖B, rε] . (77)

Then x ∈ Brλ(yλ), since

‖yλ − x‖B = ‖(1 − λ)yε + λx − x‖B

= (1 − λ)‖yε − x‖B < rε − λ‖yε − x‖B = rλ.(78)

We find that if ‖yλ − z‖B < rλ, then

‖yε − z‖B = ‖yλ − z − λ(x − yε)‖B

≤ ‖yλ − z‖B + λ‖x − yε‖B < rλ

+λ‖x − yε‖B = rε . (79)

This shows that Brλ(yλ) ⊂ Brε (yε) for all λ ∈ [0, 1]. Hence,
x ∈ Brλ(yλ) ∩ � ⊂ Brε (yε) ∩ � ⊂ M for any λ ∈ [0, 1];
implying that ErB(M; x) 	= ∅ for any rλ=1 ≤ r ≤ rε .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Moreover, since x ∈ Br(x) ⊂ Brε (yε) for any 0 < r <

rλ=1, we have that x ∈ Br(x) ∩ � ⊂ Brε (yε) ∩ � ⊂ M for
any 0 < r < rλ=1; implying that ErB(M; x) 	= ∅ for all
0 < r ≤ rλ=1. We have thus shown that ErB(M; x) 	= ∅
for all 0 < r ≤ rε ≤ R�

B (M; x). Since this holds for
each ε > 0, we conclude that ErB(M; x) 	= ∅ for all
0 < r < R�

B (M; x).
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