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Abstract

Link speeds in networks will in the near-future reach and exceed
100Gbps. While available specialized hardware can accommodate these
speeds, modern networks have adopted a new networking paradigm, also
known as Network Functions Virtualization (NFV), that replaces expensive
specialized hardware with open-source software running on commodity
hardware. However, achieving high performance using commodity hardware
is a hard problem mainly because of the processor-memory gap. This gap
suggests that only the fastest memories of today’s commodity servers can
achieve the desirable access latencies for high speed networks. Existing NFV
systems realize chained network functions (also known as service chains)
mostly using slower memories; this implies a need for multiple additional
CPU cores or even multiple servers to achieve high speed packet processing.
In contrast, this thesis combines four contributions to realize NFV service
chains with dramatically higher performance and better efficiency than the
state of the art.

The first contribution is a framework that profiles NFV service
chains to uncover reasons for performance degradation, while the second
contribution leverages the profiler’s data to accelerate these service chains
by combining multiplexing of system calls with scheduling strategies. The
third contribution synthesizes input/output and processing service chain
operations to increase the spatial locality of network traffic with respect
to a system’s caches. The fourth contribution combines the profiler’s
insights from the first contribution and the synthesis approach of the third
contribution to realize NFV service chains at the speed of the underlying
commodity hardware. To do so, stateless traffic classification operations
are offloaded into available hardware (i.e., programmable switches and/or
network cards) and a tag is associated with each traffic class. At the server
side, input traffic classes are classified by the hardware based upon the
values of these tags, which indicate the CPU core that should undertake
their stateful processing, while ensuring zero inter-core communication.

With commodity hardware, this thesis realizes Internet Service Provider-
level service chains and deep packet inspection at a line-rate 40Gbps and
stateful service chains at the speed of a 100GbE network card on a 16 core
single server. This results in up to (i) 4.7x lower latency, (ii) 8.5x higher
throughput, and (iii) 6.5x better efficiency than the state of the art. The
techniques described in this thesis are crucial for realizing future high speed
NFV deployments.

Keywords: NFV, service chains, synthesis, offloading, tagging, zero inter-
core communication, line-rate, 100GbE
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Sammanfattning

Länkhastigheter i nätverk kommer inom en snar framtid att nå och
överstiga 100Gbps. Medan existerande specialiserad hårdvara numera kan
tillgodose dessa hastigheter, tillämpas i moderna nätverk även ett nytt
nätverksparadigm känt som funktionsvirtualisering av nätverk (NFV),
som ersätter dyr specialiserad hårdvara med öppen källkodsprogramvara
som körs på kostnadseffektiv, icke-specialiserad, vanlig dator (s.k. råvaru-
enheter). Att uppnå hög prestanda med hjälp av standardmaskinvara är
ett svårt problem, huvudsakligen på grund av prestandaskillnader mellan
processor och minne. Denna skillnad medför att endast de snabbaste
cache-minnena av idag måste användas för att uppnå högsta prestanda
med minsta möjliga fördröjningar i höghastighetsnätverk. Sammankopplade
nätverksfunktioner (s.k. tjänstekedjor) i existerande NFV-system använder
mestadels långsammare minne, vilket innebär att ytterligare CPU-kärnor
eller servrar behövs för att uppnå motsvarande höghastighetsprestanda vid
hanteringen av datapaket. I denna avhandling kombineras fyra bidrag som
möjliggör NFV-tjänstekedjor med betydligt högre prestanda och effektivitet
jämfört med den senaste tekniken.

Det första bidraget är ett ramverk som profilerar NFV-tjänstekedjor
för att identifiera av orsaken till prestandaförsämringar, medan det andra
bidraget utnyttjar profildata för att snabba upp tjänstekedjorna genom
att kombinera multiplexering av systemanrop med olika schemaläggnings-
strategier. Det tredje bidraget syntetiserar indata/utdata och tjänstekedje-
operationer för att öka den spatiala lokaliteten av nätverkstrafiken i
förhållande till systemets cacher. Det fjärde bidraget kombinerar profilerings-
resultat från det första bidraget och syntetiseringsmetoden från det
tredje bidraget för att möjliggöra NFV-tjänstekedjor kapabla att hantera
datatrafik med samma höga överföringshastighet som den underliggande
maskinvaran. För att göra detta överförs tillståndslösa trafikklassificerings-
operationer till tillgänglig maskinvara (d.v.s. programmerbara switchar
och/eller nätverkskort) med en indikativ märkning kopplad till varje
trafikklass. På serverns sida klassificeras inkomna trafikklasser baserad på
märkningen, följt av tillståndsstyrd bearbetning av paketen i tillgängliga
CPU-kärnor utan inbördes kommunikation mellan kärnorna.

Med användning av endast vanlig maskinvara uppnås i den här
avhandlingen tjänstekedjor på Internet-leverantörsnivå och djupa
paketinspektioner vid en hastighet av 40Gbps, motsvarande den
underliggande linjehastighet bearbetning, samt tillståndsstyrda tjänstekedjor
med hastigheten motsvarande ett 100GbE-nätverkskort på en server. Detta
resulterar i upp till (i) 4,7x lägre latens, (ii) 8,5x högre dataöverföring
och (iii) 6,5x ökad effektivitet jämfört med den senaste tekniken. Denna
avhandling är avgörande för att förverkliga framtida höghastighetsnätverk.
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Chapter 1

Introduction

H uman beings are, by nature, social animals as defined by Aristotle in
Politics [1]. As such, over the centuries human beings have developed

ways to communicate. Over the 20th century, communications were substantially
facilitated by numerous profound technological advancements, such as
telecommunications.

Initially, telecommunications allowed the transportation of voice, allowing
people in different places to talk to each other. This comfort inspired people to
generalize telecommunications, allowing the exchange of any kind of information,
such as data, text, images, etc. Therefore, in the second half of the 20th century,
telecommunications together with the digital revolution and the concomitant
emergence of computers, allowed people to organize remote computer systems
into telecommunications networks.

1.1 Today’s Telecommunications Landscape
The 20th century established a global telecommunications network widely

known as the Internet. Over the first two decades of the 21st century, a tremendous
amount of information has been produced and exchanged among users across
the globe. This voluminous information exchange is, in turn, pushing the scale
and dynamics of telecommunications networks to extremes. Social, mobile, and
wireless communications, sensor networks, machine-to-machine applications, the
emergence of novel applications (e.g., high-quality video streams), the increased
numbers and varieties of devices (e.g., smartphones, smartwatches), and the advent
of future generation communication technologies, such as the Fifth Generation
(5G) networks, have substantially evolved the Internet and contribute to an ever-
increasing load upon telecommunications networks.

1



2 CHAPTER 1. INTRODUCTION

A forecast from Cisco’s 2016 Visual Networking Index [2] offers interesting
findings regarding the evolution of the telecommunications as a result of near
future traffic expectations:

1. Annual global Internet Protocol (IP) traffic would pass the Zettabyte
(1000Exabytes) threshold by the end of 2016, and will reach 2.3 Zettabytes
per year by 2020;

2. The number of devices connected to IP networks will be more than 3 times
the global population by 2020; and

3. Every second, nearly amillion minutes of video content will cross the network
by 2020.

At the same time, IBM’s Institute for Business Value [3] investigated the effects
of this phenomenon on industry. Their key conclusion is that the historically
common connection between traffic and revenue has been blurred because of the
increase in data volumes due to multimedia content and other sources of traffic.
This increase in data volume requires investments in infrastructure, but at the same
time revenues from voice calls are rapidly declining, thus affecting the economic
equilibrium of telecommunications’ stakeholders.

1.2 Network Functions: A Blessing and a Curse
Despite the trends described above, telecommunications’ stakeholders, such as

network operators, Internet Service Providers (ISPs), and content providers, are
striving to preserve their share of the market. To achieve this, they have to attract
customers by offering services that satisfy the customer’s quality requirements.
Some key quality factors for services in telecommunications networks are latency,
throughput, and security. The importance of these factors has been reported by
network and service providers; for example Amazon [4] reported that a latency
increase of 100ms causes 1% loss in their sales. Verizon promotes services
by cleverly advertising how their networks combine high bandwidth with high
throughput [5]. Moreover, market studies [6] showed that security is of utmost
importance for industrial information technology stakeholders, hence information
technology security services have been showing significant growth.

A means for telecommunications’ stakeholders to increase the quality of their
services is through carefully placing Network Functions (NFs) in the network. An
NF takes packets at a network element’s input port(s), and outputs (potentially
modified) packets from the same network element’s output port(s). Based on
Internet Engineering Task Force (IETF)’s Request For Comments (RFC) 3234 [7],
NFs are separated into two main categories: (i) routing/forwarding and (ii) all
the remaining functions within the network layer and above.
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1.2.1 Benefits of Network Functions
The routing/forwarding category of NFs is realized by IP routers, whose only

functions are to determine routes and forward packets, while also updating fields
that are necessary for this forwarding process. Route selection functions offer great
benefits, such as low latency by selecting a path (e.g., the shortest path) between
a given source and destination. Another advantage is that these functions are
simple and keep the network layer thin. These attributes are desirable because
this functionality has to be implemented by all the devices along a given source-
destination path. As a result, a variety of upper layer protocols run atop the IP
layer. IP packets are forwarded as frames over different link layers. This is the
well-known hourglass [7] model, with IP over everything and everything over IP,
as depicted in Figure 1.1a.

Simple NFs were not sufficient to accommodate the rapid evolution and high
penetration of the Internet. Therefore, network operators sought additional
network functionality to increase security, isolation, and network performance. As
a result, a second category of NFs, also known as middleboxes, arose. According to
IETF RFC 3234 [7], these advanced functions (deeply and often statefully) inspect
and modify the packets’ structure, rewriting fields across the entire header, and
in some cases even examining and modifying the packets’ payload. For example,
middlebox functionality offers valuable benefits by:

1. allowing reuse of portions of the Internet Protocol version 4 (IPv4) address
space via Network Address and Port Translators (NAPTs);

2. network resource optimization using Load Balancers (LBs) or wide area
network optimizers; and

3. increasing security using Intrusion Detection System (IDS) and firewall
middleboxes.
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Figure 1.1: End-to-end view of today’s networks.
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1.2.2 Problems of Network Functions
Traditionally, middleboxes have been seen as parts of the network fabric and

have mostly been implemented in specialized hardware. According to a 2012
study of 57 enterprise networks [8], the typical number of middleboxes in an
enterprise network is comparable to the number of switches and routers, while the
proliferation of smartphones and wireless video streaming were expected to further
expand the range of such middleboxes. Consequently, traditional middleboxes pose
the following challenges:

1. Specialization comes at great cost, as the evolution of hardware follows
Moore’s Law [9]. Hence, continuous replacements of specialized hardware
are required by the network operators to scale their network up;

2. Instead of concentrating middleboxes at the edges and keeping the network
layer thin, network operators have deployed middleboxes “on path” at key
network choke points, as shown in Figure 1.1b. As a result:
2 a. Network complexity has increased, hence the hourglass model shown in

Figure 1.1a does not hold anymore;
2 b. Traffic steering interferes with routing, hence it requires manual effort

and expertise. Despite recent research contributions [10], production
networks still rely on middleboxes from different vendors that expose
proprietary Application Programming Interfaces (APIs), thus posing
complex management requirements [11];

3. In 2012, J. Sherry et al. stated that over the past 5 years, large enterprises
had to budget an additional $1 million dollars in order to maintain their
middleboxes [8]; and

4. Network administrators need to over-provision these (hardware-based)
middleboxes to accommodate the peak load. Moreover, there is no ability to
dynamically scale-in/out the entire network [8].

1.3 The Role of Software in Modern Networks
To keep up with the changing landscape in the global telecommunications

market, telecommunications’ stakeholders need to address the challenges listed
in §1.2.2, by lowering the deployment, maintenance, and management costs
of NFs. Therefore, software has become a first class component in modern
networks, shifting telecommunications stakeholders’ focus towards Software
Defined Networking (SDN) and Network Functions Virtualization (NFV) [12].
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SDN decouples the control logic from the fast traffic path by remotely configuring
a device’s flow tables using a logically centralized controller. This allows network
administrators to make and enforce network-wide decisions, by gaining control
of the logic of simple NFs such as a switches and routers. This is achieved by
moving the computation of routes (for routers) and next hops (for switches) to
a software-based SDN controller. SDN adoption has gained momentum since
the introduction of the OpenFlow [13] protocol in 2008, with campus [14], wide
area network [15, 16, 17], and datacenter [18, 19] deployments gradually replacing
traditional network designs.

NFV is important because building the network state in the control plane using
SDN is not always effective. Advanced NFs might require dynamically handling
of the flow state directly in the data plane. Often, this requirement is combined
with complex packet operations on the packets’ payload. As discussed in §1.2
and depicted in Figure 1.2a, these functions have been traditionally offered by
hardware-based middleboxes. In contrast, Figure 1.2b shows how NFV migrates
middlebox functionality from hardware to software, running on commodity off-the-
shelf servers, potentially eliminating most of the challenges posed by traditional
middleboxes (see §1.2.2). Although NFV deployments have begun [20, 21], as we
will see later on, NFV comes with its own problems and challenges.

Specialized 
Router 2

Specialized
MiddleboxClient ServerSpecialized 

Router 1
(a) Traditionally, network elements were based on specialized (thus expensive) hardware.

Software-based 
Router 2

Software-based
MiddleboxClient ServerSpecialized 

Router 1
(b) Today, network elements are based on commodity (thus inexpensive) hardware.

Figure 1.2: Packet processing in traditional vs. modern networks.
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1.4 Network Functions’ Composition for
Service Chains

Modern services require combinations of NFs, also known as service chains,
to satisfy their quality requirements [22]. Service chains commonly appear in
networks. For example, as shown in Figure 1.3, when a user at his/her home
network requests a web page via the Hypertext Transfer Protocol (HTTP), his/her
traffic might traverse a service chain before reaching the destination. Along the
path from the user to the server that hosts the web page, a NAPT might be present
at the local ISP’s network, a set of core routers to forward user’s traffic across the
Internet, while a firewall, a Deep Packet Inspection (DPI), and an LB might all
reside at the target datacenter before the HTTP server [23].

User Local ISP

NAPT

Internet Datacenter

Routers
Firewall LBDPI

Figure 1.3: An example service chain between a user connected to a local ISP
and a service hosted by a server farm in a datacenter. The service chain consists
of a NAPT, several core routers, a firewall, a DPI function, and an LB.

The service chain illustrated in Figure 1.3 offers the following benefits: First,
the NAPT helps the ISP of the user’s access network conserve public IP addresses
by multiplexing multiple users’ traffic into traffic that uses a single public IP
address, but different ports. Second, the core routers route traffic along a desirable
path (e.g., a path with the shortest number of hops or the least congested path)
between the local ISP’s network and the closest datacenter that hosts the web
page. Third, the firewall drops illegitimate traffic attempting to enter the target
datacenter. The DPI adds another layer of security by flagging malicious content
in traffic. Finally, the LB ensures that legitimate users’ requests will be served as
soon as possible, by selecting the least loaded server.

By offloading middlebox functionality to the cloud, telecommunications’
stakeholders can realize the example service chain shown in Figure 1.3 in software,
using SDN and NFV. As depicted in Figure 1.4, a system administrator can specify
such a service chain as a high-level policy that targets the purple portion of
the traffic (legitimate requests). At first, this high-level policy will trigger the
dynamic instantiation of the appropriate (number and types of) NFV instances
that comprise this service chain. Then, the SDN controller will translate the stated
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Figure 1.4: An example set of service chains translated by an SDN controller
into SDN rules that steer the traffic through multiple NF instances.

policy into low-level SDN rules (e.g., using the OpenFlow protocol), that need to
be installed in the underlying SDN switch, to forward the purple portion of the
traffic through the required NFV instances. If another service chain needs to be
collocated with this example service chain (i.e., the red portion of the traffic), then
the NFV framework will ensure that new instances will be deployed in isolation
and new SDN rules will guide the red packets through that service chain. The
software-driven paradigm depicted in Figure 1.4 also ensures on demand resource
provisioning, by tearing down the NFV instances of the service chains, once the
traffic has been served.

1.5 High-level Research Challenges
Link speeds in networks will in the near-future reach and exceed 100Gbps [24,

25]. While available specialized hardware can accommodate these speeds, as
introduced in §1.3, modern networks have adopted NFV; a new networking
paradigm that replaces expensive specialized hardware with open-source software
running on general purpose commodity hardware.
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Despite the advances in SDN and NFV (see Chapter 3) as well as the
dramatic evolution of high-speed computing during the last decades, achieving high
performance using commodity hardware is extremely challenging. This is because
commodity systems, based on general purpose Central Processing Units (CPUs),
suffer from the well-known processor-memory gap. According to Patterson et al.,
this gap grows by 50% per year because processor speeds increase much faster than
memory speeds [26].

Given the above trends related to the evolution of link, processor, and memory
speeds, the chain of facts shown in Figure 1.5 is the motivation for this thesis:

The available time to process a 64-byte packet at 100Gbps is only
5.12 nanoseconds (see Figure 4.7).

⇓

Today, the capacity of cache memories, which exhibit access latencies lower
than 5.12 nanoseconds, is very limited and these cache memories are not shared
among CPU cores (see §6.2 and Figure 6.3).

⇓

Existing NFV systems realize chained NFs (or service chains) by exchanging
packets between CPU cores via slower memory components (see Chapter 4).

⇓

This results in increased memory access latencies caused by data invalidations
at the fast CPU core-specific caches, the speed of which is not fully exploited.

⇓

Consequently, today’s NFV systems require multiple additional CPU cores or
even multiple servers to meet the tight processing requirements of the emerging
high speed (i.e, 100Gbps or beyond) networks.

Figure 1.5: Motivation for this doctoral thesis.
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This thesis redefines the state of the art in NFV packet processing, as it
effectively addresses all the above issues. A more detailed description of the
problems and challenges tackled by this thesis is provided in Chapter 4. Next, a
summary of contributions is presented, paving the way to address these challenges.

1.6 Summary of Contributions
The challenges discussed in §1.5 and summarized in Figure 1.5 motivated the

work for this thesis. This section summarizes the key contributions of this thesis
to the research community and industry. The first target of this thesis was to
measure the performance of state of the art NFV frameworks when executing
service chains, in order to verify that the challenges exist and then derive real
scientific problems from these challenges. To do so, I designed and implemented a
fully-controllable NFV experimental testbed comprised of state of the art hardware
& software components and techniques. The details of this experimental testbed
are given in Chapter 5. Using this experimental testbed, I conducted the research
that led to the contributions described below.

1.6.1 Contribution 1
First, I studied the performance of service chains using a state of the art NFV

framework on top of the Linux Operating System (OS) and a standard Linux
network driver. In this study, I designed and implemented an NFV profiler (see §6.2
starting on page 74) that can thoroughly monitor low-level performance counters,
during the execution of NFV service chains [27]. The goal of this profiler was
to uncover the reasons that cause service chains to exhibit high latency with an
increasing service chain length.

To the best of my knowledge, this is the first NFV profiler in the literature. My
tool could be leveraged by network operators to reveal the performance bottlenecks
of their service chains. The novelty of this work is described in §6.6 starting on
page 107.

1.6.2 Contribution 2
The results of the NFV profiler uncovered Input/Output (I/O) and scheduling

overheads that increased per packet latency linearly with an increasing service
chain length (see §6.3 starting on page 81). To mitigate these overheads, I built
a tool [27] that accelerates user-space NFV service chains by combining custom
scheduling policies with I/O multiplexing techniques (see §6.4 starting on page 91).
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Then, I evaluated the effects of my tool on the performance of NFV service
chains using both single and multi-core deployment scenarios (see §6.5 starting on
page 99). In summary, service chains that use my tool achieved a multi-fold latency
and latency variance reduction compared to a baseline approach. A summary of
these results is given in Table 6.1.

To the best of my knowledge, this is the first time that I/O multiplexing
and scheduling techniques were combined to improve the performance of NFV
service chains. The originality of this work with respect to earlier relevant efforts
is described in §6.6 starting on page 107.

1.6.3 Contribution 3
The standard Linux-based network driver used in the first two contributions

exhibited excessive latency that could not be completely eliminated by my
solutions. Therefore, in order to realize low-latency NFV service chains, we
shifted our attention to service chains that run on top of state of the art network
drivers, such as Data Plane Development Kit (DPDK) [28] (described in §2.3).
Despite using this latest advancements in packet I/O, performance bottlenecks
remained, mainly due to redundancy in the internal operations applied by the
service chains. The next logical step towards faster and lower-latency NFV service
chains was to revise the way service chains were deployed. For this reason, we ∗

proposed Synthesized Network Functions (SNF) [29]; a framework that drastically
consolidates chained NFs by synthesizing their internal operations into a new
equivalent state machine. This contribution is described in detail in Chapter 7,
where we propose a practical NFV system (see §7.1 starting on page 112) and its
synthesis techniques (see §7.2 starting on page 114). Building upon a state of the
art NFV framework (see §7.4), we realized long and stateful NFV service chains
in software at the speed of the underlying experimental testbed (see §7.5.2, §7.5.3,
and §7.5.4.1). By enhancing this testbed with a hardware-based OpenFlow
switch, we realized line-rate ISP-level service chains despite increased complexity at
40Gbps (see §7.5.4.2 starting on page 138). The originality of this work with
respect to earlier efforts is described in §7.7 starting on page 146.

∗The first single-core prototype of this work was jointly implemented by Georgios P.
Katsikas and Marcel Enguehard. Then, Georgios P. Katsikas extended the work to meet
multi-core requirements leading to 40Gbps line-rate performance. Finally, the hardware-assisted
experiments of this work were jointly conducted by Georgios P. Katsikas and Maciej Kuźniar.
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1.6.4 Contribution 4
Although the proposed synthesis techniques provide an efficient software stack

for service chains, they do not address how to efficiently map the instructions of
the (synthesized) code onto the available hardware resources. According to the
results of experiments described in Chapter 4, this mapping greatly affects the
performance of NFV service chains, as severe performance penalties occur when
packets are not directly processed by the correct CPU core.

To address this challenge, in Chapter 8 we ∗ introduced the design (see §8.1
starting on page 152) and implementation (see §8.2 starting on page 163)
of Metron; an NFV platform that automatically associates packet processing
operations with programmable hardware components to realize NFV service
chains at the true speed of the underlying hardware [30]. Metron eliminates
the need for costly inter-core communication at the servers by delegating
stateless packet processing and CPU core dispatching operations to programmable
hardware devices, while realizing stateful packet processing in software running on
commodity servers. Doing so offers dramatic hardware efficiency and performance
increases over the state of the art. With commodity hardware assistance Metron
fully exploits the processing capacity of a single server to deeply inspect traffic at
40Gbps (see §8.2.3.1 starting on page 165) and execute stateful service chains
at the speed of a 100 Gigabit Ethernet (GbE) Network Interface Card (NIC)
(see §8.2.3.2 starting on page 169). Moreover, §8.2.4 shows how Metron ensures
zero inter-core communication even after scaling service chains in/out, while
in §8.2.3.3 we evaluate Metron’s low-cost service chain placement scheme. The
novelty of Metron is described in §8.3 starting on page 179.

1.7 Impact and Relevance of this Thesis
This thesis has made a major contribution in the area of modern programmable

networked systems. To visualize the impact of this contribution, the results
produced by the work described in this thesis are compared with state of the
art approaches as follows:

1. Metron [30] with SNF [29] (i.e., two contributions of this thesis);
2. the OpenBox state of the art framework [31]; and
3. an emulated version of the E2 state of the art framework [32].

∗Metron was jointly implemented by Georgios P. Katsikas and Tom Barbette.
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Service Chain Deployment at 40Gbps
Figure 1.6 demonstrates how this thesis enables deep packet inspection (using a
Firewall→DPI service chain) at the speed of a 40Gbps testbed. More information
about these results can be found in §8.2.3.1 starting on page 165.
Service Chain Deployment at 100Gbps
Figure 1.7 demonstrates the first NFV platform able to provide stateful network
services (using a Router→NAPT→LB service chain) at the speed of a 100Gbps
testbed. More details about these results are provided in §8.2.3.2.
Quantitative Impact and Relevance
These results are possible thanks to the joint contribution of SNF’s service chain
synthesis (see Chapter 7) and Metron’s offloading & accurate traffic dispatching
(see Chapter 8). Metron with SNF (and consequently this thesis, denoted as
“Thesis” in Figures 1.6 and 1.7) realizes NFV service chains with (i) 2.75-6.5x
better efficiency, up to (ii) 7.8x lower latency, and (iii) 4.7x higher throughput
than the state of the art. More importantly, these results meet the performance
levels of the underlying hardware (denoted as “Hardware Limit” in Figures 1.6
and 1.7), enabling the networking industry to keep up with the increasing link
speeds (as discussed in §1.5), despite using inexpensive programmable hardware.
This thesis is relevant for telecommunications’ stakeholders aiming to provide high
speed network services at 40, 100Gbps, or beyond. Prime examples are large
network operators, such as AT&T and Telia, as well as popular service providers,
such as Google, Microsoft, Amazon, Facebook, Twitter, etc.
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Figure 1.6: Performance comparison of (i) this thesis (using SNF and Metron)
and (ii) state of the art approaches (i.e., OpenBox and an emulated version of
E2), when deeply inspecting (Firewall→DPI service chain) traffic at 40Gbps. The
performance limit of the underlying hardware is denoted as “Hardware Limit”.
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Figure 1.7: Performance comparison of (i) this thesis (using SNF and Metron)
and (ii) state of the art approaches (i.e., OpenBox and an emulated version of E2),
when realizing a stateful service chain (Router→NAPT→LB) at 100Gbps. The
performance limit of the underlying hardware is denoted as “Hardware Limit”.
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1.8 Thesis Outline
The rest of this thesis is structured as follows. Chapter 2 provides background

information required to understand this thesis. Chapter 3 provides an extensive
literature study in the area of networked systems and NFV & SDN in particular.
Given this background, Chapter 4 highlights the performance issues of state of
the art NFV systems. The challenges that need to be addressed to solve these
issues are also identified in §4.3 and linked with the contributions of this thesis.
Having identified the problems and challenges, I then formally compose a clear
research question in §4.4. Chapter 5 describes the experimental design and tools
used to conduct the experiments underlying this thesis. Chapters 6, 7, and 8
introduce unique scientific contributions to approaching and solving the identified
research problem. Chapter 9 challenges the research problem tackled by this thesis,
by revisiting the hypotheses made in Chapter 4 and by relating the results from
Chapters 6, 7, and 8 with these hypotheses. The limitations of this thesis are
discussed in Chapter 10, where future work plans are also sketched. Finally,
Chapter 11 positions this work in today’s societal, ecological, and economical
planes, while Chapter 12 concludes this thesis.





Chapter 2

Background

T his chapter provides the necessary background to understand the concepts
and techniques used in the rest of this thesis. The focus of this discussion

is mainly on networking, OSs, and hardware-related concepts, since these are
the key concept behind NFV systems. To this end, a quick description of
NICs is given in §2.1. A study of the traditional Linux networking approach
is conducted in §2.2 to understand how applications interact with the Linux OS
and the underlying hardware. Then, §2.3 discusses how recent efforts have revised
the Linux networking approach to improve its efficiency, thus achieving better
performance. §2.4 and §2.4.1 describe memory organization in computer systems.
Finally, §2.4.2, §2.5, and §2.6 discuss various auxiliary technologies and tools that
affect the performance of modern programmable networked systems.

2.1 Network Interface Cards
A NIC is a subsystem that transmits and receives data to/from a physical

medium, such as a coaxial cable or an optical fiber. Note that while the acronym
comes from a name that has the word “card” in it, the physical realization of a NIC
need not be on a separate card, there can even be many of them on the same die as
the system’s CPU. Assuming that this communication is done via Ethernet NIC
connected via a bus interface (in this case a Peripheral Component Interconnect
(PCI) bus), a block diagram of a NIC’s architecture is depicted in Figure 2.1.

As shown in this diagram, the Medium Access Control (MAC) unit interacts
with the control logic unit to send frames from the NIC’s local buffers (located in
memory) out to the network and to receive frames into the NIC’s local buffers.
The memory provides temporary storage for frames (i.e., local buffers), buffer
descriptors, and other control data. The Direct Memory Access (DMA) unit is
driven by the control logic unit to read and write data between the NIC’s local

17
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Figure 2.1: An example architecture of a NIC.

memory and the main memory or the CPUs’ memory. This process is entirely
coordinated and executed by the control logic unit of the NIC. This unit contains
one or more processors that run firmware, hence these processors allow DMA to
take place in parallel with the execution of instructions by the system’s CPU.

2.2 Traditional Networking I/O Paradigm
Remotely located applications communicate with each other via a network. As

explained in Chapter 1, such a network is comprised of interconnected devices,
some of which are responsible for finding a path between a local and a remote
application. In a computer system, a typical way for applications to interact with
the underlying network is via an OS. An OS provides APIs that allow applications
to access and share the underlying hardware. In particular, network applications
interact with three key parts of the hardware: (i) the CPU, (ii) the memory
system, and (iii) one or more network interfaces, commonly referred to as NICs.
This section describes these interactions, focusing on the Linux OS.

2.2.1 NIC - OS Interaction
The Linux OS maintains a circular queue of buffer descriptors, also called

ring buffers, and a series of buffers which are used for hosting frame headers and
contents. Each buffer descriptor indicates the location of a buffer in memory and
the buffer’s size. A buffer descriptor is the transaction unit between the OS and
the NIC.



2.2. TRADITIONAL NETWORKING I/O PARADIGM 19

CPU

Memory

Buffer Descriptor

Buffer

NIC

Buffer Descriptor

(1)Create Buffer
Descriptor (BD)

(2) Ready-to-fetch 
BD event

Network

(5) Transmit 
Frame

(6)
Notify 
Done

Frame Frame
Bus

(3)DMA BD

(4)DMA Data

Figure 2.2: Steps for sending an Ethernet frame. Buffer descriptor is abbreviated
as BD.

When the OS needs to indicate that a frame is ready to be sent, the steps shown
in Figure 2.2 are followed. First, the OS is informed (i.e., by an application) that a
frame in memory is ready to be sent. To do so, the OS creates a buffer descriptor
of this frame in memory (Step 1). Then, the OS notifies the NIC that a new buffer
descriptor is available in memory, ready to be fetched (Step 2). The NIC initiates a
DMA read operation of the buffer descriptor (Step 3). Having processed the buffer
descriptor, the NIC knows the address of the pending frame in memory, hence it
initiates another DMA read operation to retrieve the frame’s content (Step 4).
When all the segments of the frame arrive at the NIC’s local memory, the NIC
transmits the frame onto the wire (Step 5). Finally, depending on how the OS has
configured the NIC, an interrupt might be generated by the NIC to indicate that
a frame has been transmitted (Step 6). This approach requires copying between
the main memory and the NIC’s local memory.

Likewise, to receive an Ethernet frame, the steps of Figure 2.3 are followed.
First, we assume that the OS has already allocated a buffer descriptor that points
to a free memory location and the NIC has fetched this descriptor into its’ local
memory via DMA. Then, upon a frame reception, the NIC stores the frame in
its local receive buffer (Step 1). By examining the next free buffer descriptor (in
Figure 2.3 we assume that this descriptor is already created), the NIC determines
the memory address where the frame will be stored. Then, the NIC initiates a write
operation of the frame’s data via DMA (Step 2). Once the frame is written into
memory, the NIC updates the buffer descriptor with the size occupied by the new
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Figure 2.3: Steps for receiving an Ethernet frame. We assume that the OS has
already created a buffer descriptor (BD) that points to a free memory region and
the NIC has read this descriptor into its local memory via DMA.

frame and possibly some checksum information. The updated buffer descriptor is
now ready to be written to memory via DMA (Step 3). Finally, depending on how
the OS has configured the NIC, an interrupt might be generated by the NIC to
indicate that the frame has been received (Step 4).

2.2.2 Applications’ Perspective
This section details how applications that run on top of the OS utilize the OS-

NIC interactions described in §2.2.1. Figure 2.4 illustrates how data flows from a
NIC to an application through the Linux OS and the reverse. Let us discuss the
case of a frame reception in detail. When a new frame arrives at the Reception
(Rx) queue of the NIC (shown in Figure 2.4), the NIC uses the DMA mechanism
described in §2.2.1 (and illustrated in Figure 2.3) to pass the frame to the ring
buffers of the Linux kernel. At this point a hardware interrupt∗ is generated by the
NIC to indicate the arrival of this frame, the frame is placed into a Socket Buffer
(skbuff), and then enqueued in a queue of skbuffs maintained by the kernel. An
skbuff stores useful metadata for each frame, such as its size, location in memory,
input device and socket related to this frame, Transmission (Tx) or Rx timestamps,
etc. To notify the CPU about the availability of the new frame in the kernel’s queue,
a software interrupt is triggered by the kernel as shown in Figure 2.4. Next, the

∗Interrupts are discussed in §2.6.
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Figure 2.4: Traditional Linux network I/O paradigm.

payload that is encapsulated in the frame will dictate the parts of the network
stack that this frame has to traverse. For example a frame that contains an IP
packet, which in turn contains a Transmission Control Protocol (TCP) segment,
has to traverse the IP and TCP parts of the network stack in order for its’ contents
to be properly extracted.

After the decapsulation of all the headers, the data of this frame is available to
the application and can be retrieved using a read system call.∗ This system call is
issued by the application running in user-space via the receive socket function call.
This function call interfaces with the kernel’s socket API to copy data from the
kernel’s message buffer to the memory region of the application in user-space. For
this to happen on a uni-processor system, the application has to yield the CPU
to the OS in order for the latter to perform the I/O; this operation is known as
a context switch. The next time the application gets the CPU, it can access the
data according to the application’s logic.

∗In this example we assume that the application does not use a raw socket, hence only the
payload is passed to the application by the kernel.
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2.3 Revised Networking I/O Paradigm
The interactions between applications and NICs through the Linux OS

described in the previous section indicate the presence of a substantial amount
of overhead. This overhead mainly stems from the expensive system calls required
to perform memory communication between user and kernel spaces, and the
concomitant data copy (shown in Figure 2.4). Software interrupts are another
source of overhead as explained later in §2.6.

This section discusses recent approaches [28, 33, 34] that revise the traditional
Linux network I/O paradigm in an attempt to reduce these overheads, thus
increasing the performance of network applications. The details of these
approaches are provided in Chapter 3 in §3.2.2. The goal of this section is to
highlight the main differences between the traditional Linux networking paradigm
and these new approaches. Figure 2.5 illustrates a revised network I/O paradigm
using the DPDK framework as an example.
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Application

User-space I/O
Driver

Ring buffers

Hardware interrupt

Memory Mapping

Network Stack

Polling

Network Driver

Tx/Rx 
Queues

DMA 
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Figure 2.5: A revised Linux network I/O paradigm.
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The main principle of the DPDK network I/O paradigm is that the Linux kernel
does not include the memory allocated for packets. Instead, this I/O scheme
allows applications to map regions of the NIC’s local memory to their context,
hence applications access the ring buffers directly. This paradigm implies that
the majority of the network driver’s functionality, traditionally residing in the
kernel (as was shown in Figure 2.4), is now implemented in user-space as shown
in Figure 2.5. Chapter 4 provides an early experimental assessment of some of the
benefits of this new paradigm; these benefits are summarized below:

1. costly Tx and Rx system calls are now replaced by “cheaper” memory
accesses to the memory shared between the application and the device;

2. data copies from kernel to user-space and the reverse are eliminated because
user-space applications directly access the device’s packet pool;

3. context switches are almost entirely eliminated because most of the
network driver’s functionality is now moved to user-space (although some
functionality still resides in the kernel’s user-space I/O driver as shown in
Figure 2.5); and

4. costly software interrupts are no longer required because the user-space
network driver polls the device.∗

The performance benefits of the revised network I/O scheme shown in
Figure 2.5 come with some implications. First, applications are now in charge
of implementing parts of the network stack, as the revised paradigm bypasses the
equivalent functionality offered by the Linux kernel. This increases performance at
the cost of adding complexity to the application development process. Moreover,
the resource isolation scheme provided by the Linux kernel using the traditional
approach is “violated”, since parts of the in-memory packet representation model
(i.e., the data structures that comprise the ring buffers) are now exposed to the
user-space applications. It is up to the user-space network driver to guarantee
that applications use the resources “wisely”. In contrast, in the traditional Linux
network I/O scheme, this packet representation model is maintained in the kernel
using skbuffs; hence applications can only access the skbuffs’ contents (indirectly)
using the socket system calls’ API.

∗Polling is discussed in §2.6.
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2.4 Memory Hierarchy
In 1945, John Von Neumann proposed a design architecture for an electronic

digital computer [35]. This computer architecture design consisted of (i) a
processing unit containing a control unit, arithmetic and logic unit, and registers,
(ii) a memory unit, and (iii) input and output devices, as shown in Figure 2.6.

Input Device Output Device

Central Processing Unit

Arithmetic/Logic Unit

Control Unit

Memory Unit

Registers

Figure 2.6: Von Neumann computer architecture, introduced in 1945.

Processor-Memory Performance Gap
Since the foundations of computer systems, memories have always been storing
(and supplying) data and instructions to processors. However, processor speeds
have been increasing faster than memory speeds [26]. The processors’ clock speeds
of the first computers were measured in Hertz or kilo Hertz, but the clock speeds of
modern CPUs are commonly advertised as several giga Hertz. Transistor counts
have also been doubling every almost 3 years, approximately following Moore’s
law [9]. In contrast, memory speeds have been following a much slower increase,
as discussed earlier in §1.5. This is the well-known processor-memory performance
gap, which grows 50% per year according to Patterson et al. [26].
Cache Memories Attempt to Bridge the Processor-Memory Gap
To decrease the latency to access a piece of memory, thereby bridging the
processor-memory performance gap, micro-architectural techniques place faster
memory components physically closer to the CPU, by building different hierarchies
of caches. Figure 2.7 shows the memory hierarchy of an Intel Xeon E5-
2667 v3 processor. According to this model, some memory components (e.g.,
registers, core-specific caches) are directly integrated into the processor, while other
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Figure 2.7: Memory hierarchy of an Intel Xeon E5-2667 v3 hardware architecture.

components (e.g., shared cache, main memory, and disks) are spatially dispersed
around the processor, or even remote e.g., distributed file systems across multiple
computers. Typically, the closer a memory component is to the processor, the
faster, smaller, and more expensive it is according to Figure 2.7. Consequently,
the key to achieving high performance is to achieve high hit rates on the smallest
memories (e.g., L1/L2 cache), which translates to fewer costly accesses to/from
farther memory components (e.g., main memory).

2.4.1 Memory Access Models
Traditionally, processors have had uniform access time to memory regions over

a common bus as shown in the left-most part of Figure 2.8. This access time has
been independent of which processor makes the request or which memory chip
contains the transferred data. The increasing number of integrated cores into a
processor’s chipset rendered this memory model inefficient because more and more
cores had to share the common bus interconnect causing contention.
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For this reason, the Non-Uniform Memory Access (NUMA) computer memory
design has been fostered by multi-core architectures. In a NUMA-aware system,
cores are organized into clusters that share the same Last Level Cache (LLC) and
a portion of the main memory. This scheme adds an intermediate level of memory
shared among the cores of each cluster. Each CPU core has a designated share
of the memory hierarchy; thus, contention can be limited when threads are co-
scheduled on cores that share parts of the memory hierarchy [36]. As shown in
Figure 2.8, the memory access time depends upon the memory location relative
to the processor, hence a processor can access data faster when the data is in its
local memory.

2.4.2 Direct Data I/O
Section 2.2.1 described how NICs interact with a computer system’s memory

system via DMA. The memory component that undertakes this exchange is usually
main memory. The left-most part of Figure 2.9 shows how main memory is
involved when a frame arrives at a NIC (step 1) and has to be read by a CPU
core. Specifically, step 2 requires a DMA write operation from the NIC to main
memory. Then, the CPU core issues a read operation to fetch the frame to its
local memory (step 3), but since the frame does not exist in the cache yet, a cache
miss occurs and the frame is brought from main memory to the processor’s LLC
(step 4). Only then is the core able to fetch the data by issuing a transaction
between LLC and its local cache.
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Figure 2.9: Indirect (left) vs. direct (right) network I/O models during a frame
reception operation.

This network I/O model is limited by the available memory bandwidth that
interconnects main memory and the LLC as well as the additional latency
required to access the main memory. For this reason, hardware vendors developed
alternative techniques to mitigate this problem. As an example, Intel released
their Direct Data I/O (DDIO) technology [37]. As shown in the right-most part of
Figure 2.9, DDIO allows the Ethernet controller to use a portion of the processor’s
LLC as a primary source and destination of data rather than the main memory
(step 2), thus achieving lower latency. The portion of LLC used for DDIO depends
on the hardware architecture. CPU cores fetch data directly from the LLC (steps
3 and 4). If this memory limit is exceeded, new inbound data from the NIC(s)
will continue to go to the LLC, but the least-recently used data will be evicted to
main memory in order to make room for new data. Outbound data that resides
in the LLC will be directly transferred to the NIC. This novel DMA technology
enables high performance implementations of network services that have limited
interactions with main memory, provided that the I/O and processing mechanisms
of the network services can keep most of their data in the caches.
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2.5 CPU Pinning and Isolation
Running software-based packet processors on commodity hardware demands

dedicated CPU resources. Hence, an NFV ecosystem should guarantee that a
large set of CPU cores be dedicated to NFV tasks. To provide such a guarantee,
the Linux kernel configuration needs to be modified. Specifically, setting a list of
cores in the kernel boot parameter isolcpus ensures that the Linux scheduler will
exclude these cores when selecting the next task to be executed, unless a task is
explicitly assigned to that core (e.g., by using the taskset or numactl commands).
Consequently, pinning an NFV process (i.e., NF or software switch) to such a
CPU core guarantees that this core does not serve any other processes in the
system, hence the NFV process will not be preempted and the core’s full power
and availability can be exploited.

2.6 Interrupts versus Polling
In §2.2.1 we explained the internal steps required to send/receive a frame

to/from the network using the traditional Linux networking paradigm. The last
step of each process (i.e., Tx or Rx) involves a potential generation of an interrupt.
Interrupts are signals emitted by hardware or software components indicating an
event that needs attention. For example, when a frame is received by a NIC, an
interrupt is sent from the NIC to the OS indicating that the frame is ready to
be processed. The act of initiating a hardware interrupt is commonly referred
to as an interrupt request. Building a high-performance NFV system requires
special attention to interrupt handling. This is because when processing Millions
of Packets Per Second (Mpps), handling an interrupt for each packet is very costly
and unnecessary.

For this reason, several techniques have been developed to mitigate the cost
of interrupts. First, interrupt request balance (commonly abbreviated as IRQ
balance) is a daemon in the Linux OS that distributes interrupts across all the
available cores. This means that no single core will be loaded by serving interrupts.
If a single core were used to perform all interrupt processing, then the other
cores would wait for their I/O requests to be served by that core. In modern
NUMA-based hardware architectures, this daemon is smart enough to perform
the interrupt request processing as close to the process as possible (i.e., same core,
a core on the same die sharing the same LLC cache, or a core in the same NUMA
zone). However, when the incoming packet rate is high, the throughput of the
packet processing application decreases substantially if a single core undertakes
both application and interrupt request processing. For this reason, we prefer to
take full control of the interrupt request, thus we dedicate a core to serve interrupt
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requests. For performance reasons, in a NUMA-based hardware architecture, both
the interrupt request processing and application cores should be on the same CPU
socket.

To further mitigate the interrupt request cost, interrupt coalescing techniques
have been incorporated in network drivers. These techniques attempt to batch a
set of interrupts to alleviate the cost of generating one interrupt per packet. This
implies less work for the core that processes the interrupts, but it might impose
some additional latency on the application, as some of the packets might wait at
the NIC’s queue until the batch size is met. One way to coalesce interrupts is by
specifying a time window (during which the NIC buffers interrupts), while another
way is to specify the number of frames that a NIC buffers before an interrupt is
generated.

Finally, a well-known technique to eliminate the interrupt cost is to constantly
poll the NIC. In this case, no interrupts are generated by the NIC as there is
always a (set of) core(s) listening for incoming packets. This technique achieves the
best performance and is widely used by modern I/O frameworks such as DPDK
and netmap. However, the use of polling implies that a CPU core must listen
for incoming packets from the NIC. Therefore, some implications of polling are:
(i) the core is no longer available for performing other tasks and (ii) if no or
very few packets arrive at the NIC where the core performs polling, this core is
heavily underutilized. To solve these problems, one could employ load balancing
techniques to redistribute the load across several cores by dynamically assigning
flows to different hardware queues at the NIC.





Chapter 3

Related Work

T his chapter reviews the literature in several key research areas, in particular
NFV. The goal is to draw inspiration from these efforts and identify those

gaps that motivated this thesis.
Sections 3.1 and 3.2 summarize the historical evolution of the technology used

by telecommunications stakeholders to provide NFs during the last two decades.
Section 3.3 provides a summary of works that leverage these NFs to provide
network management solutions and consolidated services. Industrial efforts in SDN
and NFV are introduced in §3.4. This is followed by a discussion of recent system
performance accelerations related to networked systems (see §3.5), and tools that
can be used to analyze the performance of these systems, while executing NFV
service chains (see §3.6).

This chapter provides a high-level overview of the literature. Direct
comparisons of the contributions reported in this thesis with the literature are
given in §6.6, §7.7, and §8.3.

3.1 Early Days of Networking
In the early 1990’s, specialized hardware was the only means to provide line-

rate packet processing and forwarding for high speed links. However, since that
time research in software-based packet processing began.

The UNIX System V STREAMS [38] was a modular packet processing system
that implemented implicit queuing and packet scheduling mechanisms spread
throughout a STREAMS configuration. Decasper et al. [39] implemented modular
per flow packet processing elements executed after a classifier. In router plugins,
these packet classifiers are installed in fixed points in the forwarding path.
Moreover, in 1999 David Cinege published the Linux Router Project [40] which
provided a tailored version of the Linux kernel specialized for routing. Originally,

31
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this project was designed as a “router on a floppy disk” and evolved into a
streamlined network OS. Research attempts also focused on routing operations,
such as IP lookups. In 1997, Degermark et al. designed and implemented a data
structure specialized for quick IP lookups [41]. The authors achieved full routing
lookup at gigabit speeds on commodity hardware, by fitting the forwarding table
into a processor’s cache.

Driven by the need to fully control queuing and packet scheduling operations,
Kohler et al. developed Click [42], a platform to build NFs using simple and
modular packet manipulation elements. Combining 16 Click elements, such as
IP lookup and decrement IP Time To Live (TTL) field, one can build a software
router. To extend this router into a more sophisticated NF (e.g., a middlebox that
implements drop policies or differentiated services), a few elements can simply
be added at the correct place in a Click configuration. In 2000, when Click was
published, achieving a loss-free forwarding rate of 333,000 64-byte Packets Per
Second (pps) was an important performance milestone. Click’s performance was
comparable to the performance of a modified software-based Linux router using
Click’s network device extensions [42]. Also, as compared to router plugins, Click
allows more dynamic traffic classification, to be embedded into Click’s pipeline.

3.2 Modern Packet Processing Frameworks
The Linux router project, router plugins, and Click were among the most

mature software-based packet processing engines of the previous century.
Software-based packet processing architectures achieved higher performance

with the advent of multi-processor computing around 2007. In conjunction with
the introduction of OpenFlow [13] in 2008, software has become a first class
component creating the trend that is today called SDN. Because of these changes,
the logical successors of software-based packet processing are SDN and NFV.

3.2.1 Switch Programmability using SDN
The separation between control and data plane was first proposed by Casado et

al. in Ethane [43]. This idea was the genesis of the OpenFlow protocol in 2008 [13]
and the beginning of a more software-oriented networking era.

OpenFlow quickly gained popularity and researchers implemented network
operating systems and platforms [44, 45, 46, 47, 48, 49] to foster SDN
experimentation. To facilitate application development, research efforts focused on
providing programming abstractions on top of popular SDN controllers [50, 51, 52].
The software-based nature of this new networking paradigm, quickly revealed
some of its weaknesses, such as the introduction of bugs in the network. To
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prevent these bugs, researchers proposed network-level verification techniques that
(i) explore the dynamic interactions between controllers and switches [53, 54] or
(ii) verify a snapshot of the network policy [55, 56, 57, 58, 59, 60]. The goal of
these works was to systematically uncover violations of key network properties,
such as loops, policy violations, black holes, interference among traffic slices, etc.
Verifying the control plane was insufficient, as bugs might appear in the OpenFlow
agent implementations of the switches. These bugs were identified and fixed by
switch-level verification schemes [61, 62, 63]. In both cases, researchers either used
custom verification tools, such as NICE [53] and Kinetic [54], or exploited prior
research, such as KLEE [64] and Cloud9 [65].

Network monitoring [66, 67, 68, 69] and debugging [70, 71, 72, 67] were also
important research directions that emerged after the introduction of SDN. The
former provides useful information about the state of switches, flows, and the
network load, while the latter proposes how to detect and mitigate network failures.

Due to the fact that a network can undergo many changes in states, updating
the state of the network elements appeared to be an important problem in SDN.
To this end, researchers proposed mechanisms to consistently [73] and sometimes
incrementally [74, 75] update the data plane. Additionally, ESPRES [76] and
Dionysus [77] can schedule a given update plan so that the time required for this
plan to be installed is potentially reduced. Similarly, RUM [78] is a software layer
between the controller and the switches that masks and fixes incorrect rule update
notifications coming from faulty switches.

To foster commercial SDN implementations, researchers published their
experiences from deploying SDN solutions on real networks [14, 15, 16, 17, 18, 19,
59]. In this context, Onix [79] models the control plane as a scalable distributed
system, while DevoFlow [80] appropriately modifies the OpenFlow paradigm to
achieve the performance-levels required by datacenters. FlowVisor [81] proposes
an approach to collocate experiments in a real network by slicing its resources
using SDN.

Stateful and Protocol-Independent SDN
After several years of research and several updates in the specification, OpenFlow
has improved substantially. However, some researchers challenged this popular
SDN protocol. Bosshart et al. in [82] questioned the flexibility of OpenFlow,
particularly the static nature of the match-action model and the limited set
of packet processing actions. To overcome these limitations, they proposed
a Reconfigurable Match Tables (RMT) model. RMT allows programmers to
(i) define new headers, (ii) express a desired task as a parse graph, and (iii) use
a table flow graph to express the match table topology. All of these are possible
without modifying the hardware.
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OpenState [83] argued that the stateless nature of the OpenFlow data plane
prevents innovation in crucial stateful packet processing operations. Therefore,
OpenState allowed SDN switches to perform stateful packet processing without
involving an SDN controller. To do so, Bianchi et al. modeled control and
processing tasks that can be executed by SDN switches using extended finite
state machines. This model aims to increase the SDN switches’ capabilities, while
retaining (i) centralized control of their execution, (ii) platform independency, and
(iii) high performance and scalability. This idea was extended by the BEhavioural
BAsed forwarding project [84], leading to even more powerful SDN switches; for
example, to generate packets [85].

Contemporaneously with OpenState, P4 [86] introduced a high-level language
for programming protocol-independent packet processors, coupled with a compiler
that maps programs to a variety of target hardware switches. P4 is considered
the offspring of RMT and a logical continuation of the OpenFlow match-action
protocol, with a simpler and more flexible specification of the same functionality
that is target and protocol-agnostic. Several works built upon P4 to introduce
programmable switches [87, 88], LBs [89], and network emulators [90], while other
researchers were inspired by P4 to build programmable switches using commodity
hardware [91, 92].

3.2.2 Commodity Server Programmability using NFV
Switches with increased programmability, as per OpenFlow, do not address

the broad needs of network operators for stateful and deep packet processing.
For this reason, NFV focused on turning cheap commodity servers into fast
packet processing engines that could potentially replace specialized hardware-
based middleboxes.

High Performance Network I/O
One of the first problems was to improve the I/O performance of commodity
servers. First, the Linux kernel has evolved over the past fifteen years and
today provides sufficient tools to speed up NFV applications running on top of
unmodified network drivers. In 2005, Olsson introduced pktgen [93]; a modular
component of the Linux kernel that permits fast Tx and Rx tests by closely
interacting with the NICs via the kernel’s network driver.

Linux developers realized that system calls add substantial overhead to network
I/O intensive applications. To amortize this overhead, vectorized I/O [94],
introduced in version 2.5 of the Linux kernel, permits reading/writing frames
from/to multiple buffers using a single transaction with the kernel. User-space
network I/O was further accelerated by integrating the asynchronous, zero-copy
network I/O solution proposed by Drepper [95].
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Traversing the entire Linux network stack was still costly, despite the above
advancements. For this reason, researchers tailored the host’s and/or guests’
network stacks and drivers to achieve line-rate forwarding and to maximize
throughput. In this direction, DPDK [28], netmap [33], and PFQ [34] are fast
network I/O frameworks that boost the performance of middleboxes by (i) granting
a user-space application access to the NIC buffers, enabling zero copy data transfers
from kernel to user-space, (ii) pre-allocating memory resources, and (iii) batching
packet processing to amortize system call overheads over multiple packets. The
DPDK Packet Framework [96] is a production-level software development kit
that provides reusable and extensible tools to build complex packet processing
pipelines. A major difference between the DPDK Packet Framework and
earlier works is that DPDK inherently supports hardware acceleration. Software
switch implementations such as Open vSwitch (OVS) [97, 98], VALE [99],
CuckooSwitch [100], and mSwitch [101] take advantage of either DPDK or netmap
to realize fast switching across (virtualized) NF instances.
Advancements in NICs
Increasingly, NICs are equipped with hardware components, such as Receive-
Side Scaling (RSS) [102] and Flow Director [103], for traffic classification and
dispatching to CPU cores. RSS uses a static function to dispatch traffic to a
set of CPU cores by hashing the values of specific header fields. Intel’s Flow
Director [103] offers a vendor specific “match-action” API to classify (match) and
then drop or dispatch (action) traffic to specific NIC hardware queues that can
be accessed by designated CPU cores. DPDK abstracts Flow Director to offer a
unique flow API for all DPDK-based NICs. Despite their limited programmability,
standard NICs are based on inexpensive hardware, which has been manufactured
in large volumes, thus enabling low cost network deployments.
The Rise of Smart NICs
As a result of the increased network programmability, FlexNIC [104] proposed
a model for additional programmability in future NICs. To evaluate FlexNIC,
Kaufmann et al. implemented a DPDK-based software prototype, which emulates
NICs with advanced features. This prototype demonstrates how FlexNIC can be
used to accelerate key-value stores by offloading key classification into advanced
NICs and by dispatching input keys across multiple CPU cores.

NIC vendors, such as Netronome and Netcope, offer NICs with advanced
processing capabilities, also called Smart NICs [105, 106, 107]. Prime examples of
Smart NICs’ advanced features are: (i) OVS offload and acceleration [108, 107],
(ii) bulk cryptography for various cipher suites and key sizes, (iii) stateful load
balancing, (iv) DPI [106], and (v) virtual evolved packet core functions. These
features are not supported by today’s commodity NICs.
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Unlike standard NICs, Smart NICs are programmable multi-purpose devices,
but with a higher manufacturing cost and a lower manufacturing volume. Field-
Programmable Gate Arrays (FPGAs) and Network Processing Units (NPUs) are
two prominent technologies used to manufacture Smart NICs. FPGAs contain
an array of programmable logic blocks that can be reconfigured using a hardware
description language, while NPUs can be re-programmed using software. Both
of these technologies are in stark contrast with traditional Application-Specific
Integrated Circuits (ASICs), which has been the main technology for implementing
traditional middleboxes. Traditional ASICs provide higher performance but lower
flexibility and reconfigurability than FPGAs or NPUs. This is the reason that new
generations of programmable ASICs have recently emerged [109].

Overlay NFV Approaches
With all these accelerations in place, Kim et al. in [110] introduced an extension
of the Click modular router that reached 28Gbps of throughput using aggressive
computation and I/O batching techniques. ClickOS [111] and NetVM [112]
platforms deployed dedicated Virtual Machines (VMs), running on top of Xen [113]
or KVM [114] hypervisors respectively, to realize virtual NFs. Both frameworks
achieved packet switching between VMs at 10Gbps line-rate for any packet size.
OpenNetVM [115] showed that VM-based NFV deployments do not scale with
increasing number of chained instances, hence opted for NFs running natively
in lightweight Docker [116] containers. By interconnecting these containers with
DPDK Tx and Rx ring buffers, OpenNetVM realized NFV service chains with
higher throughput. Flurries [117] builds atop OpenNetVM [115] to provide
software-based service chains on a per-flow basis. Flurries also enables multiple
DPDK-based NFs to share the same CPU core, thus multiplexing thousands of
service chains into a single server. NFP [118] extends OpenNetVM to allow NFs
in a service chain to be executed in parallel. Dysco [119] proposes a distributed
protocol for steering traffic across the NFs of a service chain. NetBricks [120]
introduces new programming abstractions that allow chained NFs to operate on
isolated memory areas without the (expensive) need to exchange copies of the same
packet. This is possible by exploiting type checking and unique types provided by
safe programming languages (e.g., Rust) and compilers (e.g., LLVM [121]).

An alternative direction towards achieving higher performance was to scale
software middleboxes for modern, multi-core and sometimes heterogeneous
hardware architectures. RouteBricks [122] took advantage of parallelism in the
OS and hardware levels to introduce the first parallel Click router prototype,
able to achieve 35Gbps throughput. Most importantly, RouteBricks showed
that performance was no longer the Achilles’ heel of software routers. Moreover,
PacketShader [123] exploits the massively-parallel processing power of a Graphics
Processing Unit (GPU) to overcome the CPU limitations of software-based routers
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and achieve a forwarding rate of almost 40Gbps for small frames. In the same
context, NBA [124] introduced mechanisms to balance the load between CPUs
and a GPU, in an attempt to further increase the router’s performance. The
results showed that an IP router could reach the line-rate of an 80Gbps server.
Finally, Barbette et al. in [125] proposed FastClick; a Click variant that combines
tedious low-level configurations and techniques to turn Click into a fast user-space
packet processor. The authors of FastClick compared their approach with a large
variety of other Click-based works (e.g., PacketShader), showing that FastClick
with DPDK or netmap-based I/O outperforms other state of the art approaches.

3.2.3 Hardware Offloading
Several research efforts have proposed ways to offload specific functions into

commodity hardware. DPDK [28] offers a large suite of hardware offloading
features, such as Cyclic Redundant Check (CRC), (inner) L3-L4 checksum, large
receive, Virtual Local Area Network (VLAN), queue in queue, timestamp, MAC
& IP security, and TCP segmentation offloads [126]. Raumer et al. [127] offloaded
the cryptographic function of a virtual private network gateway into commodity
NICs, for increased performance. MICA [128] encodes database keys into the
source port field of User Datagram Protocol (UDP) packets’ header, which
are classified by Intel NICs [103] in hardware to provide high performance in-
memory key-value storage. Similarly, SwitchKV [129] offloads key-value stores
into OpenFlow switches, which typically provide greater classification capabilities
and more rule capacity than NICs. As discussed above, PacketShader [123],
Kargus [130], NBA [124], and APUNet [131] take advantage of inexpensive but
powerful GPUs to offload and accelerate packet processing. Smart NICs offload
and accelerate software-based OpenFlow switches [108], CPU intensive functions,
such as DPI [106], along with stateful operations, such as load balancing [105, 106].

3.3 Middlebox Management and Consolidation
This section discusses middlebox management and consolidation approaches.

Middlebox-aware Policy Enforcement
In [11], Qazi et al. introduced an SDN-based policy enforcement layer for
steering traffic in a middlebox-aware way. Using flow correlation techniques
to derive knowledge about middlebox modifications, the goal was to deal with
dynamic packet modifications and provide a unified switch and middlebox resource
management scheme. A key element of this approach is that it does not place
any implementation constraints on middleboxes. FlowTags [132] tackled the
policy enforcement problem by infusing a tagging module into middleboxes.
This approach requires a standardized API to expose the processing logic of
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middleboxes and to assign appropriate tags. Following the same principles,
Tracebox [133] inspected packets crossing the network to locate middleboxes and
identify middlebox interference.
Middlebox Verification and State Management
Header Space Analysis (HSA) [56] provided a network model to compose transfer
functions of network elements, including middleboxes. These transfer functions are
used by HSA to perform static checking of network policies. NetPlumber [57] is
the real-time counterpart of HSA applied to Google’s SDN network, the Stanford
backbone network, and Internet 2. OpenNF [134] proposed a programming API
to safely and quickly migrate the state of operational middleboxes in virtualized
environments. Integrating state migration, e.g., using OpenNF, into existing
middleboxes requires substantial man power. StateAlyzr [135] eliminates the need
for manual middlebox modifications by proposing an automated tool for efficient
middlebox state management. An alternative approach to state management was
proposed by Kablan, et al. [136], delegating this task to a remote distributed store.
Middlebox Consolidation and Management Architectures
CoMb [137] presented a new middlebox architecture that explored opportunities
for application-level consolidation by decoupling software from hardware and
providing a logically centralized point for managing groups of middleboxes.
Bremler-Barr et al. introduced the DPIaaS platform to virtualize the DPI
function [138]. The goal of DPIaaS is to share this heavy and costly service among
multiple instances to reduce the load within an NFV environment.

Deeper in the network stack, Open Middleboxes (xOMB) [139] proposed
an incrementally scalable network processing pipeline based on triggers that
pass the flow control from one element to another in a pipeline. The xOMB
architecture allows great flexibility in sharing parts of the pipeline; however, it
only targets request-oriented protocols and services. Slick [140] introduced a
consolidated control plane for middleboxes by sharing common elements among
multiple middleboxes. Apart from consolidating packet processing operations,
Slick [140] also introduced a programming language based on Python that allows
a programmer to compose distributed, network-wide service chains driven by a
controller, while being able to address placement requirements of these chains.

In 2015, an advanced NFV framework called E2 [32] was proposed by Palkar
et al. Inspired by data analytics frameworks, such as the Apache Hadoop [141],
the authors proposed an architecture that allows the definition and deployment of
NFV jobs in the cloud. E2 provides (i) generic techniques to implement NFs,
(ii) service composition using multiple NFs, (iii) resource allocation for each
service, (iv) instantiation of the required number of NFs for a given service (elastic
scaling), (v) load balancing among a service’s instances, and (vi) placement of these
instances across the servers of the NFV infrastructure.
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Bremler-Barr et al. applied the SDN control and data plane separation
paradigm to the OpenBox [31] framework, allowing network-wide deployment and
management of NFs. OpenBox applications input different NF specifications to the
OpenBox controller via a north-bound API. The controller communicates the NF
specifications to the OpenBox Instances that constitute the data plane, ensuring
smart NF placement and scaling. An interesting feature of the OpenBox controller
is its ability to merge different processing graphs, from different NFs, into a single
and shorter processing graph. Another interesting observation is the need to
apply traffic classification at the service chain-level (i.e., classify the traffic of a
service chain only once), and then apply a set of operations that originate from
the different NFs of the service chain.

In 2018, Barbette et al. took this idea to the next level by proposing
MiddleClick [142, 143]; a set of low-level solutions for building NFV data planes
with unified abstractions for TCP session management and flow classification.
Barbette et al. propose a per-session, per-NF “scratchpad”, which acts as a piece
of memory to store and quickly lookup NF state information. Tom Barbette’s
doctoral thesis [144] provides more information about MiddleClick along with other
relevant optimizations for NFV service chains.

3.4 Industrial Efforts in SDN and NFV

Since the introduction of the OpenFlow [13] protocol in 2008, SDN adoption
has gained momentum, as traditional network designs have gradually been replaced
by SDN-enabled ones in campus networks [14], wide area networks [15, 16, 17],
and datacenters [18, 19]. P4 has also been commercialized. Barefoot networks
released the Tofino switch [145], a high performance P4-programmable Ethernet
switch which operates at several (up to 6.5) Tb/s. Netcope P4 [107] is an FPGA-
based Smart NIC, the chip of which can be re-programmed from a web service
that manages the transformation of a P4 description into a firmware bit stream.

European Telecommunications Standards Institute (ETSI) has been driving
NFV standardization during the last 5 years [146]. ETSI’s specialized open source
management and orchestration group (OSM) [147] uses an open implementation
of the current NFV standards, based on a generic framework for managing
compute, storage, and network resources called OpenStack [148]. CORD [149]
and OPNFV [150] also use OpenStack. The former re-architects the central office
as a datacenter, while the latter facilitates the interoperability of NFV components
across various open source ecosystems.
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3.5 Scheduling Techniques in SDN and NFV
Limited but essential contributions have been recently proposed in a different

layer of modern networked systems.

SDN
Inspired by the programmable flow tables of the SDN paradigm, Sivaraman et
al. [151] enabled similar programmability in the packet scheduler of SDN switches.
Their study focused on controlling the order and departure time of packets; these
parameters cover the needs of a broad set of packet scheduling schemes.

Mittal et al. [152] envisioned a universal packet scheduler that could potentially
match the results of any scheduling algorithm. According to their study, there is
no universal packet scheduler, but the best approximation of such a scheduler is
offered by the Least Slack Time First algorithm. They support their findings by
showing how the proposed scheduler can minimize average flow completion times
and tail latencies, while maintaining per flow fairness.

NFV
Along the same lines, a technical report from Rizzo et al. [153] proposes
an architecture to run software-based packet schedulers in modern high-speed
and highly-concurrent virtualized environments. This work isolates scheduling
decisions from the data plane allowing (i) the scheduler to make very fast (i.e.,
over 20 millions per second) scheduling decisions, while (ii) packet transmissions
can run in parallel exploiting multi-core capacities.

The latest work in this area is NFVnice [154]; a scheduler that coordinates
the execution of multiple NFs in an NFV service chain. NFVnice was published
after our contribution in this area (see Chapter §6), focusing on increasing the
throughput of NFV service chains by adjusting their scheduling. In contrast, the
scheduler proposed in the earlier stage (i.e., licentiate) of this thesis [155] realizes
NFV service chains with lower predictable latency. A network operator could
use our approach for latency and jitter-sensitive service chains and NFVnice for
throughput-sensitive service chains.

3.6 Performance Monitoring Tools
The NFV vision is to turn the hardware-based network processing into software

running on commodity hardware and OSs. Therefore, it is crucial to study the most
relevant tools and research works with respect to system profiling to investigate
how one could monitor the performance of NFV software stacks and identify
potential problems.
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System Benchmarks
An NFV infrastructure can be seen as a network OS, since it is essentially
comprised of interconnected commodity servers that run modern multi-core OSs
such as Linux. The main source of data about such a system’s performance can
be collected by tools that reveal the hardware’s performance. lmbench [156] is a
benchmark suite designed to measure bandwidth and latency of critical building
blocks of OSs. For example, lmbench provides tests for detailed memory (i.e.,
cache and main memory), networking (e.g., connection establishment, pipe, UDP,
TCP), file system, process, signal handling, and context switching measurements.

Similarly, Intel’s memory latency checker [157] can quantify the latency when
transferring data of variable sizes across different hardware components (i.e.,
registers, caches, and main memory) of an Intel chipset, hence benchmarking the
hardware’s memory performance.

Code Profilers
Modern code profilers, such as OProfile [158] and Perf [159], access low-level
performance counters at run-time, providing statistics about applications or the
entire OS. Such tools can detect “expensive” functions, allowing developers to
focus their efforts on optimizing critical parts of a software stack.

Data Profilers
CProf [160], callgrind’s KCachegrind tool [161] (based on valgrind), and
Intel’s Performance Monitoring Unit (PMU) [162] are popular tools that track
applications’ cache utilization. Likewise, likwid [163] allows programmers to
measure the performance of either an entire application or specific parts of an
application. Finally, DProf [164] helps programmers understand cache miss costs
by associating these misses with the data types instead of the code.





Chapter 4

Research Problem and Challenges

T he advances in NFV are numerous and substantial, hence NFV is moving
towards commercialization [20, 12, 21]. However, there still remain open

problems that appear to be extremely challenging and require scientific answers.
§4.1 describes a major problem in the area of modern networked systems, with
a focus on NFV. §4.3 describes the challenges associated with the problem. §4.4
formulates a research question, which is boiled down to a set of hypotheses in §4.5,
and a research methodology used to tackle the research problem in §4.6.

4.1 The Problem
Several studies have shown that 10 and 40GbE are widely used in today’s

datacenter networks, while a 100GbE era will be established by 2020 [24, 25]. To
this end, industry leaders, such as Cisco [165], have already replaced infrastructure
for 10Gbps networks with 40GbE, providing 4x more capacity. QLogic and
Broadcom demonstrated end-to-end interoperability between 25 and 100 GbE [166].
Link speeds in Microsoft’s datacenters have exhibited a 50-fold increase between
2009 (1Gbps) and 2017 (50Gbps) [167], as shown in Figure 4.1. According to
Microsoft Azure, these datacenters will soon migrate to 100GbE solutions. Optical
transceivers at 100Gbps are also planned for upgrading Facebook’s datacenters
fabric [168], where 100Gbps switches are already in-place [169].

Figure 4.1 shows that the relative increase in transistor counts has not followed
the same rapid increase since 2009. However, the study in §3.2 shows that NFV
service chains heavily rely on CPU performance. Despite the efforts to eliminate
the overhead of traversing the network stack of commodity OSs (see §3.2) and to
consolidate packet processing operations (see §3.3), it is still hard for NFV service
chains to keep up with these emerging links speeds. Moreover, the processor-
memory gap explained in §1.5 poses additional challenges. Consequently, this
section aims to achieve the following goal:

43
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Goal: Study the impact of the increasing links speeds on the performance of
today’s NFV service chains, by measuring the performance of state of the art
network stacks using:
(i) unmodified Linux network drivers (see §4.1.1), and
(ii) a highly-optimized state of the art network driver (see §4.1.2).
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Figure 4.1: Link speeds’ increase in Microsoft’s Azure datacenters [167] along
with the relative increase in transistor counts, following a more conservative
approximation of Moore’s Law, since 2009.

To achieve this goal, two identical machines are used, each with a dual socket
16-core Intelr Xeonr CPU E5-2667 v3 clocked at 3.20GHz [170]. The input traffic
rate is gradually increased from a sub-Gbps level (i.e., 0.57Gbps) to 2.5, 40, and
100Gbps. For experiments with input traffic up to 40Gbps, the machines are
directly interconnected using two dual-port 10GbE Intel 82599 ES NICs. For
experiments at 100Gbps, the same machines are directly interconnected using two
100GbE Mellanox ConnectX-4 MT27700 NICs. In both of these testbeds, one
machine generates and sinks traffic (using different cores), measuring the end-to-
end latency and throughput. The second machine acts as the NFV host, where
service chains are deployed on top of a state of the art NFV framework called
Click [42]. This study is also complemented with measurements of two additional
state of the art platforms, called OpenBox [31] and E2 [32], in §4.1.2.2. More
details about our testbed are provided in Chapter 5.
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4.1.1 Commodity Network Drivers
We begin by measuring the end-to-end latency of chained user-space Click

NFs, using unmodified Linux network drivers. As shown in Figure 4.2, we created
chains of 1-8 routers that run (i) as individual processes in Linux containers
interconnected with either the Kernel-based Open vSwitch (OVSK) [97] or Back-
to-Back (B2B) and (ii) in a single process (denoted as OneProc in the legend).

We used one dedicated CPU core to execute the NFs, and in the case of
the OVSK-interconnected chains, another CPU core for the switch. We injected
5 million frames at an input rate of 0.82 Mpps. The frame size is 64 bytes without
counting the trailing frame CRC, that we assume will be computed by the NIC
itself. This packet rate corresponds to a bitrate of 0.57Gbps and is the maximum
rate that this software router can sustain without dropping packets. We chose a
small frame size to impose more work on the CPU. The boxplots of Figure 4.2
show the end-to-end latency of each service chain versus the service chain’s length.
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Figure 4.2: End-to-end latency (µs), plotted on a logarithmic scale, versus
the service chain’s length for user-space Click routers based on the native Linux
network driver. The service chains run (i) as individual processes in containers
interconnected with either OVSK, or B2B and (ii) in a single process. The service
chains run in a single core and in the case of the OVSK service chains, OVSK is
scheduled in a different core in the same socket. The input rate is 0.82Mpps with
64-byte frames (resulting in a bitrate of 0.57Gbps). The linear fit to the median
latencies, stated in the legend, begins from the service chain with 2 NFs.
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To quantify the latency of each service chain, we fitted the median latencies of
the boxplots, leading to the equations shown in the legend of Figure 4.2. The
fitting starts from the service chains with 2 NFs. Based on these equations,
each additional router in the OVSK service chain adds 1769µs of median latency,
while the B2B-interconnected routers exhibit 1335µs of median latency for each
additional router. This difference (i.e., 1769-1335=434µs) quantifies the overhead
of using OVSK as a means to interconnect the service chains.

The routers that are chained together in the same process (denoted as OneProc
in the legend) exhibit a considerably lower latency than the multi-process chains.
The main reason is the reduction in the number of I/O operations and the number
of context switches required to realize a single process service chain. Specifically,
28µs of additional latency is imposed by these service chains, for each additional
NF; this latency is roughly 1.5 orders of magnitude lower than the multi-process
service chains. It is also worth noting that the 99th percentile of the latency
increases to almost 1ms for a single-process service chain with 8 NFs.

Observation 1: Service chains realized as multiple processes face severe
performance degradation with increasing service chain length when compared
to single-process service chains, when both use a commodity network driver.

4.1.2 State of the Art Network Drivers
In §4.1.1, excessive overhead was observed when realizing user-space service

chains, using unmodified Linux network drivers. For brevity, we refer to these
service chains as ixgbe-based service chains (since the native Linux network driver
for the underlying Intel NICs is called ixgbe). The goal of this subsection is
to assess whether state of the art NFV schemes can realize these service chains
without performance degradation.

Recent state of the art efforts improved the performance of software-based NFs
by utilizing fast network drivers, such as DPDK [28] or netmap [33]. Despite this
fact, some of these efforts, such as ClickOS [111] and NetVM [112], showed that
NFV service chains still face performance problems when chaining more than 3
NFs together. In particular, Figures 10 and 12 of the ClickOS and NetVM papers
respectively, show that throughput decreases 30-90% with increasing length of the
service chain. These frameworks rely on hypervisors (i.e., Xen [113] for ClickOS
and KVM [114] for NetVM) to schedule and interconnect VMs. Despite using fast
I/O technologies, the overhead of deploying dedicated VMs to run NFs is still high,
even though ClickOS uses a lightweight micro-kernel VM instance called miniOS.

One might imagine that service chaining using more efficient NFV frameworks
might not face the same performance degradation. To examine this, one of the
fastest NFV frameworks to date, called FastClick [125], was deployed with the same
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service chains shown in §4.1.1. FastClick is an extension of Click that realizes user-
space NFV pipelines using netmap or DPDK-based I/O mechanisms, coupled with
I/O and computation batching and multi-core capacities. In §4.1.1, we showed
that the single-process service chains comprise the fastest way of service chaining;
therefore, the same single-process service chains are realized using FastClick. This
service chaining is much faster than ClickOS or NetVM because the service chains
run natively, thus eliminating the hypervisor costs. In these experiments (described
in the following sections), each router has four 10Gbps NICs and the service chains
are replicated across 8 CPU cores on the same socket. Input traffic is distributed
across these CPU cores using the RSS functionality of the underlying Intel NICs.
4.1.2.1 Low Packet Input Rates

This section demonstrates the performance of FastClick service chains using
the DPDK state of the art network driver, when input load is low.
Service Chains’ Deployment at 0.57Gbps
To compare the DPDK-based service chains with the ixgbe-based service chains
presented in §4.1.1, the same 64-byte long frames are injected into FastClick at the
same rate (i.e., 0.57Gbps). The top entry in the legend of Figure 4.3 shows the
end-to-end latency of these service chains with an increasing number of routers.
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Figure 4.3: End-to-end latency (µs), plotted on a logarithmic scale, versus the
service chain’s length for user-space FastClick routers based on the DPDK network
driver. The service chains run natively in a single process, replicated across 8 CPU
cores on the same socket using RSS. The input traffic consisted of 64-byte frames
at 0.57 and 2.5Gbps.
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Using this setup, the median latency of a single DPDK-based FastClick router
is 8µs. This latency is almost 40x (i.e., 8 vs. ∼300µs) lower than the latency of
the same router using the native Linux network driver. Secondly, as denoted by
the top entry in the legend of Figure 4.3, an additional router in the DPDK-based
service chain imposes only 1.4µs of additional latency. Compared to the same
service chains realized with the ixgbe network driver, this latency is 20x lower.
Indeed, the coefficient (28µs) of the third equation (from top to bottom) in the
legend of Figure 4.2 confirms this observation.

The reasons for these differences are (i) the effectiveness of FastClick’s I/O
mechanisms and (ii) the fact that the FastClick service chains use multiple
dedicated cores for I/O and processing, whereas the ixgbe-based service chains
run in a single core. Two observations can be made from these results:

Observation 2: State of the art NFV frameworks, assisted by state of the
art kernel-bypassing network drivers, can realize some long service chains with
negligible performance degradation at low input rates (i.e., below 1Gbps),
even for small frame sizes.

Observation 3: Commodity network drivers inflict at least 10 times more
latency on a state of the art NFV framework, compared to state of the art
kernel-bypassing network drivers.

Service Chains’ Deployment at 2.5Gbps
Next, the input bitrate injected to the DPDK-based FastClick service chains shown
in Figure 4.3 is increased by 5x (from 0.57 to 2.5Gbps). The latency of the DPDK-
based router service chains, under this increased rate, is quantified by the second
legend (from top to bottom) in Figure 4.3. Despite the 5-fold increase in the
input rate, the service chains of 1-3 routers still perform well, with only 8-12µs
of median latency and nearly zero latency variance. However, after this point
there is a substantial median latency increase that results in a service chain of 8
routers requiring almost 500µs to deliver packets through the service chain. More
interestingly, the latency variance follows a similar trend with latency, with the 1st

and 99th percentiles of the latency up to 1.5 orders of magnitude apart.

This experiment is a first sign that state of the art NFV frameworks cannot
realize long service chains without performance degradation under high input
rates, even though these service chains consist of rather simple NFs, such as
routers, and the input rate is less than the maximum line-rate.
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4.1.2.2 High Packet Input Rates

As 100Gbps switches and NICs are starting to be standardized and deployed,
maintaining high performance at the ever-increasing data rates is vital for the
success of NFV. To examine the scalability of state of the art NFV frameworks
at the current (40Gbps) and emerging (100Gbps) link speeds, two additional
experiments are performed. The input rates in these experiments are 40 and
100Gbps respectively, while the focus is now shifted; we study the ability of state
of the art NFV service chaining frameworks to maintain high throughput at these
challenging input rates.
Deploying Service Chains at 40Gbps
The first experiment targets a 40Gbps deployment, which is a typical link speed in
datacenter networks today [167], using the same FastClick router service chains and
the same frame size. Note that the maximum achievable throughput of the testbed
for the 64-byte frame size is 31.5Gbps, since this is the limit of the underlying Intel
NICs (also reported by Barbette et al. [125]). Figure 4.4 shows the throughput of
the router chains.
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In this experiment FastClick can operate at the maximum throughput only for
a service chain of 1 or 2 routers. The equation fitted to the median throughput
for each service chain shows that there is a quadratic throughput degradation that
results in a service chain of 8 routers achieving only 10Gbps of throughput. This
degradation is nearly a third the line-rate throughput of this testbed and one would
expect an even greater degradation if more complex NFs are chained together.

Deploying Service Chain at 100Gbps
Router service chains with 3 or more NFs exhibited performance degradation when
tested at 40Gbps. The third experiment aims to test the limits of state of the art
NFV frameworks at the challenging input rate of 100Gbps, using a more realistic
service chain. The first NF of the service chain under test is a router with a large
routing table of 3117 entries. These entries derive from the analysis of 4 million
packets from a real campus trace, obtained from University of Liège. The router is
chained with two stateful NFs: a NAPT and an LB that implements a flow-based
round robin policy. In this experiment, the total CPU capacity (i.e., 16 CPU cores)
of the server is exploited.

The state of the art frameworks under test are OpenBox [31] and an emulated
version of E2 [32]. OpenBox is based on FastClick and uses RSS to dispatch input
packets to the available CPU cores. To emulate E2 a dedicated CPU core (i.e.,
core 1) is used to dispatch packets to the remaining CPU cores of the server
(i.e., 2-16), where the NFs of the service chain are executed. Figure 4.5 shows
the throughput of these systems versus the number of available CPU cores. To
quantify the maximum attainable throughput of this testbed, a simple RSS-
assisted forwarding NF is used, denoted as “Hardware Limit RSS” in Figure 4.5.
This NF reads input frames from the Mellanox 100GbE NIC and immediately
emits these frames back without performing any processing.

The results in Figure 4.5 show that both state of the art systems exhibit a slow
but linear increase in throughput with an increasing number of CPU cores. A linear
regression on the medians between 1 and 12 CPU cores (the emulated E2 starts
from 2 CPU cores) shows that the throughput of OpenBox increases by 5.37Gbps
with each additional core, while the throughput of the emulated E2 increases by
4.91Gbps per core. However, adding more than 12 CPU cores does not bring
further performance gains. Specifically, the throughput of OpenBox plateaus
around 67Gbps, while the performance of the emulated E2 drops from 53 to
41Gbps. In contrast, the black crosses in Figure 4.5 show that the maximum
attainable throughput of this testbed is 76Gbps, with this result achieved using
only 4 CPU cores.

From the last two experiments, which stressed state of the art NFV frameworks
at high input rates, we conclude:
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Observation 4: State of the art NFV frameworks, using state of the art
kernel-bypassing network drivers and multi-core capacities, exhibit serious
performance degradation when realizing service chains at tens of Gbps.
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Figure 4.5: Throughput (Gbps) of a stateful service chain (Router→NAPT→LB)
with increasing number of CPU cores at 100Gbps. Comparison of:
(i) OpenBox [31] with RSS and (ii) a software-based dispatcher emulating E2 [32].
“Hardware Limit RSS” shows the forwarding speed of the server (i.e., no service
chain) using RSS as a traffic dispatcher.

4.1.3 Problem Definition
The four observations made above lead to the definition of a major problem in

the area of networked systems:

Problem Definition: State of the art NFV frameworks, exhibit serious
performance degradation, when realizing service chains using either
(i) commodity or (ii) state of the art network drivers.

Obviously, this problem is related to the underlying technology (i.e., the
network driver) that is used to realize the NFV service chains. Chapter 1
highlighted the importance of NFV service chains in modern networked systems,
hence this problem is of major importance for relevant stakeholders.
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4.2 The Causes
The experimental process in §4.1 quantified the performance degradation of

state of the art NFV systems. This section highlights the reasons for the observed
performance degradation.

4.2.1 The Consequences of Inaccurate Packet Dispatching
In an NFV service chain, packets move from one physical or virtual server

(hereafter simply called server) to another to realize a programmable data plane.
The servers themselves are predominantly multi-core machines. Different ways of
structuring the NFs exist, e.g., one per physical core or using multiple threads
to leverage multiple cores within each NF. Network functions range from simple
stateless ones to complex functions, such as DPI, and potentially stateful (e.g.,
proxy) functions. Regardless of the deployment model and NF types, every time
a packet enters a server, a fundamental problem occurs:

Which core within a multi-core machine is responsible for handling this packet?
This problem reoccurs every step of the service chain and can cause costly
inter-core transfers.

To identify the core that will process an incoming packet, NFV frameworks
typically only examine the header fields. Here, there is a big mismatch between the
way modern servers are structured and the desired packet dispatching functionality.
Figure 4.6 shows three widely used categories of packet processing models in NFV,
as previously discussed in Chapter 3, and specifically in §3.2.
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Figure 4.6: State of the art packet processing models either have too many inter-
core packet transfers or load balancing problems due to load imbalance and/or idle
cores.
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Software-based Dispatching
The first category (see Figure 4.6a), augments the weak programmability of current
NICs with a software layer that acts as a programmable traffic dispatcher between
the hardware and the overlay NFs. E2 [32], with its software component called
SoftNIC [171], falls into this category. SoftNIC requires at least one dedicated
CPU core for traffic dispatching and steering (see Figure 4.6a), while the NFs run
on other CPU cores. Earlier works, such as ClickOS [111] and NetVM [112], also
used software switches on dedicated cores to dispatch packets to VMs, but without
the flexibility of E2.

Pipeline Dispatching (with or without RSS)
Rather than having a shim layer between the NFs and the NICs to select the
next hop in a service chain, the second category of packet processing models (see
Figure 4.6b) involves a pipeline of reception, processing, and transmission threads,
each on a different (set of) core(s). If more than one reception core is required,
this model uses RSS [102] as described below. For example, OpenNetVM [115],
Flurries [117], and NFP [118] (a parallel version of OpenNetVM) fall into this
category. Similar to E2, these works introduce programmability by augmenting
the reception and processing parts of the pipeline with traffic steering abilities.

Hardware-assisted Dispatching using RSS or Flow Director
The last category of packet processing models relies on two hardware features
provided by a large fraction of NIC vendors today. First, RSS uses a static function
to dispatch traffic to a set of CPU cores by hashing the values of specific header
fields. Second, NICs can be programmed via a vendor specific “match-action”
API to dispatch traffic to specific cores (e.g., Intel’s Flow Director [103]). Unlike
all previous models, these approaches do not require dedicated dispatchers, hence
they offer higher performance. OpenBox ∗ [31], FastClick [125], our earlier work
SNF [29], and RouteBricks [122] use RSS, while CoMb [137] uses Flow Director.

Summary
None of these schemes guarantee that the core receiving the incoming packet will be
the one processing it. Flow hashing as in RSS can introduce serious load imbalances
under skewed (e.g., heavy flows with the same hashes) workloads. Flow Director
permits explicit flow affinity, but suffers from the limited classification capabilities
of today’s commodity NICs. When there is a mismatch, the packet is handed off
to the correct core. However, this requires transferring the packet via Dynamic
Random Access Memory (DRAM) or LLC to the target processing core. Even
when using the LLC this a slow operation, as the LLC takes several tens of cycles
even for a cache hit!

∗Originally, OpenBox was built on top of Click using Linux-based I/O. To fairly compare it
against our work, OpenBox was accelerated using FastClick’s DPDK engine and RSS [172].
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The available time to process 64-byte packets at 100Gbps is only 5.12 ns/packet
(see Figure 4.7). However, existing NFV systems require at least one inter-
core transfer per packet, either via LLC or DRAM. This transfer alone takes
several nanoseconds (up to 14.3 ns for LLC and up to 71.7 ns for DRAM on
an Intel Xeon E5-2667 v3 according to Figure 6.3 on page 78).

Therefore, there is a clear mismatch between the processing requirements of
high-speed networks and the way that state of the art NFV systems process
packets. Our earlier work [27] demonstrated that dramatic speedups (i.e., several
times lower latency and orders of magnitude lower latency variance) occur if the
correct core receives the packet straight from the NIC and the packet remains in
the core-specific cache(s).
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Figure 4.7: Available time in nanoseconds, plotted on a logarithmic scale, to
process 64-byte long frames at increasing speeds (1-100Gbps). It is extremely
challenging to realize packet processing at 100Gbps on a commodity server, as the
available time is only 5.12 ns/64-byte packet.

4.3 The Challenges
This section discusses the key challenges that emerge from the problem defined

above. In response, the research approaches of this thesis are highlighted, in an
attempt to address these challenges.
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4.3.1 Challenge 1
As described in §4.1.1, we observed high latency when chaining NFs that utilize

the native Linux network driver. This was the primary reason that led researchers
to develop fast, kernel-bypassing network drivers such as DPDK. Indeed, in §4.1.2,
we saw how such a fast driver can dramatically decrease the latency of service
chains when the input data rate is low. However, the replacement of a commodity
network driver with a custom one has several implications: (i) the interest of the
researcher is diverted from the performance problem of the commodity network
driver and (ii) popular services to date, offered by e.g., Amazon [173], still rely on
commodity OSs and network drivers.

Challenge 1: An in-depth analysis of the system’s state, when commodity NFV
applications are executing, would reveal the exact root causes of the observed
performance. NFV stakeholders could benefit from tools that thoroughly analyze
“hot” parts of NFV software stacks and draw attention to those functions that
heavily utilize system resources, hence offer the greatest potential for performance
improvements. Such tools could solve (part of) the performance problem, having
a direct impact on popular services used by a large number of end users.

Approach to Challenge 1: This challenge is addressed in Chapter 6, by
introducing an NFV profiler [27]. To the best of my knowledge, this is the first
NFV profiler in the literature. The proposed profiler uncovers performance issues
in both standalone and chained NFs by accessing low-level hardware and software
performance counters.

4.3.2 Challenge 2
Chaining NFs in a multi-process context (i.e., when each NF is a different

process) is costly as shown in §4.1.1. I/O is a critical factor in the observed
latency, as also reported by earlier work [34, 28, 110, 33]. However, there is very
little related work proposing alternative accelerations on different levels of the OS,
except for I/O.

In response to this need, as discussed in §3.5, Sivaraman et al. [151] revised the
abstractions of modern switches, by proposing programmable packet scheduling
techniques, while Mittal et al. [152] introduced packet scheduling algorithms that
can approximately meet the requirements of a universal packet scheduler. These
approaches can affect the order and timing of packet departures from a queue in
a switch or NF.



56 CHAPTER 4. RESEARCH PROBLEM AND CHALLENGES

Challenge 2: We believe that scheduling is a very powerful mechanism to improve
the performance of processes, such as those occurring in a service chain. The efforts
above inspired us to study scheduling schemes for NFV service chains. However,
in contrast to [151, 152], a chain of NFs might require a global scheduler to make
service chain-level decisions, rather than an internal scheduler that executes local
switch policies. This idea is inline with Amazon’s attempts to integrate custom
schedulers in their cloud services [174]. Therefore, the challenge is to design and
implement a task scheduler that fits into the NFV ecosystem, taking into account
the characteristics of the software-based packet processors, especially when an
NFV provider wishes to schedule multiple NFs together.

Approach to Challenge 2: This challenge is addressed in Chapter 6, by
proposing an NFV service chain scheduler [27]. To the best of my knowledge,
this is the first NFV service chain scheduler in the literature. The proposed
scheduler employs techniques to adjust the frequency of I/O operations, in tandem
with adjusting the priority and time quanta allotted to each NF, to maximize the
effective run-time of the service chain, by reducing I/O and scheduling overheads.

4.3.3 Challenge 3
As shown in §4.1.2, the quadratic performance degradation of state of the art

NFV frameworks at high packet rates suggests the existence of redundancy when
chaining the code of several NFs together. As described in §3.3, several NFV
consolidation frameworks have been proposed since 2012 [137, 139, 138, 140, 32,
31], mainly targeting reducing this redundancy. However, none of these efforts
managed to entirely eliminate the redundancy of the operations within the service
chain.

For example, Slick [140] falls short in cases where middlebox chains must be
consolidated in the same machine and specifically in the same process in order
to avoid context switching. Slick is unable to exploit the locality and speed of
transferring packets within a single CPU core context; thus, Slick cannot deliver
traffic through the service chain with low latency.

Challenge 3: We believe that it is crucial to drastically consolidate a chain of
NFs, to achieve the low latency necessary for 5G [175, 176, 177] communications.
Specifically, meeting the target latency of 1ms set by various 5G initiatives is
extremely challenging, mainly because of the laws of physics; therefore any solution
to this problem must minimize the number of hops of the service chain (i.e., ideally
achieving a single hop) and must eliminate all redundancies across the internal
operations of the service chain.
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Potential challenges while implementing such an NFV consolidation framework
would be (i) how this framework can effectively maintain the states of the
participating NFs in a service chain, (ii) whether it is feasible to consolidate these
states, and (iii) how the traffic classification process can be realized at scale when
multiple and complex NFs are chained.

Approach to Challenge 3: This challenge is addressed in Chapter 7, by
proposing a highly-optimized NFV service chain synthesis framework [29]. Our
approach minimizes the number of elements that apply read, write, and discard
operations on packets, allowing long, stateful, and complex service chains to be
realized at 40Gbps.

4.3.4 Challenge 4
Even highly-optimized service chain implementations, using our synthesis

approach, might exhibit performance degradation. This can happen for many
reasons. First, when a packet processing element of a service chain is too large
to fit into a server’s core-specific cache(s), thus introducing costly LLC and/or
DRAM transfers. A common example is a large packet classifier with several
thousands of entries (e.g., a firewall or core router), which is typical in e.g., ISP
networks. Second, when the packet processing operations of a service chain are
not properly mapped to the underlying system resources, such as CPU cores and
their caches. This can be problematic when the input load exceeds a threshold.
For example, some state of the art NFV approaches use dedicated CPU core(s)
to perform packet I/O, which then transfer(s) batches of packets to another (set
of) CPU cores for processing. These transfers might not affect the throughput of
a service chain at 10Gbps, but greatly compromise its performance at 100Gbps
(see Figure 4.5).

Challenge 4: In these cases, network operators require means to exploit all
available resources. State of the art NFV approaches do not offer such a capability,
despite the fact that modern networked systems are comprised of programmable
network devices, such as OpenFlow switches and NICs. We believe that it is vitally
important to leverage all available hardware in order to realize NFV service chains
at the emerging, and extremely challenging, high-speed networks of 100Gbps and
beyond.

Approach to Challenge 4: This challenge is addressed in Chapter 8, by
proposing an NFV service chaining platform that operates at the true speed
of the underlying commodity hardware [30]. The proposed approach exploits
the available programmable hardware to perform early traffic classification and
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tagging, which is then used by commodity servers to perform hardware-based
dispatching to the correct CPU core, while ensuring zero inter-core communication
among the components of a service chain. With commodity hardware, the
proposed approach can perform DPI at 40Gbps and realize stateful network
functions at the speed of a 100GbE network card on a single server. Our approach
has 2.75-6.5x better efficiency than OpenBox, a state of the art NFV system,
while ensuring key requirements such as elasticity, fine-grained load balancing,
and flexible traffic steering.

4.4 Research Question
Having introduced the research area (see Chapter 1), acquired enough

background (see Chapter 2), studied the state of the art contributions (see
Chapter 3), and highlighted the current problems, causes, and challenges
(see §4.1, §4.2, and §4.3), it is time to formulate the research problem that this
thesis project tackles. That said, we state the concrete research question as follows:

Is it possible to maintain the high performance of a service chain (or chain of
NFs) despite its length and complexity?

4.5 Hypotheses
The problem identified in §4.1.3 has clear evidence that the null hypothesis H0

is true for a set of implementations of some service chains.

H0: Service chains inherently exhibit performance degradation that depends
upon the length, complexity, and processing model of the service chain.

In this thesis we use the Socratic method [178, 179], also known as “maieutic
method” (“μαιευτική μέθοδος”) to eliminate hypothesis H0. The ultimate goal of
the Socratic method is to increase understanding through inquiry. This is done
using creative questioning to dismantle and discard preexisting ideas, allowing the
respondent to rethink the primary question under discussion.

That said, we (i) “question” existing NFV approaches by conducting relevant
experiments using service chains (see §4.1), (ii) propose solutions that aim to
solve the performance degradation problems stated in H0 (see Chapters 6, 7,
and 8), (iii) formulate an alternative hypothesis (shown next), and (iv) evaluate
our solutions to provide evidence that show that H0 leads to contradictions, thus
H1 holds (see §7.5 and §8.2).
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The alternative hypothesis we want to support is:

H1: Some service chains can be realized without their performance deteriorating
despite the length and complexity of the service chain, when using an
appropriate processing model.

4.6 Research Methodology
This thesis project follows a quantitative research approach as specified by John

Creswell in [180]. In short, this approach is based on the closed loop depicted in
Figure 4.8. First we design, then we implement, and finally we experimentally
evaluate our solutions to the targeted problems. Next, we use the observations
from the evaluation phase and the technical details from the implementation phase
to provide feedback to and refine the design choices of our solutions.

Design

Implementation

Experimental 
Evaluation Observations

Technical details

Figure 4.8: The research methodology followed by this thesis.





Chapter 5

Experimental Setup

T his chapter describes the experimental setup followed to deploy, run, and
measure the performance of chained NFs. At a high level, the testbed used

throughout the experiments of this thesis is shown in Figure 5.1. Depending
on the experiment, the total link speed of this testbed can either be 10, 40, or
100Gbps. This capacity is provided by using either 1x10, 4x10, or 1x100Gbps
NICs in each machine as explained below. Machine 1 generates and sinks bi-
directional traffic (using different cores), while machine 2 acts as the NFV host,
where NFV service chains and tools are deployed.

Traffic
Generator/Sink

Traffic
Processor

Machine 1 Machine 2

(Switched) 10/40 GbE or
Back-to-back 100 GbE

Figure 5.1: The experimental setup used throughout this thesis. Machine 1
generates and sinks bi-directional traffic, while machine 2 realizes the chained
packet processing. The total link speed of the testbed is 10, 40, or 100Gbps
depending on the number and type of NICs being used. Deployments at 10 or
40Gbps use either back-to-back interconnects or an OpenFlow switch between
the servers. Deployments at 100Gbps were only possible using back-to-back
interconnects between servers.
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Servers’ Hardware Specifications
The testbed consists of six identical servers, each with a dual socket 16-core
IntelrXeonrCPU E5-2667 v3 [170] clocked at 3.20GHz. The cache sizes are:
2x32KB L1 (instruction and data caches), 256KB L2, and 20MB L3, with
128GB of main memory (i.e., DRAM) clocked at 2.133MHz and distributed across
8 slots. Hyper-threading is disabled.

Testbed at 10/40Gbps
During the licentiate phase of this thesis [155] each machine had two dual-port
10GbE Intel 82599 ES NICs with total capacity 40Gbps. The OS was the
Ubuntu 14.04.3 distribution with Linux kernel v.3.13. In machine 2, an entire
CPU socket was isolated to ensure that the measurements will not be affected by
other competing processes, while all of the system’s other functions use the CPUs
in the other socket. For the majority of the experiments in that thesis, two out of
the six machines were used as shown in Figure 5.1.

Testbed at 100Gbps
During the doctoral phase of this thesis the OS on all of the machines was upgraded
to the Ubuntu 16.04.2 distribution with Linux kernel v.4.4. Also, three of the
machines in this testbed were equipped with an additional 100GbE Mellanox
ConnectX-4 MT27700 NIC. These NICs allow us to further stress the performance
limits of NFV service chains, thus better evaluate the relevance of our contributions
with respect to such an emerging and challenging data rates.

Switching Infrastructure
Back-to-back connectivity is not the most common method of interconnecting
servers. Network operators typically use a switching infrastructure to interconnect
multiple servers together. This allows them to scale the network and to perform
more advanced traffic steering. Moreover, modern switches are also programmable,
allowing parts of the packet processing operations to be offloaded, thus reducing
the processing demands at the servers. Two programmable switches are used in
some of the experiments in this thesis: a NoviFlow 1132 switch and an HP 5130
EI Switch [181] with software version S5130-3106. The former switch is a powerful
multi-port 10GbE OpenFlow switch used to evaluate two of our contributions
in §7.5.4.2 and §8.2. The latter switch is an inexpensive hybrid (i.e., legacy and
OpenFlow-based) switch used to assess how hardware diversity affects the third
contribution of this thesis (see §8.2.5.2). §5.2 describes how these switches are
used in the testbed.

Next, the two main components of the testbed are described. The traffic
injection and measurement module is described in §5.1, while §5.2 describes the
traffic processing part of the testbed. The low-level configuration of the testbed is
included in this thesis as Appendix A.2.
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5.1 Traffic Generator and Sink
Traffic is generated and sunk in machine 1, as shown on the left and right-

most parts of Figure 5.1. Depending upon the target of the experiment, the traffic
modules work in different modes as explained below.
Throughput mode is used to measure the throughput of the NFV deployment
under test. In this case, machine 1 uses MoonGen [182] to generate and sink the
traffic, ensuring that the appropriate number of CPU cores will be allocated to
fulfill the capacity requirements of the test. MoonGen is a DPDK-based traffic
generator that can saturate a 10GbE NIC with frames of any size using only one
core. Therefore, even for high throughput tests (e.g., at 40Gbps), machine 1 can
use 4 cores to generate traffic and the remaining 4 cores of the same socket to
receive the traffic, as shown in Figure 5.1.
Latency mode is used to measure the end-to-end time required to send traffic
from machine 1, traverse the NFV deployment under test in machine 2, and receive
the traffic back to machine 1. Click is used as a traffic source and sink for this
purpose. Before the packets leave the traffic generator, they are annotated with
a timestamp that is written in the packet’s payload. When the packets return to
the sink module (after being processed by machine 2), their timestamp annotation
in the packet payload is updated, both timestamps are stored in memory, and
end-to-end latency statistics are dumped to a file after the end of an experiment.

Regardless of the mode, in which the traffic generator and sink operate, they
can be parameterized to handle various traffic patterns using different protocols,
such as TCP or UDP, or even replay traces from pcap files. After the traffic
generator has sent all the required packets, it produces a report that gives the exact
rate that packets were pushed to the NIC(s), along with the number of packets
sent. The same metrics are reported by the traffic sink, hence by comparing these
metrics one can assess if a service chain exhibited throughput degradation or packet
loss.

5.2 Traffic Processor
The packets sent by the traffic generator of machine 1 are received by the

NICs of machine 2 as shown in Figure 5.1. In the tests for this thesis we consider
two different network drivers to interact with the NICs: (i) the standard Linux
network driver for Intel 10GbE NICs, specifically ixgbe version 3.19.1 and (ii) the
DPDK network driver ∗. As shown in Figure 5.2, three different service chains are
considered for the tests of this thesis.

∗Each experiment reports the exact version of the DPDK driver being used.
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Machine 2

Software Switch

...
Container 1

NF1

Container k
NFkMachine 1

Traffic Source-Sink

Operating System Operating System

10/40/100
GbΕ

(a) Multi-Process NF chain, each running in a different container, on top of a software switch.

Machine 2Machine 1
Traffic Source-Sink

Operating System Operating System

NF1 ...NF2 NFk
10/40/100

GbΕ

(b) Single-Process NF chain running natively.

Machine 2Machine 1
Traffic Source-Sink

Operating System Operating System
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(c) Synthesized single-process NF chain running natively.

Machine 1
Traffic Source-Sink

Operating System

10/40 GbΕ

OpenFlow 
Switch

Machine 2

Operating System

NF1 ...NF2 NFk

(d) Single-Process NF chain running natively, preceded by an OpenFlow switch.

Machine 1
Traffic Source-Sink

Operating System

10/40 GbΕ

OpenFlow 
Switch

Machine 2

Operating System

NF1+2+..+k

(e) Synthesized single-process NF chain running natively, preceded by an OpenFlow switch.

Figure 5.2: Five deployment types for chained NFs used throughout this thesis.
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The first service chain deployment type, shown in Figure 5.2a, runs on top
of a software switch. In this case, the NFs are user-space processes that run in
isolated Linux containers, reading and writing frames from/to virtual ports that
are attached to the software switch. Therefore, the switch acts as a backbone
network that forwards frames across the service chain. Each NF is a separate
process, thus multiple containers are chained as shown in Figure 5.2a. This type
of service chain is called a “Multi-Process” service chain.

To avoid (i) the I/O communication cost among NFs in a service chain and
(ii) the overhead of running OS-level virtualization using containers, the entire
service chain is realized in a single process that runs natively. This type of
service chain deployment is shown in Figures 5.2b, 5.2c, 5.2d, and 5.2e, where
the virtualization (“V”) from NFV is removed, aiming for better performance.
Figure 5.2b depicts a “Single-Process” service chain that runs exactly the same
code as the “Multi-Process” service chain, but all in one native process. Similarly,
Figure 5.2c shows a “Synthesized Single-Process” service chain that runs code
equivalent in functionality with the other two chains, but from which the redundant
operations have been removed. A way to synthesize service chains is proposed in
Chapter 7 and exploited by an ultra high performance NFV platform in Chapter 8.

The service chains shown in Figures 5.2d and 5.2e are identical with the service
chains shown in Figures 5.2b and 5.2c, but in the former two deployments machines
1 and 2 are interconnected via a NoviFlow 1132 OpenFlow switch instead of being
interconnected back-to-back. Because this switch contains 10Gbps ports, the total
link rate of the deployments shown in Figures 5.2d and 5.2e is 10 or 40Gbps,
depending on the number of ports being used.

At the end of each service chain, output frames are sent out of machine 2,
back to the origin machine. Next, we present how we implement NFs in the traffic
processing machine.

5.2.1 Software-based Packet Processing Framework
A service chain might consist of one or more NFs. In an NFV context, these

NFs run in software, hence we need a framework to facilitate the realization
of NFs, while maintaining high performance. Click [42] is selected as such a
framework, because it is among the most popular software-based packet processing
architectures in academia and it is also used by industry [183].

As introduced in §3.1, Click is a modular C++ platform for implementing
advanced packet processors by combining primitive packet computation elements.
Click elements are combined by forming a Directed Acyclic Graph (DAG) that
describes the way packets are read, processed, and written.

Unless stated otherwise, the basic NF implementation in our experiments is the
Click router depicted in Figure 5.3. We use a slightly modified version of the router
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implemented by Kohler et al. in [42]. As shown in Figure 5.3, our router does not
contain ARPQuerier elements, as we assume that the interconnections from this
router to other nodes are static. Hence, we can directly encapsulate (using an
EtherEncap element) the IP packet using a predefined gateway’s MAC address
as a destination field in the Ethernet frame. Note that the router in Figure 5.3
contains two interfaces (i.e., pairs of I/O elements); hence in order to realize a
service chain using 4 Intel NICs, we need to deploy either two of these routers or
a similar router with 4 I/O pairs instead of two.

To implement more advanced NFs, we depart slightly from this implementation
by placing a few Click elements at the correct position within a Click DAG. For
example, a firewall requires an IPFilter element with one or more traffic filtering
rules between CheckIPHeader and GetIPAddress elements. A NAPT NF requires
an IPRewriter element with one or more traffic modification rules between the
same two elements. To implement an LB that modifies the destination IP address
of input packets in a round-robin fashion, a RoundRobinIPMapper element is used
in tandem with an IPRewriter. Finally, to implement a DPI NF a library with
payload inspection elements was ported to FastClick [172]. A regular expression
matching element called RegexMatcherMP was used to detect malicious strings in
input IP packets’ payload [172]. Overall, the following five NFs were implemented
in the course of this thesis:

1. IP router;
2. L3-L4 firewall;
3. NAPT;
4. L3 LB; and
5. DPI;
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Figure 5.3: A Click implementation of an IPv4 router. I/O elements are
shown with orange background, while processing elements are shown with green
background.





Chapter 6

Profiling and Accelerating
Commodity NFV Service Chains
with the Service Chain
Coordinator

I n §4.1.1 we observed that chained NFs that use the native Linux network driver
exhibit high latency. Given the popularity of this driver, we derived the first

challenge of this thesis in §4.3.1. This challenge is to deeply analyze an NFV
system that uses the native Linux network driver, during the execution of service
chains, to reveal the root causes of the high latency.

In response, the first contribution of this chapter ∗ is an NFV profiler; a tool
that collects data from low-level performance counters from the underlying NFV
infrastructure to track packets as they move from the NICs to the processors (and
vice versa) through the different levels of the system’s memory hierarchy. The
proposed profiler decomposes the observed per packet latency into components
mapped to the involved hardware components (e.g., caches, main memory) and
associates these components with their cause(s) (i.e., the responsible pieces of code
that cause this latency).

Today, service chains are used by modern services to enrich their data plane
functionality. For instance, Amazon offers services that allow tenants to build
their own virtual infrastructure by combining functions such as filtering, routing,
slicing, and load balancing [173]. In such an environment, even state of the
art frameworks, such as ClickOS [111] and NetVM [112], cannot achieve high-
performance as reported in §4.1.2.

∗The work described in this chapter is based on the journal article “Profiling and accelerating
commodity NFV service chains with SCC” [27] (the authors of the article retained the copyright
and give their joint approval for parts of this material to appear in this thesis).
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Unfortunately, these latest advancements have not yet been adopted by cloud
providers and it is unlikely that this will happen soon, as cloud providers continue
to rely on commodity OSs, I/O drivers, and switching fabrics. Although techniques
such as single root I/O virtualization (SR-IOV) can bypass the hypervisor and pass
packets from the NICs to the VMs [184], cloud applications still use costly system
calls to interact with the NICs. These interactions are frequent and consume a
large fraction of the execution time of an NFV instance.

In the context of chained services, according to our profiler, I/O is not the only
problem, as the length of a service chain imposes serious scheduling overheads.
This was the second challenge defined in §4.3.2.

To address these two challenges, we designed and implemented the Service
Chain Coordinator (SCC). SCC employs techniques to adjust the frequency of
I/O operations in tandem with adjusting the priority and time quanta allotted to
each NF by the scheduler, to maximize the effective run-time of the service chain.
In contrast to earlier efforts [151, 152], SCC employs a global NFV scheduler to
make service chain-level decisions, rather than an internal scheduler that executes
local switch policies.

§6.1 gives an overview of SCC by formulating the key problem that SCC
addresses and quantitatively summarizing our contributions. The testbed used
in this chapter corresponds to Figure 5.2a.

6.1 SCC Overview
To solve the first part of the problem tackled by this thesis, as defined in §4.1.3,

we state a key question and the way to address this question.

Key Question: What are the reasons that cause user-space NFV service chains,
using commodity OSs and network drivers, to exhibit low
performance?

Methodology: In §6.2 we describe an NFV profiler that (i) utilizes low-level
hardware and software performance counters to track packets as
they move across the system’s memory hierarchy, (ii) measures
the per packet latency of the involved hardware components
(e.g., caches and main memory), and (iii) associates this latency
with the cause(s) (i.e., the responsible pieces of code).

First, we leverage the profiler’s power to reveal problems in NFV service chains
and quantify their effects in §6.3. Then, in §6.4 we accelerate NFV service chains by
solving those problems identified by the profiler via an automated run-time called
SCC. We illustrate the problems and the solutions realized by SCC in Figure 6.1.
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The bottom part of this figure, labeled as “No SCC”, shows a typical way
user-space NFV applications based on unmodified network drivers interact with
the NICs via the OS’s kernel. As we show in §6.3, this causes two major problems
related to the key question stated above.
Problem 1: The service chain at the bottom part of Figure 6.1 requires frequent,

usually per packet, system calls that cause the service chain to yield
the CPU to the OS in order that the latter can perform the necessary
I/O operations.

Problem 2: The default Linux scheduler is inappropriate for NFV service chains
because it grants short time quanta to the NFV processes and treats
them as any other process in the system. As a result, the default
Linux scheduler imposes excessive scheduling contention, the latency
of which is greater than the actual run-time of a service chain.

Time

Kernel

Service 
Chain

NIC

No SCC

I/O I/O I/O

Kernel

Service 
Chain

NIC Batch I/O

SCC

NFV Processing

I/O Request
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Extended Time Quantum/Process = k·t ms, k>1

Default 
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SchedulerCustom per core scheduling policy with 

high priority 

Fair treatment of all tasks

SCC 
Launcher

Set batch size

Figure 6.1: The SCC run-time combines (i) tailored scheduling for NFV service
chains via the SCC Scheduler with (ii) fewer (but longer) user to/from kernel-space
interactions by multiplexing I/O-related system calls via the SCC Launcher. SCC
achieves faster completion time, hence lower latency, than the “No-SCC” case.
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These I/O and scheduling problems cause NFV service chains deployed on
commodity OSs and network drivers to exhibit high end-to-end latency and latency
variance (see §6.3). To solve these problems, we employ SCC, presented in detail
in §6.4, (labeled as “SCC” in the top part of Figure 6.1) as follows.

Solution to Problem 1: SCC reduces the number of times the path from
user to kernel-space and the reverse are used by
multiplexing multiple packets into one system call
via the SCC Launcher component (see §6.4.1). Our
implementation (available from [185]) builds upon the
popular FastClick NFV framework to address the first
challenge of this thesis, introduced in §4.3.1.

Solution to Problem 2: The SCC Scheduler component realizes a suitable
scheduling plan to dramatically reduce the end-to-
end latency and latency variance of NFV service
chains. To do so, it implements single or multi-core
scheduling policies for the entire service chain that
grant longer time quanta and high priority to the
involved processes (see §6.4.2). This solution addresses
the second challenge of this thesis, introduced in §4.3.2.

We evaluate SCC in §6.5, but we provide a summary of our findings in Table 6.1.
The first column states the comparisons we make throughout this chapter among
(i) standalone NFs that use different network drivers in user or kernel-space and
(ii) chained user-space NFs, interconnected either with OVSK or B2B. The second
column of Table 6.1 quantifies observations made in §6.3 and §6.5. Note that the
first row of Table 6.1 does not show all of the kernel-space overhead as it was not
fully quantified in §6.3.1.
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Table 6.1: A summary of the SCC contributions and findings, made in §6.3
and §6.5. The evaluation concerns standalone and chained FastClick routers, in
different contexts (i.e., user or kernel-space), using different network drivers (i.e.,
the standard Linux ixgbe and the DPDK drivers), with or without an underlying
software switch (either using OVSK or B2B interconnections).

Comparisons Findings
Part of the kernel overhead for a
single router using the ixgbe network
driver compared to the same router
using the DPDK network driver.

Locks (27% of the kernel router’s time),
10x more context switches because
interrupt-handling pre-emptions
destroy cache coherency.

User to/from kernel-space time
share with respect to the total time
spent by a user-space router using
the ixgbe network driver.

User-to-kernel for Tx (32.7%),
kernel-to-user for Rx (40.5%) of the
user-space router’s time.

OVSK overhead, comparing a
user-space router with and without
OVSK, both using the ixgbe network
driver.

14% overhead due to more function
calls, lookup cost, and additional trips
to user-space.

I/O multiplexing benefits for a
user-space router using the ixgbe
network driver.

3x lower latency and up to 4x lower
jitter.

I/O multiplexing benefits for
user-space service chains using the
ixgbe network driver.

Not implemented for service chains
interconnected with OVSK.

10-40% lower latency and 2x lower
jitter for B2B interconnected service
chains.

Scheduling benefits for user-space
service chains using the ixgbe
network driver.

30-300% lower latency and up to 40x
lower jitter for service chains
interconnected with OVSK.

10-25% lower latency and 2x lower
jitter for B2B interconnected service
chains.
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6.2 Profiling NFV Software Stacks
This section introduces the research methodology used for profiling the software

stacks of NFV service chains. The NFV profiler presented in §6.2.1 is used to
answer two questions:
Question 1: How does the data flow through the hardware of a commodity NFV

server?
Question 2: Which elements of a service chain are responsible for what parts of

the observed latency?

6.2.1 The SCC Profiler
An NFV profiler must closely interact with both the underlying hardware and

the OS, to accurately collect and translate relevant events. Although there are
generic tools [159, 158, 161] for interacting with an OS, one has to employ vendor-
specific tools to acquire (some of) the hardware events. Additionally, these tools
vary between different hardware architectures from the same vendor. Taking into
account these facts, we designed the SCC Profiler. This NFV profiler consists
of four modules running atop Intel’s Xeon architectures and Linux-based OS as
shown in Figure 6.2. In the remainder of this chapter we will limit our discussion to
the Linux OS and the Intel Xeon processor used in our testbed. In the following
sections, we analyze how the SCC Profiler keeps track of data by establishing
software and hardware bindings with the relevant counters of our testbed.

6.2.1.1 Software Monitoring

We use Perf [159] to access performance counters of various parts of the Linux
kernel. The SCC Profiler passes the Process Identifiers (PIDs) of the NFV service
chain to Perf when asking for a variety of events (labeled as “Perf+Linux Kernel”
in Figure 6.2).∗ By querying the counters of the devices’ skbuffs and network I/O-
related system calls, the SCC Profiler learns the number of packets sent/received
by the devices and the number of system calls required for these I/O operations.

The Linux scheduler provides counters regarding the execution of each NF of
the service chain. The SCC Profiler retrieves the number of CPU migrations and
context switches as well as the active, waiting, and blocking times of each NF.
As shown in Table 6.2, using our custom OS benchmarks (available at [186]), we
found that the context switching time between two processes scheduled using the

∗When the system’s configuration indirectly involves CPU cores that are not used by the
PIDs of the NFV processes, the SCC Profiler can be instructed to monitor these additional
cores. For example, this might happen if an NF is pinned to a core, but the interrupts of the
NICs used by this NF are served by another core.
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Figure 6.2: The SCC Profiler. lmbench measures the latencies to access each
part of the memory hierarchy. The SCC Profiler combines the latencies from
lmbench with (i) the hardware counters obtained by Intel’s PCM and Perf and
(ii) the software counters obtained by Perf and OS benchmarks, to measure run-
time NFV performance and generate a report of costly operations.

default Completely Fair Scheduler (CFS) [187] (with the default priority) is roughly
1000 ns, while this time is 940 and 1140 ns when using the real-time First In,
First Out (FIFO) & Round-Robin (RR) and batch scheduling policies respectively.
Moreover, the Linux kernel requires 40 ns to execute a network I/O system call
(i.e., a socket read or write) in our system.

Combining this information with the counters above, the SCC Profiler
calculates the latency (per packet) due to the OS when providing basic I/O services
(i.e., read and write system calls) to the NFV processes and to coordinate the
execution (i.e., schedule) of the service chain. The next target is to capture how
the underlying hardware executes the kernel’s instructions and how efficiently these
instructions pass the packets through the NFV pipeline.
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Table 6.2: Latencies (ns) for a system call and a context switch under different
scheduling policies (with default priorities) of the Linux kernel.

OS-level latency source Latency (ns)
Context switch - Default CFS 1000
Context switch - Batch CFS 1140

Context switch - Real time Round-Robin scheduler 940
Context switch - Real time FIFO scheduler 940

Network I/O System Call 41

6.2.1.2 Hardware Monitoring

The bottom part of Figure 6.2 depicts the elements of one of the CPU sockets
and the memory system of the NFV host machine.∗ There are two types of
arrows in this part of the figure. The dashed arrows show the flow of the virtual
address translation procedure in our processor’s memory management unit. This
translation occurs when a program requires a memory access. In this case the CPU
passes the virtual address, used by the program, to the memory management unit
asking for a mapping (stored in the OS’s page table in the main memory) of this
address to physical memory.

Going to memory for translation information before every instruction fetch or
explicit data load/store would be prohibitively slow, therefore modern processors
employ specialized hardware caches, known as Translation Lookaside Buffers
(TLBs), that make a portion of the page table accessible at the speed of the
processor, hence speeding up the address translation procedure for addresses with
entries in the TLB. Our processor uses a hierarchy of TLBs at the first two (i.e.,
L1 and L2) cache levels †, hence a TLB miss will only cause an access to the page
table in main memory if neither of the two TLBs contains the mapping. Upon a
Data Translation Lookaside Buffer (DTLB) hit, the physical page and offset are
fetched and the data moves from the respective cache (or the main memory) to
the processor following the solid lines in the bottom part of Figure 6.2.

Moreover, our processor exploits the benefits of Intel’s DDIO [37] technology
as explained in §2.4.2. The LLC portion used by DDIO can be up to 10% of the
LLC’s capacity, which in our case is 10% of 20MB, i.e., 2MB [37]. However, as
we will see from our measurements, fully exploiting the processor is a challenge
for NFV services that rely on the usual Linux network stacks and drivers.

∗The L1 instruction cache is omitted for readability reasons and because the miss rate of this
cache was negligible in all of our experiments.

†The L1 cache also contains an instruction TLB.
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To understand exactly what access delays an application will experience, it is
crucial to measure the access costs to all the hardware components of Figure 6.2.
Specifically our goal is to quantify the latency when data moves across the memory
hierarchy, enabling us to pinpoint the bottlenecks of NFV software stacks. This
will allow us to optimize the NFV implementation, to meet stricter latency
requirements and to achieve higher throughput.

The SCC Profiler uses lmbench [156] to measure the latencies of all the
components of the underlying system’s memory hierarchy. Figure 6.3 shows these
latencies as measured in our testbed. lmbench initiates read and write transactions
of progressively increasing array sizes (i.e., 1KB-2GB) and will eventually fill all
of the caches and part of the main memory, in order to measure the latency of the
following transactions:
Local: from a core to its local L1 and L2 caches.
On-chip: from a core to the shared cache (e.g., L3 cache in our case) or the L1/L2
cache of another core in the same socket.
Off-the-chip: from a core to main memory.

Note that the line size of our caches is 64 bytes. This is almost the size of
the smallest Ethernet frame. A stride size equal to the cache line’s size implies
one hit per cache line, following this the latency to access the different parts of
the same cache line is low. However, input data in reality might exhibit different
access patterns in terms of size, hence we further increased the stride sizes, to the
size of the standard Ethernet maximum transfer unit (i.e., 1500 bytes), up to the
size of a jumbo Ethernet frame (i.e., 9000 bytes) to measure its effect on latency.
This way we emulate the latency to access an skbuff that holds a frame equal to
the size of our stride.

Figure 6.3 shows that L1 latencies are not affected by the size of the stride
(with a constant access time 1.18 ns), while L2 latency exhibits low variance with
respect to the stride size (between 1.25 and 5 ns). However, comparing the fastest
(i.e., 64 bytes) and slowest (i.e., 1024 bytes) stride sizes we see that the L3 cache
and main memory latencies increase almost 10x (between 1.3 and 14.3 ns for the
L3 cache and between 7 and 71.7 ns for main memory), although the smallest
(i.e., 64 bytes) and largest (i.e., 9000 bytes) stride sizes exhibit a factor of 140.6x
difference in size. The reason behind this is that the hardware executes prefetch
requests, in parallel with the current data processing, thus bringing cache lines from
the next higher level store into the current cache before this data is actually needed,
thus allowing data access overlap with pre-miss computations. In addition, if
there is no dependency between the data to be loaded, our CPU can issue multiple
instructions to fetch independent chunks of data in parallel. These techniques hide
part of the memory access latency, leading to decreased access latency as observed
in Figure 6.3.
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Figure 6.3: Latencies to access a progressively increasing array size (1KB-2GB)
from different levels of the memory hierarchy versus different stride sizes in bytes
for an Intelr Xeonr CPU E5-2667 v3 clocked at 3.2GHz.

According to Larry McVoy and Carl Staelin [156], small stride sizes are
expected to have higher spatial locality than large ones, hence prefetching is likely
to bring useful data into the current cache. In contrast, the poor spatial locality
of large stride sizes might cause the system to prefetch useless data, leading to
increased latency. Although these statements sound instinctively correct, they
do not hold for stride sizes that are not a power of two (i.e., 1500, 4000, 6000,
and 9000 bytes), as we see in Figure 6.3. Specifically, we notice that the latency
in ns/load for these stride sizes is (i) lower than the latency for a stride size of
128 bytes, for some array sizes beyond the L3 capacity (i.e., more than 20MB),
and (ii) comparable to the levels of the L3 cache access latency (i.e., around
14 ns) of smaller stride sizes, such as 256, 512, and 1024 bytes. This phenomenon
persists for larger array sizes in main memory (i.e., for array sizes greater than the
LLC size), as we increase the stride size to 4000, 6000, and 9000 bytes, but it does
not happen at all for a stride size of 2048 bytes (which is a power of two).

We also notice that the largest stride size (i.e., 9000 bytes) exhibits latencies
comparable to those of the smallest stride size (i.e., 64 bytes), while for some array
sizes beyond the L3 capacity (between 22 and 36MB) this latency is even lower
that the latency of the 64-byte stride size. These results show that an increasing
stride size does not always imply a higher memory access cost and that hardware
prefetching and parallel fetching of multiple memory blocks might be equally or
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more beneficial for large stride sizes that are not a power of two, than for (small)
stride sizes that are powers of two. We believe that our observations complement
the findings of [156], which are based on an older Intel processor than ours, showing
that modern hardware architectures have substantially improved cache efficiency
leading to lower memory access latencies.

Finally, having quantified the latency to access the hardware components of
Figure 6.2, the SCC Profiler collects a set of run-time performance monitoring
events from the underlying Intel processor. The complete list of available events
is available at [188]. More information is provided in Appendix A.1. Specifically,
during the execution of an NFV service chain we acquire CPU core, L1, and DRAM
events using Perf, while L2 and L3 events are fetched using Intel’s Performance
Counter Monitoring (PCM) tool. To capture the data movements in the bottom
part of Figure 6.2, we monitor the number of hits and misses of load, store, and
prefetch operations for all of the caches (including the DTLBs), and the number
of accesses (load and stores) that occur in the DRAM. These events are labeled as
“Perf+Intel PCM” at the top left box of Figure 6.2.

6.2.1.3 Latency Calculation

The software and hardware monitoring strategies of the previous sections
provide enough data to the SCC Profiler for it to project the collected counters
on a per packet scale and to calculate the total per packet latency incurred by our
NFV server, with respect to the injected load.

Using the primitive latency values from Table 6.2 and Figure 6.3, a variety of
latency factors are composed (as shown in Table 6.3). To calculate the total per
packet latency, we sum the data access and address translation latency factors of
each memory level (i.e., the L1, L2, L3 caches, and main memory), along with
the context switching and system call latencies per packet of each component (i.e.,
process) of the service chain. The latter factor (i.e., system calls) does not sound
as important as the other latency sources; however, in practice, a service chain
might be comprised of multiple NFs, usually each NF is deployed as a separate
process (e.g., considering a service chain as a set of VMs or containers), hence a
read/write system call per packet per NF might add up a considerable latency. ∗

Note that according to Figure 6.3 the latency of a hit depends on the workload.
Under realistic scenarios the incoming traffic is likely to exhibit variable frame
sizes, hence all these latencies are possible. For this reason, we instructed the SCC
Profiler to use the worst case latency hit for each memory level as per Figure 6.3,
because (i) these cases occur for several input data sizes (they are not corner cases),
and (ii) their contribution is ten times greater than other input data sizes, hence

∗In this chapter we do not consider a single synthesized NF from a chain of NFs as we do
in [29] (see also Chapter 7).
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only a few of these cases might contribute a large latency, the cause of which we
do not want to ignore. The number of packets, processed by each NF and in total,
are counted by the software monitoring process of the SCC Profiler (see §6.2.1.1).
Consequently, using the notation from Table 6.3, the mathematical formula to
compute the total latency per packet is as follows:

Latency/Pkt = LD1 + LD2 + LD3 + LDM + LT 1 + LT 2 + LT M + LCS + LSC

This formula captures the latencies from all the involved hardware components
of our system and a portion of the latency added by the OS. In §6.3.2, we analyze
a service chain and explain why there are other hidden costs, added by the OS,
that are hard to accurately quantify on a per packet scale, although we manage
to indirectly reveal their impact. Another important detail regarding the formula
above is that when DDIO is utilized by the NICs, frames are exchanged directly
with the LLC (i.e., L3 cache in our case), but this does not prevent a slow NFV
system from interacting with the main memory as explained in §6.2.1.2. In §6.3 we
show that NFV service chains based on unmodified Linux network drivers destroy
cache coherency and eventually end up using main memory as they touch a larger
number of memory locations than can stay in the LLC.

Finally we clarify that the SCC Profiler operates in counting mode, hence the
counters are aggregate values collected during the execution of an experiment. The

Table 6.3: Latency calculation formulas and notation for each source of latency in
a service chain. The latencies of Table 6.2 and Figure 6.3 are used in the formulas.

Latency/packet Formula Notation

Data
Access

L1 L1Hits/Pkt · L1DCacheHitLat LD1

L2 L2Hits/Pkt · L2DCacheHitLat LD2

L3 L3Hits/Pkt · L3DCacheHitLat LD3

DRAM L3Misses/Pkt ·MemHitLat LDM

Address
Translation

L1 L1DTLBHits/Pkt·L1DTLBHitLat LT 1

L2 L2DTLBHits/Pkt·L2DTLBHitLat LT 2

DRAM L2DTLBMisses/Pkt ·MemHitLat LT M

Context Switching

∑n
i=1 ConSwi/Pkti · ConSwLatp,

where n is the number of processes
and p the scheduling policy

LCS

System Calls
∑n

i=1 SysCallsi/Pkti · SysCallLat,
where n is the number of processes LSC
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SCC Profiler resets all the relevant counters before the experiment and collects
their values at the end of the experiment. Hence these values do not involve
sampling techniques or other approximation methods. Moreover, since we believe
these counters of hardware-based events have high accuracy, we utilize their values
as much as possible. For example, Perf does not query the memory controller
to collect the main memory references, but rather uses a software-based event
to estimate this number. Since all the L3 cache data misses in our system end
up accessing main memory, as do the DTLB misses at the L2 cache, hence we
can infer the number of main memory references by adding these two hardware-
based counters. However, we did not find a substantial difference between Perf’s
estimates and the values obtained from the hardware counters. As for the ability
of the SCC Profiler to time the functions of the NFV stack, we exploit Intel’s high-
precision event timers [189] via Perf to acquire the entire list of functions together
with their contribution to the total latency.

6.3 Uncovering NFV Performance Problems
with the SCC Profiler

We examine the usability of the SCC Profiler by performing a measurement
campaign for both standalone and chained NFs in §6.3.1 and §6.3.2 respectively.

6.3.1 Standalone NFs
We implemented an NF using FastClick. We focus on the basic router shown in

Figure 5.3. We measured the performance of this router running in four different
environments (see Figure 6.4) to establish a baseline, in terms of the resource
requirements, of our NF. First, we deploy the router natively both in the Linux
kernel and as a user-space application, and tie its ports to the physical 10GbE
interfaces of our NFV server. Then, we measure the same router running as a user-
space application in a Linux container. This container is attached to OVSK where
it reads/writes frames from/to. Finally, although we target NFV applications
that use the native Linux driver for I/O, we also deployed the same router using
FastClick’s DPDK [28] I/O elements (using the DPDK network driver) to examine
the highest achievable performance.

Figure 6.4 shows the latency of the router in these four different environments,
using a single CPU core. We injected 5 million frames at an input rate of
0.82 Mpps using a frame size of 64 bytes (without counting the trailing frame
CRC that we assume will be computed by the NIC itself). As noted earlier,
we chose a small frame size to impose more work on the CPU core, and hence
greater stress the different I/O mechanisms. The reason behind the selection of this
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packet rate is because at this packet rate we easily saturate a 10Gbps link using a
1500-byte frame; hence, to maintain the same workload on the NF, regardless of the
frame sizes we want to test, we use this same packet rate for all the different frame
sizes in our experiments (see §6.5). Also, this packet rate conveniently matches the
maximum rate that our slowest router (the user-space router, attached to OVSK,
using the native network driver) can sustain without dropping packets.

From Figure 6.4 we can distill several interesting findings:
Finding 1 The different network drivers clearly affect the performance of the

router. A router with DPDK interfaces imposes almost 8x lower
median latency than the kernel-space router with the native network
driver, despite the fact that in the former case all of the NFs’ code is
running in user-space.

Finding 2 A user-space router imposes 4x greater median latency compared to
its kernel-space counterpart when both use the same native network
driver (i.e., ixgbe).

Finding 3 Attaching the user-space router with the native network driver to
OVSK adds ∼10% more median latency compared to the same user-
space router without OVSK, with the lower latency percentiles of
these two routers exhibiting a larger difference.
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Figure 6.4: End-to-end latency (µs), plotted on a logarithmic scale, for 64-byte
frames through four FastClick routers, each running in a different I/O context in
a single core as stated in the legend. The input packet rate is 0.82Mpps.
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The first challenge when exploiting these results from the SCC Profiler is to
pinpoint the exact cause(s) of these differences. Running the same experiment
under the supervision of the SCC Profiler leads to the results shown in Table 6.4.
The second column of this table depicts the total per packet latency calculated
by the SCC Profiler, following the methodology described in §6.2.1.3. Comparing
these numbers with the results of Figure 6.4, we can safely state that the SCC
Profiler reliably tracks the expended time, as the calculated latency falls within
the range of the actual per packet latencies measured by the traffic sink. One
interesting observation that arises from this comparison is that the latencies
calculated by the SCC Profiler usually fall close to the lower percentiles of the
actual latencies (except for the DPDK router where the median and low latency
percentiles almost match), showing how “lucky” packets (i.e., those packets that
experienced no additional delays) move across the different memories.

To associate the calculated latency with the caches and main memory, we also
present the number of memory references per packet and the share (%) of the total
latency spent in each memory level as the third and fourth columns of Table 6.4
respectively. Note that (i) DTLB statistics are not present, but the DTLB cost can
be inferred by subtracting 100 from the sum of the percentages of the last column
and (ii) we omitted the latencies imposed by the number of context switches and
I/O-related system calls per packet (as per Table 6.3) to preserve the readability of
the table. The former numbers are nearly zero because only one router is executed
by this core; hence almost no context switches occur. The latter numbers make a
negligible contribution to the overall latency as this router executes at most two
I/O-related system calls (i.e., receive and send) per packet.∗

∗The memory of the DPDK router is mapped to user-space, hence the router does not apply
the standard receive/send system calls.

Table 6.4: The latency in µs (column 2), calculated by the SCC Profiler, while
tracking the packets injected during the experiment shown in Figure 6.4. Columns
3 and 4 show the number of memory references per packet and the share of the
total latency imposed by each memory level.

Routers
Per Packet

Latency
(µs)

L1/L2/L3/DRAM
References

L1/L2/L3/DRAM
Latency (%)

User
+OVSK 259.14 3836/182/70/3557 1.71/0.25/0.37/97.06

User 216.97 3653/179/65/2964 1.99/0.29/0.41/96.60
Kernel 25.45 581/23/14/340 2.73/0.31/0.77/95.70
DPDK 8.01 3250/95/163/7 47.35/0.04/27.16/0.06
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6.3.1.1 Root Cause Analysis
In this section we interpret the results shown in Table 6.4, seeking bottlenecks

that can be overcome to achieve more efficient realizations. The reason that the
DPDK-based router has the highest performance is that there is almost no data
exchange between the core that executes the router and main memory. This router
is clearly fetching/placing the DMAed packets from/to its L3 cache (since our
processor uses DDIO) and it processes the majority of them using its L1 cache,
as 47.35% and 27.16% of the total latency are due to hits in the L1 and L3
caches respectively. Note that 47.35%+27.16%=74.51%, hence 25.49% come from
elsewhere - specifically 25.39 from DTLB hits, while only 0.04% from L2 and 0.06%
from main memory. As explained in §6.2.1.2, despite the usage of DDIO, main
memory references are still possible. The DPDK router experiences DTLB misses
at the L2 cache (i.e., the last DTLB) resulting in 7 main memory references per
packet, which is only 0.06% of the total latency.

The stack of functions reported by the SCC Profiler showed that the router
spent 73.7% of its total time executing I/O instructions, while the remaining 26.3%
was dedicated to processing. Part of the I/O time was spent by memory-related
functions, such as “clear_page_c_e” (8.4%) and FastClick’s “Packet::make”
(0.009%). The latter function is so cheap because DPDK pre-allocates a pool
of frames that are immediately available to the application, hence the OS
spends time only to reset the contents of the frame pool by calling the former
function. The remaining I/O time was consumed by the FromDPDKDevice (83%)
and ToDPDKDevice (8.6%) FastClick I/O elements. The “run_task” function
of the FromDPDKDevice element calls DPDK’s “rte_eth_rx_burst” function,
which in turn calls the DPDK poll mode driver’s “ixgbe_recv_pkts_vec” and
“_recv_raw_pkts_vec” functions in order to load a batch of frames from the Rx
queues of the NIC to the ring buffers that are mapped to the LLC. This batch is
turned into a batch of FastClick frames (without a memory copy), then pushed to
the output through the FastClick pipeline, following a “run-to-completion” model.

To realize this model, packet reception is separated from processing and
transmission, running as an individual task. FastClick ensures that the reception
task will immediately deliver input packets to the pipeline by polling the NIC. Even
when the Rx queues are empty, the underlying DPDK framework executes pause
instructions (via the “rte_delay_us”) for a short period of time to keep the CPU
(hoping that frames will arrive soon), thus reducing the number of context switches
that might destroy cache coherency. This is why the Rx operations dominate the
total I/O time. The pause instructions consumed 7% of the FromDPDKDevice
element’s time, while the remaining time was spent by the “_recv_raw_pkts_vec”
(87.2%) and “ixgbe_recv_pkts_vec” (5.8%) functions to poll the NIC. After the
FromDPDKDevice element, the FastClick driver calls the processing elements of
the pipeline to apply the routing NF with a batch of frames, expending 26.1%
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of the router’s total time. After the last processing element, the driver calls the
“push_batch” function of the ToDPDKDevice element, which simply places the
batched frames into the Tx ring buffer.

The behavior of the kernel-based router is different from the DPDK router.
The latency contributions of the different memory components of the kernel-
based router reveal the major involvement of the main memory, since 95.7% of
the total latency is due to the 340 references per packet to main memory. The
kernel-based router involves two threads: one thread receives frames (stored in
skbuffs) at interrupt time and stores their pointers in an internal queue (acting as
a producer), while the second thread - that does not operate at interrupt time -
emits the available frames of the internal queue into the subsequent elements of
the pipeline (acting as a consumer) to realize the processing and output of the
NF. In this execution model, the queue, and consequently the skbuffs to which
the queue points, are the critical sections between these two threads. Moreover,
the producer’s thread executes at interrupt time, which means that it has a higher
priority than the consumer’s thread.

Looking into the SCC Profiler’s report we found that the main sources
of latency in the case of the kernel-based router were the kernel functions
“_raw_spin_trylock_bh” and “_raw_spin_unlock_bh”, as well as the network
driver’s function “ixgbe_xmit_frame_ring”. The first two functions cause the
CPU to execute a busy waiting loop in the kernel until a lock of the internal queue
(which is initially kept in the LLC, but eventually is evicted to main memory as we
explain below) is acquired or released respectively, consuming 4.26% and 23.1% of
the total CPU cycles spent by the kernel-based router (almost 30% of the router’s
time). The reason that the lock takes so much time to unlock (i.e., 4.26% is 5.5x
less than 23.1%) is because, in the meantime, the kernel thread of the router’s
driver processes and transmits (invoking the driver’s “ixgbe_xmit_frame_ring”
function) a set of frames, leaving free space for new frames to arrive. Processing
and transmission procedures expend ∼13% and 6% of the total time respectively,
filling the time gap between the lock and unlock functions.

Since the router utilizes only one core, we believe that this execution model
heavily involves main memory because the interrupt-based frame reception is
frequently preempting the processing and transmission task, causing the newly-
arrived input frames to evict the currently processed frames from the LLC to main
memory, destroying cache coherency. The SCC Profiler found that the kernel-
based router imposes 10x more context switches than the DPDK router (i.e., 7710
vs. 841), supporting our reasoning. Taking into account that this router processes
32 packets each time the processing task is scheduled, the above number of context
switches implies one context switch, thus one flush operation in the core’s local
caches, every 19 sets of packets. In contrast, the DPDK router requires only one
context switch every 186 sets of packets.
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The next challenge is to quantify the difference between the kernel and user-
space routers when utilizing the same native driver. Looking at the user-space
router without OVSK, we observe that each basic I/O function of the router
comprises a long list of function calls that start from the user-space FastClick
I/O functions, dive into the kernel, and end up at the same driver functions used
by the kernel-space router. Hence, we can directly calculate this extra overhead
of crossing the user-space border when executing NFV tasks, by simply measuring
the time spent by these functions. As we analyze below, this time is on average
1397 cycles per packet (corresponding to 436.6 ns) for a receive and 1120 cycles
per packet (corresponding to 350 ns) for a send operation.

To transmit a frame, user-space FastClick begins by calling the RouterThread
driver, which calls the “run_task” function of the ToDevice FastClick element,
pulls a frame from the queue, and calls the “sendto” system call. This system call
enters the libc system library and is translated into a sequence of 5 socket functions
until the data is passed to another set of nested functions that eventually allocate
an skbuff and call the driver’s single-frame Tx function (“netdev_start_xmit”).
In this path, locking (the same as occurs in the kernel-based router) and memory
copy/allocation mechanisms (there is a copy from user to kernel-space memory) are
present leading to a per packet transmission cost of 32.68% of the total number
of cycles spent by the user-space router. Associating this percentage with the
latency of the user-space router as measured by the SCC Profiler (216.97µs), we
can compute the user to kernel-space frame transmission overhead as 70.9µs per
packet. The overhead for the reverse path will be described next.

We followed the same methodology at the receive side of the router, by
following the invoked function calls and accumulating their costs. We found that
frame reception from kernel to user-space adds another 87.76µs, with these calls
corresponding to 40.45% of the router’s total number of cycles. This suggests that
32.68% + 40.45% = 73.13% of the router’s total number of cycles are spent on the
overhead of executing read/write frame operations from/to user-space to/from the
kernel-space driver. Frame reception is more expensive than frame transmission
for two reasons: (i) the application has to allocate user-space memory in order to
accommodate the received frame which has to be copied from the skbuffs hosted
in the kernel’s memory area (see also §6.3.1.2), and (ii) FastClick’s user-space
FromDevice element computes a timestamp for each received frame. Both
operations invoke extra, per packet system calls using the malloc, memset, and
ioctl commands. Out of the 7.77% difference between reception (40.45%) and
transmission (32.68%) costs, the former memory-related reasons occupied the vast
majority of the time (91% versus 9% for timestamping).

The summary of the latencies of the reception (87.76µs) and transmission
(70.9µs) operations of the user-space router is 158.66µs. Subtracting this number
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from the total latency of the user-space router (with the native driver) measured
by the SCC Profiler (216.97µs), we end up with 58.31µs, which is almost exactly
the median latency of the kernel-space router (61.34µs from Figure 6.4). This
leads us to believe that our profiler did an accurate job in identifying the functions
involved in the user-space packet processing along with their individual costs.

Finally, the SCC Profiler’s report, collected while profiling the user-space router
attached to OVSK, showed a similar behavior as the user-space router without a
software switch interconnect. Without delving into details, OVSK intercepts every
packet heading/originating to/from the NIC, contributing to (i) a longer list of
called functions, (ii) additional trip(s) from the kernel to user-space OVS module
(when the packet does not exist in the caches kept in the kernel), and (iii) a
lookup cost to find the destination port (i.e., virtual interface) of the packet. The
SCC Profiler found that the lookup was performed entirely in main memory and
quantified that all these factors add up a 19% more latency compared to the user-
space router without OVSK. This difference is reflected in the number of the main
memory references of the two routers (with 15% more references for the OVSK
router than the user-space router without OVSK) in Table 6.4.

6.3.1.2 Lessons Learned

To summarize the above study, we quantified the performance difference
between a state of the art NFV router using the DPDK network driver and the
kernel-based router using the native Linux network driver. We found that locking
mechanisms and interrupt handling in the kernel reduce the NFV performance;
this is why FastClick adopted DPDK’s “run-to-completion” approach, as polling
requires at most LLC accesses, keeping the caches hot without involving time
consuming locks. One could avoid the interrupt costs of the kernel-space router by
using the PollDevice Click element. However, we did not use this element because
it works only for a limited set of (old) network drivers.

As for the difference between the user-space and kernel-space routers, when
both use the same native driver, we found that the memory allocation and copying
between user and kernel-space are the main sources of latency. Despite the fact
that user-space Click uses a smart polling mechanism to interact with the NICs,
the per packet cost is still high as the polling is not very aggressive. These problems
were discussed in earlier work by Luigi Rizzo [33], but without much evidence; thus
one of our contributions is proving this evidence.

To accelerate the kernel-space router, one must employ polling of the NICs
and avoid the kernel’s locking mechanisms. To achieve better performance for a
user-space router, while still using the native network driver, one has to minimize
the interactions between the user-space application and the kernel, e.g., applying
a system call to an entire batch of frames and to use pre-allocated pools of packet
buffers to avoid the cost of dynamic memory allocations.
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6.3.2 Chained NFs
Modern cloud services are comprised of multiple components, often chained

together using an underlying switching fabric. Using the NF of the previous section
as such a component, we create service chains of 1-8 user-space routers, each
running in a Linux container on top of a software switch. We chose OVSK (profiled
in the previous section) as it is one of the most popular software switches.

We injected the same amount of traffic as in the standalone NF case (see §6.3.1)
and pinned all of the routers to one isolated CPU core. We also scheduled OVSK
in a different CPU core in the same socket. The boxplots of Figure 6.5 show the
latency of each service chain versus the service chain’s length, as measured by
the traffic sink. The points of Figure 6.5, to the right of each boxplot, represent
the latency of each service chain as measured by the SCC Profiler. This result
demonstrates that the SCC Profiler cannot only track a single NF (as shown
in §6.3.1), but is capable of accurately tracking a chain of NFV processes (more
details are provided in §6.3.2.2).

Next, we perform a root cause analysis to explain why the latency increases
with the length of the service chain.
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Figure 6.5: End-to-end latency (µs), plotted on a logarithmic scale, (i) measured
at the traffic sink (boxplots) and (ii) calculated by the SCC Profiler (points), versus
the service chain’s length for user-space FastClick routers, running in containers
on top of OVSK. The routers run in a single core and OVSK runs in a different
core in the same socket. The input rate is 0.82Mpps with 64-byte frames. The
linear fit to the median latencies, stated in the legend, begins from the service
chain with 2 NFs.
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6.3.2.1 Root Cause Analysis

To visualize the latency of each service chain, we fitted the median latencies
measured by the traffic sink and the latencies calculated by the SCC Profiler,
leading to the equations shown in the legend of Figure 6.5. The fitting starts from
the service chain with 2 NFs. Based on these equations, each additional router
in the service chain adds 1769µs of (median) latency, while the SCC Profiler is
able to account for roughly 864µs of this latency, falling between the 1st and
15th percentiles of each service chain’s latency. Looking at the number of memory
references per packet, performed by each service chain, the equation that describes
their dependence on the service chain’s length is as follows:

MainMemoryReferences/Pkt = 11647 ·NFs+ 4689, R2 = 1.0
According to Figure 6.3, a hit to main memory takes 71.7 ns, hence multiplying

this latency with the coefficient from the equation above, results in 835µs of latency
for each additional router; this is almost exactly the latency increase with the
service chain length, according to the calculation of the SCC Profiler (as shown in
the legend of Figure 6.5). This is not a surprising result; as in §6.3.1, we showed
that even a single user-space router was unable to keep its data in its processor’s
local cache(s) because the I/O operations involve memory allocation in user-space
and data is copied from/to the kernel, touching a lot of memory locations; hence
the data cannot stay in the cache causing data exchanges back and forth between
main memory and the cache. Clearly this problem only becomes more severe with
a service chain of these routers.

However, we have not yet clarified, why the latency calculations of the SCC
Profiler are below the actual median latencies when we chain NFs. This can
be explained by the OS-level counters that the SCC Profiler obtained from each
NF. Specifically, by querying the Linux scheduler, the SCC Profiler acquires
information about the time a task (i) is executing on a CPU, (ii) is not runnable,
including I/O waiting time, and (iii) is runnable but not actually running due
to scheduler contention. We derive two metrics from these counters. First, we
divide the service chain’s waiting time by its actual run-time and define the metric
“Wait/RunTime”. Since the waiting time of each of our NFs is mostly affected by
the I/O operations, the “Wait/RunTime” metric captures the impact of yielding
the CPU to execute I/O with respect to the effective run-time of an NF. Secondly,
we define the metric “SchedContention/RunTime” as a fraction of the time spent
due to scheduler contention relative to the service chain’s run-time. This metric
reflects the overhead, added by the OS, to execute the service chain.

Table 6.5 depicts the values of these two metrics for four different service chain
lengths, as obtained from the experiment shown in Figure 6.5. For a single router
(i.e., with service chain length equal to 1), we observe that the amount of time spent
waiting (mostly for I/O) is almost 15x higher than the time spent executing useful
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instructions on the CPU, while there is no scheduling overhead since the CPU
executes, thus the OS schedules, only this router. Increasing the service chain’s
length leads to increasing waiting and scheduling overheads. The processor spends
75x more time waiting than actually running a service chain of 8 routers, while
the time that this service chain is runnable but does not execute on the processor
due to contention in the scheduler is almost 4x higher than the service chain’s
run-time. Our discussion so far has highlighted that both I/O and scheduling
overheads appear in NFV service chains.

Table 6.5: Effect of the service chain’s length on the (i) waiting time and (ii) time
spent due to scheduling contention with respect to the effective run-time of the
service chain.

Service
Chain
Length

Wait/RunTime SchedContention/RunTime

1 14.76 0
2 18.80 1.25
4 30.20 2.88
8 74.36 3.78

6.3.2.2 Lessons Learned

The overheads shown in Table 6.5 are captured by the SCC Profiler, but not
fully quantified. To clarify this issue, the formula that the SCC Profiler uses to
compute the per packet latency (see §6.2.1.3) includes the entire I/O overhead
by following the data movements across the memory hierarchy, but only partially
captures the scheduler’s overhead by computing the per packet latency imposed
by context switching (which is only a part of the scheduling overhead). This
is because it is hard to accurately project this latter overhead to a per packet
latency dimension. Despite this missing scheduling overhead, we believe that our
latency calculation methodology provides enough accuracy to describe the per
packet latency of NFV service chains. Moreover, the results in Table 6.5 serve
as a motivation for improving the performance of these NFV service chains by
addressing these I/O and scheduling overheads. In §6.5.2, we quantify the total
overhead of the default Linux scheduler by comparing the performance of NFV
service chains scheduled by both the default and a more efficient task scheduler.

Next, we address both I/O and scheduling problems by presenting the run-time
part of SCC.
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6.4 The Service Chain Coordinator
In this section we utilize the knowledge mined by the SCC Profiler to increase

the performance of both standalone and chained NFV applications. We designed
SCC to integrate both the profiler and various acceleration techniques into the
NFV framework illustrated in Figure 6.6. We explain each module of this
framework in the following sections.
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Figure 6.6: The Service Chain Coordinator in the context of our testbed. A
system administrator inputs a service chain description and configuration (top
right). The SCC Launcher identifies the service components, applies the requested
configuration and deploys the service chain (bottom center). Using the PID and
CPU affinity of each NF, the SCC Profiler (top left) can profile the deployed NFs.
The SCC Scheduler (top center) ensures that service components comply with the
scheduling configuration specified by the system administrator.

6.4.1 The SCC Launcher
A system administrator specifies a service chain using a simple JavaScript

Object Notation (JSON) format understood by SCC. This description is injected
into two components of SCC: the Launcher and Scheduler. Specifically, the system
administrator chooses those NFs that will comprise the service chain (e.g., a firewall
followed by a router), the execution environment that will host each NF (i.e., a
native or a container-based NF deployment), the I/O driver (to support a kernel or
user-space Linux-based service chain), the underlying switching fabric (e.g., OVSK,
Linux bridges, etc.), the desired topology of the NFs, as well as the hardware
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components that will be used by the service chain (i.e., by selecting the CPU
affinity of each service component). These NFs can be selected from a pre-installed
library. While in our prototype we used FastClick as a packet processing library,
our design is not limited to this library.

Next, the configuration parameters for each NF are passed to the SCC Launcher
via a JSON-based configuration file. The SCC Launcher parses this input,
composes the service chain, creates the necessary interfaces (as needed), and
launches all of the components (i.e., switches and NFs). The components are
pinned to the requested CPU core(s) according to the CPU affinity mask included
in the service chain description.

Once the components are launched, the system administrator can choose, via
the configuration file, whether the service chain will operate in “profile” or “run-
time” mode. In “profile” mode the SCC Launcher passes the service chain’s PIDs
and configuration to the Profiler. As the configuration specifies the CPU affinity of
each NF, the SCC Profiler establishes monitoring connections with the appropriate
hardware components. Then, the SCC Profiler operates as described in §6.2.1. In
“run-time” mode the PIDs and some auxiliary data structures are passed to the
SCC Scheduler. The reason for having these two modes is that the profiling itself
occupies system resources, hence we believe that a system administrator would
benefit from analyzing her NFV service chains offline, using the SCC Profiler,
and then apply the knowledge from the profiling to deploy the accelerated service
chains online via the SCC run-time.

Before describing the Scheduler, we explain a key internal component of the
SCC Launcher, the multiplexing of system calls.

6.4.1.1 Multiplexing of System Calls

The first pillar of SCC’s acceleration techniques is an improved I/O mechanism
for user-space NFV applications that use native Linux network drivers. This
technique is integrated into the SCC Launcher to accelerate interactions of the
NFs with the host OS and hardware by multiplexing network I/O-related system
calls in order to reduce the number of times the path from user-space to kernel-
space and the reverse are used.

In §6.3.1 and §6.3.2, we showcased that using per packet send/receive system
calls to interact with the OS is costly for NFV tasks, especially when a chain of
NFs is executed. The reason is that, instead of an NF utilizing its allocated CPU
time for performing the actual packet processing, it yields the CPU to the OS in
order that the OS can perform the necessary I/O operations each time a packet has
to be received or emitted. Moreover, the time spent processing is a small fraction
of the time spent for I/O, based on the experiments of §6.3.2.
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We solve this problem by multiplexing multiple packets into a single system
call to allow batches of packets to enter/exit each NF using one receive/send
transaction with the kernel. With careful engineering, this method increases the
chances of each NF processing an entire batch of packets uninterrupted, the next
time it gets the CPU. For this to happen, the SCC Launcher operates in three
rounds sequentially. In the first round, each NF performs read operations in a
batch style. Then, each NF performs its own processing during the second round,
while in the last round packets are emitted out of the NFs. In the rest of this
chapter, we use the term batching interchangeably with the term multiplexing,
both refer to groups of packets being sent/received via one system call.

The system administrator can tune the number of multiplexed system calls via
the configuration file shown in Figure 6.6. Based on this configuration, the SCC
Launcher will pre-allocate a number of I/O vectors that will be used by the kernel
to deliver and fetch packets to/from each NF. Ideally, SCC should be able to auto-
tune i.e., to select the correct number of I/O vectors itself (based upon changes and
feedback from measurements). However, for performance reasons, memory pre-
allocation in SCC is static, hence auto-tuning the number of multiplexed system
calls, using online feedback from the profiler, would require SCC to restart the
NFs. We decided not to automate this process to maintain high performance and
prevent service disruptions due to restarting the NFs.

Finally, a challenge when multiplexing I/O-related system calls is to ensure that
traffic will not face unacceptable delays when the input rate is low. For example,
imagine that one wants to multiplex 16 packets in one, e.g., receive, system call
but the input packet rate is e.g., 1 pps. This means that a naive implementation of
the multiplexing mechanism might cause the application to block until the entire
batch of packets is received (after 16 seconds in this example). To avoid such a
problem, the SCC Launcher operates in non-blocking mode, by reading or writing
up to a certain number (e.g., 16 packets) of packets at once. If this number is
not reached, the system call returns the available packets received/sent or zero if
nothing was read/written. This choice allows us to exploit the merits of batching
under high input packet rates, while still achieving low latency under low input
packet rates.

6.4.2 The SCC Scheduler
In §6.3.2 we observed increasing scheduling overheads when executing chained

NFs. We attributed these overheads to the fact that the default Linux scheduler
does not grant large enough time quanta per NF, leading to more frequent
scheduling decisions and increased number of context switches. In this section, we
allow a system administrator to modify the scheduling procedure of NFV service
chains by using our SCC Scheduler.
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The SCC Scheduler boots once the service chain has been deployed by the
SCC Launcher, the PIDs of the NFs are available, and the service chain operates
in “run-time” mode. The SCC Scheduler reads the scheduling parameters from the
input configuration, registers the PIDs with the appropriate scheduler based on the
requested policy, adjusts the priorities ∗, and re-configures time-related scheduling
parameters via system calls. We provide more details regarding the reconfiguration
of the scheduler in §6.4.2.1.

Depending on the input configuration and the selected data plane technology
that interconnects the NFs, the SCC Scheduler can operate either in single or
multi-core mode as illustrated in Figure 6.7. If the system administrator wants to
deploy both the NFs and the underlying switch in the same core, then the SCC
Scheduler executes the service chain as shown in Figure 6.7a. This uni-processor
task scheduling scheme invokes the software switch in the odd rounds (i.e., round
1, 3, etc.), and the NFs in the even rounds (i.e., round 2, 4, etc.).

The system administrator might allocate a different core for the switch, to run
the NFs in a dedicated core. In this case, the scheme depicted in Figure 6.7b can
be used. Modern OSs maintain task queues per core, providing mechanisms to
hand off the work from one task scheduler to another, hence better exploiting the
hardware capacities. Therefore, to realize the multi-core scheduling plan shown
in Figure 6.7b, two instances of the SCC Scheduler are required. One instance
schedules the NFs and the other schedules the switch, while in each round the NFs
and the switch are running in parallel.

If the system administrator wants to allocate more cores for the chained NFs,
the latter scenario (and Figure 6.7b accordingly) can be generalized in a per core
basis manner. This involves running one instance of the SCC Scheduler per core
and each instance will coordinate its own processes (i.e., NFs/switch).

A key task of an NFV scheduler is to guarantee that the scheduling plan (e.g.,
as shown in Figure 6.7) requested by the system administrator will be executed
meticulously. This is challenging because modern OSs employ task migration
mechanisms to balance the load among all the available cores, when some of the
cores are overloaded. Such a mechanism might cause continuous migrations of the
service chain’s processes from one core to another, destroying cache coherency.

To guarantee that SCC realizes the scheduling according to the input CPU
affinity and scheduling properties, we take two measures. First, the SCC Scheduler
reserves the cores requested by the system administrator (see the input of the SCC
Scheduler in Figure 6.6), by excluding those cores from the candidate list of cores
that undertake other processes in the system, hence ensuring dedicated resources
for NFV processing. Second, as explained in §6.4.1, the SCC Launcher explicitly
pins the service chain’s processes to the reserved cores based upon the same CPU

∗If no priorities are given, default kernel values are used (see §6.4.2.1).
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(b) Example of a multi-processor scheduling where all the NFs run in one core and the software
switch runs in a different core.

Figure 6.7: Scheduling options for service chains (NFs and the underlying switch).

affinity input. These measures ensure that the reserved cores execute only NFV
tasks and the NFV scheduling is solely orchestrated by the SCC Scheduler.

6.4.2.1 Tuning the Linux Schedulers

We studied the task scheduler of the Linux kernel v3.13 to identify knobs that
will allow a developer to reconfigure key parameters for NFV service chains, such as
the scheduling policy, the priority range of a given scheduling policy, and the time
quantum granted to a task by the scheduler. Table 6.6 summarizes the important
properties of these Linux schedulers.

This version of the Linux scheduler maintains 140 queues, each corresponding to
a different priority level. Priority levels between 1 and 99 (1 is the highest priority)
are static and can be used by processes scheduled by the real-time scheduler. All
of the remaining 40 priority levels (i.e., [100, 139]) correspond to a single static
priority 0, which is lower than any real-time priority; however, these tasks are
mapped to a dynamic priority range in [-19, 19] (with -19 being the maximum
dynamic priority) as shown in Table 6.6.
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Table 6.6: Scheduling settings useful for NFV tasks in the Linux OS v3.13.

Scheduling
Policy

Priority Range
Time AllocationStatic Dynamic

CFS
Default 0 [-19, 19] Dynamically selected based on

(i) # of running tasks
(ii) dynamic priority
(see equation 6.1)Batch 0 [-19, 19]

Real
Time

RR [1, 99] - Reconfigurable via:
sched_rr_timeslice_ms

FIFO [1, 99] - Time-less scheduler

CFS is the default Linux scheduler that schedules tasks with static priority 0. As
shown in Figure 6.8, the core data structure that strikes the balance of all tasks’
virtual run-times in CFS is a time-ordered tree, where each node corresponds to a
task and is associated with the task’s virtual run-time. A task with a low virtual
run-time value is stored towards the left side of the tree and has the gravest need
for the CPU. Conversely, tasks with a high virtual run-time value (or less need for
the CPU) are stored towards the right side of the tree. Therefore, the leftmost node
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Figure 6.8: The Linux Completely Fair Scheduler’s red-black tree data structure
for selecting the next runnable task.
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of this tree is the next task to execute on the CPU. CFS exposes system calls to
modify a task’s dynamic priority. CFS guarantees that the minimum time quantum
granted to a task will be always greater or equal than sched_min_granularity
and computes this value based on the following formula:

CFSTimeQuantum =

(140− P ) · 20, if P < 120
(140− P ) · 5, if P ≥ 120

(6.1)

where P ∈ [100, 139] is the task’s dynamic priority mapped to a value in the
interval [-19, 19] (see Table 6.6). Based on this formula, the largest time quantum
that can be granted to a process scheduled by CFS is 800ms.

Note that, the time that CFS will finally allot to a task also depends upon run-
time state variables in the kernel. For example, preemption might be triggered
if a more deserving task is available, hence a task’s slice might not be entirely
consumed. To maintain longer execution times, CFS offers another scheduling
policy for CPU-bound processes, called batch CFS. This policy prevents other
processes from preempting the CPU as would occur under the default CFS policy,
hence the processes run for longer time slices. A process scheduled with the batch
scheme “lives” in the same data structure as the processes scheduled by the default
CFS scheme, uses the same priority ranges, and the next process to execute is still
chosen by CFS. These properties of the batch scheduling scheme are beneficial for
NFV tasks as shown in §6.5.2.

The Real-Time Scheduler provides two scheduling policies for interactive tasks:
FIFO and RR. Tasks scheduled using either of these two policies will always be
prioritized over any tasks scheduled by CFS. The scheduler maintains a list of
runnable threads for each possible static priority value. In order to determine
which thread runs next, the scheduler looks for the nonempty list with the highest
static priority and then selects the task at the head of this list.

To illustrate the scheduler’s functionality, consider the example shown in
Figure 6.9. Let us assume that the system has two available CPU cores and
there are 6 tasks active at the time. Tasks T1, T2, T3 run on CPU 0, while tasks
T4, T5, T6 run on CPU 1. Each core has a static array of tasks and the size of the
array is equal to the number of static priorities available for this scheduler (i.e.,
99). This means that if T1 has a static priority 60, while T2 has a static priority
93; then, if CPU 0 currently executes T3 (as shown by the index in Figure 6.9),
the next task to be selected by the scheduler is T2 since its static priority is higher
than T1’s static priority (i.e., 93 > 60). Similarly, CPU 1 will prioritize T5 after
the execution of T4, since static priority 32 is greater than static priority 2.

A process scheduled by the FIFO scheduling algorithm has no time slice, but
instead runs until it blocks (e.g., for I/O), is preempted by a higher-priority real-
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time task, or voluntarily yields the processor. Two or more FIFO tasks with equal
priority do not preempt each other and tasks of lower priority will not be scheduled
until the process relinquishes the CPU.

In contrast, the RR real-time scheduling policy is a timeful extension of the
FIFO scheme. Unlike FIFO, each task scheduled with the RR algorithm is allowed
to run only for a certain maximum time quantum. Upon the expiration of this time
quantum, the task will be put at the tail of the queue for its priority. As depicted
in Table 6.6, this scheme exposes a way to adjust the duration of the value of the
time quantum via the proc filesystem, hence RR is an alternative scheduling policy
for SCC. In contrast, FIFO’s time-less approach could be beneficial for executing
single-process NFV tasks, but provides limited control of the process execution
time in multi-process NFV scenarios.

1 2 93 99

……......... T1 …... T3 ... T2 ..

8260

Task Priority

current next

CPU 0

1 2 87 99

T6 ……... T5 ………..…. T4 ....

32

currentnext

CPU 1

Figure 6.9: An example scenario of per processor real-time tasks queued on run
queues. The current and next tasks to run are indicated by indices. The queues
are static arrays and the indices denote the priority of each task.

6.4.3 The Entire SCC System
Separately employing the I/O and scheduling techniques above might not lead

to the desired performance. For example, granting a short time quantum to a
process that reads a large batch of packets might not fully reap the benefits of
batching. In contrast, allocating a long time quantum for a process that applies
per packet read/write operations cannot be fully exploited since, sooner or later,
the process will yield the processor to perform I/O, thus “losing” the opportunity
to exploit the long time quantum.
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For these reasons, as shown in Figure 6.6, SCC builds a run-time scheduler
that effectively combines these accelerations. As explained above, the system
administrator can tune the number of multiplexed system calls, scheduling policy,
scheduling priority and the time quantum of each process to achieve fast packet
processing. As illustrated in Figure 6.1, correct selection of these parameters will
allow a CPU to process an entire batch of packets per scheduling round, leading
to fewer user to/from kernel-space paths being used, hence lower latency. We
evaluate the effectiveness of SCC in §6.5.

6.5 Performance Evaluation
This section evaluates the acceleration techniques of SCC. We used the

standalone and chained NFV services, profiled and analyzed in §6.3.1 and §6.3.2
respectively, to assess the benefits of SCC. We deploy these NFV service chains
on top of SCC (see §6.4) and answer three key questions: (i) What is the
effect of SCC’s I/O multiplexing on the performance of individual user-space NFs
(see §6.5.1)? (ii) What is the impact of different scheduling strategies on the
performance of chained user-space NFs (see §6.5.2)? (iii) What are the benefits
of SCC when both I/O multiplexing and scheduling are applied (see §6.5.2.2)?

6.5.1 Impact of SCC’s I/O Multiplexing
The goal of this section is to evaluate our first acceleration technique for

user-space NFV service chains: multiplexing multiple packets into one system
call. We use the user-space FastClick router (based on the native network driver)
from §6.3.1 and deploy it on SCC. Then, we assess the impact of I/O multiplexing
(as a function of the batch size) on the router’s performance, by conducting
a sensitivity analysis using an exponentially increasing batch size based on the
formula: batch_size = 2i|8i=0. When the batch size equals 1, no batching is used,
i.e., simply the standard FastClickI/O. We take this as the base of what we want
to accelerate.

Figure 6.10 depicts the latency of a single router as a function of the batch size
with four different frame sizes (i.e., 64, 128, 256, and 1500 bytes). We highlighted
two areas in this figure: the left-most area, with a light red background, where
batching is disabled, whereas the remaining area, with a light green background,
shows the router’s performance for different batch sizes. We input frames with
different frame sizes at the same rate (i.e., 0.82Mpps, which is the line-rate for
the 1500 byte frame size) used in all of our experiments. As we see in Figure 6.10,
the load imposed on the router is the same for all the frame sizes, since the router
exhibits similar latencies, independent of the frame size. For this reason, we used
the SCC Profiler to analyze the memory utilization of the router during one of these
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experiments, with the smallest frame size (i.e., 64 bytes), as shown in Table 6.7.
This frame size was also utilized to profile the same router (see §6.3.1) without
batching, hence it offers a clear reference for comparing our I/O acceleration.

Looking at the results of Figure 6.10, we see that our batching acceleration
clearly outperforms the non-batching case, achieving 2-3x lower median latency
for several batch sizes. Specifically, the best batch sizes, with respect to the end-
to-end latency, are between 2 and 32 batched system calls, as the median latency
for almost all frame sizes is in the range of 80-115µs, whereas the non-batching
cases achieve median latencies are in the range of 270-310µs. The lowest value
of the latter group of medians is also visualized with the red horizontal dashed
line shown in Figure 6.10. This difference in latency is reflected in a decrease in
the number of references to memory with batch sizes greater than 1, as shown in
Table 6.7. Batching decreases the number of main memory references by 2-3x.
As main memory accesses are the main component of the latency, we can see the
effect of batching is very beneficial in reducing latency (up to some point). More
notably, the worst case latency (here the 99th percentile) for some batch sizes is
comparable or even lower (i.e., for 1500-byte frames) than the median latency of
the router without batching.
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Figure 6.10: End-to-end latency (µs), plotted on a logarithmic scale, versus
the number of frames multiplexed/batched into one system call for a user-space
FastClick router using the native Linux network driver. The router runs in a
single core and the input packet rate is 0.82Mpps with 64, 128, 256, and 1500
byte frames. The corresponding bit rates are 0.57, 0.99, 1.84, and 10Gbps.
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Another benefit of batching is the reduction of the latency variance (also known
as jitter). Without batching, the router exhibits a latency variance of 400-600µs
for the different frame sizes. With a batch size of e.g., 2 system calls, this variance
is roughly 300µs (i.e., 33-200% lower) for the 64, 128, and 256 byte frames and
only ∼130-140µs (i.e., 2.5-4x lower) for 1500 byte frames. We believe that jitter-
sensitive NFV applications will find this batching beneficial.

Batch sizes between 4 and 32 have some outliers at very low latency, comparable
to the levels of a DPDK router (see Figure 6.4). Moreover all the latency percentiles
for these batch sizes are shifted by roughly 3x compared to the non-batching case.
Further increasing the batch size (i.e., batch sizes of 64 and 128 frames) achieves
yet lower median latency than the non-batching case. However, using a batch size
of 256 frames increases the latency and latency variance as both metrics are greater
than the non-batching case. This is not surprising, since aggressive batching has
a well-studied effect on latency and latency variance [110].

From a resource utilization perspective, Table 6.7 shows the router’s per packet
latency and different types of memory accesses, as computed by the SCC Profiler,
for the different batch sizes when the frame size is 64 bytes. As stated earlier, a
clear impact of multiplexing multiple frames into one system call is a reduction
in main memory accesses. In the non-batching case, almost 3000 main memory
references per 64 byte frame occur, resulting in a latency of 216.97µs, as calculated

Table 6.7: The SCC Profiler’s per packet latency calculation and memory
utilization report while tracking the 64-byte packets injected during the experiment
shown in Figure 6.10. The latency in the second column is calculated using the
collected performance counters introduced in §6.2.1.3 and falls within the actual
latency percentiles shown in Figure 6.10.

Batch
Size

Per Packet
Latency
(µs)

L1/L2/L3/DRAM
References

1 216.97 3653/179/65/2964
2 126.94 2048/138/49/1731
4 117.47 1872/125/46/1603
8 101.05 1601/115/42/1378

16 95.23 1503/119/41/1298
32 84.20 1315/110/38/1148
64 85.88 1331/113/40/1170

128 94.31 1471/145/46/1284
256 155.0 2564/252/81/2109
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by the SCC Profiler. Exponentially increasing the batch size from 2 to 256, leads
the OS to transfer more data per batch, i.e., an entire batch of frames is transferred
with one system call, and this transfer occurs less frequently (because we apply one
system call every “batch size” number of frames). Consequently, batching exploits
the spatial locality of virtual memory addresses; this means that multiple virtual
addresses tend to fall into the same physical page, hence there are fewer references
to main memory. This effect is shown in the third column of Table 6.7. For batch
sizes between 2 and 64, the router makes 2-2.8x fewer main memory references
than the router without batching, hence the latencies shown in Figure 6.10 are
greatly affected by this phenomenon.

This analysis leads to three conclusions: (i) To benefit from I/O multiplexing,
moderate batch sizes between 2 and 32 system calls decrease the end-to-end latency
and latency variance for small, medium, and large frames; hence this degree of
multiplexing appears attractive. (ii) When the goal is to fit more service chains
into a given hardware capacity, choosing bigger batch sizes (i.e., between 8 and
64 system calls) leads to more than 2x better cache utilization (especially
by reducing the number of main memory accesses). (iii) For jitter sensitive
applications, batching 2 system calls gives the best results both from the latency
and jitter perspectives.

6.5.2 Impact of SCC’s Scheduling

In this section we evaluate the effects of different scheduling strategies on the
performance of NFV service chains. In §6.3.2.1, we observed increasing scheduling
overheads with the length of the service chain and attributed these overheads to
the inability of CFS to grant large enough time quanta per NF. Here, we deploy
NFV service chains using SCC and utilize the SCC Scheduler to, ideally, eliminate
this overhead.

Considering the analysis of the different schedulers in §6.4.2, we see that the
batch CFS and the real-time RR schedulers offer interesting properties that could
be beneficial for NFV service chains. Here, we evaluate the former scheduler
against the default Linux scheduler. To modify the time quantum of each NF in
a service chain we set its “niceness” value accordingly. Based on equation 6.1,
without modifying the “nice” value, a process can run for up to 100ms; we have
increased this value to study its effect on the performance of the NFV service
chains.

In §6.5.2.1 we evaluate a multi-core scheduling scenario without using our I/O
multiplexing, while in §6.5.2.2 we combine scheduling with I/O multiplexing in a
single-core scenario.
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6.5.2.1 Multi-core Scheduling without I/O Multiplexing

Figure 6.11 shows the latency of 1-8 user-space FastClick routers, chained
together, on top of an OVSK instance. The service chains are scheduled using the
multi-processor scheduling option of SCC shown in Figure 6.7b, where one CPU
core executes the OVSK, while another CPU core in the same socket executes the
NFs. Specifically, the left most boxplot (the top line in the legend) is scheduled
by the default CFS (with the default time quantum up to 100ms), while the
other two sets of service chains are scheduled by the batch CFS with two different
time quanta configurations. The former configuration’s time quantum is roughly
4x greater than the default (i.e., 420ms), while the latter is 8x greater than the
default (i.e., 800ms). To achieve this configuration we set the “nice” value to -1
and -19 respectively (or 119 and 100 based on equation 6.1). Although CFS does
not guarantee to exhaust its assigned slice, it acts as an upper bound.

In this experiment, SCC uses only scheduling acceleration, i.e., without I/O
multiplexing. This is because while we implemented the I/O multiplexing in
FastClick, OVSK still relies on its standard I/O mechanism, without using
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Routers-OVSK-Sched-Default-100ms Latency=1769·NFs+ 717,R2=1.0
Routers-OVSK-Sched-Batch-420ms   Latency=1349·NFs+ 610,R2=1.0
Routers-OVSK-Sched-Batch-800ms   Latency= 532·NFs+3737,R2=1.0

Figure 6.11: End-to-end latency (µs) versus the service chain’s length for
FastClick routers, running in containers on top of OVSK. The service chains are
scheduled either with the default or batch CFS policies, the latter with different
time quanta allocations. The routers run in a single core, OVSK runs in a different
core in the same socket, and the input rate is 0.82Mpps with 64 byte frames. The
fit to the median latencies, stated in the legend, begins from the service chains
with 2 NFs.
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batching. Using I/O multiplexing only in the NFs is counter-productive, since
packets have to be batched and un-batched multiple times while moving from
OVSK to NFs along the service chain, hence no multiplexing is used in this test.

Based on Figure 6.11, the SCC Scheduler realizes the service chains with a
considerably lower latency compared to the default scheduler. Starting from the
service chains with 2 NFs, we fit a linear equation to the median latencies for each
scheduling scheme to determine the cost of additional NFs in each service chain.
This cost is 1769µs per additional NF, when we use the default Linux scheduler
(as was previously reported in §6.3.2). Using the batch scheduler, the latency of
the same service chains is 1349 or 532µs (30-300% lower) depending upon the
size of the time quantum. In the case of the batch CFS with a time quantum
of 420ms, the latency is always lower than the default CFS and the scheduling
benefits continue to increase with the service chain’s length. In contrast, using the
maximum time quantum (i.e., 800ms) appears to be an overkill for short service
chains, as the latency is actually higher than the default CFS. However, if an NFV
provider wants to deploy service chains with more than 5 NFs, this larger time
quantum achieves substantially lower latency, below that of the other two cases.

SCC greatly reduces latency variance. Looking at Figure 6.11, the edges of
the latency boxplots (i.e., 25th to 75th percentiles) for the batch scheduling cases
fall close to each other, hence these service chains deliver the majority of packets
with low variance. Especially when using batch CFS with the maximum time
quantum, the 25th to 75th percentiles almost match. In contrast, when using
the default scheduler, the service chains exhibit a huge latency variance, that
is orders of magnitude greater than the batch scheduling cases for long service
chains. For example, the variance between the 25th and the 75th latency percentiles,
for a service chain with 7 routers, when using the default scheduling scheme is
6327µs. The same percentiles for the same service chain, when scheduled by
the batch CFS, differ by 3180µs when using the 420ms time quantum, and only
156µs (40x less variance than the default CFS) using the maximum time quantum.

6.5.2.2 Single-core Scheduling Combined with I/O Multiplexing

Next, we combine the benefits of the above scheduling scheme with our I/O
acceleration (see §6.4.1.1) to exploit the full capacity of SCC. Hence, we deployed
the same service chains of routers on SCC, interconnected B2B, without an
underlying software switch. This configuration avoids the slow I/O of OVSK and
can operate using a batched I/O mode. The service chains are scheduled using
the uni-processor scheduling option of SCC shown in Figure 6.7a, where one CPU
core coordinates the execution of all the routers.

Figure 6.12 shows different variants of these service chains. The top set of
service chains in the legend (the left most boxplot) are scheduled by the default
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CFS, while the other four are scheduled by the batch CFS. In this experiment
we use the maximum time quantum for the batch CFS, as we found that it does
not exhibit the negative impact observed in §6.5.2.1 for short service chains. This
is because, when combined with SCC’s I/O multiplexing, this scheduling allows
the NFs to better exploit this large time slice. To quantify the effects of both the
batch CFS and the I/O multiplexing, we tested four different cases. From top to
bottom in the legend, the second set of service chains use the batch CFS without
I/O multiplexing, while the last three sets of service chains use I/O multiplexing
with batch sizes 2, 16, and 32 respectively.

Looking first at the latencies of the service chains scheduled by the default and
batch CFSs’ (the latter without I/O multiplexing), we notice a similar trend to
that shown in Figure 6.11. This means that batch CFS is beneficial regardless
of the interconnect of the service chains. The benefits of the batch CFS can be
quantified by looking at the equations fitted to these two cases. Although the per
NF latency cost (i.e., the slope in the equations) of the batch CFS is only ∼10%
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Routers-B2B-Sched-Default         Latency=1335·NFs+ 426,R2=0.99
Routers-B2B-Sched-Batch           Latency=1268·NFs+  75,R2=0.95
Routers-B2B-Sched-Batch-BS2   Latency=1189·NFs+ 624,R2=0.97
Routers-B2B-Sched-Batch-BS16 Latency= 852·NFs+1086,R2=0.99
Routers-B2B-Sched-Batch-BS32 Latency= 899·NFs+ 650,R2=1.00

Figure 6.12: End-to-end latency (µs) versus the service chain’s length for
FastClick routers, running in B2B chained containers. The top set of service chains
in the legend are scheduled by the default CFS. The other four service chains are
scheduled by the batch CFS; the first of them does not use I/O multiplexing, while
the remaining use I/O multiplexing with batch sizes 2, 16, and 32 (from top to
bottom in the legend). Note that the maximum time quantum is granted to the
NFs by the batch CFS in this experiment. The routers run in a single core and the
input rate is 0.82Mpps with 64 byte frames. The linear fit to the median latencies,
stated in the legend, begins from the service chains with 2 NFs.
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lower (1268µs versus 1335µs), one should pay attention to the intercepts of these
functions (75 versus 426µs for a zero length service chain). These values indicate
the basic processing cost of each service chain, which in the case of the batch CFS
is almost 7x lower than the default CFS. The batch CFS also reduces the latency
variance by up to 2x.

Section 6.5.1 showed the benefits of multiplexing multiple packets into one
system call for a standalone NF. Now, we quantify the benefit of this technique
when combined with the increased time quanta per NF allocated by the batch
CFS in a scenario with chained NFs. The remaining three sets of boxplots in
Figure 6.12 show the latencies for three batch sizes. With a batch size of 2 system
calls, the best results are achieved in the standalone case (see §6.5.1), but this
does not have similar performance in a chained scenario. We attribute this fact
to the mismatch between the execution time granted by the batch CFS and the
frequency of system calls made by the NFs in this case. In other words, batching
only two packets at a time for a long chain of NFs requires frequent system calls,
which leads to yielding the CPU long before a NF’s time quantum expires.

We observe that when using larger batches, the NFs seem to better exploit their
time slices. A close look at the fitted equations proves this fact. A batch size of
2 system calls incurs 1189µs of latency per additional NF, but with a much greater
basic processing cost than the batch CFS without I/O multiplexing, rendering the
I/O multiplexing technique as a worse option. However, batch sizes of 16 and
32 packets reduce the per NF latency by up to 50%, while also greatly reducing
latency variance. For a service chain of 8 routers with the batch CFS using a batch
size of 32 system calls the latency reduction is 4x greater than the default CFS.
Indeed, comparing the variance between the 25th and the 75th latency percentiles
in Figure 6.12, half of this reduction is due to the scheduler, while the other half
stems from I/O multiplexing.

Finally, we correlate the above latency measurements with the SCC Profiler’s
data, gathered during the execution of both the OVSK and B2B interconnected
service chains. Table 6.8 shows the values of the “SchedContention/RunTime”
metric, defined in §6.3.2.1. This metric captures the time spent due to scheduler
contention relative to the service chain’s run-time. For a single router (i.e., service
chain length equal to 1), there is no corresponding cost because this router is
the only process to be scheduled. However, under the default CFS policy, for a
service chain of 4-8 NFs the time that the service chain is runnable but does not
execute due to contention in the scheduler is 3-4x greater than the actual run-time
of the service chain for both OVSK and B2B cases. The batch CFS scheduler
employed by SCC reduces this overhead by ∼50%. However, for a service chain
of 2 routers we observe an increased scheduling overhead compared to the default
CFS, especially for the OVSK case. That is confirmed by the increased latency of
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this particular service chain, as depicted in Figure 6.11. As explained above, the
presence of OVSK does not allow an NF to fully exploit its longer execution time,
because of OVSK’s ineffective I/O. This is not the case for the B2B service chain
of 2 routers, since our I/O multiplexing better exploits the available CPU time.

As for the metric “Wait/RunTime”, also defined in §6.3.2.1, this is mostly
affected by the I/O mechanism of the service chain. We measured a ∼40-60%
reduction of this overhead when we used SCC’s I/O multiplexing, compared to a
service chain without this acceleration.

Table 6.8: Effect of the batch CFS scheduler on the time spent due to scheduling
contention with respect to the effective run-time of the service chain for four service
chain lengths. The last case of B2B chained NFs, labeled as “Batch+MUX”, also
uses I/O multiplexing of 32 packets into one system call.

Service
Chain
Length

SchedContention/RunTime
OVSK Chains B2B Chains
Default Batch Default Batch Batch+MUX

1 0 0 0 0 0
2 1.25 4.34 1.39 2.83 2.82
4 2.88 2.73 3.11 2.92 2.91
8 3.78 2.58 4.17 2.82 2.98

6.6 Originality and Open Source Contributions
Here we highlight the originality of SCC with respect to earlier efforts, related

to network I/O (see §3.2), scheduling (see §3.5), and system profiling (see §3.6).

6.6.1 System Benchmarks
lmbench [156] and Intel’s memory latency checker [157] measure a system’s

performance by benchmarking the hardware’s performance capabilities. To do so,
they measure the latency for intra and inter-memory transactions. For example,
either of these tools can precisely quantify the latency when transferring data of
variable sizes between two caches or between a cache and main memory.

SCC uses lmbench as a system benchmark tool. In addition to memory
latencies, SCC requires kernel-level benchmarks to measure scheduling and
system call overhead. Although there are relevant available tools such as that
described in [190], own benchmarks is needed to acquire these metrics (as we
have done in [186]).
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6.6.2 Code Profilers
OProfile [158] and Perf [159] are code profilers that provide statistics about

applications or the entire OS, by accessing low-level performance counters. Such
tools can draw a developer’s attention to those functions that exhibit high
utilization of system resources, hence these functions offer the greatest potential for
performance improvements. A great deal of effort is required to understand how
the applications under test use the system’s resources. Moreover, this knowledge is
needed, to instruct these code profilers which particular subset of relevant events,
out of a large pool of potential events, are actually relevant.

We performed a study to find crucial NFV performance counters and
incorporated Perf in SCC, as we found that it can access these counters. These
counters were illustrated in Figure 6.2 and quantified in Table 6.3.

6.6.3 Data Profilers
Various cache profiling tools have been proposed, such as CProf [160],

callgrind’s KCachegrind tool [161] (based on valgrind), and Intel’s PMU [162].
These tools can track applications’ cache utilization allowing a developer to build
a map of the system’s caches and how they are used. Moreover, likwid [163]
provides a broader and modular performance monitoring suite. One can either
wrap an entire application to measure its performance with respect to key hardware
counters, or enclose a particular piece of code within an application between likwid
start and stop functions.

DProf [164] helps programmers understand cache miss costs by associating
these misses with the data types instead of the code. DProf provides clear insights
into which objects of an application’s data structures incur expensive cache loads;
however, DProf mostly focuses on the LLCs and in particular how data moves
in and out of LLCs. This focus results from the tool being designed to optimize
cross-CPU data exchanges.

The SCC Profiler extends these earlier profilers by keeping track of the entire
memory hierarchy (including TLBs and main memory), hence our profiler
quantifies both data movements and address translations from a processor all
the way to the main memory and correlates this data with OS-level counters.
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6.6.4 Scheduling
Sivaraman et al. [151] envisioned future switches with programmable boards

that allow network administrators to deploy custom packet scheduling schemes.
They introduced a Push-In First-Out abstraction model that controls the order
and departure of packets, capturing the needs of several packet scheduling schemes.
Mittal et al. [152] explored the possibility of designing a universal packet scheduler
that can match the results of any scheduling algorithm, concluding that the Least
Slack Time First algorithm best approximates a universal scheduler.

Scheduling a multitude of processes that comprise a service chain is not
addressed by prior scheduling works since these solutions operate at the packet
and not at the task level. In contrast, we study the performance of task
scheduling in NFV to identify ways to achieve better resource utilization.
In §6.4.2.1, we studied all the available schedulers of our OS and provided
useful insights on their properties with respect to NFV. In §6.5.2, we evaluated
the benefits of the batch CFS scheduler and compared it to the default Linux
scheduler. Although the real-time RR scheduler has attractive properties
for NFV tasks (see §6.4.2), our experiments showed that this scheduler
outperforms the CFS schemes only in the case of standalone NFs. The focus
of this work is on chained NFV scenarios, hence we chose the batch CFS.

6.6.5 Network I/O
Netmap [33], DPDK [28], PFQ [34], and PF_RING [191] are network I/O

mechanisms that boost NFV performance by providing direct access to the ring
buffers of a NIC, using custom network drivers. The time required for these tools
to be widely adopted in the market motivated a solution that could be immediately
adopted by cloud providers. The Linux kernel has significantly evolved over the
past decade and today provides sufficient tools to speed up NFV applications
running on top of unmodified network drivers.

We found that the vectorized I/O technique [94] introduced in version 2.5
of the Linux kernel permits reading/writing frames from/to multiple buffers
using a single transaction. This technique is supported by the ixgbe driver
in Linux and can be exploited by activating the scatter/gather feature of the
NIC. Our open source implementation [185] is built on top of FastClick. Earlier
efforts have successfully applied similar techniques [33, 110, 28] to amortize the
system calls’ overhead. Our work advances these works by combining batch
I/O with scheduling to further improve the performance of NFV applications,
while maintaining the ability to run on a standard Linux kernel.





Chapter 7

Synthesizing High Performance
NFV Service Chains

S everal packet processing consolidation attempts were made to improve the
performance of chained NFs, as discussed in §3.3. Contemporaneously with

one of the most effective attempts called OpenBox [31], we implemented the
mechanisms specified in [192] as the next logical step in our high-performance
NFV research. A detailed comparison with OpenBox is given in §7.7.

This chapter ∗, describes the design and implementation of SNF, our approach
for dramatically increasing the performance of NFV service chains. The idea
behind SNF is simple: create spatial correlation in order to execute service chains
at the speed of the CPU cores, potentially operating on the fastest (i.e., L1) cache
of modern multi-core machines. SNF leverages the ever-continuing increases in
numbers of cores of modern multi-core processor architectures and the recent
advances in user-space networking.

Packets in a traffic class are all processed the same way. SNF automatically
derives traffic classes of packets that traverse a provider-specified service chain
of NFs. Additionally, SNF handles stateful NFs. Using its understanding of
each of the per traffic class service chains, SNF then synthesizes equivalent,
high-performance NFs for each of the traffic classes. In a straightforward SNF
deployment, one CPU core processes one traffic class. In practice, SNF allocates
multiple CPU cores to execute different sets of traffic classes in isolation (see §7.1).

SNF’s consolidation process: (i) consolidates all the read operations of a traffic
class into one element, (ii) early-discards those traffic classes that lead to packet
drops, and (iii) associates each traffic class with a write-once element. Moreover,
SNF shares elements among NFs to avoid unnecessary overhead and compresses

∗The work described in this chapter is based on the journal article “SNF: Synthesizing high
performance NFV service chains” [29] (the authors of the article retained the copyright and give
their joint approval for parts of this material to appear in this thesis).
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the number and length of the service chain’s traffic classes. Finally, SNF scales
with an increasing number of NFs and traffic classes.

This architecture shifts the challenge from a packet processing service chain
to packet classification, as one component of SNF has to classify each incoming
packet into one of the pre-determined traffic classes, and pass it to the synthesized
function. Existing open-source software was extended to improve the performance
of software-only packet classification. In addition, in one set of experiments an
OpenFlow [13] switch was employed as a packet classifier to demonstrate the
performance that would be possible with a sufficiently powerful programmable
NIC. The benefits of SNF for network operators are multi-fold: (i) SNF
dramatically increases the throughput of long NF chains, while achieving low
latency, and (ii) it preserves the functionality of the original service chains.

The SNF design principles were implemented into a modified version of the
Click [42] framework. To demonstrate SNF’s performance, a comparison between
SNF and FastClick is being made (see §7.5). To show SNF’s generality we tested
its performance in three use cases: (i) a chain of software routers, (ii) nested
NAPTs [23], and (iii) Access Control Lists (ACLs) using actual NF configurations
taken from ISPs [193].

The evaluation in §7.5 shows that software-based SNF achieves 40Gbps, even
with small Ethernet frames, across up to 10 NFs, even with stateful service chains.
SNF service chains show up to 8.5x more throughput and 10x lower latency
with 2-3.5x lower latency variance than the original NF chains implemented with
FastClick (when running on the same hardware). Offloading traffic classification
to an OpenFlow switch allows SNF to realize ISP-level service chains at 40Gbps
(for most frame sizes), while bounding the median latency to below 100µs.

An SNF overview is provided in §7.1. The synthesis approach is introduced
in §7.2 and a motivating example is presented in §7.3. Implementation details and
performance evaluation are presented in §7.4 and §7.5 respectively. Verification
aspects are discussed in §7.6. Finally, §7.7 shows the originality of SNF with
respect to the state of the art.

7.1 SNF Overview
The idea of synthesizing network service components consorts with a powerful

property: data correlation in network traffic. In a network system, this property
is mapped to spatial locality with respect to the receiver’s caches. SNF aggregates
parts of the flow space into Traffic Class Units (TCUs) (a detailed definition is
given in §7.2.1). These TCUs are mapped into sets of (re)write operations. Then,
by carefully setting the CPU affinity of each TCU, this aggregation enforces a high
degree of correlation in the traffic (seen as logical units of data) resulting in high
cache hit rates.
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Our overarching goal is to design a system that efficiently utilizes per core
and across cores cache hierarchies. With this in mind, SNF is designed based on
Figure 7.1. In the example shown in this figure we assume that a network operator
wants to deploy a service chain between network domains 1 and 2. For simplicity
we also assume that there is one NIC per domain. A set of dedicated cores (i.e.,
Core 1 and 2 for the NICs facing domains 1 and 2, respectively) attempts to read
and write frames at line-rate. Once a set of frames is received, say by core 1, it is
transferred to the available processing cores (i.e., Cores 3 to k). Frame transfers
can occur at high speed via a shared cache, which typically has substantial capacity
in modern hardware architectures.

Once a processing core acquires a frame, it executes SNF as shown in
Figure 7.1. First the core classifies the frame (green rectangles in Figure 7.1)
in one of the service chain’s TCUs and then applies the required synthesized
modifications (blue rounded-rectangle in Figure 7.1) that correspond to this TCU.
Both classification and modification processes are highly parallelized as different
cores can simultaneously process frames that belong to different TCUs. Both
processes are detailed in §7.2.2.

The key point of Figure 7.1 is that a core’s pipeline shares nothing with any
other pipeline. We employed the symmetric RSS [102] scheme by [194] to hash
input traffic such that bi-directional flows are always served by the same SNF
rewriter, hence the same processor. This scheme allows a core to process traffic
for a TCU at the maximum processing speed of the machine.

Core 1

Multi-threaded SNF Classifier with 
chain-level traffic class units (TCUs)

SNF Rewriter-Core 3

SNF Rewriter-Core 4

SNF Rewriter-Core 5

SNF Rewriter-Core k

Traffic
Domain 

1

Symmetric Receive-Side Scaling

Bi-directional Flow

Traffic
Domain 

2
...

Dedicated cores per NIC for I/O

Core 2

SNF Synthesizer with stateful per core rewriters

Figure 7.1: SNF running on a machine with k (k>5 in this example) CPU cores
and 2 NICs. Dedicated CPU cores per NIC deliver bi-directional flows to packet
processing CPU cores via symmetric RSS. Processing cores concurrently classify
traffic and access individual, stateful SNF rewriters to modify the traffic.
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7.1.1 Main Objectives
The primary goal of SNF is to eliminate redundancy along the service chain.

The sources of redundancy in current NF chains and our solutions are:

Multiple network I/O interactions between the service chain and the backend
data plane occur because each NF is an individual process. This is solved by
placing NF chains in a single logical entity. Once a packet enters this entity, it
does not exit until all the service chain’s operations are applied.

Late packet drops appear in NF chain implementations when packets
unnecessarily pass through several elements before being dropped. SNF discards
these packets as early as possible.

Multiple read operations on the same field occur because each NF contains its
own decision elements. A typical example is an IP lookup in a chain of routers.
While SNF is parsing the initial service chain, it collects the read operations
and constructs traffic classes encoded as paths of elements in a DAG. Then,
SNF synthesizes these elements into a single classifier to realize both routing and
filtering.

Multiple write operations on the same field overwrite previous values. For
example, the IP checksum is modified twice when a decrement TTL operation
follows a destination IP address modification. SNF associates a set of (stateful)
write operations with a traffic class, hence it can modify each field of a traffic class
all at once.

These issues are addressed in order to face the third challenge of this thesis,
introduced in §4.3.3. To this end, the next section describes in detail how SNF
automatically synthesizes the equivalent of a service chain.

7.2 SNF Architecture
Taking into account the main objectives listed above, this section presents the

design of SNF: §7.2.1 defines the synthesis abstraction, §7.2.2 presents the formal
synthesis steps, and §7.2.3 describes how stateful functions are realized.

7.2.1 Abstract Service Chain Representation
The crux of SNF’s design is an abstract service chain representation.

First, §7.2.1.1 describes a mathematical model to represent packet units.
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Next, §7.2.1.2 models an NF’s behavior in an abstract way. Finally, §7.2.1.3 defines
the target service-level network function.

7.2.1.1 Packet Unit Representation

Inspired by the approach of [56], we represent each packet as a vector in a multi-
dimensional space. However, a protocol-aware approach is followed by dividing a
packet according to the unsigned integer value of the different header fields. Thus,
if p is a TCP segment encapsulated in an IPv4 packet, it is represented as:

p = (pip_version, pip_ihl, ..., ptcp_sport, ptcp_dport, ...)

From now on, P is the space of all possible packets. For a given header field f of
length l bits, a field filter Ff is defined as a union of disjoint intervals (0, 2l − 1):

Ff =
⋃

si⊂(0,2l−1)
si where

{
∀i, si is an interval
∀i 6= j, si ∩ sj = ∅

This allows grouping packets into a data structure called a packet filter, defined
as a logical expression of the form:

φ = {(p1, ..., pn) ∈ P |(p1 ∈ F1) ∧ ... ∧ (pn ∈ Fn)}

where (F1, ..., Fn) are field filters. The space of all possible packet filters is Φ.
Then:

u :
{
φ 7→ (F1, .., Fn)
Φ 7→ {(F1, .., Fn)|∀i, Fi}(F1,..,Fn)

is a bijection and φ can be assimilated to (F1, ..., Fn).
If φ1 and φ2 are two packet filters defined by their field filters (F1,1, ..., F1,n)

and (F2,1, ..., F2,n), then φ1 ∩ φ2 is also a packet filter and is defined as (F1,1 ∩
F2,1, ..., F1,n ∩ F2,n).

7.2.1.2 Network Function Representation

Network functions typically apply read and write operations to traffic. While
the packet unit representation presented in §7.2.1.1 allows us to compose complex
read operations across the entire header space, we still need the means to modify
traffic. For this, a packet operation is defined as a function ω : P 7→ Φ that
associates a set of possible outputs to a packet. An additional constraint is added
such that for any given packet operation ω, there is ω1, ..., ωn ∈ NN such as:

∀p = (p1, ..., pn) ∈ P, ω(p) = (ω1(p1), ..., ωn(pn))
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Note that we use sets of possible values (instead of fixed values) to model cases
where the actual value is chosen at run-time (e.g., source port in an S-NAPT).
Therefore, SNF supports both deterministic and conditional operations.

Defining Ω as the space of all possible operations, a Processing Unit (PU) can
be expressed as a conditional function that maps packet filters to operations:

PU : p 7→


ω1(p) if p ∈ φ1

...

ωm(p) if p ∈ φm

where (ω1, ..., ωm) ∈ Ωm are operations and (φ1, ..., φm) ∈ Φm are mutually distinct
packet filters.

An NF is simply a DAG of PUs. For instance, SNF can express a simplified
router’s NF as follows:

NFROUT ER : PU{Lookup} → PU{DecIPTTL}
→ PU{IPChecksum} → PU{MAC}

with 4 PUs: an IP lookup PU is followed by decrement IP TTL, IP checksum
update, and source and destination MAC address modification PUs.

7.2.1.3 The Synthesized Network Function

The previous section laid the foundation to construct NFs as graphs of PUs.
Now, at the service level where multiple NFs can be chained, a TCU is defined as
a set of packets, represented by disjoint unions of packet filters, that are processed
in the same fashion (i.e., undergo the same set of synthesized operations), hence
are part of a flow or similar flows. This definition allows us to construct the service
chain’s SynthesizedNF function as a DAG of PUs, or equivalently, as a map of
TCUs that associates operations to their packet filters:

SynthesizedNF : Φ 7→ Ω

Formally, the complexity of the SynthesizedNF is upper-bounded by the function
O(n ·m), where n is the number of TCUs and m is the number of packet filters (or
conditions) per TCU. Each TCU turns a textual packet filter specification (such
as “proto tcp && dst net 10.0/16 && src port 80”) into a binary decision tree
traversed by each packet. Therefore, in the worst case, an input packet might
traverse a skewed binary tree of the last TCU, yielding the above complexity
bound. The average case occurs in a relatively balanced tree (O(logm)), in which
case the average complexity of the SynthesizedNF is bounded by the function
O(n · logm).
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7.2.2 Synthesis Steps
Leveraging the abstractions introduced in §7.2.1, the steps that translate a set

of NFs into an equivalent SNF are detailed in this section. The SNF architecture
is comprised of three modules, shown in Figure 7.2. Each module is described in
the following sections.

NFCHAIN
(pkt,port)

DISCARDCHAIN

NFK(pkt,port)
NFK

NF 
Specifications

NFKNF 
Topology

NFM

NFL

NFL NFM
RDNFK WRNFK

Chain NFs

NFM(pkt,port)

RDNFM WRNFM

NFL(pkt,port)

RDNFL WRNFL

RDCHAIN

Decompose 
Read & Write 
Operations

WRCHAIN

State 
Management

1. Traverse 
Synthesized-DAG

Build Synthesized-DAG of Processing Units

2. Build service-level 
traffic class units

Conditions on 
header fields

Single Read per 
Traffic Class Unit

Single Write 
per Traffic Class Unit

Early drop after 
single read

3. Map traffic class 
units to write operations

4. Generate chain-level 
NF

Service Chain Configurator Service Chain Parser

Service Chain Synthesizer

Figure 7.2: The SNF framework. The network operator inputs a service chain
and its topology (top left part). SNF parses the chained NFs, decomposes their
read and write parts, and composes a Synthesized-DAG (top right part). While
traversing the Synthesized-DAG, SNF builds the traffic class units of the service
chain, associates them with write/discard operations, leading to a synthesized
service chain-level NF.

7.2.2.1 Service Chain Configurator

The top left box in Figure 7.2 is the Service Chain Configurator; the interface
that a network operator uses to specify a service chain to be synthesized by SNF.
Two inputs are required: a set of service components (i.e., NFs), along with their
topology. SNF abstracts packet processing by using graph theory. That said,
a service chain is described as a DAG of interconnected NFs (i.e., service chain-
level DAG), where each NF is a DAG of abstract packet processing elements (i.e.,
NF DAG). The NF DAG is implementation-agnostic, similar to the approaches
of [31, 140, 42]. The network operator enters these inputs in a configuration file
using the following notation:
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Vertices (NFs): Each service component (i.e., an NF) of a service chain is a
vertex in the chain-level DAG for which, the Service Chain Configurator expects
a name and an NF DAG specification (see Figure 7.2). Each NF can have any
number of input and output ports as specified by its DAG. An NF with one input
and one output interface is denoted as:

[interface0]NF1[interface1]

Edges (NF inter-connections): The connections between NFs are the edges of
the service chain-level DAG, hence two NFs are interconnected as follows:

NF1[interface1]→ [interface0]NF2

No loops: As the service chain-level DAG is acyclic by construction, SNF must
prevent loops (e.g., two ports of the same NF cannot be connected to each other).

Entry points: In addition to the internal connections within a service chain (i.e.,
connections between NFs), the Service Chain Configurator also requires the entry
points of the service chain. These points are the interfaces of the service chain with
the outside world and indicate the existence of traffic sources. An interface that is
neither internal nor an entry point can only be an end-point; these interfaces are
discovered by the Service Chain Parser as described below.

7.2.2.2 Service Chain Parser

The Service Chain Configurator outputs a service chain-level DAG that
describes the service chain to the Service Chain Parser. As shown in the top
right box of Figure 7.2, the parser iterates through all of the input NF DAGs
(i.e., one per NF); while parsing each NF DAG, the parser marks each element
according to its type. We categorize NF elements in four types: I/O, parsing,
read, and write elements. As an example NF, consider a router that consists of
interconnected elements, such as ReadFrame, StripEthernetHeader, IPLoookUp,
and DecrementIPTTL. ReadFrame is an I/O element, StripEthernetHeader is a
parsing element (moves a frame’s pointer), IPLoookUp is a read element, and
DecrementIPTTL is a write element.

The parser stitches together all the NF DAGs based on the topology graph and
builds a Synthesized-DAG (see Figure 7.2) that represents the entire service chain.
This process begins from an entry point and searches recursively until an output
element is found. If the output element leads to another NF, the parser keeps a
jump pointer and cross checks that the encountered interfaces match the interfaces
declared in the Service Chain Configurator. After collecting this information, the
parser omits the I/O elements because one of SNF’s objectives is to eliminate
inter-NF I/O interactions. The process continues until an output element that is
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not in the topology is found; such an element can only be an end-point. Along the
path to an output element the parser separates the read from the write elements
and transforms NF elements into PUs, according to §7.2.1.2. Next, the parser
considers the next entry point until all are exhausted.

The final output of the Service Chain Parser is a large Synthesized-DAG of
PUs that models the behavior of the entire input service chain.

7.2.2.3 Service Chain Synthesizer

After building the Synthesized-DAG, the next target is to create the
SynthesizedNF introduced in §7.2.1.3. To do so, the SNF’s TCUs need to be
derived. To build a TCU the following steps are executed: from each entry port
of the Synthesized-DAG, we start from the identity TCU tcu0 ∈ Φ×Ω defined as:
tcu0 = (P, idP ), where idP is the identity function of P , i.e., ∀x ∈ P, idP (x) = x.
Conceptually, tcu0 represents an empty packet filter and no operations, which
is equivalent to a transparent NF. Then, we search the Synthesized-DAG, while
updating our TCU as we encounter conditional (read) or modification (write)
elements. Algorithms 1 and 2 build the TCUs using an adapted depth-first search
of the Synthesized-DAG.

Now let us consider a TCU t, defined by its packet filter φ and its packet
operation ω, that traverses a PU U using the adapted depth-first search. The
traverse function in Algorithm 1 creates a new TCU for each possible pair of
(ωi, φi). In particular, it creates a new packet filter φ′ returned by the intersect
function (line 3). This function is described in Algorithm 2 and considers previous
write operations while updating a packet filter. For each field filter φi of a
packet filter, the function checks whether the value has been modified by the
corresponding ωi packet operation (condition in line 8) and whether the written
value is in the intersecting field filter φ0

i (line 10). It then updates the TCU by
intersecting it with the new filter, if the value has not been modified (action in
line 8). After the intersect function returns in Algorithm 1, traverse creates
a new packet operation by composing ω and ωi (line 4).

Algorithm 1 Building the SNF TCUs
1: function traverse(t = (φ, ω),U = {(φi, ωi)i≤m})
2: for i ∈ (1,m) do0
3: φ′ ← intersect(t, φi)
4: ω′ ← ωi ◦ ω
5: t′ = (φ′, ω′)
6: traverse(t′,U.successors[i])
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Algorithm 2 Intersecting a TCU with a filter
1: function intersect(t = (φ, ω),φ0)
2: φ′ ← P
3: (ω1, ..., ωn)← ω.Coordinates
4: (φ1, ..., φn)← φ.Coordinates
5: (φ0

1, ..., φ
0
n)← φ0.Coordinates

6: (φ′1, ..., φ′n)← φ′.Coordinates
7: for i ∈ (1, n) do
8: if ωi = idN then φ′i ← φi ∩ φ0

i

9: else
10: if ωi(φi) ⊂ φ0

i then φ′i ← φi

11: elseφ′i ← ∅
12: return φ′

The recursive algorithm terminates in two cases: (i) when the packet filter
of the current TCU is the empty set, in which case the function does not return
anything, (ii) when the PU U does not have any successors, in which case it
returns the current TCUs. In the latter case, the returned TCUs comprise the
final SynthesizedNF function.

7.2.3 Managing Stateful Functions
A difficulty when synthesizing NF chains is managing successive stateful

functions. It is crucial to ensure that the states are properly located in a
synthesized NF and that every packet is matched against the correct state table.
At the same time, SNF should ensure that NFV service chains be realized without
redundancy, hence single-read and single-write operations must be applied per
packet per header field.

To highlight the challenges of maintaining the state in a chain of NFs, consider
the example topology shown in Figure 7.3. In this example, a large network
operator has run out of private IPv4 addresses in the 10.0/8 prefix and has been
forced to share the same network prefix between two distinct zones (i.e., zones 1

NAPT 2NAPT 1Zone 1
10.0/8

Zone 2
10.0/8

Internet

Figure 7.3: Example NAPT chains, where two zones share the same IPv4 prefix.
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and 2), using a chain of NAPTs. This is likely to happen in practice, as an 8-bit
network prefix contains less than 17 million addresses and recent surveys have
predicted that 50 billion devices will be connected to the Internet by 2020 [195].

Consolidating this chain of NFs into a single SNF instance poses a problem.
That is, traffic originating from zones 1 and 2 share the same source IP address
and port range, but to ensure that all the traffic is translated properly, the
corresponding synthesized service chains must share their NAPT table. However,
since traffic also shares the same destination prefix (i.e., towards the same Internet
gateway), a host from the outside world cannot possibly distinguish the zone where
the traffic originates from.

Obviously, the question that SNF has to address in general, and particularly in
this example is: “How can we synthesize a chain of NFs, ensuring that (i) traffic
mappings are unique and (ii) no redundant operations will be applied?” To solve
this conundrum, the SNF design respects the following properties:

Property 1: The uniqueness of flow mappings is enforced by ensuring that all
egress traffic that shares the same last stateful (re)write operation
also shares the same state table.

Property 2: The state table of SNF must be origin-aware. To redirect ingress
traffic towards the correct interface, while respecting the single-
read principle of SNF, the SNF state table must collocate flow
information and the origin interface for each flow.

To generalize the state management problem, Figure 7.4 illustrates how SNF
handles stateful configurations with three egress interfaces. “Property 1” is applied
by having exactly one stateful (re)write element (denoted as Stateful RW) per
egress interface. “Property 2” is applied by having one input port in each of these
(re)write elements, associated with an ingress interface. Therefore, a state table
in SNF not only contains flow-related information, but also keeps a link between
a flow entry and its origin interface.

Outbound Traffic
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ingress
if1

ingress
if2

egress
if1

egress
if2

egress
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Inbound Traffic

Classifier
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Classifier
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Classifier
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Drop Drop
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Stateful
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Stateful
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Stateful
RW 2
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RW 3

Figure 7.4: State management in SNF.
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7.3 A Motivating Use Case
To understand how SNF works and what benefits it offers, we quantify the

processing and I/O redundancies in an example use case of an NF chain and then
compare it to its synthesized counterpart. Click is used to specify the NF DAGs
of this example, but SNF is applicable to other frameworks. The example service
chain consists of a NAPT, a layer 4 firewall, and a layer 3 LB that process TCP
and UDP traffic as shown in Figure 7.5.

The TCP traffic is NAPT’ed in the first NF and then leaves the service chain,
while UDP is filtered at the firewall (second NF) and the UDP datagrams with
destination port 1234 are load balanced across two servers by the last NF. For
simplicity, only the traffic going in the direction from the NAPT to the LB is

NF1  - NAPT

ReadFrame
192.168.0.1

Strip Ethernet Header

Destination IP LookUp
192.168.0/24 → 0
10.1/16          → 1
0.0.0.0/0        → 2

Read IP Address

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
UDP->ip_src 10.0.0.1,

port_src 1000-9000
TCP->ip_dst 10.1.1.2)

Encapsulate Ethernet
Src:MAC1, Dst:MAC2

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Filter IP Traffic
allow src IP 10.0.0.1 

&& 
udp_dst port 1234,

drop the rest

Encapsulate Ethernet
Src:MAC3, Dst:MAC4

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
Apply Round-Robin 

(RR) to dst IP 
addresses

10.0.1.1, 10.0.1.2

Encapsulate Ethernet
Src:MAC5, Dst:MAC6

NF2  - L4 Firewall NF3  - L3 LB

 WriteFrame

Classify IP Traffic
UDP, TCP, drop

ReadFrame
10.0.0.2

 WriteFrame  WriteFrame

ReadFrame
10.0.0.3

Domain 
10.1/16

Domain 
10.0/16

Figure 7.5: The internal components of an example NAPT→L4 Firewall→L3
LB service chain.
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discussed. The operations of each NF in Figure 7.5 are colored and outlined to
highlight their scope, with those filled in black color representing I/O operations,
while the unfilled operations do the actual NF processing.

The rectangular operations in Figure 7.5 are interface-dependent, e.g., an
“Encapsulate Ethernet” operation encapsulates the IP packets in Ethernet frames
before passing them to the next NF where a “Strip Ethernet Header” operation
turns them back into IP packets. Such operations occur 3 times because there
are 3 NFs, instead of only once (because the processing operates at the IP layer).
Ideally, strip should be applied before, and Ethernet encapsulation after all of
the IP processing operations. Similarly, the “IP Fragmentation” should only be
applied before the final Ethernet encapsulation.

The remaining operations (illustrated as rounded rectangles) of the three
processing stages are those that (i) make decisions based upon the contents of
specific packet fields (read operations with a solid round outline, e.g., “Classify
IP Traffic” and “Filter IP Traffic”) or (ii) modify the packet header (rewrite
operations with a blue dashed outline e.g., “Rewrite Flow” and “Decrement IP
TTL”). Redundancy was found in both types of operations. In the read operations,
one IP classifier is sufficient to accommodate the three traffic classes of this example
and perform the routing. Thus, all the round-outlined operations with solid lines
(green) can be replaced by a single “Classify IP Traffic” operation.

Large savings are also possible with the rewrite operations. The “Rewrite Flow”
operation of the first NF modifies the source IP address and port of UDP/IP
packets, destination IP address of TCP/IP packets, as well as the network and
transport layer (for UDP) checksums. The “Rewrite Flow” operation of the third
NF modifies the destination IP address and IP checksum fields of the allowed
packets (the rest are dropped by “Filter IP Traffic”) while the three “Decrement
IP TTL” operations (one per NF) modify the IP TTL and IP checksum fields.
The minimal set of rewrite operations that must be applied to the UDP packets
by this service chain performs a single modification of all these fields. The initial
service chain calculates the TTL 3 times and IP checksum 5 times.

Based on our measurements on an Intel Xeon processor (see Table 7.1), by
comparing Original and no checksum (NoCS) “Decrement IP TTL”/“Rewrite
Flow” operations in this table, the checksum calculations cost is
10-40 CPU cycles/packet. Thus combining the “Rewrite Flow” with the
“Decrement IP TTL” operations into one synthesized operation and enforcing the
checksum calculation only once (CSOnce), saves 237 CPU cycles/packet in this
example.

Figure 7.6 depicts a synthesized version of the NF chain shown in Figure 7.5.
Following the SNF paradigm presented in §7.2, the synthesized service chain forms
a graph with two main parts.
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Table 7.1: Median CPU cycles per packet spent by the Click elements used
in Figures 7.5 and 7.6 to realize the example service chains on an IntelrXeonr

E5-2667 v3 processor. The input rate is 200 kpps and the packet size is 1500 bytes.

Operation Click Element CPU Cycles/pkt
Strip Ethernet Header Strip 59
Encapsulate Ethernet EtherEncap 70

Read IP Address GetIPAddress 55
Classify IP Traffic IPClassifier 150
Filter IP Traffic IPFilter 155

Destination IP LookUp RadixIPLookup 150
Decrement IP TTL (Original) DecIPTTL 81
Decrement IP TTL (No CS) DecIPTTL 70

Rewrite Flow (Original) IPRewriter 365
Rewrite Flow (No CS) IPRewriter 327

Rewrite Flow+Decrement IP
TTL (CS Once)

IPRewriter (extended
with TTL decrement) 368

IP Fragmentation IPFragmenter 48

The left-most part (rounded rectangles with solid outline in Figure 7.6) encodes
all the read operations by composing paths that begin from a specific interface and
traverse the three traffic classes of this service chain, until a packet is output or
dropped. Each path keeps a union of filters that represents the header space that
matches the respective traffic class. In this example, the filter for the allowed UDP

Rewrite Flow
ip_dst: 10.1.1.2

Classify IP 
Traffic ● Rewrite a traffic class at once.

● Keep state.

Strip Ethernet 
Header

Encapsulate 
Ethernet

Src:MAC1,Dst:MAC6

ReadFrame
192.168.0.1

WriteFrame
To 10.0/16

Early Discard

Rewrite Flow

Synthesized read
operations

Synthesized write operations

udp dst 1234
tcp
all

ip_src: 10.0.0.1,
ip_dst: RR(10.0.1.1/10.0.1.2), 

port_src: 1000-9000
IP 

Fragmentation
MTU 1500 bytes

A unique set of header 
fields for each traffic class.

3 x Decrement IP TTL

IP/UDP Checksum once 

IP Checksum once 
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Packets to be dropped pass 
only through the read stage.
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To 10.1/16

IP 
Fragmentation
MTU 1500 bytes

Figure 7.6: The synthesized service chain equivalent to Figure 7.5. The SNF
contributions are shown in floating text.
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packets is the union of the protocol and destination port numbers. Such a filter
is part of a classifier whose output port is linked with a set of write operations
(dashed vertices in Figure 7.6) associated with this traffic class (right-most part
of the graph). As shown in Figure 7.6, with SNF a packet passes through all the
read operations once (guaranteeing a single-read) and either the packet is discarded
early or each header field is written once (ensuring a single-write) before exiting
the service chain.

Synthesizing the counterpart of this example implies code modifications to
avoid the redundancy caused by each NF. To apply a per flow, per field single-write
operation we ensure that the “Rewrite Flow” will only calculate the checksums
once IP addresses, ports, and the IP TTL fields are written. Therefore, in this
example four unnecessary operations (3 “Decrement IP TTL” and 1 “Rewrite
Flow”) and four checksum calculations (3 IP and 1 IP/UDP) are saved. Moreover,
integrating routing and filtering decisions in one classifier caused this classifier to
be slightly heavier, but saved another two redundant function calls to “Destination
IP LookUp” and “Filter IP Traffic” respectively.

The final form of the synthesized service chain requires only 5 processing
operations to transfer the UDP datagrams along the service chain. The initial
service chain implements the same functionality using 18 processing operations and
two additional pairs of I/O operations. Based on Table 7.1, the total processing
cost of the initial service chain is 2014 CPU cycles/packet, while the synthesized
service chain requires 3x less (roughly 695) CPU cycles/packet. If we account for
the extra I/O cost per hop for the initial service chain, the difference becomes
even greater. In production service chains, where packets arrive at high rates, this
overhead can play a key role in limiting the system’s performance; therefore, the
advantages of synthesizing more complex service chains than this simple use case
are expected to be even greater.

7.4 Implementation
As stated earlier, SNF’s basic assumption is that each input service component

(i.e., NF) is expressed as a graph (i.e., the NF DAG), composed of individual packet
processing elements. This allows SNF to parse the NF DAG and infer the internal
operations of each NF, producing a synthesized equivalent. Among the several
candidate platforms that allow such a representation, we developed our prototype
atop Click because it is the most widely used NFV platform in the academia. Many
earlier efforts built upon it to improve its performance and scalability, hence we
believe that this choice maximizes SNF’s impact as it allows direct comparison
with state of the art Click variants such as RouteBricks [122], PacketShader [123],
Double-Click [110], SNAP [196], ClickOS [111], and FastClick [125].
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We adopt FastClick as the basis of SNF as it uses DPDK, a state of the art
user-space I/O framework that exploits modern hardware amenities (including
multiple CPU cores) and NIC features (including multiple queues and offloading
mechanisms). Along with batch processing, NUMA support, and fine grained
CPU core affinity techniques, FastClick can realize a single router achieving line-
rate throughput at 40Gbps [125]. SNF aims for similar performance for an entire
service chain.

7.4.1 FastClick Extensions
SNF was implemented in C++11. The modules depicted in Figure 7.2 are

14376 lines of code. The integration with FastClick required another 1500 lines
of code (including modifications and extensions). Although FastClick improves
a router’s throughput and latency, it lacks features required for broader NFV
applications; therefore, the following extensions are made to target a service-
oriented platform:

Extension 1: Stateful elements that deal with flow processing (such as
IP/UDP/TCPRewriter) were not originally equipped with FastClick’s accelerations
such as computational batching or cache prefetching. Moreover, these elements
were not designed to be thread-safe, hence they could cause race conditions when
accessed by multiple CPU cores at the same time. We designed thread-safe data
structures for these elements while also applying the necessary modifications to
equip them with the FastClick accelerations.

Extension 2: We tailored several packet modification FastClick elements to
comply with the synthesis principles, as we found that their implementation was
not aligned with our single-write approach. For instance, the IP/UDP/TCP
checksum calculations were improved by calling the respective functions only once
all the header field modifications are applied. Moreover, the IP/UDP/TCPRewriter
elements were extended with additional input arguments. These arguments extend
the elements’ packet modification capabilities (e.g., decrement IP TTL field to
avoid unnecessary element calls) and guarantee that a packet entering these
elements undergo a single-write operation per header field.

Extension 3: We developed a new element, called IPSynthesizer, in the heart
of our execution model (as shown in Figure 7.1). This element implements per
core stateful flow tables that can be safely accessed in parallel allowing multiple
TCUs to be processed at the same time. To avoid inter-core communication, thus
keeping the per core cache(s) hot, the RSS mechanism of DPDK (see Figure 7.1)
was extended using a symmetric approach proposed by Woo and Park [194].
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Extension 4: To make software-based classification more scalable, we implemented
the lazy subtraction algorithm introduced by HSA [56]. With this extension, SNF
aggregates common IP prefixes in a filter and applies the longest one while building
a TCU, thus producing shorter TCUs.∗

The SNF prototype supports a large variety of packet processing libraries,
fully covering both native FastClick and hypervisor-based ClickOS deployments.
This prototype also takes advantage of FastClick’s computation batching with a
processing core moving a group of packets between the classifier and the synthesizer
with a single function call. New packet processing elements can be incorporated
with minor effort. The FastClick extensions are available at [197].

7.5 Performance Evaluation
The problems of state of the art NFV frameworks stated in §4.1.2 hinder large-

scale hypervisor-based NFV deployments that could reduce network operators’
expenses and provide more flexible network management and services [198, 199].

We envision SNF to be the key component of future NFV deployments, thus
we evaluate the synthesis process using real service chains to exercise its true
potential. In this section, we demonstrate SNF’s ability to address three types of
service chains:
Service Chain 1: Scale a long series of routers at the cost of a single router.

Service Chain 2: Nest multiple NAPT middleboxes.

Service Chain 3: Implement high performance ACLs of increasing cardinality at
the borders of ISP networks.

The experimental setup described in §7.5.1 is used to measure the performance
of the above three types of service chains and answer the following questions: Can
(stateful) service chains with an increasing service chain length be synthesized
without sacrificing throughput (see §7.5.2 and §7.5.3)? What is the effect of
different packet sizes on a system’s throughput (see §7.5.3)? What are the current
limits of purely software-based packet processing (see §7.5.4.1) and how can we
overcome them (see §7.5.4.2)?

7.5.1 Testbed
Our testbed consists of 6 identical machines. The technical characteristics

of these machines were described earlier in Chapter 5. Unless stated otherwise,
∗This extension is not a direct part of FastClick, since the compressed classification rules are

computed by SNF beforehand; then, SNF passes these rules to FastClick’s classification elements.
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two machines are used to generate and sink bi-directional traffic. The traffic
modules were described in detail in §5.1. To gain insight into the performance of
the service chains, the throughput and end-to-end latency to traverse the service
chains are measured at the endpoints. We use FastClick as a baseline and compare
FastClick against SNF (which extends FastClick). We create service chains that
run natively in a single process using RSS and multiple CPU cores, as this is the
fastest FastClick configuration. The two different setups utilized by our software-
based and hardware-assisted deployments are:

Software-based experiments
In §7.5.2, §7.5.3, and §7.5.4.1 we stress different purely software-based NFV
service chains that run in a single machine following the execution model of
Figure 7.1. This machine has two dual port 10GbE NICs connected to the two
traffic source/sink machines (two ports per machine), hence the total capacity of
the NFV machine is 40Gbps. The goal of this testbed is to show how much NFV
processing FastClick and SNF can fit into a single machine and what processing
limits this machine has.

Hardware-assisted experiments
For the complex NFV service chains, presented in §7.5.4, we deployed a testbed
where the traffic classification is offloaded to a NoviFlow 1132 OpenFlow switch
with firmware version 300.1.0. The switch is connected to two 10GbE NICs via
each of the two senders/receivers, and with one 10GbE link to each of the four
processing servers in our SNF cluster. This testbed has a total of 40Gbps capacity
(the same as the software-based setup above), but the processing is distributed to
more machines in order to show how our SNF system scales.

7.5.2 A Chain of Routers at the Cost of One
This first use case targets a direct comparison with the state of the art.

Specifically, we chain a popular implementation of a software-based router that,
after several years of successful research contributions [122, 123, 110, 196, 111, 125],
achieves scalable performance at tens of Gbps.

As shown in this section, a naive chaining of individual, fast NFs does not
achieve high performance. To quantify this we linearly connect 1-10 FastClick
routers, where each router has four 10Gbps ports (hence such a service chain
has a 40Gbps link capacity). The down-pointing (green) triangular points in
Figure 7.7 show the throughput achieved by these service chains as a function of
the increasing length of the service chains, when 60-byte frames (excluding the
CRC) were injected. As stated earlier in §4.1.2.2, the maximum throughput for
this frame size is 31.5Gbps and this is the limit of our NICs [125].
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In this experiment, we observe that FastClick operates at the maximum
throughput only for a service chain of 1 or 2 routers. After this point there is
a quadratic throughput degradation, as denoted by the equation’s fit to the graph,
that results in a chain of 10 routers achieving less that 10Gbps of throughput.

In contrast, SNF automatically synthesizes this simple service chain (shown
with red squares) to achieve the maximum possible throughput of this hardware,
despite the increasing length of the service chain. The fitted equation confirms
that SNF operates at the speed of the NICs.
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Figure 7.7: Throughput (Gbps) of chained routers and NAPTs using (i) FastClick
and (ii) SNF versus the numbers of chained NFs (60-byte frames are injected at
40Gbps). Bigger batch sizes achieve higher throughput.

7.5.3 Stateful Service Chaining
The problem of Service Function Chaining has been investigated by Quinn and

Nadeau [22] and several relevant use cases [23] have been proposed. In some of
these use cases, traffic needs to support distinct address families while traversing
different networks. For instance, within an ISP, IPv4/Internet Protocol version 6
(IPv6) traffic might either be directed to a NAT64 [200] or a Carrier Grade Network
Address Translator (NAT) [201]. In more extreme cases, this traffic might originate
from different access networks (such as fixed broadband, mobile, datacenters, or
cloud customer premises), thus causing the nested NAT problem [202].

The goal of this use case is to test SNF in such a stateful context using a
service chain of 1-10 NAPTs. Each NAPT maintains a state table that stores the
original and translated source and destination IP addresses and ports of each flow,
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associated with the input interface where a flow was originated. The rhomboid
points of Figure 7.7 show that the service chains of FastClick NAPTs suffer a
steeper (according to the fitted equation) quadratic degradation than the FastClick
routers. Although FastClick was extended to support thread-safe, parallelized
NAPT operations across multiple cores, it is still unable to drive the NAPT service
chain at line-rate, despite using 8 CPU cores and 128-packet batches.

SNF requires a certain batch size to realize the NAPT service chains at the
hardware speed as shown by the black circles of Figure 7.7. The curve with
the blue triangles indicates that a batch size of 32 packets leads to a slight
throughput degradation after the 6th NAPT in the service chain. State lookup
and management operations executed for every packet cause this degradation.
Depending on the performance targets, a network operator might tolerate a
potentially increased latency to achieve the higher throughput offered by an
increased batch size.

Next, the effect of different frame sizes on the service chains of routers and
NAPTs is explored. We run the longest service chains (i.e., 10 NFs) for frame sizes
in the range of [60, 1500] bytes. Figure 7.8 shows that SNF matches the NICs’
performance and achieves line-rate 40Gbps throughput for frames larger than
128 bytes. FastClick only achieves similar performance for frame sizes greater
than 800-1000 bytes.
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7.5.4 Performance Analysis of Real Service Chains
A common use case for an ISP is to deploy a service chain of a firewall, a router,

and a NAPT as depicted in Figure 7.9. The firewall of such a service chain may
contain thousands of rules in its ACL causing serious performance issues.

Router

NAPT Internet

Firewall

ISP Network
204.152/16

Inbound traffic
Outbound traffic

      Intra-ISP traffic

Figure 7.9: An ISP’s service chain that serves inbound and outbound Internet
traffic as well as intra-ISP traffic using three NFs.

A set of three ACLs [193], taken from ISPs, are utilized to deploy the service
chain of Figure 7.9. The firewall implements one ACL with 251, 713, or 8550
entries. The second NF is a standards-compliant IP router that redirects packets
either towards the ISP’s domain (intra-ISP traffic with prefix 204.152.0.0/16) or
to the Internet. For the latter traffic, the third NF interconnects the ISP with the
Internet by performing source and destination NAPT. The above ACLs were used
to generate traces of variable-length frames that systematically exercise all of their
entries.

In the following sections the performance of SNF is measured in two different
testbeds: §7.5.4.1 shows how the limits of an Intelr Xeonr CPU E5-2667 v3 are
explored using a software-based implementation of the above service chains, while
in §7.5.4.2, a hardware-assisted variant of the each of the same service chains is
employed to assess the performance of SNF in a realistic deployment.

7.5.4.1 Software-based SNF

Figure 7.10 depicts a topology that emulates the service chain of Figure 7.9.
Two machines are used as traffic sources/sinks to emulate the ISP and Internet
domains, both connected to the service chains via two 10Gbps NICs.

The service chains are hosted by the machine in the middle, where we
instantiate a software-based SNF across all 8 CPU cores of an Intelr Xeonr E5-
2667 v3 CPU, according to Figure 5.2c. The service chain has two pairs of NICs,



132
CHAPTER 7. SYNTHESIZING HIGH PERFORMANCE NFV SERVICE

CHAINS

each pair connected to a different domain (i.e., ISP and Internet). For each NIC we
use one CPU core to perform I/O, hence 4 CPU cores of the same socket are left
for packet processing. The symmetric RSS scheme introduced in §7.1 is employed
to allow a CPU core to drive an SNF TCU at the maximum processing speed of
the machine. The same service chains were also implemented in FastClick [125],
to have a state of the art performance reference for SNF, according to Figure 5.2b.

In the following sections a detailed performance analysis of both (i.e., SNF
and FastClick) software-based service chains is provided. First we evaluate the
per packet latency imposed by the read and write stages of SNF and FastClick
(see §7.5.4.1). Then, the overall systems’ performance is measured following the
setup illustrated in Figure 7.10 (see §7.5.4.1).

Cores 0-3
perform I/O on 

NICs 0-3

SNF
Multi-threaded

Synthesizer

SNF Rewriter-Core 4

SNF Rewriter-Core 5

SNF Rewriter-Core 6 

SNF Rewriter-Core 7 

ISP
Traffic 

Gen/Sink

Internet
Traffic 

Gen/Sink

Multi-threaded
Classifier

Cores 4-7
perform stateful 

processing

Figure 7.10: Software-based SNF testbed. The ISP and Internet domains are
connected to the service chain using 2x10Gbps NICs each. The service chain has
4x10Gbps NICs. The machine that executes the service chain uses 4 CPU cores
for I/O (one per NIC) and 4 cores (in the same socket) for stateful processing.

Performance of Internal Stages

A set of latency microbenchmarks was conducted within the internal stages of
SNF and FastClick. The main target of this measurement campaign is to quantify
the exact cost, in terms of latency, of the read and write operations. To do so, the
read and write parts of the SNF and FastClick pipelines were isolated and a set of
new Click elements were placed before and right after these parts. These elements
were used to timestamp each packet with a nanosecond precision, hence when a
packet exits the target stage, its’ payload contains the delta latency calculated as a
time difference between the first (i.e., before the target stage) and the second (i.e.,
after the target stage) timestamp. For example, in Figure 7.10 we put the SNF
synthesizer (rounded blue rectangle inside the SNF box) between two timestamping
elements in order to measure the latency of SNF’s write operations. Figure 7.11
shows the latencies obtained from these experiments.
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Figure 7.11: Latency (µs), plotted on a logarithmic scale, versus frame sizes
(for frame sizes of 64, 128, 256, and 1500 bytes) of the classification (read) and
modification (write) stages of three different ISP-level service chains with 251, 713,
and 8550 rules in their ACLs. FastClick and SNF implement these service chains
in software using 8 CPU cores (in a single machine with four NICs), symmetric
RSS, and batch size of 32 packets. Input rate is 5Gbps across all the input links.
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Four frame sizes (64, 128, 256, and 1500 bytes) were used to inject 100,000
frames per frame size. The latency per frame was measured and plotted as
boxplots. Each boxplot corresponds to three latency percentiles (25th, 50th, and
75th) illustrated as bottom, middle, and top horizontal lines respectively. The
whiskers correspond to the 1st and 99th latency percentiles.

Figure 7.11a depicts the latency of SNF and FastClick when they execute
the read-part (i.e., classification) of the three service chains (i.e., each one
corresponding to a different ACL), as a function of four different frame sizes.
As a reference, we also measure the latency to traverse an empty Click element
(first boxplot of each frame size highlighted with purple color) and the latency
to traverse a read element (second boxplot of each frame size highlighted with
gray color) that does not contain any traffic conditions (i.e., a classifier with one
wildcard entry).

A first observation in Figure 7.11a is that even an empty Click element
introduces variance in the per frame latency which spans from almost 100ns to 2µs
for small frames. The reason of this variance is the design of the FastClick platform,
as its main target is to provide packet processing functions at very high throughput
using kernel bypassing (via DPDK) together with I/O and computational batching.
The latter technique has a well-known effect on the latency even though we used
the minimum batch size (i.e., 32 packets) allowed by DPDK to conduct these
experiments above.

Secondly, since the input rate of this experiment is 5Gbps, but different frame
sizes are tested, the input load in terms of the number of packets per second is
different among these frame sizes. The corresponding packet rates are 7.44, 4.22,
3.55, and 0.41Mpps for frame sizes of 64, 128, 256, and 1500 bytes. This is the
reason that the latency for small frames is greater than the latency observed for
1500 bytes frames. A complementary observation is that an increasing input load
(i.e., in pps) increases the latency variance.

Third, the increasing complexity of the three ACLs leads to increasing latency
for both SNF and FastClick. SNF uses a single classifier to consolidate all read
operations, as opposed to FastClick that uses a set of read operations per NF in
the service chain. This difference results in a substantial latency reduction if we
look at the latency of the largest ACL (i.e., 8550 rules). To further clarify this, we
see that the 1st, 25th, and 50th percentiles of SNF’s latency are 10-20x lower that
the respective percentiles of FastClick’s latency. Additionally, the 75th percentiles
of SNF are lower but comparable to FastClick, while the 99th percentiles exhibit
a difference of 2-3x.

Despite the compression that SNF applies to the traffic classes of a service
chain, latency variance is still observed. For the largest ACL, comparing the 1st

and the 99th latency percentiles of Figure 7.11a results in 3 orders of magnitude of
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variance (FastClick shows a variance of 4 orders of magnitude for the same ACL).
The reason for this variance is the cost of searching the binary trees of SNF’s
TCUs; based on our formal complexity analysis in §7.2.1.3, this cost is linear with
the number of packet filters in the worst case. Some TCUs of the largest ACL
have more than 2000 packet filters, hence some packets might need to traverse all
these conditions while being classified. This explains the measured variance of the
software-based SNF for the large ACL.

Figure 7.11b shows the latency imposed by SNF and FastClick when applying
packet modifications. Generally, the cost of modifying the traffic is lower than
the classification cost since the 25th and 75th percentiles span between 100ns and
2µs. This cost is almost 4x greater than the cost of an empty Click element and
independent of the complexity of the ACLs (which reside in the firewall), since the
write operations of these service chains occur in the router and NAPT. Similarly
to the classification case, latency variance is observed; this variance causes the 99th

percentiles to be 10x greater (around 10µs) than the median latencies.
Finally, although SNF applies write operations with zero redundancy, it

appears to incur similar latency to FastClick. The reason is the thread-safe design
of the SNF’s IPSynthesizer element. This element allows multiple cores to apply
synthesized write operations on independent TCUs in parallel. However, in this
use case there are only four TCUs (bi-directional Intra-ISP and Internet traffic),
hence only two TCUs (i.e., one per domain) can run at the same time. This design
trades a small performance overhead for safety, although use cases with more TCUs
might achieve better performance.

Overall Performance

In this section the focus is shifted towards the overall system’s performance.
To do so, the throughput and end-to-end latency of the software-based service
chains, as observed by the traffic receivers, are measured. Figure 7.12 presents the
performance of the 3 service chains versus the same four frames sizes. To accurately
quantify the cost of each service chain, throughput and latency are measured
when the server is simply forwarding traffic between the senders and receivers.
This experiment is marked with the label “Server Forwarding” in Figures 7.12a
and 7.12b and shows what the underlying hardware can achieve when no processing
takes place.

Figure 7.12a shows that the small ACL (251 rules), executed as a single
FastClick instance, achieves satisfactory throughput, equal to its synthesized
counterpart. This indicates that a small ISP or a service chain deployment in
small subnets (e.g., using links with capacity equal or less than 10Gbps) may not
fully benefit from SNF. As depicted in Figure 7.12b, the median latency is also
bounded below 100µs. Looking at the latency of the “Server Forwarding” case,
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Figure 7.12: Overall performance of the software-based SNF and FastClick versus
4 frame sizes (64, 128, 256, and 1500 bytes) of three different ISP-level service
chains with 251, 713, and 8550 rules in their ACLs. Both frameworks implement
these service chains in software using 8 CPU cores (in a single machine with four
NICs), symmetric RSS, and batch size of 128 packets. Input rate is 40Gbps for
the throughput and 5Gbps for the latency experiments across all the input links.
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we notice that this time is dominated by the fact that our traffic is initiated in one
machine but performs two hops before being sunk at the destination.

However, for the ACLs with 713 and 8550 rules the combination of all possible
traffic classes among the firewall, router, and NAPT NFs causes the service
chain’s classification tree to explode in size, hence synthesis is a powerful yet
necessary solution. This causes three problems for FastClick: (i) the throughput
when executing the last two ACLs (713, and 8550 rules) is reduced by 1.5x-10x
respectively (on average), (ii) the median latency of the largest ACL is at least
an order of magnitude greater than the median latencies of the smaller ACLs (see
Figure 7.12b), and consequently (iii) the 99th percentile of the latency increases
(up to almost 4ms).

In contrast, SNF effectively synthesizes the large ACLs (i.e., 713 and 8550
rules) maintaining high throughput despite their increasing complexity. In the
case of 713 rules, the synthesis is so effective that the throughput is better than
the 251-rule case. This was possible because the lazy subtraction technique of
SNF (see §7.4.1) achieved high compression rate for the ACL with 713 rules,
while the respective compression rate for the small ACL (i.e., 251 rules) was not
very high. Regarding latency, SNF demonstrates 1.1-12x lower median latency
(bounded below 300µs) and 1.8-3.5x lower latency variance (the 99th percentiles
are slightly above 1ms in some cases). These results are generally inline with the
latency microbenchmarks shown in §7.5.4.1 and indicate that FastClick (which
is the basis of SNF) is the main cause of the latency variance. However, there
is one difference between the latencies shown in Figure 7.12b and the latency
microbenchmarks shown in Figure 7.11. That is, in the experiment that involves
multiple hops (Figure 7.12b), large frames (i.e., 1500 bytes) exhibit almost two
times greater median latency than the smaller frames. This result is in contrast
with the findings of Figure 7.11, where the larger a frame is, the lower the latency
to classify or modify this frame. We believe that this result is explained by the
propagation delays of longer frames. Finally, the throughput of SNF is up to 8.5x
greater than for the FastClick implementation of the service chain.
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7.5.4.2 Hardware-assisted SNF

The results presented in §7.5.4.1 show that even highly optimized software-
based service chains cannot handle packet processing at a high rate for small
frames when the NFs are complex, also exhibiting latency variance. To overcome
this problem, additional experiments were conducted, in which packet classification
is offloaded to a hardware OpenFlow switch (since commodity NICs do not offer
sufficient programmability). By doing so, we showcase SNF’s ability to scale to
high data rates and hint at the performance that is potentially achievable by
offloading packet classification to a programmable network interface.

The topology of this new setup is shown in Figure 7.13 and corresponds to
the setup previously shown in Figure 5.2e. The ISP and Internet domains are
connected to the SNF classifier using two 10Gbps NICs each. The switch classifies
the packets and forwards them across four SNF servers that are connected by
10Gbps links to the switch. Finally, each server forwards the modified traffic back
to the traffic receiver module of the origin machine.
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Gen/Sink

OpenFlow 
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Traffic 

Gen/Sink

1
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SNF
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Traffic Class Units
to

Stateful Rewriters
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Figure 7.13: Hardware-assisted SNF testbed. Two interfaces per domain (i.e.,
ISP and Internet) send packets to the hardware-based classifier (ports at the top)
of the service chain, realized by an OpenFlow switch. The switch classifies and
dispatches input traffic to 4 different output ports connected with a cluster of 4
SNF machines. Each machine uses two NICs: One NIC receives traffic from the
switch, while the other NIC forwards the modified traffic back to the ISP or the
Internet.

This extended version of SNF includes a script that converts the classification
rules computed by the original SNF to OpenFlow v1.3 rules. This translation is not
straightforward because the switch rules are less expressive than the rules accepted
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by the software-based NFs. Specifically, rules that match on TCP and UDP port
ranges are problematic. While OpenFlow only allows matches on concrete values
of ports, naive unrolling of ranges into multiple OpenFlow matches leads to an
unacceptable number of rules. Instead, we solve the problem by utilizing a pipeline
of flow tables available within the switch. The first two tables match only on
the source and destination ports respectively, assign them to ranges, and write
metadata that defines the range. Further tables include the real ACL rules and
also match on the metadata previously added to a packet. Moreover, since the rules
in the NFs are explored in a top-to-bottom order, the same behavior is emulated
by assigning decreasing priorities to the OpenFlow rules.

In the following sections the same sets of ACLs as before are used to measure
the throughput and latency of the hardware-assisted SNF, showing again the
classification, modification, and overall performance of the system.

Classification and Modification Cost

Here the focus is on the performance of the two major parts of the testbed
depicted in Figure 7.13, the traffic classification and modification. These
performances are measured both on the hardware-assisted and purely software-
based SNFs to highlight the benefits of scaling out packet processing.

Classification
We detached the modification parts of both testbeds to isolate their classifiers. In
the testbed of Figure 7.10, we directly encapsulate and output each traffic class
derived by the SNF classifiers, while in the testbed of Figure 7.13, the four output
ports of the switch are connected back to the origin machines.

Figure 7.14 depicts the throughput and latency of both software-based and
hardware-assisted SNF classifiers. To highlight the classification cost in each
case, throughput and latency are measured in two extra cases: the NFV server
(that runs the software-based classifier) and the switch (that runs the hardware-
assisted classifier) act as a forwarders, marked as “Server Forwarding” and “Switch
Forwarding” respectively.

The first observation in this experiment is that the software-based classifier
outperforms its hardware-based version for the smallest frame size (i.e., 64 bytes).
Correlating this result with the experiment where the switch is simply forwarding
traffic (marked as “Switch Forwarding”) shows that when the switch performs
actual processing of small frames, it achieves poor throughput (see Figure 7.14a).
This might be an artifact of the specific switch, but we also acknowledge that
a DPDK-enabled NIC with an optimized NFV framework (such as SNF) can
compete hardware-based approaches offering cost-effective solutions.
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Figure 7.14: The performance of the software and hardware-based SNF
classification versus 4 frame sizes (64, 128, 256, and 1500 bytes) of three different
ISP-level service chains with 251, 713, and 8550 rules in their ACLs. Input rate is
40Gbps for the throughput and 5Gbps for the latency experiments across all the
input links.



7.5. PERFORMANCE EVALUATION 141

Second, for the ACLs with 251 and 713 rules, the two classifiers achieve
comparable throughput (see Figure 7.14a) for all frame sizes and the latency
(see Figure 7.14b) of the software-based classifier is lower than the latency of
the hardware classifier (excluding some outliers).

However, in the most complex setup (i.e., the largest ACL), an ISP can
benefit from the hardware classifier as it achieves 22-48% higher throughput than
the software-based classifier. Regarding latency, the hardware classifier seems
unaffected by the complexity of the ACLs. More interestingly, although the median
latencies of the software-based classifier are comparable (for 3 frame sizes) to its’
hardware version, the 75th and 99th percentiles are 10x greater. The reason for this
variance was explained in §7.5.4.1, when latency microbenchmarks were conducted
for the software-based SNF and FastClick classifiers.

Modification
The traffic modification stage of SNF operates completely in software as it is
stateful, hence both software-based and hardware-assisted SNFs pass through the
same stage. To isolate this stage we bypass the classifier, by decapsulating the
input frames and sending the IP traffic directly to SNF. Then, SNF applies the
synthesized write operations, encapsulates the IP packets to Ethernet frames and
outputs the traffic back to the origin servers. The write operations are related to
the Router and NAPT NFs of these service chains, hence they are independent of
the ACLs (and their complexity). Figure 7.15 shows the throughput and latency
of the modification stage.

For each service chain four different frame sizes are tested, and as a reference
point, the traffic modification performance of each service chain is also compared
to the “Server Forwarding” case (where the NFV servers simply forward (i.e.,
read and write) traffic without applying any other operations). As shown in
Figure 7.15a, it is obvious that the traffic modifications operate at the speed of
the hardware maintaining line-rate throughput. Moreover, these operations add
very low latency, as depicted in Figure 7.15b. This finding proves that the real
bottleneck of these ISP-level service chains is the classifier.
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Figure 7.15: The performance of the SNF modification (both software-based
and hardware-assisted SNF versions use an identical setup) versus 4 frame sizes
(64, 128, 256, and 1500 bytes) of three different ISP-level service chains with 251,
713, and 8550 rules in their ACLs. The packet modification is independent of the
complexity of the ACLs. Input rate is 40Gbps for the throughput and 5Gbps for
the latency experiments across all the input links.
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Overall Performance

After examining the performance of the individual hardware-assisted SNF
stages, the focus in on the overall system performance. Figure 7.16 shows the
throughput and latency of the 3 synthesized service chains using a fully-fledged
software-based and a hardware-assisted SNF.

We observe that a fully-functional hardware-assisted SNF is twice as fast as
the software-based version for the smallest frames. At first sight, this observation
is not inline with the findings of Figures 7.14 and 7.15. Specifically, the isolated
software-based SNF classifier (see Figure 7.14a) achieved 20-30Gbps of throughput
for the smallest frames, while the isolated IPSynthesizer operated at the speed of
hardware, based on Figure 7.15a. Combining both, substantially decreases the
throughput of the software-based SNF. We credit this behavior to the fact that
8 CPU cores might not be enough to realize such complex service chains purely in
software; we would like to repeat the same experiment using a CPU socket with
more cores, but our testbed does not allow this. On the other hand, comparing
Figure 7.14a and Figure 7.16a, the hardware-assisted SNF performs as fast as its
classifier, which confirms that classification is the bottleneck.

Secondly, the hardware-assisted SNF operates at almost 20Gbps for minimum
size frames, and it reaches line-rate for 256-byte frames. Line-rate processing
is also feasible for the software-based SNF, when processing the largest frames
(i.e., 1500 bytes). Moreover, we confirm the observations made in §7.5.4.1: the
hardware-assisted SNF is unaffected by the complexity of the ACLs, which is not
the case for the software-based SNF.

Figure 7.16b shows the latency of the hardware-assisted and software-based
SNFs versus the frame size. As expected, the boxplots of the fully-functional SNF
service chains (see Figure 7.16b) are similar but slightly shifted upward, compared
to the boxplots of the classifiers’ latencies depicted in Figure 7.15b. This is due to
the additional modification cost. These results also show that the median latencies
of the hardware-assisted SNF are low and stable across all frame sizes and service
chains. Additionally, the 75th percentiles are close to the median latencies and we
find this result to be encouraging. Comparing the latencies of the 3 service chains
with the baseline latencies of the forwarding cases, we see that SNF imposes very
low overhead when processing ISP-level service chains. Finally, we confirm the
observation made in §7.5.4.1 about the increased latency of the largest frames.
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Figure 7.16: The performance of the software-based and hardware-assisted SNF
versus 4 frame sizes (64, 128, 256, and 1500 bytes) of three different ISP-level
service chains with 251, 713, and 8550 rules in their ACLs. The classifier of the
hardware-assisted SNF is offloaded to an OpenFlow switch, while processing occurs
in 4 serves connected to the switch. Input rate is 40Gbps for the throughput and
5Gbps for the latency experiments across all the input links.
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7.6 Verification
This section discusses tools that could potentially be utilized to systematically

verify the correctness of the synthesis proposed by SNF.
Recent efforts have employed model checking [53, 54] techniques to explore

the (voluminous) state space of modern networked systems in an attempt to find
state inconsistencies due to bugs, misconfigurations, or other sources. Symbolic
execution has also been utilized either alone [62, 63] or combined with model
checking [53], to systematically identify representative input events (i.e., packets)
that can adequately exercise code paths without requiring exhaustive exploration
of the input space (hence bounding the verification time).

Specifically, Software Dataplane Verification [63] might be suitable for verifying
NFV service chains. In [63], Dobrescu and Argyraki proposed a scalable approach
to verifying complex NFV pipelines, by verifying each internal element of the
pipeline in isolation; then by composing the results the authors proved certain
properties about the entire pipeline. One could use this tool to systematically
verify a complex part of SNF, specifically the traffic classification. However,
this tool might not be able to provide sound proofs regarding all the stateful
modifications of SNF, since Dobrescu and Argyraki verified only two simple stateful
cases (i.e., a NAT and a traffic monitor) and did not generalize their ideas to a
broader list of NFV flow modification elements.

SOFT [62] could be employed to test the interoperability between a service
chain realized with and without SNF. In other words, SOFT could inject a broad
set of inputs to test whether the SynthesizedNF defined in §7.2.1.3 outputs packets
that are identical with the packets delivered by the original set of NFs. Similarly,
HSA [56] could be used to verify loop-freedom, slice isolation, and reachability
properties of SNF service chains. Unfortunately, HSA statically operates on a
snapshot of the network configuration, hence is unable to track dynamic state
modifications caused by continuous events. SOFT is a special-purpose verification
engine for SDN agent implementations. Therefore, both tools would require
significant additional effort to verify stateful NFV pipelines.

Finally, translating an SNF processing graph into a Kinetic [54] finite state
machine would potentially allow Kinetic to verify certain properties for the entire
pipeline. However, Kinetic does not systematically verify the actual code that runs
in the network, but rather builds and verifies a model of this code. Therefore, it is
unclear (i) whether a Kinetic model can sufficiently cover complex service chains,
such as the ISP-level service chains presented in §7.5.4 and (ii) whether Kinetic’s
located packet equivalence classes can handle the complex TCUs of SNF without
causing state space explosion.

To summarize, although the works above provide remarkable advancements
in software verification, a substantial amount of additional research is required
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to provide strong guarantees about the correctness of SNF. As the focus of this
thesis is to deliver high speed pipelines for complex and stateful service chains, the
verification of SNF is left as future work (see §10.2).

7.7 Originality and Open Source Contributions
In §3.2 we studied modern packet processing architectures, emphasizing on

network I/O and processing techniques. In §3.3 middlebox consolidation platforms
were discussed. In this section, the originality of SNF is highlighted with respect
to these efforts.

7.7.1 Modular NFV
The modular nature of NFV frameworks such as Click and the DPDK

packet framework facilitates the development process and allows programmers to
compose, and extend NFs easily. However, there exists unnecessary redundancy
across modules since the modules were developed to be independent.

To the best of our knowledge, our work is the first to depart from Click’s
current NF-oriented form to enable the same modularity in the service stratum,
thus enabling the synthesis of chained NFs as a single Synthesized-Click
instance. To achieve the best possible performance, we adopted the FastClick
extensions. The SNF extensions (atop FastClick) are available at [197].

7.7.2 Monolithic Middlebox Implementations
Until recently, most NFV approaches have treated NFs as monolithic entities

placed at arbitrary locations in the network. In this context, even with the
assistance of state of the art OSs, such as the Click-based ClickOS [111] together
with fast network I/O [33, 28] and processing [110, 124, 125] mechanisms, service
chaining is costly as shown in §4.1.2. The main reason as shown in our experiments,
for this poor performance is the I/O overhead due to forwarding packets along
physically separate and virtualized NFs.

We envision NFV deployments that no longer rely on monolithic NFs, but
rather permit NF composition with zero redundancy. SNF is a contribution
that meets this requirement.
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7.7.3 Consolidation at the Machine Level
Concentrating network processing into a single machine is a logical way to

overcome the limitations stated above. CoMb [137] consolidates middlebox-
oriented flow processing into one machine, mainly at the session layer. Similarly,
OpenNF [134] provides a programming interface to migrate NFs, which can in
turn be collocated in a physical server. DPIaaS [138] reuses the costly DPI
logic across multiple instances. RouteBricks [122] exploits parallelism to scale
software routers across multiple servers and cores within a single server, while
PacketShader [123] and NBA [124] take advantage of cheap and powerful auxiliary
hardware components such as GPUs to provide fast packet processing.

The works above only partially exploit the benefits of sharing common
middlebox functionality, thus they are far from supporting optimized
service chains. SNF demonstrated that sharing and synthesizing common
functionality can take NFV service chains to the next level of performance.

7.7.4 Consolidation at the Individual Function Level
This consolidation is the next level of composition of scalable and efficient

NF deployments. In this context, Open Middleboxes (xOMB) [139] proposes an
incrementally scalable network processing pipeline based on triggers that pass the
flow control from one element to another in a pipeline. The xOMB architecture
allows great flexibility in sharing parts of the pipeline; however, it only targets
request-oriented protocols and services, unlike our generic framework.

Slick [140] operates on the same level of packet processing as SNF to compose
distributed, network-wide service chains driven by a controller. Slick provides its
own programming language to achieve this composition and unlike our work, it
addresses placement requirements. Slick is very efficient when deploying service
chains that are not necessarily collocated. However, we argue that in many cases
all the NFs of a service chain need to be deployed in one machine in order to
effectively dispatch processing across cores in the same socket.

Slick does not allow all of the NF elements to be physically placed into a single
process. Our work goes beyond Slick by trading the flexibility of placing NF
elements on demand for extensive consolidation of the processing of the service
chain. Our synthesized SNF realizes such consolidated service chains with zero
context switching and zero redundancy of individual packet operations.

Very recently, Bremler-Barr, Harchol, and Hay [31] applied the SDN control
and data plane separation paradigm to OpenBox: a framework for network-wide
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deployment and management of NFs. OpenBox applications input different NF
specifications to the OpenBox controller via a north-bound API. The controller
communicates the NF specifications to the OpenBox Instances (OBIs) that
constitute the actual data plane, ensuring smart NF placement and scaling. An
interesting feature of the OpenBox controller is its ability to merge different
processing graphs, from different NFs, into a single and shorter processing graph,
similar to our SNF. The authors of OpenBox made a similar observation as we
did regarding the need to classify the traffic of a service chain only once, and then
apply a set of operations that originate from the different NFs of the service chain.

However, OpenBox does not highly optimize the result service chain-level
processing graph for two reasons:

(i) The OpenBox merge algorithm can only merge homogeneous packet
modification elements (i.e., elements with the same type). For example, two
“Decrement IP TTL” elements, that each decrements the TTL field by one, can
be merged into a single element that directly decrements the TTL field by two.
Imagine, however, the case where OpenBox has to merge the NFs of Figure 7.5. In
this example, OpenBox cannot merge the “Rewrite Flow” element (that modifies
the source and destination IP addresses as well as the source port of UDP packets)
with the 3 “Decrement IP TTL” elements, since these elements do not belong to the
same type. This means that the final OpenBox graph will have 2 distinct packet
modification elements (i.e., 1 “Rewrite Flow” and 1 “Decrement IP TTL”) and
each element has to compute the IP and UDP checksums separately. Therefore,
OpenBox does not completely eliminate redundant operations.

In contrast, SNF effectively synthesized the rewrite operations of Figure 7.5
into a single element (see Figure 7.6) that computes the IP and UDP checksums
only once. Consequently, SNF produces both a shorter processing graph and
a synthesized chain with no redundancy, hence achieving lower latency.

(ii) Although OpenBox can merge the classification elements of a service
chain into a single classifier, the authors have not addressed how they handle
the increased complexity of the final classifier.

Our preliminary experiments showed that in complex use cases, such as the
ISP-level traffic classification presented in §7.5.4, the complexity of the service
chain-level classifier dramatically increases with an increasing number of ACL
rules. Therefore, SNF implements the lazy subtraction technique proposed by
Kazemian, Varghese, and McKeown [56]. The benefits of this technique were
stated in §7.4.1.
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Finally, the authors of OpenBox did not stress the limits of the OpenBox
framework in their performance evaluation. An input packet rate of 1-2Gbps
cannot adequately stress the memory utilization of the OBIs. Moreover, there is
limited discussion in their paper of how OpenBox exploits the multi-core capacities
of modern NFV infrastructures.

In contrast, in §7.5.2, §7.5.3, and §7.5.4 we demonstrated how SNF realizes
complex, purely software-based service chains at a 40Gbps line-rate. This
is possible by exploiting multiple CPU cores and by fitting most of the data
needed by an entire service chain into those cores’ caches.

7.7.5 Scheduling NFs for High Throughput
The E2 framework [32] demonstrated a scalable way of deploying NFV

services. E2 mainly tackles placement, elastic scaling, and service composition
by introducing pipelets. A pipelet defines a traffic class and a corresponding DAG
of NFs that should process this traffic class.

SNF’s TCUs are somewhat similar to E2’s pipelets, but SNF aims to make
them more efficient. Concretely, an SNF TCU is not processed by a DAG
of NFs, but rather by a highly optimized piece of code (produced by the
synthesizer) that directly applies a set of operations to this specific traffic
class.

7.7.6 Impact
E2 can use SNF to fit more service chains into one machine, hence postpone its

elastic scaling. Existing approaches can transparently use our extensions to provide
services, such as (i) lightweight Xen VMs that run synthesized ClickOS instances
using netmap network I/O, (ii) parallelized service chains using the multi-server,
multi-core RouteBricks architecture, and (iii) synthesized service chains that are
load balanced across heterogeneous hardware components (i.e.,CPU and GPU)
using NBA.

7.7.7 Summary of Open Source Contributions
A list of open source contributions related to SNF is presented below:
1. SNF’s extensions to FastClick [125] are available at [197].
2. The entire SNF framework is implemented in C++11 and can be found

at [203].





Chapter 8

NFV Service Chains at the True
Speed of the Underlying
Commodity Hardware

T his chapter ∗ fulfills the promise (and justifies the title) of this thesis by
introducing the design and implementation of Metron; an approach for

realizing NFV service chains at the speed of the hardware. To the best of
my knowledge, Metron is the first system that automatically and dynamically
leverages the joint features of the network and server hardware to achieve high
performance. Metron eliminates inter-core transfers (unlike recent work with
4 [32], 2 [117], or 1 [31] inter-core transfers as shown in Figure 4.6), making it
possible to process packets potentially at L1 cache speeds. Also, Metron overcomes
the load balancing issues of “run-to-completion” approaches [122, 125, 31, 29], by
combining smart identification, tagging, and dispatching techniques. A number
of challenging problems had to be addressed to realize this vision. First, making
efficient use of all the available hardware is hard because of the in-machine request
dispatching overheads (described in §4.2). Second, discovering and dealing with
the heterogeneous network (switches, NICs) and server hardware, in a generic way,
is non-trivial from a management perspective. Third, detecting and dealing with
load imbalances that reduce the performance of the initially placed service chains
requires rapid and stable adaptation. The research contributions are stated below,
while dealing with the aforementioned challenges:

1. We orchestrate programmable network’s hardware to perform stateless
processing and packet classification. We deal with hardware heterogeneity
by building upon the unified management abstractions of an industrial-grade

∗The work described in this chapter is based on the conference paper “Metron: NFV Service
Chains at the True Speed of the Underlying Hardware” [30] (the authors of the paper retained
the copyright and give their joint approval for parts of this material to appear in this thesis).
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SDN controller (Open Network Operating System (ONOS) [48]). This allows
Metron to leverage popular management protocols, such as OpenFlow [13]
and P4 [86], and easily integrate future ones. We contributed a new driver
for programmable NICs and servers to ONOS [204].

2. We overcome the network/server architecture mismatch by instructing
Metron to tag packets as early as possible, enabling them to be quickly
and efficiently switched and dispatched throughout the entire service chain.
To do so, Metron first uses SNF [29] to identify the traffic classes of a service
chain and produce a synthesized NF that performs the equivalent work of
the entire service chain (see §8.1.3.1). Then, Metron divides the synthesized
NF into stateless and stateful operations (see §8.1.3.3) and instructs all
available programmable hardware (i.e., switches and NICs) to implement the
stateless operations, while dispatching incoming packets to those CPU cores
that execute their stateful operations. Metron runs stateful NFs on general
purpose servers, while fully leveraging their generic processing power.

3. We propose a way to efficiently and quickly obtain the network state in order
to make fast placement decisions at low cost with high accuracy (see §8.1.3.3).
We devised a mechanism to coordinate load balancing among servers and
their CPU cores, demonstrating that Metron provides comparable elasticity
with purely software-based approaches, but at the true speed of the hardware
(see §8.1.3.4).

An evaluation shows that Metron realizes deep packet inspection at 40Gbps
(§8.2.3.1) and stateful service chains at the speed of a 100GbE NIC on a single
server (§8.2.3.2). This results in up to 4.7x lower latency, up to 7.8x higher
throughput, and 2.75-6.5x better efficiency than the state of the art. It is difficult to
improve on this performance unless stateful service chains are completely offloaded
to hardware, which is impossible with today’s commodity hardware.

8.1 Metron Architecture
In order to address the fourth challenge of this thesis, introduced in §4.3.4, this

section describes Metron’s system design, starting with a high-level overview via
an illustrative example in §8.1.1. §8.1.2 describes the Metron data plane, which
is configured by the Metron controller as explained in §8.1.3.

8.1.1 Overview
To understand how Metron works, consider a simple network consisting of two

OpenFlow switches connected to a server as shown at the bottom of Figure 8.1.
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Figure 8.1: Metron overview using an example Firewall→DPI service chain.

Assume that an operator wants to deploy a Firewall→DPI service chain, as shown
in Step 1 of Figure 8.1.

In Step 2, the Metron controller identifies the traffic classes ∗ of the service
chain, by parsing the packet processing graphs (each graph has a set of packet
processing elements as in [42, 32, 31]) of the input NFs. In Step 3, Metron
composes a single service chain-level graph by synthesizing the read and write
operations of the individual graphs (see §8.1.3.1). Because Metron detects the
availability of resources (i.e., the OpenFlow switches) along the path to the
server, it associates stateless read and write operations with these components
and automatically translates these operations into OpenFlow rules (Step 4.1). The
remaining, potentially stateful, operations are translated into software instructions
targeting the Metron agent at the server (Step 4.2). The key to Metron’s high
performance is exploiting hardware-based dispatching (Step 5) that annotates the
traffic classes matched by the OpenFlow rules with tags that are subsequently
matched by the server’s NIC to identify the CPU core to execute the stateful
operations. This is how Metron guarantees that each traffic class will be processed
by a specific core, thus eliminating costly inter-core transfers. This guarantee

∗Traffic class is a (set of) flow(s) treated identically by an NF chain.
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is maintained even when a CPU core becomes overloaded (see §8.1.3.4) as the
Metron agent reports run-time statistics (Step 6) that allow the Metron controller
to rebalance the load (Step 7), by splitting traffic classes into multiple groups that
are dispatched to different cores using different tags (Steps 8.1 and 8.2). This
overview is concluded with a survey of popular NFs; noting that in Table 8.1 a
substantial portion of these NFs can be fully or partially offloaded to commodity
hardware.

Table 8.1: Survey of popular NFs. The offloadability of “Hybrid” NFs depends
on the use case.

Network Function Offloadable
to Hardware

L2/L3 Switch, Router Yes
Firewall/Access Control List Hybrid

Carrier Grade NA(P)T, IPv4 to IPv6 No
Broadband Remote Access Server Partially [205]

Evolved Packet Core Partially
Intrusion Detection/Prevention Partially [130]

Load Balancer Hybrid
Flow Monitor Yes

DDoS Detection/Prevention Yes [206]
Congestion Control (RED, ECN) Yes

Deep Packet Inspection No
IP Security, Virtual Private Network Yes [127]

8.1.2 Metron Data Plane
The Metron data plane follows the master/slave approach depicted in

Figure 8.2. The master process is an agent that interacts with (i) the underlying
hardware by establishing bindings with key components, such as NICs, memory,
and CPU cores and (ii) the Metron controller through a dedicated channel.

The key differentiator between Metron and earlier NFV works is the tagging
module shown in Figure 8.2. This module exposes a map with tag types and
values that each NIC uses to interact with each CPU core of a server; this map is
advertised to the Metron controller. The controller dynamically associates traffic
classes with specific tags in order to enforce a specific flow affinity, thus controlling
the distribution of the load. Most importantly, this traffic steering mechanism
is applied by the hardware (i.e.,NICs), hence Metron does not require additional
CPU cores (as E2 does) to perform this task, thus packets are directly dispatched
to the CPU core that executes their specific packet processing graph.
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Figure 8.2: The Metron data plane.

When the master boots, it configures the hardware and registers with the
controller by advertising the server’s available resources and tags. Then, the master
waits for controller instructions. For example, the master executes a deployment
instruction by spawning a slave process that is pinned to the requested core(s) and
by passing the processing graph to the slave. In the context of service chaining,
a Metron slave needs to execute multiple processing graphs, each corresponding
to a different NF in the service chain. Such graphs can be implemented either in
hardware or software. Earlier works implement these graphs in software and use
metadata to share information among NFs and to define the next hop in a service
chain. Although Metron supports this type of software-based chaining, as shown
in §4.2, this approach introduces unnecessary overhead due to excessive inter-core
communication and potentially under-utilizes the available hardware. Next, §8.1.3
explains how we approach and solve this problem.

8.1.3 Metron Control Plane
Here, we describe the key design choices and properties of the Metron controller.

8.1.3.1 Synthesis of Packet Processing Graphs

Given a set of input packet processing graphs, one per NF, Metron combines
them into a single service chain graph. To ensure low latency, the Metron controller
adopts SNF [29]; a more aggressive variant of OpenBox for merging packet
processing graphs, which provides a heuristic for solving the graph embedding
problem (see [207, 208, 209]) in the context of NFV. Metron uses SNF to eliminate
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processing redundancy by synthesizing those read and write operations that appear
in a service chain as an optimized equivalent packet processing graph. SNF
guarantees that each header field is read/written only once, as a packet traverses
the graph.

Another benefit of SNF’s integration into Metron is the ability to encode all
the individual traffic classes of a service chain using a map of disjoint packet filters
(Φ) to a set of operations (Ω). In §8.1.3.4 we use this feature to automatically scale
packet processing in and out, providing greater elasticity than available today.

8.1.3.2 Initial Resource Allocation

To allocate resources for the synthesized graph, we allow application developers
to input the CPU and network load requirements of their service chains.
Alternatively, this information can be obtained by running a systematic NFV
profiler, such as SCC [27], or by using more generic profilers, such as DProf [164].
Even in the absence of accurate resource requirements, Metron dynamically adapts
to the input load as discussed in §8.1.3.4.

8.1.3.3 Placement

Metron needs to decide where to place the synthesized packet processing graph.
Such a decision is not simple, because Metron considers both the servers and the
network elements along the path to these servers.

Table 8.1 showed that a large fraction of NFs cannot be implemented in
commodity hardware today, mainly because they require maintaining state. This
means, that the synthesized graph of such NFs cannot be completely offloaded.
To solve this, we designed a graph separation module to traverse and split the
synthesized graph into two subgraphs. The first subgraph contains the packet
filters and operations that can be completely offloaded to the network (we call this
a stateless subgraph), while the second (stateful) subgraph will be deployed on a
server. The average complexity of this task is O(logm), where m is the number
of vertices of the synthesized graph.

Given these two subgraphs, Metron needs to find a pair of nodes (a server
and a network element) that satisfy two requirements: (i) the server has enough
processing capacity to accommodate the stateful subgraph and (ii) the network
element has enough capacity to store the hardware instructions (e.g., rules) that
encode the stateless subgraph. Metron’s placement scheme deals with logical
servers and network elements, hence allowing further partitioning of the graphs
when no single server or network element has sufficient resources. Future work
will allow Metron to prevent service chain placement when there is not enough
network throughput available for the traffic between a network element and a
Metron server.
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Scalable Placement with Minimal Overhead
In large networks with a large number of servers and switches, it is both expensive
and risky to obtain load information from all the nodes. This is expensive because
a large number of requests need to be sent frequently and this would occupy
bandwidth to each node, generate costly interrupts to fetch the data, and occupy
additional bandwidth to return responses to the controller. This is risky because
the round-trip time required to obtain the monitoring data is likely to render
this data stale, leading to herd behaviors and suboptimal decisions. To make
a placement decision with minimal overhead, we use the simple, yet powerful,
opportunistic scheme of “the power of two random choices” [210]. According to
Mitzenmacher, this number offers exponentially better load balancing than a single
random choice, while the additional gain of three random choices only corresponds
to a constant factor.

Algorithm 3 outlines our server placement scheme. Metron queries the load
of two randomly selected servers (line 5) and selects the least loaded of these
two servers (lines 7 and 8), provided that the necessary resource requirements
(i.e., number of NICs and CPU cores) can be met. If the first two choices fail,
then these two servers are removed from the list (line 12) and the process is
repeated until a server is found (line 11). Note that this algorithm indirectly
prioritizes service chain deployments that exhibit spatial correlation with respect
to the processing location because spreading this processing might result in lower
performance, which is undesirable. Network operators can input a desired server
per service chain to the Metron controller, thus completely bypass the random
server selection process described by Algorithm 3.

Algorithm 3 Server selection for placing the stateful part of a service chain.
1: function selectServer(T,NbN,NbC)
2: serversList ← T.metronServers()
3: t ← ∅ . t will store the chosen server
4: while size(serversList) > 0 do
5: choices ← twoRandomChoices(serversList)
6: for s ∈ choices do
7: if (s.nics ≥ NbN) && (s.freeCores ≥ NbC) then
8: if (t == ∅) || (t.load < s.load) then
9: t ← s . Better choice
10: if t 6= ∅ then
11: return t . Server found
12: serversList.remove(choices)
13: return ∅
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Having randomly or explicitly selected a server also greatly simplifies the second
placement decision (i.e., the network element(s) to offload processing to). Well-
designed networks, such as datacenters, provision several fixed shortest paths
between ingress nodes (e.g., core switches) and servers, where each server might
be associated with a single core switch [211, 212]. Given this, we use Algorithm 4
to find the most suitable network element to offload the stateless graph, using the
following inputs:

1. the topology graph (T);
2. the server (Srv) where the stateful subgraph will be deployed (chosen by

Algorithm 3 or explicitly set by the network operator), and;
3. the rule capacity (D) required to offload the stateless subgraph.
Our algorithm intentionally prioritizes selection of the very first switch (ingress)

toward the target server (line 3). There are two reasons for this. First, applying
the classification operations of a service chain at the earliest possible stage, greatly
simplifies traffic steering for this service chain at all subsequent network elements
on the path to the NFV server. This is done by tagging the packets targeting
this service chain at the ingress node and using only this tag to match traffic at
any successor of the ingress node. Second, popular network protocols, such as
multi-protocol label switching [213], consider ingress and egress switches to be
more sophisticated, thus more powerful, by design. After a target switch has been
selected, the rules that encode the stateless subgraph are installed in this switch
and a unique tag is appended to each of the rule actions. To establish the path
between the selected switch and server, one rule is installed in each subsequent
switch along the path; this rule matches the tag of the offloaded service chain

Algorithm 4 Switch selection for placing the stateless part of a service chain.
1: function selectSwitch(T,Srv,D)
2: C ← T.availableCapacityMatrix()
3: inSw ← T.ingressNodeToward(Srv)
4: return recursiveSwitchSelection(T,inSw,Srv,C,D)
5: function recursiveSwitchSelection(T,Sw,Srv,C,D)
6: if D ≤ (CSw · CAP_THR) then . Demand is a fraction of the capacity
7: return Sw
8: else
9: nextSw ← T.nextNodeInPath(Sw, Srv)
10: if nextSw == ∅ then
11: return ∅
12: setupPath(Sw,nextSw)
13: return recursiveSwitchSelection(T,nextSw,Srv,C,D)
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and selects the port that leads to the server that executes the stateful part of this
service chain.

According to Algorithm 4, if the capacity requirements of the ingress switch
cannot meet the requirements for offloading a service chain (line 6), our algorithm
selects a subsequent node along the path to the NFV server (line 9), sets up
forwarding between the current and next node (line 12), and applies the same logic
recursively (line 13). Our decision is currently based on a single criterion (line 6);
that is, the rule capacity of a candidate switch must be greater than required and
at the same time the resources required must not exceed some measure of the
capacity (CAP_THR). The latter condition ensures that this switch has enough
space to accommodate future rule updates.

Handling Partial Offloading and Rule Priorities
Metron carefully treats the cases when (i) a stateless subgraph contains rules
with different priorities and (ii) one or more rules of such a subgraph cannot be
offloaded to hardware. The latter can occur, e.g., due to the hardware’s inability
to match specific header fields. In such a case, Metron will selectively offload
only the supported rules, while respecting rule priorities. To exemplify these two
cases, assume a service chain that needs to be deployed on the topology shown
in Figure 8.1. Assume that this service chain implements four rules that can be
offloaded to the first programmable switch, while the remaining part of the service
chain will be deployed on the server. If rule 3 cannot be offloaded and all of the
rules have the same priority, then Metron will offload rules 1, 2, and 4. However,
if these rules have, e.g., decreasing priorities (i.e., rule 3 has a higher priority than
rule 4), then Metron will offload only the first two rules, to guarantee that the
server applies rule 4 after rule 3.

8.1.3.4 Dynamic Scaling

Section 8.1.3.1 explained how Metron encodes a service chain as a set of traffic
classes, where each traffic class is a set of packet filters mapped to write operations.
This abstraction gives great flexibility when scaling a service chain in/out. As an
example, when E2 detects an overloaded NF, it scales this NF by introducing an
additional (duplicate) instance of the entire NF and then evenly splits the flows
across the two instances. In contrast, Metron splits the traffic classes of this NF
across two instances, such that each instance executes the code responsible for
each of its traffic classes (rather than the code of the entire NF).

To trigger a scaling decision, Metron gathers port statistics from key locations
in the network in order to detect load changes. Such a change results in Metron
asking for instantaneous CPU load and network statistics from the affected service
chains. Because the logic to react to overloads (load splitting) and underloads
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(load contraction) is symmetric, here we only focus on the former case. Given this
information, Metron applies the following, globally orchestrated, scaling strategy
to react to load imbalances.

Traffic Class-level Scaling
We leverage a grouping technique when creating a service chain’s traffic classes.
A set of T traffic classes {TCj

i | j ∈ [1, T ] } that belong to service chain i can be
grouped together, if and only if their packet filters {Φj

i | j ∈ [1, T ] } are mapped
to the same write operations: ∀k, l ∈ [1, T ],Ωk

i = Ωl
i

For example, a HTTP and a File Transfer Protocol traffic classes heading to a
NAT will both exhibit the same stateful write operations from this NF, thus they
can be grouped together. The Metron controller has this information available once
the traffic classes of a service chain are created (see §8.1.3.1). To dynamically scale
out a group of traffic classes, Metron needs to split this group into two or more
subgroups, where the first subgroup remains on the same CPU core as the original
group, while the other subgroup(s) are deployed and scheduled on a different (set
of) CPU core(s). These new traffic classes are annotated with different tags, such
that the NIC at the server can dispatch them to the appropriate CPU cores. We
call this mechanism “traffic class deflation” to differentiate it from the opposite
“traffic class inflation” process, where two or more groups of traffic classes that
exhibit the same write operations are merged together, when Metron detects low
CPU utilization.

To simplify load balancing, while keeping a reasonable degree of flexibility, the
split and merge processes always use a static factor of 2 (i.e., one group is split into
two, or two groups are merged into one). This decision also minimizes the amount
of state that Metron needs to transfer across CPUs. A fully dynamic solution with
additional visibility into the load of each traffic class would achieve better load
distribution; however, such a solution is considered impractical in the case of large
networks with potentially millions of traffic classes. Split and merge operations
may repeat until Metron can no longer split/merge a traffic class. A single flow
is an example of non-splittable traffic class. The reaction time of this strategy is
mainly affected by the time required for the controller to monitor and reconfigure
the data plane. In §8.2.4 we show how this strategy performs in practice.

Once an inflation/deflation decision has been made, Metron needs to guarantee
that the state of the affected traffic classes (e.g., those being redirected to a different
CPU core in the case of deflation) will remain consistent. To do so we adopt a
scheme that quickly duplicates the stateful tables of a group of traffic classes across
the involved CPU cores, when inflation occurs. Similarly, we merge the stateful
tables of two groups during the inflation process. Although this scheme introduces
some redundancy (entries of migrated traffic classes will still occupy space in the
memory of the previous CPU core until they expire), it offers a quick solution to a
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problem that is beyond the scope of this work. StateAlyzr [135], OpenNF [134], or
the work by Olteanu and Raiciu [214] could be integrated into Metron to provide
more efficient state management solutions. Alternatively, state management could
be delegated to a remote distributed store as per Kablan, et al. [136].

8.1.3.5 Distributed Control Plane

Metron follows a very different design than existing NFV controllers, such as
OpenBox and E2. Metron is a distributed NFV framework that enables elasticity
at both the control and data planes.

A distributed control plane provides fault-tolerance and resilience in the face
of failures that might compromise the NFV services. At the same time, the
system as a whole can meet performance targets that are far higher than what
a single instance might be able to handle, thus allowing the control plane to scale
together with the data plane. Metron’s elastic control plane allows us to partition
the network into multiple segments with different controller instances managing
different devices, while maintaining a globally consistent network state.

Metron can be configured to operate with strong or eventual consistency
guarantees, depending on the performance targets of the operator. To provide
strong guarantees, Metron’s distributed engine is based on the Raft [215] consensus
protocol. Eventual guarantees trade some consistency for superior performance by
reading and writing local state, while updates are subsequently propagated to
other replicas in the background.

When an application registers a service chain with Metron, its packet processing
graphs are stored and replicated across all Metron instances, while one primary
instance undertakes to place and deploy the service chain in the network segment
with the highest availability, as explained in §8.1.3.3.

8.1.3.6 Integrating Blackbox NFs

Some NF providers might not wish to disclose the source code of their NFs. In
this case we offer two integration strategies: (i) partially synthesize a service chain,
while using DPDK ring buffers to interconnect synthesized NFs with blackbox NFs
or (ii) input only an NF configuration (e.g., DPI rules, omitting DPI logic) using
Metron’s high-level API, thus let Metron use its own data plane elements to realize
this NF (see §8.2.3).
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8.1.4 Routing (Updates) and Failures
To explain how Metron’s routing and dispatching works and how Metron reacts

to routing updates and failures, we use the example shown in Figure 8.3. We
assume a software-defined ∗ network on which the network operator has deployed
a routing application that routes HTTP traffic † between source and destination
(through the path s1→s3). The routing is done using the information shown within
green dashed-dotted outlines.

A policy change forces the network operator to further process the HTTP
traffic before it reaches its destination. Thus, she deploys an HTTP service chain
(described by the top box with dotted outline in Figure 8.3) using Metron. When

∗Metron can also operate in legacy networks by adding one or more programmable switches
before the NFV servers.

†We assume only HTTP traffic to keep the example simple.

Global Controller

NFV Server (srv1)

Advertised OF Rules on s1 and s3
Rs1: match HTTP_RULE action outPort 1
Rs3: match HTTP_RULE action outPort 2
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Initial HTTP Path (Routing):

0

1

2
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         action tag X, outPort 1
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3
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Initial Routing Operations:

Metron HTTP Policy:

Figure 8.3: Metron’s routing & CPU dispatching scheme.
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Metron boots it obtains the current routing policy and paths for the HTTP traffic,
as advertised by the routing application. Next, the Metron controller performs a
set of updates (see the left-side boxes with solid outlines, where OF stands for
OpenFlow). The updates focus on two aspects: (i) to extend the existing HTTP
rules (i.e., Rs1 and Rs3 at the bottom right box with dashed-dotted outline) with
rules that also perform part of the service chain’s operations (i.e., R1′s1 and R2′s1)
and (ii) to tag the HTTP traffic classes to allow the NFV server to dispatch them
to different CPU cores.

In this example, Metron identifies two traffic classes and tags them with tags X
and Y. The tagging is applied by the first switch (i.e., s1 as per Algorithm 4) using
the rules R1′s1 and R2′s1 (top left box with solid outline). The next switch (s3) uses
the tags (i.e., rule R1′s3) to redirect the HTTP traffic classes to the NFV server,
where Metron has installed NIC rules (i.e., R1′NIC and R2′NIC) to dispatch packets
with tags X and Y to CPU cores 1 and 2 respectively. The first core executes a
monitoring NF, while the second core runs an IDS NF. After traversing the service
chain, the packets return to s3, where another Metron rule (i.e., R2′s3) redirects
them to their destination.

If not carefully addressed, a routing change or failure might introduce
inconsistencies. Metron avoids these problems by using the paths to the NFV
server (i.e., P1 and P2), as advertised by the routing application, to precompute:
(i) alternative switches that can be used to offload part of a service chain’s packet
processing operations (see §8.1.3.3) and (ii) the actual rules to be installed in
these switches. In this example, a routing change from path P1 to P2 (due to a
routing update or a link failure between s1 and s3) will result in Metron installing
2 additional rules in s2 (these rules follow same logic with the rules in s3). Metron
also updates the first rule of s3 by changing the inPort value to 1 rather than 0.

Backup configurations are kept in Metron’s distributed store and are replicated
across all the Metron controller instances in order to maintain a global network
view. When a routing change or failure occurs, Metron applies the appropriate
backup configuration. In §8.2.5 we show that Metron can install 1000 rules in less
than 200ms, hence quickly adapting to routing changes and (anticipated) failures,
even those requiring a large number of rule updates.

8.2 Evaluation
In this section an evaluation strategy is presented, focusing on performance

and scalability aspects of Metron. §8.2.1 describes how we implemented Metron,
while §8.2.2 outlines the testbed used to conduct the experiments. In §8.2.3, §8.2.4,
and §8.2.5 Metron’s data plane performance, dynamic scaling, and deployment
micro-benchmarks are presented respectively.
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8.2.1 Implementation
The Metron controller is built on top of ONOS [48, 49], an open source,

industrial-grade network operating system that is designed to scale well. Key
to this decision was the fact that ONOS exposes unified abstractions for a large
variety of network drivers that cover popular network configuration protocols, such
as OpenFlow [13], P4 [86], Network Configuration protocol/YANG [216, 217],
REST, and Simple Network Management Protocol (SNMP) [218]. ONOS was
extended with a new driver that remotely monitors and configures NFV servers
and their NICs. This driver is available at [204].

Metron’s data plane extends FastClick [125]. The virtual machine device
queues of DPDK [28] 17.08 is used to implement the hardware dispatching based
on the values of the destination MAC address or VLAN ID fields. The Metron
prototype (available at [219]) uses the former header field as a filter, because the
large address space of a MAC address provides unique tags for trillions of service
chains. To scale to 100Gbps, Metron instructs the hardware classifier of a Mellanox
NIC (§8.2.3.2).

8.2.2 Testbed
The testbed used for the experiments in this chapter consists of five identical

servers, the technical characteristics of which were described earlier in Chapter 5.
Testbed at 10/40Gbps
A testbed with a NoviFlow 1132 OpenFlow switch [220] (described in Chapter 5)
is deployed and two servers are attached to this switch. The four ports of the first
server are connected to the first four ports of the switch to inject traffic at 40Gbps.
Then, ports 5-8 of the switch are connected to the four ports of the second server,
where traffic is processed by the NFV service chains being tested and sent back to
the origin server through the switch. This testbed is shown in Figures 5.2d (i.e.,
normal service chains) and 5.2e (i.e., synthesized service chains by Metron using
SNF). All the sub-sections in this section, but for §8.2.3.2 and §8.2.3.3, use this
testbed.
Testbed at 100Gbps
In §8.2.3.2, a 100Gbps testbed is deployed using two back-to-back connected
servers as discussed in Chapter 5 and shown in Figures 5.2b (i.e., normal service
chains) and 5.2c (i.e., synthesized service chains by Metron using SNF).

The last server is used to run the Metron controller. §8.2.5 studies how switch
diversity might affect Metron, by comparing the performance and capacity of a
NoviFlow 1132 switch with an HP 5130 EI Switch [181] (described in Chapter 5),
and the popular OVS [97] software switch. Each experiment was conducted
10 times and we report the 10th, 50th (i.e., median), and 90th percentiles.



8.2. EVALUATION 165

8.2.3 Metron Large-Scale Deployment
In this section we test Metron’s performance at scale, focusing on two aspects:

First, Metron’s data plane performance is stressed using complex service chains
with a large number of deeply-inspected (§8.2.3.1) and stateful (§8.2.3.2) traffic
classes at 40 and 100Gbps respectively. §8.2.3.3 evaluates Metron’s placement on
a set of topologies with a large number of nodes, on which hundreds to thousands
of service chains are deployed.

8.2.3.1 Deep Packet Inspection at 40Gbps

To test the overall system performance at scale, a service chain of a campus
firewall, followed by a DPI is deployed. The firewall implements access control
using a list of 1000 rules, derived from an actual campus trace. The output of
the firewall is sent to a DPI NF that uses a set of regular expressions similar to
Snort (see [31]). Metron is compared against the same two state of the art systems
discussed and evaluated in §4.1.2.2: (i) an accelerated version of OpenBox based
on RSS and (ii) an emulated version of E2.

We injected a campus trace, obtained from University of Liège, that exercises
all the rules of the firewall at 40Gbps and measured the performance of the three
approaches. First, only the firewall NF of this service chain is deployed to quantify
the overhead of running this NF in software, as compared to an offloaded firewall
(i.e., Metron). To fairly compare Metron against the other two approaches, a
simple forwarding NF is started in the server, such that all packets follow the exact
same path (generator, switch, server, switch, and sink) in all three experiments.

Figure 8.4a shows that OpenBox and the emulated E2 can realize this large
firewall at line-rate. However, this is only possible if more than half of the server’s
CPU cores are utilized. Specifically, OpenBox requires 9 CPU cores, while the
emulated E2 requires 11 CPU cores. In contrast, Metron completely offloads the
firewall to the switch, hence easily realizing its ACL at line-rate; thus one core of
the server is enough to achieve maximum throughput.

Looking at the latency of the three approaches in Figure 8.4b, it is evident that
software-based dispatching (yellow triangles) incurs a large amount of unnecessary
latency. Hardware dispatching using RSS (green circles) achieves substantially
lower latency because it involves less inter-core communication. However, since
the firewall executes heavy classification computations in software, OpenBox still
exhibits high latency that cannot be decreased by simply increasing the number of
cores. Specifically, using 16 CPU cores has comparable latency to 4 CPU cores. In
contrast, Metron achieves nearly constant low latency (red squares) by exploiting
the switch’s ability to match a large number of rules at line-rate. This latency
is 2.9-4.7x lower than the latency of the OpenBox and emulated E2 respectively,
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Figure 8.4: Performance of a campus firewall with 1000 rules using: (i) Metron
with the firewall being offloaded, (ii) an accelerated version of OpenBox using
RSS, and (iii) a software-based dispatcher emulating E2.
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when each system uses one core for processing the NF (the emulated E2 requires
2 CPU cores in this case). At the full capacity of the server, the latency among
the three systems is comparable; but Metron outperforms the emulated E2 and
OpenBox by 30% and 19% respectively.

Next, the example campus firewall is chained with a DPI NF in order to realize
the entire service chain. This chaining further pushes the performance limits of
the three approaches as shown in Figure 8.5. In this scenario, Metron implements
the DPI in software. First, we observe that even at the full capacity of the server,
OpenBox and the emulated E2 can only achieve at most 25Gbps (see Figure 8.5a).
This performance is more than sufficient for a 10Gbps deployment, hence some
operators might not need the complex machinery of Metron. However, several
studies indicate that large networks have already migrated from 10 to 40Gbps
deployments [165], while 100Gbps networks are increasingly gaining traction [166].
In these higher data rate environments, these alternatives would require more
than 16 CPU cores (and potentially more than one server) to achieve sufficient
throughput, and are not guaranteed to scale because of the heavy processing
requirements of large service chains.

Metron exploits the joint network and server capacity to scale even complex
NFs, such as DPI, at the speed of the hardware. This can be confirmed by
comparing the red squares (i.e., “Metron”) with the black crosses (i.e., “Hardware
Limit RSS”) in Figure 8.5a). Most importantly, Metron requires only 10 CPU
cores in a single machine to achieve this result, thus substantially shifting the
scaling point for large service chains. The latency results in Figure 8.5b further
highlight Metron’s abilities. With 16 CPU cores, the Metron server deeply inspects
all packets for this service chain at the cost of only 15.5% higher latency than the
minimum latency of this testbed, shown with black crosses. At the same time,
OpenBox and the emulated E2 incur 35-97% more latency than Metron, while
achieving almost half of Metron’s throughput. This difference increases rapidly
when fewer CPU cores are utilized. For example, when each system uses one CPU
core Metron achieves 75% lower latency than OpenBox and 358% lower latency
than the emulated E2 respectively.
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Figure 8.5: Performance of a campus firewall with 1000 rules followed by a DPI
at 40Gbps, using: (i) Metron with the firewall being offloaded, (ii) an accelerated
version of OpenBox using RSS, and (iii) a software-based dispatcher emulating E2.
“Hardware Limit RSS” showcases the speed of the hardware, using the firewall NF
offloaded into hardware followed by an RSS-based forwarding NF.
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8.2.3.2 Stateful Service Chaining at 100Gbps

In this section we further stress the performance of Metron, OpenBox, and
the emulated E2 systems by conducting an experiment at 100Gbps. To achieve
this new performance target we use a different testbed, as described in §8.2.2.
Specifically, two of our servers are equipped with a 100GbE Mellanox ConnectX-4
MT27700 card and are connected back-to-back. The first server acts as a traffic
generator and receiver, while the second server is the device under test.

Four million packets were analyzed from the campus trace used in §8.2.3.1 and
3117 distinct destination IP addresses were found. Then, a standards-compliant
router was implemented and its routing table was populated with these addresses.
The router was chained with two stateful NFs: a NAPT and an LB that implements
a flow-based round robin policy. In this scenario, Metron can only offload the
routing table of the router to the Mellanox NIC using DPDK’s flow director.
Unlike the NIC RSS redirection table, flow director provides explicit flow control
and substantially larger capacity. The remaining functions of the router (e.g.,
Address Resolution Protocol handling, IP fragmentation, TTL decrement, etc.)
together with the stateful NFs (i.e., NAPT and LB) are executed in software.
Metron vs. State of the art
The throughput achieved by the three systems is shown in Figure 8.6a. For
comparison, we also show the throughput of the server when a simple RSS-assisted
forwarding NF is used to send traffic back to its origin. These results show a slow
but linear increase of the throughput with an increasing number of CPU cores
for both OpenBox and the emulated E2 approaches. Using linear regression on
the medians between 1 and 12 CPU cores (the emulated E2 starts from 2 CPU
cores), we found that the throughput of OpenBox increases by 5.37Gbps with each
additional core, while the emulated E2 increased by 4.91Gbps per core. However,
in both cases using more than 12 CPU cores does not bring further performance
gains. Specifically, the throughput of OpenBox plateaus around 67Gbps, while
the performance of the emulated E2 drops (from 53 to 41Gbps). Moreover, with
13-16 CPU cores, the latency of the two systems increases up to 56% for OpenBox
and up to 25% for the emulated E2.

In contrast, Metron achieves 75Gbps throughput using only a small fraction of
the server’s CPU cores. Key to this performance is Metron’s hardware dispatcher
in the NIC, which offers two advantages: (i) it saves CPU cycles by performing the
lookup operations of the router and (ii) it load balances the traffic classes matched
by the hardware classifier across the available CPU cores. Exploiting these
advantages allows Metron (i.e., red squares in Figure 8.6) to quickly match the
performance of the “Hardware Limit RSS” case (i.e., black points in Figure 8.6a)
using only two CPU cores, despite running several stateful operations (i.e., NAPT
and LB). Moreover, according to a performance report by Mellanox [221], our NIC
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achieves line-rate throughput with frames greater than 512 bytes. Therefore, the
75Gbps limit reached in this experiment with the campus trace is mainly due to
the large number of small frames (26.9% of the frames are smaller than 100 bytes,
while 11.8% of them are in (100, 500]). Finally, Metron’s latency plateaus at a
sub-millisecond level, which is 21-38% lower than the lowest latency achieved by
the other two systems (see Figure 1.7b).
Dissecting Metron’s Performance
To quantify the factors that contribute to Metron’s high performance, an additional
experiment was conducted using the same testbed, input trace, and service chain.
The results are depicted in Figure 8.6b. Note that the red curves (i.e., Metron’s
throughput) in Figures 8.6a and 8.6b are identical. The purpose of Figure 8.6b is
to showcase what performance penalties occur when one starts removing our key
contributions from Metron, as follows:

1. Metron without hardware offloading (i.e., blue triangles in Figure 8.6b).
2. Metron without hardware dispatching to the correct core (purple rhombs in

Figure 8.6b).
3. Metron without both hardware offloading and dispatching (gray stars in

Figure 8.6b).
Comparing “Metron” vs. “Metron w/o HW Offl.” quantifies the benefits of

Metron’s hardware offloading feature. In the “Metron w/o HW Offl.” case input
packets are still dispatched to the correct core (using the Flow Director component
of the Mellanox NIC), but each core executes the entire service chain logic in
software. The throughput achieved in this case (i.e., blue triangles in Figure 8.6b) is
comparable with the throughput of the “OpenBox RSS” case shown in Figure 8.6a.
A key difference between these cases is that “Metron w/o HW Offl.” performs the
routing table lookup twice; once in the NIC for traffic dispatching and the second
in software (to disable hardware offloading), after packets are dispatched to the
correct CPU core. In contrast, OpenBox uses RSS for dispatching and implements
the routing table only once in software. Neither of these cases exploits the available
capacity of the NIC to offload the routing operations, thus costing CPU cycles.

Next, the comparison between “Metron” and “Metron w/o HW Disp.” cases
highlights the cost of inter-core communication, by deliberately choosing an
incorrect core. “Metron w/o HW Disp.” implements the routing lookup in
hardware (i.e., hardware offloading is enabled), hence reducing the processing
requirements of the software part of the service chain. However, this case exhibits
a serious bottleneck compared to Metron, as it requires a software component
to (re-)classify input packets to decide which CPU core processes them (i.e.,
software dispatching similar to the emulated E2 case in Figure 8.6a). As shown
in Figure 8.6, both “Metron w/o HW Disp.” and the emulated E2 cases exhibit
similar performance degradation as their software dispatcher communicates with
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an increasing number of CPU cores. This degradation appears earlier for “Metron
w/o HW Disp.” (i.e., after 5 cores versus 12 cores for the emulated E2 case). This
is because “Metron w/o HW Disp.” offloads part of the service chain’s processing
to the NIC, hence the inter-core communication bottleneck appears sooner. In
contrast, Metron exploits the ability of the NIC to directly dispatch traffic to the
correct core, thus avoiding the need for a software dispatcher and the concomitant
inter-core communication.

Finally, the “Metron w/o O and w/o D” case in Figure 8.6b shows the
throughput attainable when both hardware offloading and accurate dispatching
features are disabled. In this case, input packets are always sent to an “incorrect”
core (specifically the core where the software dispatcher runs) and the entire service
chain runs in software. The inter-core communication bottleneck manifests itself
once again, this time after using 9 or more CPU cores.
Key Outcome
As explained in §8.1, Metron’s ability to scale complex (i.e., DPI) and stateful
(i.e., NAPT and LB) NFs is due to the way that the incoming traffic classes are
identified, tagged, and dispatched to the CPU cores in a load balanced fashion.
Metron’s ability to realize these service chains at the NIC’s hardware limit with a
single server is an important achievement.

8.2.3.3 Metron’s Placement in Large Networks

To verify that the performance of Metron’s placement scheme (see §8.1.3.3) can
be generalized to real and potentially large networks, experiments that emulate
Metron’s service chain placement in datacenters are conducted, using fat-tree
topologies of increasing sizes (see Figure 8.7). Our analytic study shows how
close Metron’s placement decisions are compared to uniform placement and what
bandwidth requirements each approach demands for a large number of service
chains. Note that the uniform placement allocates equal number of CPUs from
the available servers, while a nearly uniform placement exhibits the least distance
from the uniform. Note also that our approach is not restricted to datacenter
topologies; Metron’s placement is topology-agnostic.

Figure 8.7a compares Metron’s placement with the uniform placement policies
with increasing number of servers (i.e., 16, 128, and 1024) and service chains
(i.e., 200, 1000, and 10000). The first of each set of bars indicate that Metron’s
placement decisions match the uniform ones with ∼40% median probability,
regardless of the network’s size and number of service chains to be placed. For
16 servers, the upper percentile indicates that Metron makes a uniform decision
with 70% probability. According to the other two sets of bars, most of the
remaining decisions made by Metron fall very close to uniform (i.e., middle set of
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bars), confirming that our placement policy makes reasonably balanced decisions,
despite its “limited” randomness.

Figure 8.7b shows the bandwidth savings of our placement policy, compared to
the uniform one. To make a uniform placement decision, a controller has to query
the CPU availability from all the available servers, thus, incurring a communication
overhead proportional to the network size (which quickly becomes infeasible for
large networks). This overhead is shown by the second of each set of bars in
Figure 8.7b. To reduce this overhead, we trade-off some accuracy in placement
to minimize Metron’s bandwidth requirements. The first of each set of bars in
Figure 8.7b shows that Metron requires orders of magnitude less bandwidth than
the uniform policy to place a large number of service chains on these networks.
An indirect (but important) benefit of our low overhead placement is that, by
querying only 2 servers at a time, a minimal number of events at the servers is
generated, hence preserving processing cycles for other tasks. The next section
showcases how each Metron server dynamically adapts to the input load, even
when the placement does not perfectly balance the load.

8.2.4 Metron’s Dynamic Scaling
Next, we evaluate Metron’s dynamic scaling strategy (introduced in §8.1.3.4)

using a scenario with a service chain configuration taken from an ISP [193],
targeting a 10Gbps network. The target service chain consists of an ACL with
725 rules, followed by a NAPT gateway that interconnects the ISP with the
Internet, while performing source and destination address and port translation
and routing.

This service chain was deployed on a single server connected to a NoviFlow
switch (see §8.2.2), to which a real trace was injected at variable bitrates. The
solid curve in Figure 8.8 shows the throughput corresponding to the rate at which
the trace was injected, while the dashed curve depicts the throughput achieved by
Metron. To highlight Metron’s ability to provision resources on demand, we plot
the number of cores allocated by Metron over the course of the experiment (yellow
circles and right-hand scale).

The experiment begins with an allocation of 4 CPU cores (precalculated based
upon the initial injection rate). Following this, the Metron controller makes
dynamic decisions based on monitoring data gathered from the data plane and
dynamically modifies the mapping of traffic classes to tags (thus affecting load
distribution). In this experiment Metron requires between 1 and 6 CPU cores
to accommodate the input traffic. In some cases, Metron fails to immediately
adapt to sudden spikes, thus we observe a slight lag in Metron’s reactions (e.g.,
as shown in the interval between 84 and 90 seconds). This occurs due to two
reasons. First, because Metron’s scaling approach involves interaction between
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Figure 8.8: Metron under dynamic workload. Blue arrows indicate load spikes
throughout the experiment.

the controller and the involved nodes (i.e., the server and the switch) in order
to establish the CPU affinity of the traffic classes. To avoid overloading the
controller, this interaction occurs every 500ms, which contributes to the observed
lag. Second, every newly-allocated CPU core can accommodate a large amount
of input traffic, therefore CPU core allocation changes need not be as frequent as
input load changes. However, Metron’s throughput is not substantially affected
by this lag (the blue arrows indicate the upward spikes in load at 10, 17, 42, 70,
and 97 seconds). As confirmed in §8.2.5.2, Metron is able to quickly install the
necessary rules to enforce the traffic class affinity.

8.2.5 Deployment Micro-benchmarks
This section benchmarks how quickly Metron carries out important control

and data plane tasks, such as hardware and software (re)configuration, in a fully
automated fashion.

8.2.5.1 Impact of Increasing Number of Traffic Classes

To study the impact of increasingly complex service chains on Metron’s
deployment latency, a firewall with an increasing number of rules (up to 4000,
derived from actual ISP firewalls [193]) is used. The time between when a request
to deploy this NF is issued by an application and the actual NF deployment either
in hardware or in software is measured.
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In either case, the first task of Metron is to construct and synthesize the packet
processing graph of the service chain (as per §8.1.3.1), as depicted in the first
of each group of bars (in black) in Figures 8.9a and 8.9b. This latency is the
dominant latency in both hardware and software-based deployments (see the last
set of bars in each figure). Fortunately, this is a one time overhead for each
unique service chain; considering the importance of generating such an optimized
processing graph, Metron precomputes and stores the synthesized graph for a given
input in its distributed database.

Apart from this fixed latency operation, a purely hardware-based deployment,
requires two additional operations, as shown in Figure 8.9a. The first operation is
the automatic translation of the firewall’s synthesized packet processing graph into
hardware instructions targeting our OpenFlow switch (the second bar in each set
of bars). This operation involves building a classification tree that encodes all the
conditions of the firewall rules, therefore it has logarithmic complexity with the
number of traffic classes. For example, under the specified experimental conditions,
the median time to encode a large firewall with 4000 traffic classes is around
500ms. The last operation in the hardware-based deployment is the rule
installation in the OpenFlow switch (the third bar in each set of bars in
Figure 8.9a). Note that even entry-level OpenFlow switches, such as the one
used, can install thousands of rules per second; a more thorough study is provided
in §8.2.5.2, where the effects of hardware diversity on Metron are discussed.

For a purely software-based deployment of this same service chain, the time
following graph construction and synthesis until the service chain is deployed at
a designated server is considered. This latency is labeled “Server Configuration”
in Figure 8.9b. Note that it takes longer per rule than for the corresponding
hardware-based case for a small number of traffic classes because there is a
fixed overhead to start a secondary DPDK process (i.e., a Metron slave) at the
server. This overhead is ∼180ms as can be seen from the case of 5 traffic classes.
However, the (median) deployment time is 0.471ms/rule (versus 0.411ms/rule for
the hardware case shown in Table 8.2), hence a large firewall deployment takes a
comparable amount of time either in software or hardware.

Overall, apart from the one-time precomputation overhead for constructing
and synthesizing a service chain, the worst case deployment time of a firewall with
4000 traffic classes is less than 1200ms, whereas only 100-200ms is required for
hundreds of traffic classes.
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8.2.5.2 Diversity of Network Elements’ Capabilities

Network elements from different vendors and of different price levels might
offer different possibilities for NFV offloading. In this section the hardware-
based deployment shown in Figure 8.9a is repeated, where the NoviFlow switch
is replaced with either a hybrid HP 5130 El hardware switch or the software-
based OVS. Figure 8.10 shows the rule installation latency of these three switches.
Table 8.2 summarizes these results along with key characteristics of these switches,
as they affect Metron’s deployment choices and performance.

The NoviFlow switch contains 55 OpenFlow tables, each with 4096 entries
(i.e., 225280 rules in total), while the HP switch has a single OpenFlow table with
either 512/256 entries for IPv4/IPv6-based rules or 16384 entries for L2 rules.
The capacity of OVS depends on the amount of memory that the host machine
provides; modern servers provide ample DRAM capacity to store millions of rules.
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Figure 8.10: Rule installation latency of (i) a NoviFlow 1132, (ii) an HP 5130
El, and (iii) the OVS switches. The HP switch does not have enough capacity to
accommodate more than 512 IPv4-based traffic classes.

Table 8.2: Comparison of 3 switches used by Metron. The last column states the
median rule installation speed of these switches.

Switch Capacity (# of Rules) Rule Installation
Speed (ms/rule)Model Type

NoviFlow 1132 [220] HW 225280 0.411
HP 5130 El [181] HW 256/512/16384 50.250
OVS [97] v2.5.2 SW Memory-bound 0.263
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The median rule installation speed of the NoviFlow switch is substantially
higher than HP (0.411 vs. 50.25 ms/rule), with the difference being more than
two orders of magnitude. However, this difference is partially reflected in the
price difference between the two switches (approximately US$ 15000 vs.US$ 2000).
OVS is open source, achieves lower data plane performance, but outperforms both
hardware-based switches in terms of median rule installation speed (0.263ms/rule),
when running on the processor described for the testbed in §8.2. This finding is
confirmed by earlier studies [222, 223], where the rule installation speed varied
especially when priorities are involved. In this test, Metron installed rules of the
same priority and low variance was observed.

In summary, today’s OpenFlow switches provide Metron with fast median rule
installation speed and sufficient capacity at different price/performance levels.

8.3 Originality and Open Source Contributions
In this section, the originality of Metron is highlighted with respect to earlier

efforts, discussed in Chapter 3.

8.3.1 NFV Management
E2 [32] and Metron manage service chains mapped to clusters of servers

interconnected via programmable switches. E2 only partially exploits OpenFlow
switches to perform traffic steering.

In contrast, Metron fully exploits the network (i.e., OpenFlow switches and
NICs) to both steer traffic and to offload and load balance NFV service chains,
while deliberately avoiding E2’s inter-core transfers.

8.3.2 NFV Consolidation
OpenBox [31] merges similar packet processing elements into one, thus

reducing redundancy. Our earlier work SNF [29] eliminates processing redundancy
by synthesizing multiple NFs as an optimized equivalent NF. Slick [140] and
CoMb [137] propose NF consolidation schemes, although these schemes reside
higher in the network stack.

We integrated SNF into Metron, since this is the most extensive consolidation
scheme to date. Metron effectively coordinates these optimized pipelines at a
large-scale, while exploiting the hardware.
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8.3.3 Hardware Programmability
Several approaches for hardware programmability were discussed in §3.2. In

summary, OpenFlow switches and NICs provide APIs for stateless match-action
rules, while RMT [82], P4 [86], OpenState [83], OPP [224], and FlexNIC [104]
introduce stateful packet processing in the data plane.

All these works have made phenomenal progress towards exposing hardware
configuration knobs. Metron acts as an umbrella to foster the integration
of this diverse set of programmable devices into a common management
plane. In fact, our prototype [204, 219] integrates OpenFlow switches, DPDK-
compatible NICs, and commodity servers. Thanks to ONOS’s abstractions,
additional network drivers can be easily integrated.

8.3.4 Hardware Offloading
As discussed in §3.2.3, earlier research efforts have proposed ways to offload

specific functions into commodity hardware. These functions range from simple
e.g., IP checksum offloading [126] to cryptographic functions [127] and key-value
store operations [128, 129, 104], sometimes using auxiliary hardware components
such as GPUs [123, 124, 130, 131] or Smart NICs [105, 106, 108, 107].

We envision these works as future components of Metron to extend its
offloading abilities.

ClickNP [225] showed how to achieve high performance packet processing
by completely migrating NFV into reconfigurable, but specialized, FPGA-based
hardware devices. Microsoft Azure also uses a combination of FPGA-based chips
and software to implement VM network policies in their datacenters [167, 19].

In contrast, our philosophy is to explore the boundaries of commodity
hardware. Therefore, Metron performs stateful processing in software but
combines it with smart offloading and dispatching using commodity hardware.
Metron meets performance levels achieved by specialized hardware at the cost
of commodity hardware.
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8.3.5 Server-level Solutions
A summary of server-level NFV solutions, introduced in §3.2.2, is provided

in this section. Flurries [117] builds atop OpenNetVM [115] to provide software-
based service chains on a per-flow basis, while ClickOS [111] and NetVM [112] offer
NFs running in VMs. NFP [118] extends OpenNetVM to allow NFs in a service
chain to be executed in parallel. Dysco [119] proposes a distributed protocol for
steering traffic across the NFs of a service chain. NFVnice [154] and our earlier
work SCC [27, 155] are efficient NFV schedulers. Click-based [42] approaches have
proposed techniques to exploit multi-core architectures [125, 196, 110].

None of these works have explored the possibility of using hardware to offload
parts of a service chain, nor do they support our optimized flow affinity
approach.

8.3.6 Industrial Efforts
As discussed in §3.4, CORD [149] and OPNFV [150] are industrial NFV

projects based on OpenStack [148].

Metron and CORD share common controller abstractions (i.e., ONOS);
however, we avoid OpenStack’s virtualization by integrating native DPDK-
based solutions. Unlike CORD, the Metron controller leverages placement
techniques with minimal overhead (see §8.1.3.3 and §8.2.5) and sophisticated
NF consolidation (see §8.1.3.1) to achieve high performance.

8.3.7 Summary of Open Source Contributions
A list of open source contributions related to Metron is presented below:
1. Metron’s high performance data plane is available at [219], as an extension

to FastClick [226].
2. A driver for managing CPU and NIC resources on commodity servers is part

of the Metron controller [204]. The Metron controller itself is developed on
top of the ONOS SDN controller [49].

A tutorial on how to use Metron controller’s driver along with Metron’s data
plane is available at [227].





Chapter 9

Contributions

T his chapter challenges the hypotheses of this thesis in §9.1, while §9.2
describes the publication status for parts of this thesis.

9.1 Challenging the Hypotheses
Table 9.1 summarizes the contributions of this thesis, with an emphasis on

the results of SCC, SNF, and Metron as presented in Chapters 6, 7, and 8
respectively. Using this table, I challenge the hypotheses stated in §4.5 regarding
the research problem. In §4.1, I showed that the performance of state of the
art NFV frameworks supports the null hypothesis H0: “Service chains inherently
exhibit performance degradation that depends upon the length, complexity, and
processing model of the service chain”, as defined in §4.5. Then, in the same
section I aimed to disprove H0, by showing the hypothesis H1: “Some service
chains can be realized without their performance deteriorating despite the length
and complexity of the chain, when using an appropriate processing model”.
SCC Contributions
Chronologically, I first attempted to support H1 by challenging commodity service
chains that rely on unmodified Linux network drivers. To this end, in Chapter 6 I
profiled several service chains to uncover their performance problems and applied
I/O and scheduling accelerations to rectify those problems. Although my results
are insufficient to support H1, I found several encouraging outcomes:
Outcome 1: SCC substantially reduces the latency and jitter of the service chains

under test (see Table 9.1). This result has direct impact on popular
service chains that rely on commodity network drivers [173].

Outcome 2: The SCC Profiler’s results suggest that only service chains based
on fast network drivers, such as DPDK, can achieve the desired
outcomes, if their own performance problems can be overcome.
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Table 9.1: A summary of the contributions of this doctoral thesis on the
performance of NFV service chains.

Contribution Achievements

Profiling [27]
• Profiled a popular NFV framework using Linux and DPDK

network drivers in user-space and kernel-space.
• Quantified user-to-kernel and kernel-to-user space overheads.

I/O
multiplexing [27]

• 3x lower latency and 4x lower jitter for a single user-space NF
using the ixgbe network driver.

• 10-40% lower latency and 2x lower jitter for user-space NFV
service chains.

Scheduling [27]

• 30-300% lower latency and up to 40x lower jitter for service
chains interconnected with OVSK.

• 10-25% lower latency and 2x lower jitter for service chains
interconnected B2B.

Synthesis of
I/O and

processing
operations [29]

• Multi-core NFV with zero I/O and processing redundancy.
• 10 chained routers or NAPTs at the cost of one, achieving

line-rate 40Gbps throughput.
• ISP-level service chains in software with bounded median

latency between 100-500µs.
• ISP-level service chains with hardware assistance with

bounded median latency below 100µs and line-rate 40Gbps
throughput.

Offloading and
accurate traffic
dispatching [30]

• Synthesized NFs globally coordinated by a controller.
• Early hardware offloading and tagging of a service chain’s

stateless part.
• Tag-based hardware dispatching to the correct CPU cores.
• Deep packet inspection at the speed of a 40Gbps testbed.
• Stateful packet processing at the speed of a 100Gbps testbed.
• Up to 4.7x lower latency, up to 7.8x higher throughput, and

2.75-6.5x better efficiency than the state of the art.

Load
balancing [30]

• Traffic class-level load balancing by dynamically manipulating
the map of traffic classes’ tags to CPU cores.

Placement [30] • Low-cost probabilistic service chain placement.
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The SCC I/O multiplexing results shown in Table 9.1 indicate that the latency
reduction of a single router (three-fold) is much larger than the latency reduction
that SCC achieves for an entire chain of NFs. This reveals that I/O multiplexing
is a useful solution, but not drastic enough. The SCC scheduling results also
indicate that the solution is not simply better scheduling - even when scheduling
is combined with I/O multiplexing. These observations suggest that more drastic
approaches are necessary.
SNF and Metron Contributions
Using my first contribution as a base, we then attempted to radically revise the
way NFV service chains are realized, by proposing SNF and Metron in Chapters 7
and 8 respectively. The synthesis approach presented in §7.2 realized service chains
with zero I/O and processing redundancy, while Metron effectively mapped the
operations of synthesized service chains to available hardware resources (see §8.1).
As a result, Metron and a hardware-assisted SNF realize service chains at the
speed of the hardware, as shown in §8.2 and §7.5 respectively. In the following
paragraphs I make a connection between these results and the hypothesis H1.

The H1 hypothesis has three distinct parts. The first part relates the
performance of a service chain with its length. §7.5.2 demonstrated how SNF
realizes service chains of increasing length without performance degradation. As
also shown in Table 9.1, these results support the first part of H1 for service chain
lengths in the range [1, 10].

The second and third parts of H1 relate the performance of a service chain
with its complexity and processing model. In §7.5.4 three example ISP-level
service chains of increasing complexity are measured using two processing models:
a software-based and a hardware-assisted SNF. As shown in §7.5.4.1, the software-
based SNF cannot realize these complex service chains without performance
degradation at high input rates (i.e., 40Gbps). This occurs because of two reasons:
(i) the complex traffic classifiers of these service chains incur performance penalties
when realized in software and (ii) the processing model of the software-based
SNF might involve costly inter-core communication, which further impacts the
performance of these service chains.

In contrast, a hardware-assisted SNF, as proposed in §7.5.4.2, solved these
two problems by offloading traffic classification into an OpenFlow switch and by
statically load balancing the output traffic classes of the hardware classifier across
4 servers, each using RSS to distribute the load across its CPU cores. Consequently,
the hardware-assisted SNF provides some evidence that supports the second
part of H1 for service chains that contain a number of rules, in the range of
[1, 8550] rules, in their classifier(s).
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Metron introduced an even more efficient processing model than the hardware-
assisted SNF. Metron’s processing model exploits programmable switches and
NICs to classify, tag, and accurately dispatch input traffic across a server’s CPU
cores with zero inter-core communication. Doing so allows Metron to realize
(i) Firewall→DPI at the speed of a 40Gbps testbed (see §8.2.3.1) and (ii) a stateful
service chain (i.e., Router→NAPT→LB) at the speed of a 100GbE NIC on a single
server (see §8.2.3.2). These results demonstrate multi-fold latency reduction and
throughput increase (at the maximum attainable levels of throughput) compared
to the state of the art.
Meeting the Performance Requirements of the 5G Networks
Both Metron and SNF showed that a variety of complex service chains can be
realized without performance degradation, when an appropriate packet processing
model is utilized. As a result, I believe that SNF and Metron provide sufficient
evidence to support H1. To put this thesis into perspective, in §4.3.3 I showed
that the upcoming generation of networks will pose strict latency requirements
for applications. In this context, service chains need to deliver traffic with a sub-
millisecond latency. Based on Table 9.1, this thesis fulfills this requirement as:

Outcome 3: ISP-level service chains, realized in software, impose a median
latency between 100-500µs, while the 99th percentiles of the latency
rarely (and only slightly) exceed 1ms (see §7.5.4.1).

Outcome 4: ISP-level service chains, realized with hardware assistance of an
OpenFlow switch (acting as a classifier), impose a median latency
less than 100µs. This latency is an order of magnitude lower than
the target 1ms latency, while the 99th percentiles of the latency
never exceeds 800µs for the example service chains (see §7.5.4.2).

Outcome 5: Stateful service chains at the speed of a 100GbE NIC incur sub-
millisecond median latency of ∼ 650µs (see Figure 1.7b and §8.2.3.2)
using only a small fraction of a single server’s CPU cores.
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9.2 Thesis Publications
SCC and SNF were published to international journals. These two journal

articles were also part of the licentiate stage of this thesis [155]. At the doctoral
stage of this thesis, Metron was accepted at a top networked systems conference.
The submission details and the status of each work are shown in Table 9.2.

Table 9.2: Thesis publications and their status.

Contribution
Target

Venue/Journal or
Institution

Submission
Date Status

SCC Elsevier Journal of
Systems and Software

September 3,
2016

Accepted
(Available at [27])

SNF PeerJ Computer
Science Journal

September 23,
2016

Accepted
(Available at [29])

Licentiate
Thesis

KTH Royal Institute of
Technology

November 3,
2016

Successfully
defended
(Available
at [155])

Metron

15th USENIX
Symposium on

Networked Systems
Design and

Implementation
(NSDI) 2018

September 25,
2017

Accepted
(Available at [30])





Chapter 10

Limitations and Future Work

S CC, SNF, and Metron are the three main pillars of this dissertation (see
Chapters 6, 7, and 8 respectively). §10.1 discusses the limitations of these

three works. In §10.2 a plan for future work that builds upon this thesis is sketched.

10.1 Limitations
The limitations of this dissertation are described in the following paragraphs.

SCC Limitations
Some of the tools that SCC exploits can provide the desired functionality regardless
of the underlying hardware. For example, lmbench can measure the cache and main
memory latencies for a broad set of hardware architectures. However, to build an
accurate system profiler, one relies on data that the underlying hardware provides.
SCC achieves accuracy by making use of Intel PCM and Perf, which are specifically
designed to collect data using Intel-specific performance counters. We adopted this
hardware-specific approach trading generality for high-precision profiling results.
These results can assist cloud providers by automatically uncovering performance
problems of NFV services running on Intel platforms; however, the emergence of
ARM and other processor platforms in datacenters cannot be analyzed using the
current implementation of SCC.
SNF Limitations
SNF does not attempt to synthesize arbitrary software components, but rather
targets a broad but finite set of middlebox-specific NFs that operate on a packet’s
header. SNF makes three assumptions:

1. An NFV provider must specify an NF as an ensemble of abstract packet
processing elements (i.e., using the NF DAG defined in §7.2.2.1). We believe
that this is a reasonable requirement that was also adopted by other state of
the art approaches (such as Click, Slick, and OpenBox). However, if an NF
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provider does not want to share this information, even under non-disclosure
or via a licensing agreement, then SNF can synthesize the NFs before
and after this provider’s NF. This is possible by omitting the processing
graph of this NF from the inputs given to the Service Chain Configurator
(see §7.2.2.1).

2. No further decision (i.e., read) utilizes an already rewritten field; therefore,
an LB that splits traffic based on source port after a source NAPT, might
not be synthesizable. In such a case, SNF can exclude the LB from the
synthesis.

3. An NFV controller must undertake to configure a target data plane and
deploy a desired SNF service chain. This limitation is eliminated by our latest
work Metron [30], which integrates SNF in its control plane and performs
network-wide placement of NFV service chains.

Metron Limitations
Since Metron uses SNF to synthesize NFV service chains, it inherits the first two
limitations of SNF. Unlike SNF, Metron supports both Click-based and blackbox
NFs. However, the current Metron prototype exhibits another limitation related
to blackbox NFs. Specifically, when a blackbox NF is located between two Metron
service chains, Metron’s stateless (i.e., flow classification) and stateful (i.e., flow
modifications) parts need to be applied twice (i.e., before and after the blackbox
NF). This breaks the zero processing redundancy principle that Metron inherits
from SNF. §10.2 suggests a future research direction to solve this problem.

10.2 Future Work
This section sketches some plans for future work, as a follow up on this thesis.

SCC Extensions
We aim to further improve the I/O performance of SCC by integrating the
asynchronous, zero-copy network I/O solution proposed by Drepper [95] into
FastClick. Based on our measurements reported in §6.5.1, this integration is
expected to reduce the end-to-end latency imposed by a user-space FastClick router
by ∼10x, as currently the best median latency of our fully-featured user-space
router is 80µs and a DPDK router achieves a median latency of 8µs (as per §6.3.1).
Another attractive research direction would be to enforce the correct execution
order of the chain in a new, service chain-oriented scheduler, thus completely
eliminating the scheduling overheads identified by the SCC Profiler (see §6.3.2.1).
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SNF Extensions SNF would benefit from an auxiliary tool that systematically
verifies the output service chain, ensuring that it exhibits the identical functionality
of the original service chain. As stated in §7.6, this is a very challenging task that
requires substantial improvements in current state of the art frameworks to handle
synthesized operations.
Metron Extensions In §10.1, we explained how a blackbox NF between two
Metron service chains might introduce processing redundancy due to the fact that
traffic classification and modification operations need to be performed at least ∗

twice. This is an important problem that network operators might face while
integrating NFV solutions with legacy infrastructure at scale. We will extend
Metron to allow deep service chain integration with blackbox NFs. This is a
challenging task because blackbox NFs introduce uncertainty in the way packets are
modified. To clarify this, consider a case in which Metron has reserved a particular
header field (e.g., destination MAC address) to act as tag. When traffic enters this
blackbox NF, after being tagged by a Metron instance, the tagging information
is overwritten, hence a subsequent Metron instance following this blackbox NF
will not be able to properly load balance input traffic based upon the value of
the tag. Metron will be extended to solve this consistency issue allowing Metron
deployments at scale.

Vision: We envision end-to-end “logical” Metron service chains which begin
from the packet gateways at the access part of a network and end at the servers
of a datacenter. Our future goal is to realize such Metron deployments with
zero (or minimal) processing redundancy at the speed of the slowest link in
the network.

∗The blackbox NF might perform its own traffic classification and modification operations,
which results in additional packet processing redundancy.



192 CHAPTER 10. LIMITATIONS AND FUTURE WORK

Other Future Plans
Although Metron dealt with the performance challenges of the emerging 100GbE
era, we already foresee new challenges stemming from multi-100GbE connections.
This is not a far fetched scenario as existing P4 Tofino switches support multiple
100GbE ports and an aggregate bandwidth of up to 6.5Tb/s [145]. In this
context, networked systems with commodity servers will face new performance
issues, leading to several interesting questions:

Future Question 1: Is it possible to co-design programmable DMA controllers
and (Smart) NICs to explicitly control a server’s memory
region to which packets are transferred?

Future Question 2: How can we exploit end hosts to facilitate true end-
to-end NFV packet processing in the presence of both
programmable and legacy equipment?

Future Question 3: Is it possible to increase modern commodity NICs’
programmability without increasing their cost (e.g., by
extending their firmware)?

Future Question 4: Is it possible to realize the concepts proposed by this thesis
with increased security, without compromising performance?



Chapter 11

Sustainability, Ethical, and
Security Issues

B efore concluding this thesis, it is important to position our work in today’s
societal, ecological, and economical planes. To this end, sustainability, ethical

& security issues regarding this thesis are discussed in §11.1 and §11.2 respectively.

11.1 Sustainability
On a daily basis, people make decisions and actions that have an impact on

the environment. In order for current and future generations to live in prosperity,
we need to protect the ability of the environment to support human life. The
Brundtland report, from the United Nations World Commission on Environment
and Development [228], defines the term “sustainable development” as follows:

Sustainable development is development that meets the needs of the
present without compromising the ability of future generations to meet
their own needs.

There are three different components to sustainability: environmental, societal,
and economical. Academic research ought to contribute to a sustainable global
ecosystem, hence contributing to each of these components. Therefore, academic
research must solve research problems with solutions that are both (i) effective
and (ii) sustainable.

The contributions of this thesis have shown that NFV service chains can be
realized with improved performance - which offers the following societal, and
economical sustainability benefits:
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SCC’s contribution to sustainability
Our first contribution (called SCC in Chapter 6) improves the cache utilization of
NFV systems by combining I/O and scheduling accelerations. We demonstrated
this in §6.5. Consequently, the more data SCC fits into a CPU core’s cache(s), the
fewer transfers are required with main memory, hence the fewer CPU cycles are
spent by the system to process this data.

SNF’s contribution to sustainability
Similarly, the second contribution (called SNF in Chapter 7) dramatically increases
the capacity of NFV systems by consolidating an entire service chain into a few,
synthesized processing elements. As explained in §7.1, SNF maintains highly-
correlated data with respect to the system’s caches. We demonstrated this capacity
by showing how SNF realizes long and stateful chains (see §7.5.2 and §7.5.3), as
well as complex ISP-level chains (see §7.5.4) at the speed of hardware.

Metron’s contribution to sustainability
The third contribution of this thesis (called Metron in Chapter 8) drastically
increases the performance and efficiency of NFV systems by realizing service chains
at the speed of the hardware, while using only a small fraction of servers’ CPU
cores. The contributions of Metron are summarized in Figures 1.6 and 1.7, while
more thorough results are provided in §8.2. Overall, Metron is an even more
drastic service chain consolidation scheme than SNF.

Using the results of this thesis in practice
To understand the implications of using SCC, SNF, and Metron in a real NFV
environment, consider the following example. A cloud provider that currently
uses 10 machines to accommodate a given number of NFV service chains, might
be able to either (i) use fewer of these machines or (ii) increase the number of
service chains that run in these same machines by replacing the current NFV
technology with SCC, SNF, or Metron. Processing power in computer systems is
highly-correlated with energy consumption, hence all of our contributions have a
direct impact on reducing the energy consumption of NFV systems. This means
that SCC, SNF, and Metron contribute to reducing the power consumption of
datacenters, contributing to environmental benefits.

With regard to societal aspects of sustainability, throughput and latency are
two important aspects of quality in communication systems. We demonstrated
that SCC, SNF, and Metron reduce the end-to-end latency and that SNF and
Metron maintains line-rate throughput despite increasing the length or complexity
of the service chains. Therefore, we believe that this thesis also contributes to
societal sustainability both by increasing end-user satisfaction and because lower
latency translates into higher productivity and more time for other activities.
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Accommodating more services within the same infrastructure and having
satisfied customers brings economic benefits to NFV stakeholders. Datacenter
providers, network operators, ISPs, etc. can both save and make money by utilizing
the contributions described in this thesis. Savings are possible by postponing
investments, provided that an NFV stakeholder adopts efficient solutions that
better exploit their available resources. Gains are possible by using the resources
saved by the efficient solutions described above to increase the capacity of the
system (i.e., serve more users or services). By using SCC, we showed that
it is possible to eliminate some overheads stemming from suboptimal I/O and
scheduling. SNF can also eliminate the redundant operations in a pipeline of
chained NFs. Metron utilizes the least possible amount of server resources by
exploiting other networking hardware. Therefore, all of the contributions of this
thesis can save resources, hence bring increased profits to NFV stakeholders.

Finally, although all of the contributions of this thesis approach the same
problem, they employ orthogonal solutions. This means that an NFV stakeholder
might benefit from applying SCC, SNF, and Metron at the same time. However,
comparing these contributions, from a sustainability point of view, we conclude
that Metron and SNF are more sustainable solutions than SCC. Here is our
reasoning. As the demands for ultra low latency services continue to increase [175,
176, 177], it is more and more necessary to utilize highly-optimized NFV solutions
that consolidate traffic processing. This need served as an inspiration for both SNF
and Metron, as stated in §4.3. We believe that in the near future, service chains
will no longer be realized as multiple processes chained together, thus the need to
apply scheduling (as per SCC) will be less important than it is nowadays, when
most cloud providers run NFs in individual VMs or containers. For this reason,
SNF and Metron are likely to have long-term viability and to have a greater impact
on the sustainability of an NFV ecosystem. We also believe that scheduling will
remain still important, hence one might use some of SCC’s principles to coordinate
the execution of different service chains running on top of the same hardware.

11.2 Ethical and Security Issues
Ethical and security issues arise in many areas of research. This section

reports on the stance that the thesis takes with respect to ethical and security
requirements.

No ethical issues have been raised in this thesis, but there are some security
issues raised by SCC, SNF, and Metron. All these systems increase the impact of a
cyberattack that can exploit the increased concentration of the NFV functionality.
First, this increased concentration occurs because these contributions increase
the NFV consolidation, leading to an NFV stakeholder using fewer machines to
accommodate the same traffic demand. As a result of this, the machines are more
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highly utilized (hence there is less unused capacity). Moreover, if the SCC, SNF,
or Metron mechanisms themselves were targeted by an attack, the impact would
be large - for example, purposely reducing the performance or adding malicious
processing of the packets. In §10.2 we sketched a plan for future work which will
address this security issue.



Chapter 12

Conclusions

T his thesis has introduced substantial novelty in the area of programmable
networked systems, by realizing NFV service chains at the challenging speeds

of 40Gbps and 100Gbps networks. The novelty of this thesis can be decomposed
into four unique scientific contributions as follows.

The first contribution of this thesis is a tool that telecommunications’
stakeholders can use to quickly and reliably identify performance bottlenecks in
NFV service chains. This tool uncovered I/O and scheduling issues that greatly
degrade the performance of service chains using unmodified network drivers.

The second contribution of this thesis is an NFV platform that leverages
I/O and scheduling techniques to address the issues uncovered by the profiler,
thus achieving (i) 3x lower end-to-end latency and (ii) 2x (up to 40x for
certain percentiles) lower latency variance compared to a baseline solution. This
performance is achieved by reducing both cache misses and scheduling overheads.

The third contribution of this thesis further improves the performance of service
chains by introducing a packet processing synthesis framework. This framework
requires minimal I/O interactions with the NFV platform and applies single-read-
single-write operations on the packets, early discards irrelevant traffic classes, while
maintaining state across NFs. Synthesized long and stateful service chains were
shown to operate at line-rate 40Gbps. Using an OpenFlow switch as a classifier,
three synthesized ISP-level service chains were realized at 40Gbps.

The fourth contribution of this thesis is an NFV platform that eliminates
costly inter-core communication between the NFs of a service chain by delegating
packet processing and CPU core dispatching operations to programmable hardware
devices. Combining this powerful property with service chain synthesis offers
dramatic hardware efficiency and performance increases over the state of the art.
With commodity hardware assistance, this platform fully exploits the processing
capacity of a single server, to deeply inspect traffic at 40Gbps and execute stateful
service chains at the speed of a 100GbE NIC.
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Appendix

A.1 Collecting Performance Counters
This appendix discusses how Perf [159] can be instructed to collect useful

performance counters to profile NFV systems. Perf is a profiling tool for OSs.
It is capable of catching several events, such as generalized hardware, software,
tracepoint, and cache events. Each of these events has a different type and their
source can be either the processor’s PMU or the kernel. Since the underlying
hardware plays a major role in the number and functionality of these events, Perf
uses symbolic names to define these events in a hardware-agnostic way.

We consulted Perf’s man pages [229] for event descriptions and realized that
these descriptions are usually ambiguous and these pages suggest referring to the
CPU manuals of the specific processor for additional information. Therefore, in
order to obtain accurate information about the exact nature of each event, one
needs to map the symbolic names exposed by Perf to the events as documented
by the CPU vendor’s processor specification document. In our case, the “Intelr
64 and IA-32 Architectures Developer’s Manual” [229] provides very specific
information that in conjunction with the processor’s event types in the Linux kernel
sources [230] reveal useful insights about the available performance counters of our
chip.

In the following subsections, we summarize this information by using tables to
map Perf’s symbolic names to their descriptions for each type of event.

A.1.1 Generalized Hardware Events
In a Linux-based OS, if Perf’s event type is PERF_TYPE_HARDWARE, we

are measuring one of the generalized hardware CPU events. Table A.1 shows the
available generalized hardware counters of our machine as reported by Perf along
with a description based upon Intel’s documentation.
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Note that in this table the term “instructions at retirement” means the actual
instructions of the target program flow (not the speculative instructions fetched
by the CPU). The “last level cache” for this processor is the L3 cache. A “micro-
op” corresponds to a small, basic instruction that performs operations on data
stored in one or more registers. A “mispredicted branch instruction” corresponds
to an unsuccessfully “guessed” instruction inserted into the pipeline by the branch
predictor.

Table A.1: Mapping between Perf’s generalized hardware events and Intel’s
descriptions.

Perf’s Event ID Description

PERF_COUNT_HW_CPU
_CYCLES

Number of core clock cycles when the clock
signal on a specific core is running (i.e., this
CPU is not halted).

PERF_COUNT_HW
_INSTRUCTIONS

Number of instructions at retirement. For
instructions that consist of multiple
micro-ops, this event counts the retirement of
the last micro-op of the instruction. Faults
before the retirement of the last micro-op of a
multi-op instruction are not counted.

PERF_COUNT_HW
_CACHE_REFERENCES

Number of requests originating from the core
that reference a cache line in the LLC.

PERF_COUNT_HW
_CACHE_MISSES

Counts each cache miss condition for
references to the LLC.

PERF_COUNT_HW
_BRANCH

_INSTRUCTIONS

Counts branch instructions at retirement.
This includes the retirement of the last
micro-op of a branch instruction.

PERF_COUNT_HW
_BRANCH_MISSES

Counts mispredicted branch instructions at
retirement. This includes the retirement of
the last micro-op of a branch instruction in
the architectural path of execution and
experienced misprediction by the branch
prediction hardware.
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A.1.2 Hardware CPU Cache Events
Next, the event type responsible for cache-related hardware events in Perf

is PERF_TYPE_HW_CACHE. As shown in Table A.2, in our machine Perf
reports five cache events, each with a different cache identifier: L1 data, L1
instruction, LLC, DTLB, and instruction TLB cache events. To calculate a value
for a particular cache operation (i.e., read, write, or prefetch) one needs a bitwise
OR operation between the operation and cache identifier. Then, to obtain the
result (i.e., hit or miss) of any operation, a similar operation is required between
the previous result and the result identifier. More detailed information is available
in Perf’s man pages [229].
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Table A.2: Description of Perf’s hardware CPU and cache events.

Perf’s Event ID Operation Result Description

PERF_COUNT
_HW_CACHE

_L1D

LOAD
HIT Successful read accesses to

L1 data cache.

MISS Missed read accesses to L1
data cache.

STORE
HIT Successful write accesses to

L1 data cache.

MISS Missed write accesses to L1
data cache.

PREFETCH
HIT Not available.

MISS Missed prefetch accesses to
L1 data cache.

PERF_COUNT
_HW_CACHE

_L1I
LOAD MISS Missed read accesses to L1

instruction cache.

PERF_COUNT
_HW_CACHE

_LL

LOAD

HIT

Successful read accesses to
LLC.

STORE Successful write accesses to
LLC.

PREFETCH Successful prefetch accesses
to LLC.

PERF_COUNT
_HW_CACHE

_DTLB

LOAD HIT Successful read accesses to
DTLB.

MISS Missed read accesses to
DTLB.

STORE HIT Successful write accesses to
DTLB.

MISS Missed write accesses to
DTLB.

PERF_COUNT
_HW_CACHE

_ITLB
LOAD

HIT Successful read accesses to
instruction TLB.

MISS Missed read accesses to
instruction TLB.

PERF_COUNT
_HW_CACHE

_BPU
LOAD

HIT Successful read accesses of
the branch prediction unit.

MISS Missed read accesses of the
branch prediction unit.
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A.1.3 Software Events from the Linux Kernel
Finally, Perf exposes a kernel-level API from which we can retrieve the software

events listed in Table A.3.
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Table A.3: Mapping between Perf’s software events and descriptions.

Perf’s Event ID Description
PERF_COUNT_SW

_CPU_CLOCK A high-resolution per CPU timer.

PERF_COUNT_SW
_TASK_CLOCK

A clock count specific to the task that is
running.

PERF_COUNT_SW
_CONTEXT_SWITCHES

Number of context switches as happening in
the kernel.

PERF_COUNT_SW
_CPU_MIGRATIONS

Number of times the task has been migrated
to different CPU.

PERF_COUNT_SW
_PAGE_FAULTS Number of page faults.

PERF_COUNT_SW
_PAGE_FAULTS_MIN

Number of minor page faults. These did not
require disk I/O to handle.

PERF_COUNT_SW
_PAGE_FAULTS_MAJ

Number of major page faults. These did not
require disk I/O to handle.

PERF_COUNT_SW
_ALIGNMENT_FAULTS

Number of alignment faults. These happen
in 64-bit systems when unaligned memory
accesses happen.

MEM_LOADS Number of main memory load operations
(event=0xcd,umask=0x1,ldlat=3).

MEM_STORES Number of main memory store operations
(event=0xd0,umask=0x82).

CONSUME_SKB Number of socket buffers (skbuffs)
consumed.

SYS_ENTER_SENDTO Number of sendto system calls.
SYS_ENTER_RECVFROM Number of recvfrom system calls.

SYS_ENTER_POLL Number of poll system calls.
SYS_ENTER_MMAP Number of mmap system calls.

SCHED_STAT_RUNTIME Time the task is executing on a CPU.

SCHED_STAT_SLEEPTIME Time the task is not runnable, including I/O
waiting time.

SCHED_STAT_WAITTIME Time the task is runnable but not actually
running due to scheduler contention.

SCHED_STAT_IO_WAIT Time the task is not runnable, including I/O
waiting time.

SCHED_STAT_BLOCKED Time the task is in uninterruptible state.
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A.2 Testbed Configuration
This appendix discusses the low-level configuration of the testbed used to

conduct the experiments for the licentiate part of this thesis. The components
of the testbed are described in Chapter 5. The discussion here focuses on
the underlying hardware. In particular, CPU-related issues are discussed
in appendix A.2.1, while appendix A.2.2 tackles NIC-specific configuration.

A.2.1 CPU Pinning and Isolation
In our setup, we isolated an entire CPU socket (i.e., 8 cores) on both

machines 1 and 2, using the kernel isolation parameter specified in §2.5. To
ensure that the pinning works correctly, during the execution of an NF we
inspect a software-based performance counter reported by the Linux kernel using
Perf. Specifically, the counter PERF_COUNT_SW_CPU_MIGRATIONS is
monitored (see Table A.3). The value of this counter must be zero as an NF
must always be pinned to one CPU core, hence no migrations should happen.

A.2.2 NIC Configuration
The following sections discuss: how one can modify the number of allocated

buffer descriptors (see Appendix A.2.2.1). how one can exploit the multiple
hardware queues of modern NICs and the CPU cores of the testbed to parallelize
packet processing (see Appendix A.2.2.2), how to configure the NIC and OS to
achieve better performance (see Appendices A.2.2.4 and A.2.2.3).

A.2.2.1 NIC Buffer Descriptors

Our NICs can accommodate up to 4096 Tx and 4096 Rx buffer descriptors in
their local memory, although the default values for both Tx and Rx ring buffer sizes
set by ixgbe are 512 descriptors. Having more buffer descriptors available could be
beneficial in cases that the incoming packet rate is very high. For example, when
we use netmap as a packet I/O mechanism, we set the number of Tx descriptors
to 2048 (maximum number currently supported by netmap). However, one must
be careful when manually allocating buffer descriptors because a large number of
theses descriptors might not fit into the system’s caches, hence the NIC will be
forced to involve main memory more frequently, thus increasing the per packet
latency for some packets.
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We performed some experiments with NFV applications using the standard,
unmodified ixgbe network driver; these experiments indicated that 256 Rx and
1024 Tx buffer descriptors provide good results in terms of throughput and latency.
With the DPDK network driver, the respective number of Tx and Rx descriptors
was 256. However, different types of applications might have different memory
requirements, therefore the number of buffer descriptors indicated above might
change accordingly.

A.2.2.2 NIC Hardware Queues

Each NIC in our testbed has 128 hardware queues. By default, 16 of these
queues are used as this is the number of CPU cores per machine. We can exploit
these queues to dispatch incoming flows to different hardware queues and pin
the available cores to these queues using either Intel’s Flow Director [103] or
RSS [102]. With Flow Director, we can issue ethtool [231] commands to the
NIC, to classify incoming frames and redirect the matched frames to a particular
queue. Using RSS, we can achieve similar functionality by using one of the hash
functions implemented by the firmware to classify incoming frames as we wish.
Both techniques facilitate parallel packet processing.

After some tests with NFV applications based on ixgbe, we found that using 1
Tx and 16 Rx queues provides high performance. In the case of the DPDK driver,
using as many hardware Tx/Rx queues as the number of available CPU cores is
usually a good practise.

A.2.2.3 Interrupts and Polling

For the experiments that use the unmodified ixgbe network driver, we used
interrupts as this is the default setup of this driver. For the experiments that use
the DPDK network driver, we achieve high performance I/O by constantly polling
the NICs at the cost of underutilizing the cores involved in the polling process.

A.2.2.4 NIC Offloading Features

Most networking hardware vendors nowadays implement a portion of the
network stack, traditionally done by the OS, in the NIC. Using system tools such
as ethtool, one can retrieve the supported features for a NIC. Our 10GbE Intel
82599 ES NICs support the offloading features shown in Table A.4, where we
briefly describe the purpose of each feature. The features listed in this table might
affect an NFV application either positively or negatively.
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Table A.4: Ethtool offloading features supported by Intel 82599 ES NICs.

Feature Name
(ethtool) Short Description

tx-checksumming Calculate the checksum of transmitted frames for IPv4,
IPv6 and Stream Control Transmission Protocol.

rx-checksumming Calculate the checksum of received frames.
scatter-gather Reads/Writes frames into/from multiple buffers.

tcp-segmentation-
offload

TCP Segmentation. Linux kernel calculates the receive
window of the client, the send window for this connection
and then pushes as much data as possible to the NIC as
permitted by these restrictions.

generic-
segmentation-

offload

Generalization of TCP Segmentation. It covers more
protocols, such as UDP and Datagram Congestion
Control Protocol.

large-receive-offload
Incoming frames are merged at reception time so that the
OS sees far fewer of them [232].

generic-receive-
offload

A stricter version of large receive offload. The criteria for
which frames can be merged are greatly restricted; the
MAC headers must be identical and only a few TCP or
IP headers can differ. As a result of these restrictions,
merged frames can be re-segmented losslessly.

udp-fragmentation-
offload IP fragmentation functionality of large UDP datagrams.

tx-vlan-offload Virtual local area network tagging for transmitted frames.
rx-vlan-offload Virtual local area network tagging for received frames.

ntuple-filters Distributes frames to hardware queues by applying
header space filtering as per Intel’s Flow Director [103].

receive-hashing Distributes frames to hardware queues by applying a
hash function on a header space as per Intel’s RSS [102].

rx-vlan-filter Filtering of ingress virtual local area network traffic.
tx-nocache-copy Allow no-cache copy from user on transmission.

rx-all Do not drop received frames with incorrect frame
checksum sequences.

l2-fwd-offload L2 forwarding.
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Positive effects occur when the offloaded functions save CPU cycles for
applications running on the system. For example, imagine a traffic generator
that creates IP packets and has to calculate the checksum field of the IP header
for each packet. This operation consumes more CPU cycles in software compared
to the checksum calculation function implemented in a NIC. One can use the
ethtool feature “tx-checksumming” described in Table A.4 to offload the checksum
calculation to the NIC.

Negative effects can be caused by some features. If a large set of these functions
is enabled, it might reduce the performance of some NICs, when exchanging packets
at line-rate. Secondly, when the application attached to the NIC needs to perform
middlebox-specific operations (as per the NFV case), some features might obscure
critical information from that application and affect the way the application reacts
to the packets. For instance, if the large-receive-offload feature is enabled, the
NIC merges batches of frames to fewer but longer frames. This means that if
there are important differences between the headers in the incoming frames, those
differences will be lost. However, some NFV applications might employ decision
elements (e.g., routing based on destination IP addresses) to adapt the forwarding
to these header changes, hence large-receive-offload will break this forwarding.

Suggested ixgbe configuration for packet processing applications
For these reasons, it is important to co-design hardware and software in NFV such
that performance and correctness are not affected. After performing measurements
with and without the offloading features listed in Table A.4, we decided that it is
beneficial to follow the configuration specified in Table A.5.
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Table A.5: Selected states for the offloading features of an Intel 82599 ES NIC.
The default values are based on the Linux-based ixgbe network driver version
3.19.1.

Feature Name (ethtool) Default State Selected State
tx-checksumming On Off
rx-checksumming On Off

scatter-gather On On
tcp-segmentation-offload On On

generic-segmentation-offload On On
large-receive-offload On On

generic-receive-offload On Off
udp-fragmentation-offload Off Off

tx-vlan-offload On On
rx-vlan-offload On Off
ntuple-filters Off Off

receive-hashing On On
rx-vlan-filter On On

tx-nocache-copy Off Off
rx-all Off Off

l2-fwd-offload Off Off
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