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Abstract

Today’s advanced digital devices are enormously complex and incorpo-
rate many functions. In order to capture the system functionality and to
be able to analyze the needs for a final implementation more efficiently, the
entry point of the system development process is pushed to a higher level of
abstraction. System level design methodologies describe the initial system
model without considering lower level implementation details and the ob-
jective of the design development process is to introduce lower level details
through design refinement.

In practice this kind of refinement process may entail non-semantic-
preserving changes in the system description, and introduce new behaviors
in the system functionality. In spite of new behaviors, a model formed by
the refinement may still satisfy the design constraints and to realize the
expected system. Due to the size of the involved models and the huge ab-
straction gap, the direct verification of a detailed implementation model
against the abstract system model is quite impossible. However, the ver-
ification task can be considerably simplified, if each refinement step and
its local implications are verified separately. One main idea of the Formal
System Design (ForSyDe) methodology is to break the design process into
smaller refinement steps that can be individually understood, analyzed and
verified.

The topic of this thesis is the verification of refinement steps in ForSyDe
and similar methodologies. It proposes verification attributes attached to
each non-semantic-preserving transformation. The attributes include crit-
ical properties that have to be preserved by transformations. Verification
properties are defined as temporal logic expressions and the actual verifica-
tion is done with the SMV model checker. The mapping rules of ForSyDe
models to the SMV language are provided. In addition to properties, the
verification attributes include abstraction techniques to reduce the size of
the models and to make verification tractable. For computation refinements,
the author defines the polynomial abstraction technique, that addresses ver-
ification of DSP applications at a high abstraction level. Due to the size
of models, predefined properties target only the local correctness of refined
design blocks and the global influence has to be examined separately. In
order to compensate the influence of temporal refinements, the thesis pro-
vides two novel synchronization techniques. The proposed verification and
synchronization techniques have been applied to relevant applications in the
computation area and to communication protocols.
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Chapter 1

Introduction

Researchers in the electronic system design field face continuous challenge
to cope with the growing design complexity of the future digital systems. To
be competitive in the electronic segment means to release new products on
the market with extended services as fast as possible. The growing design
complexity from one side and the pressure to shorten the design time from
the other side, create a demand for more efficient system design approaches.
Since the design refinement from a native language written specification to
a hardware and software implementation involves a large number of design
decisions, the design development process becomes error-prone. A major
part of the design time is indubitably spent for verification, to check whether
the final product behaves expectedly or not.

Due to the enormous amount of functionalities that are mixed to the
system description, it is not realistic to rely on a short time simulation and to
decide if the system contains unexpected behaviors. Therefore, in addition
to simulation, formal verification techniques have to be applied in the design
process, as model checking is used in the present work. Although model
checkers can prove the system correctness concerning a certain property,
the time and memory demands scale-up exponentially with the size of the
system in the worst case.

The refinement based formal design approach, where the system is de-
veloped to a final implementation by using a serial application of predefined
design transformation, makes it possible to localize the modified design part
and to concentrate on that part when checking whether the refined system
part conflicts the expected behavior or not. The present work proposes a
verification approach, where critical properties, which due to a particular re-
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2 Chapter 1. Introduction

finement may become violated, are checked after every single non-semantic-
preserving design transformation. In this case the system verification is
divided into drastically smaller verification activities that are distributed
over the entire system development process from the system level to the
RT-level (Register Transfer Level), instead of the fairly impossible trial to
verify a very detailed implementation directly against the abstract specifi-
cation. In order to apply the described verification technique, a good model
for system level design is needed.

1.1 System Level Design

Related to the progress in the semiconductors industry [96] that allows inte-
grating more and more components on a single chip, the design complexity of
electronic systems is continuously increasing. A single integrated circuit may
contain digital and analog parts, several controllers, digital signal processors
and microprocessors, which were available as separate components before.
The market term for these systems is System on Chip (SoC), where all the
system’s components are integrated to a single chip. The terms MPSoC and
NoC denote some complex concepts in the System on Chip design. MPSoC
stands for multi-processor approaches [63] that address computation prob-
lems and NoC (Network on Chip) [66] targets interconnection issues on a
chip. Although SoC platforms involve many advantages, the design process
of these complex systems requires much more effort. Due to the enormous
amount of different behaviors that system functionality contains, the sys-
tem design process that transforms the desired functionality to hardware
and software is very challenging.

In order to be more efficient in the design development process and in a
better way to capture the system’s functionality, the entry point of digital
system design is moving to higher levels of abstraction. As complement to
the former step from the gate level to the RT-level, the current step starts
from the RT-level to reach the system level [76]. One of the main ideas of
system level design is to avoid the common habit that initial hardware and
software descriptions are given in different models using different languages.
In order to put system designers to speak the same language [14] and to
capture system level design needs, two languages, SystemC [7] from software
side and SystemVerilog [88] from the hardware community, were developed.
These languages aimed to describe the system’s functionality in one model,
at a higher level than usual hardware description languages normally do.
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One of the motivations for having system level design is to replace a pa-
per based design specification with a concrete high abstraction level system
model that is referred to during the rest of the design process. This model
expresses the system functionality without disturbance of lower level details,
which could be specific to a certain design implementation. This approach
allows exploring the system’s functionality in an early design phase, before
any design decision is taken. From verification point of view, this approach
creates many opportunities that were not possible to apply before. Since a
system description in high level languages describes hardware and software
parts in the same model, the system verification can be done in an earlier
design phase, where only one model is considered. Instead of the old sce-
nario, where the design engineers provided hardware and software models
to the verification engineers after the design phase, verification is becoming
a part of to the design development process, starting from the first system
level models.

The system mapping from the RT-level to the gate level is well defined
and automated by commercial synthesis tools, but the refinement from the
system level to the RT-level is still quite challenging. Obviously there is
quite a huge abstraction gap between an RT-level model, which has to con-
tain all implementation details that are required for synthesis, and the initial
system level model, which describes only the ideal system functionality. The
main task of the system level design process is to refine the system model
by introducing lower level implementation details, and in such a way to
reduce the abstraction gap between the initial system model and a synthe-
sizable RT-level model. Since the same functionality can be implemented
on several architectures, the goal of the refinement process is to analyze
each intermediate refined model [55] and to project them to an optimal final
implementation, which satisfies the required design constraints. Every re-
finement can be considered as the introduction of an implementation detail,
reducing the abstraction gap and restricting the design space of possible
final implementations, as illustrated in Figure 1.1.

The ultimate purpose is to derive an implementation model from the
initial model by a step by step refinement process such that the relations
between any two consecutive models are explicit. In addition, the same
language should be used to describe all models. This makes the further
verification drastically simpler, since, as pointed by Abdi and Gajski in [2],
”checking equivalence of two independently written high level language pro-
grams is not feasible”. Due to the large size of the system, different system
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Specification

Implementation Model

Gap
Abstraction

Design Space

System model

Intermediate Models

Figure 1.1. Step by step refinements decrease the abstraction gap and the
available design space

blocks are developed by several design engineers. Therefore, in order to
synchronize the design flow and to assist the reuse of design components,
intermediate models at different abstraction levels have to correspond to
certain standards, as for instance proposed in [58]. A standard captures the
input/output interfaces of design blocks, the expected data rates, etc. The
use of a common standard makes it easier to describe the constraints that
design blocks have to satisfy, in a systematic way. Systematically defined
constraints make it much simpler to verify after a design transformation
whether the refined design block satisfies required properties or not.

1.1.1 Formal System Design

Due to the large size of the systems, an efficient design development process
should not only start at a high abstraction level, but also involve formal
methods, as pointed by Edwards [40]. In addition, formal verification has
to be applied at a high abstraction level, and the final implementation has
to be derived through correct-by-construction design refinements.

Formal system development is the objective of the ForSyDe [90] (Formal
System Design) methodology. The design process in ForSyDe starts with
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the creation of a functional system model. The system model is defined by
using formal semantics [84], which makes it suitable to apply formal methods
within the further design development process. The initial model is deter-
ministic and can be classified as a synchronous model of computation [56].
The main idea of synchronous models is to consider systems to produce
output values synchronously with the input values [10], and to separate
computation from communication. An alternative to the synchronous mod-
els are asynchronous models, where the communication delays may cause
non-deterministic behaviors in computation blocks. One of the strengths
of ForSyDe is the ideal view of the design in the system model, which is
described in terms of unlimited computational resources. In addition to
the zero communication and computation time, the model uses unlimited
storage resources and data types with non-constraint bit-widths. The func-
tional model with unlimited resources is a perfect description of a system
to analyze and verify its functionality, without superfluous implementation
specific details.

Obviously, there is quite a huge abstraction gap between the ideal system
model and an RT-level model, which is suitable for hardware synthesis. In
contrast to automatic [73] and semantic-preserving design refinements [95],
the ForSyDe methodology addresses manual design refinement, where both
semantic-preserving and non-semantic-preserving design transformations are
used to develop an RT-level implementation model.

Design transformations are classified according to the following:

Semantic-preserving transformations do not change the meaning and
the behavior of the model. Mainly, they are used to optimize the
model for synthesis.

Non-semantic-preserving transformations change the meaning of
the model. A good example of a non-semantic-preserving transfor-
mation is the refinement of a buffer, where the ideal unlimited buffer
is replaced with a fixed-size buffer. While such a transformation def-
initely modifies the system’s semantics, the refined model may still
behave in the same way as the original model under the circumstances
that no buffer overflow occurs.

The design development starting from the system model towards an im-
plementation model is illustrated in Figure 1.2. The ForSyDe methodology
provides predefined design transformations in the transformation library. In
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Domain
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Library
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Design
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Implementation

Model

Implementation

Hardware
Implementation

Software
Implementation

Communication

Interfaces(VHDL) (C++)

Mapping

Figure 1.2. The ForSyDe design flow

order to refine the system model, the designer selects a proper design trans-
formation rule from the library according to characteristics and required
implications, and applies it to the model. The result of the transformation
is an intermediate model, which is more detailed than the original model.
The final, implementation model includes all necessary details, which are
required for implementation mapping to software [59] (C++) and hard-
ware [90] (VHDL).

1.1.2 Thesis Objective

The research in the context of the ForSyDe methodology was started in the
late nineties. To date, clear and elegant concepts for system level modeling,
formal design refinement, and implementation mapping have been estab-
lished. One of the basic ideas, supporting the methodology, was to provide
a good platform for design verification. Formerly, only simulation based
techniques have been used to verify ForSyDe models, and formal methods
have not been applied.

The simulation of models at a high abstraction level has a clear ad-
vantage in front of RT-level models. Today’s RT-level models include an
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enormous number of behaviors and it is not possible to verify all of them
with a restricted set of input vectors within a limited amount of time. On
the other hand, an ideal model at a high level of abstraction do not cap-
ture implementation specific details and therefore the verification of the
model with a smaller number of behaviors is much more tractable. An im-
plementation model can be considered to be correct-by-construction as far
only semantic-preserving transformations are involved to the system devel-
opment, since they do not change the meaning of the model. However, in
practice, a synthesizable RT-level model is not achievable without introduc-
ing lower level details by the application of non-semantic-preserving design
transformations. Obviously, this kind of refinement process is potentially
error-prone and it is not possible to verify by simulation whether an im-
plementation model is equivalent to the initial system model and satisfies
the design constraints. In addition, the abstraction gap between the system
model and an implementation model is so huge that even by using formal
methods it is extremely complex to verify these models directly against each
other. The general objective of the thesis is to show how formal verification
can be integrated into the design development process, following the design
transformations based refinement steps.

1.2 Author’s Contribution

In order to have an efficient and capable design verification process, the
author has proposed to share verification activities over the entire trans-
formational design refinement. To consider the least number of changes at
every verification step, refined intermediate models have to be verified im-
mediately after non-semantic-preserving transformations. Since the change
by a single transformation is tiny compared to the whole design refinement,
the verification of two consecutive intermediate models concentrates on a
certain change and requires much less effort. The basic idea of the pro-
posed verification approach is to associate non-semantic-preserving design
transformations with a set of verification properties. According to the fun-
damental concept of ForSyDe, all design transformations used in the design
development process, are predefined in the design library. Thus, it is pos-
sible to analyze every single transformation and to find in each of them a
set of critical issues, which are relevant to check after the corresponding
refinement. Verification properties are defined as temporal logic expressions
and refined sub-blocks of intermediate models are checked locally against
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the properties by using formal verification tools. Throughout the thesis the
model checking technique is used to perform formal verification. Hence,
the verification properties are specified as CTL* expressions and the thesis
gives general rules how to map ForSyDe models to the input language of the
SMV [102] model checker.

Model checking is fully automatic and searches design faults exhaustively,
but it is sensitive to the size of the model. In order to be more efficient, all
unnecessary system behaviors have to be abstracted from the model before
verification. In addition to the predefined properties, the design method-
ology has to provide abstraction techniques, which are accompanied with
non-semantic-preserving transformations. The thesis describes the devel-
opment of verification properties and data abstraction for communication
channels and proposes the polynomial abstraction technique for verification
of design blocks after computation refinements at a high abstraction level.

The proposed verification approach addresses only local properties of
refined blocks since formal methods cannot handle today’s large models
without an ad hoc simplification. Although a refined design block can be
considered to be correct after verification, the changes in the design block
may influence the rest of the model. The global influence has to be explored
by static analysis techniques. The thesis addresses timing changes by tem-
poral refinements that locally increase the computation time in the refined
design blocks. In order to preserve the system’s correct functional behavior
after temporal refinement, two synchronization techniques are proposed.

According to the Rugby coordinates [50] the thesis addresses refinements
in three domains: computation, communication and time. Refinements in
the fourth, data domain, are considered as a future research topic.

1.2.1 Author’s Publications

1. T. Raudvere, I. Sander, A. K. Singh, D. Gurov, and A. Jantsch. The
ForSyDe semantics. In Proceedings of the Swedish System-on-Chip
Conference (SSoCC’02), Falkenberg, Sweden, March 2002. [84]

This paper introduces the operational semantics of the ForSyDe pro-
cess constructors in the synchronous model of computation.

2. T. Raudvere, I. Sander, A. K. Singh, and A. Jantsch. Verification
of design decisions in ForSyDe. In Proceedings of CODES+ISSS’03,
Newport Beach, California, USA, October 2003. [85]
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This paper presents how design blocks can be verified against prede-
fined properties after non-semantic-preserving design transformations.
In addition, the paper describes the mapping procedure of the ForSyDe
constructions to the input language of the SMV model checker.

3. T. Raudvere, A. K. Singh, I. Sander, and A. Jantsch. Polynomial
abstraction for verification of sequentially implemented combinational
circuits. In Proceedings of the conference on Design, automation and
test in Europe (DATE’04), Paris, France, February 2004. [86]

This paper introduces the fundamental concept of polynomial abstrac-
tion.

4. T. Raudvere, A. K. Singh, I. Sander, and A. Jantsch. System level
verification of digital signal processing applications based on the poly-
nomial abstraction technique. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD’05), San Jose, Cali-
fornia, USA, November 2005. [87]

This paper addresses the verification of refined computation blocks
with combinational functionality and presents a more detailed and
extended version of the polynomial abstraction technique.

5. T. Raudvere, I. Sander, and A. Jantsch. A synchronization algorithm
for local temporal refinements in perfectly synchronous models with
nested feedback loops. In Proceedings of the Great Lakes Symposium
on VLSI (GLSVLSI’07), Stresa, Italy, March 2007. [83]

This paper describes the problems caused by local temporal refine-
ment and provides a synchronization algorithm to preserve the sys-
tem’s functionality in the global sense after local temporal refinements.

6. T. Raudvere, I. Sander, and A. Jantsch. Synchronization after de-
sign refinements with sensitive delay elements. In Proceedings of
CODES+ISSS’07, Salzburg, Austria, October 2007. [82]

The paper introduces the concept of sensitive delay elements used for
synchronization after temporal refinements. Sensitive delay elements
are special in the sense that they do not delay synchronization events.
Transforming carefully selected ordinary delay elements to sensitive
delay elements modifies the system so that a significantly smaller num-
ber of synchronization delay elements are required to synchronize the
system after temporal design refinements.
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7. T. Raudvere, I. Sander, and A. Jantsch. Application and verification of
local non-semantic-preserving transformations in system design. sub-
mitted to IEEE Transactions on Computer-Aided Design, 2007. [81]

The design development strategy, which incorporates non-semantic-
preserving transformations, verification properties, abstraction tech-
niques and synchronization techniques is described in this paper. The
paper illustrates the refinement and verification in the context of the
design of a digital audio equalizer.

The main ideas in all the listed publications are from the author of the
thesis, as well as the problem formulations, solutions, algorithms, performed
experiments and most parts of the manuscripts. At the same time discus-
sions with the co-authors have been a source of many ideas. The co-authors,
especially Axel Jantsch and Ingo Sander, have helped to treat problems in
a more general context, to finalize the proposed ideas and to examine the
manuscripts. Dilian Gurov and Ashish Kumar Singh have helped in opera-
tional semantics issues in [84]. The concept of the transformational design
refinement in the ForSyDe methodology and many design transformations
used in [81, 82, 83, 85, 87] are from Ingo Sander. The ForSyDe digital equal-
izer model, used throughout several case studies was also written by him.
The proofs in [87] were written by Ashish Kumar Singh.

1.3 Thesis Layout

The related work and background information about design methodologies,
verification and abstraction techniques, and synchronization methods are
collected in Chapter 2. Chapter 3 gives an overview about the ForSyDe
methodology and brings guidelines how to map ForSyDe models to the SMV
language [85].

The following chapters can be grouped into two parts. The first part,
Chapters 4, 5, and 6 address local verification issues in ForSyDe. In the
second part, Chapters 7 and 8 target the synchronization after local temporal
refinements in order to preserve the system’s correctness in the global sense.

Chapter 4 describes the proposed verification approach [85], which fol-
lows the non-semantic-preserving refinements by providing property tem-
plates, abstraction techniques and stimuli generators, in order to verify crit-
ical details, which a refinement has changed in the model. Chapter 5 ad-
dresses communication refinements, by defining general verification proper-
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ties for communication channels [85]. Chapter 6 elaborates on computation
refinements at a high abstraction level, where ideal combinational functions
are mapped to sequential implementations [86, 87].

Chapter 7 defines a system level synchronization algorithm, which re-
stores the system’s correct behavior after local temporal refinements [83].
The synchronization algorithm is extended in Chapter 8, by introducing
sensitive delay elements that help to reduce the number of resources that
are required to synchronize refined models [82].

Chapter 9 illustrates the design refinement, verification and synchro-
nization process in the context of a digital audio equalizer [81]. Chapter 10
summarizes the thesis and gives proposals for future research.
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Chapter 2

Background and Related Work

2.1 Verification Techniques

The design development process transforms the system specification into an
implementation. Since the system specification describes only the system’s
functionality, there are several implementations that satisfy the specifica-
tion. Although both the design specification and an implementation express
the same functionality, due to the different abstraction levels, the number of
details in the implementation is much higher than in the specification. For
example, the functional specification does not contain information about
computation delays, computation precision or buffer sizes, which again are
present in an implementation. Thus a task for verification is to check if the
implementation satisfies the design constraints on delays and precision, and
behaves according to the expected functionality. In general, the verification
process abstracts the implementation model to check whether it corresponds
to the functionality defined in the specification that is opposite to the de-
sign refinement process, which stepwise adds implementation details to the
specification.

The verification techniques can be divided into simulation based and
formal verification techniques. Simulation based techniques are straightfor-
ward to check if for a given input assignment an implementation responds as
described in the system specification. One possible way for simulation is to
provide a set of input stimuli vectors and the expected output values against
which the simulation results are compared. In many cases predefined stimuli
vectors are created to address some narrow set of design faults. Although
these vectors work well for dedicated faults, vectors that are generated in a

13
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pseudo random fashion may be much more efficient to find arbitrary design
faults. In the latter case the same randomly generated vectors are applied
in parallel to the implementation and the system specification to compare
respective output values. In order to keep track which parts of the design are
executed and how many times, verification coverage metrics [51] are used.
Based on the coverage metrics specific vectors can be generated, which tar-
get uncovered design parts [43]. The design simulation is not limited to the
stimuli and response pairs, and may include monitors that observe internal
system behavior. In hardware description languages the monitors are de-
scribed in the assertion format, expressing the expected relations of internal
signals. If an assertion is not satisfied, the monitor reacts by reporting an
error message in a log file or stopping the simulations. The main advantage
of monitors is that the system behavior can be observed in parallel at a
large number of points and at every input stimuli vector. Looking at the
other point of view, the monitor assertions can be considered as properties
that the system has to satisfy [98]. For formal verification, monitors can be
treated as a part of system specification that property checkers examine. For
example, in [45] a high level abstract system description is verified against
properties written in PSL (Property Specification Language) [4] by using
model checking, and for simulation both the model and the PSL properties
are translated to SystemC.

Due to the high complexity of today’s systems and the shortage of the
available time for verification, exhaustive simulation is not possible [20].
As complement to simulation, formal verification methods can be applied,
which use sophisticated mathematical methods for analyzing the computa-
tion paths of the system in order to find mismatches between two different
models or between the system specification and an implementation. Instead
of assigning input stimuli vectors to the model, formal methods try to find
if there exists an input vector or a sequence of vectors, which cause dif-
ferent behaviors in two system description. Although the quality of these
techniques is comparable with exhaustive simulation, they can verify only
relatively small models. At the same time, it is possible to check that a block
of a larger system behaves correctly. Also, one can verify the system behav-
ior on certain conditions, which may touch only a small part of the entire
system. Two main classes of formal verification techniques are equivalence
checking and property checking.

Equivalence checking is used to determine if two circuits are function-
ally equivalent, i.e., for any input stimuli the output values of the circuits
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are always pairwise the same. The method is widely used for verification
of Boolean circuits, where BDDs (Binary Decision Diagram) [22] and SAT
(Boolean satisfiability) based techniques [62] are applied. Various novel ap-
proaches are additionally used, in order to reduce the complexity of the
problem. Examples are decomposition of a larger circuit into smaller blocks
[13], the use of test generation [21] and random simulation [54], or a combi-
nation of the mentioned techniques in elegant ways [25, 71].

Two well known property checking techniques are theorem proving
and model checking. Theorem proving [36, 44] is a formal verification
technique where axioms and inference rules are used in order to prove math-
ematically that a model satisfies its specification. Compared with model
checking the technique has a strong advantage - it can be used for the verifi-
cation of a system with infinite state space, because the system correctness
is proven through formal deduction, instead of applying state space explo-
ration. Also the method can be applied at different abstraction levels. On
the other hand, it demands good knowledge and ingenuity to compose a
mathematical proof. In order to assist the designer to write specifications
and construct proofs supporting tools can be used. For example PVS (Pro-
totype Verification System) [69] is a popular theorem prover.

Model checking [34, 33] is a formal technique for verification of se-
quential circuits and communication protocols. A model is expressed as a
state-transition graph and its correctness is verified against a specification,
which is defined in a temporal logic, for example in CTL* (Computation
Tree Logic) [31]. An exhaustive state space exploration procedure is used to
decide the correctness of the model. The procedure can be fully automated
and this makes the technique easier to use compared to theorem proving. In
addition to the fully automatic verification, model checkers provide counter
examples if the model does not satisfy the specification. A counter example
is a trace of transitions from the initial state towards a state where the given
specification is violated. This feature is very important in order to assist
the designer to find what caused the negative answer. Due to the complex
data structures in software models and the sake that model checking can be
applied only to a model with a finite state space, it has been mostly used in
hardware verification. However, newer model checkers also target software
verification problems [29].

The idea to represent transition relations with binary decision diagrams
(BDD) [22] was a major step towards the verification of realistic complex
designs. The model checking algorithms, which uses the latter type of the
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presentation of transition relation is named symbolic model checking [23].
SMV (Symbolic Model Verifier) is a model checker that is based on this
approach. The Cadence version of SMV [102] is used throughout the thesis
as a tool for verification of ForSyDe models. SMV is introduced in Sec-
tion 2.3. Other popular model checkers are the SPIN tool [49], which is
used for verification of asynchronous and distributed systems and commu-
nication protocols, and UPPAAL [9] that is developed for verification of
systems represented as a timed automata. NuSMV [68] is a reimplemen-
tation of SMV, which additionally supports bounded model checking [17].
In bounded model checking only bounded lengths of computation paths are
checked, in order to find counter examples. The Mentor Graphics 0-IN for-
mal verification tool [65] combines model checking with simulation. Instead
of starting model checking from the initial state, it uses simulation to find
critical and more interesting states (for example states, where buffers be-
come full) and starts bounded model checking from those states.

Since model checking suffers from the state space explosion problem,
various abstraction techniques are proposed for simplification of model
checking tasks. Clarke et. al. present in [32] a methodology named counter
example guided abstraction refinement. In this work an initial abstract model
is generated by an automatic analysis of the control structure of the design.
If the model checking of the initial abstract model gives an erroneous counter
example then iterative refinements will be done according to the counter ex-
amples until a valid abstraction is found. Although the proposed technique
is fully automated the problem to find a refinement is NP-hard and may not
be suitable for larger designs.

The idea of uninterpreted function symbols [24] is used to simplify the
verification task. In [12] an out-of-order processor is verified by using model
checking and uninterpreted functions. In this treatment the use of symbolic
values and instructions allows to show the correctness of the machine, inde-
pendently of the actual instruction set architecture and the implementation
of the functional units. Since this technique is based partly on theorem
proving, it needs a remarkable amount of designer contribution. In [6] the
verification of optimized microprocessors is addressed by combining counter
example guided abstraction refinement and uninterpreted data path func-
tions.

McMillan presents a methodology for system-level hardware verification
based on compositional model checking [64]. This methodology relies on a
technique of circular compositional proof, which allows to assume the cor-
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rectness of some components when verifying other and vice versa. Although
the state space of the model can be reduced significantly, the designer has
to construct a complex proof.

Hojati and Brayton [48] describe a methodology for integer combina-
tional/sequential systems. According to the notion of data independence
they separate a design into control part and data path. All the data path
variables are replaced with the binary variables. The system verification is
performed using language containment.

Spatial abstraction combines this idea with the interval propagation the-
ory [47]. The tool ADAbT [72] is an implementation for automatic spatial
abstraction and verification of VHDL models. Through this technique the
bit widths of data path storage elements can be reduced so that all the pos-
sible behaviors of the control part are preserved. The variables of the design
can be classified as data, control or mixed. A variable, which does not deter-
mine the control flow, is classified as a data variable. All other variables are
control or mixed. A variable that belongs to a loop or a branch construct is a
control variable and all the variables, which take place in evaluation of con-
trol or mixed variables are mixed. Control variables, and mixed variables,
which also are input variables, are irreducible. Data variables are initialized
with one bit variables. Through interval propagation [47] their bit widths
are calculated until a fix-point or the actual range of the variable is found.

The disadvantages of the method are: (1) the domains of all variables
must be determined before abstraction, (2) the abstract model is valid only
for verification of the properties related to the control part and intercon-
necting signals between data path and control part. Unfortunately the data
properties, which refers to the values on the system input and output ports
to express the functionality as described in the specification are not verifiable
if the design includes multiplication and division operations. The polyno-
mial abstraction technique in Chapter 6 has some advantages compared to
the spatial abstraction technique. Polynomial abstraction allows to verify a
refined model, based on the model input/output functionality, against the
system specification even if multiplication and division operations are used.
In addition, the domains of data signals in the design may be undetermined,
i.e., the polynomial abstraction is applicable at a higher level of abstraction.

Polynomial methods have been applied for verification also at lower ab-
straction levels. In [101] a method for component reuse based on match-
ing an arithmetic specification with bit-level implementations is introduced.
They derive word-level polynomials for both specification S(x) and imple-
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mentation R(x) and equivalence checking is performed through comparing
the coefficients of the polynomials or quantifying the difference D(x), where
D(x) = S(x) − R(x).

Two polynomial functions with different degrees and coefficients may
compute the same result in a limited range of values, which is defined by
the word length of variables. The equivalence check of this kind of polyno-
mial arithmetic functions implemented on multiple word length data paths
is addressed in [97]. The polynomial abstraction technique targets design
descriptions where the word sizes of an implementation are not yet specified.

Compared to the polynomial abstraction where proper ranges of vari-
ables for verification are found according to their degrees, in [77] Pnueli et.
al. describe a method to analyze the structure of an equality formula, which
describes the source and target models in terms of uninterpreted functions.
Based on the analysis, they determine the ranges of the variables in the
formula to check whether the formula is satisfied or not. Similarly to poly-
nomial abstraction, it is possible to verify systems at an abstraction level,
where the domains of variables are unspecified. However, their approach is
sensitive to arithmetic optimization and thus may not find that a refined
model corresponds to the specification.

A method for verification of combinational circuits, that consists of the
functions {+,−, ∗} is introduced in [89]. This study finds the order of a
functional implementation and uses the simulation with a restricted set of
input vectors to verify the system correctness. Compared to polynomial
abstraction, they do not address sequential designs and rational functions.

2.2 The Computation Tree Logic (CTL*)

Properties of a finite state system as traces of transitions between states can
be expressed through temporal logic. The Computation Tree Logic (CTL*)
[31] is one of these temporal logics, which intuitively expresses the properties
of computation trees. A computation tree is an infinite tree, which gives all
the possible executions of the system as paths starting from the initial state.
CTL* makes it possible to define various properties including liveness, fair-
ness, safety and deadlock freedom, and can describe very complex relations
of signals in terms of timing and values.

CTL* formulas contain path quantifiers and temporal operators. The
former describe the branching structure of a computation path and the latter
describe the properties of a path through the tree.
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The path quantifiers are the following:

• A - for all the computation paths;

• E - for some computation path.

The basic temporal operators are the following:

• G (globally or always) - a property holds at every state along the
computation path;

• F (in the future or sometimes) - a property holds at some state on the
path;

• X (next time) - a property holds at the next state of the path;

• U (until) - this operator combines two properties. There exists a state
where the second property holds and at every preceding state the first
property holds.

Some examples of CTL* formulas with explanations are given in order
to illustrate the construction of specifications in temporal logic:

• EF(Started∧ ∼ Finished) - there exists a state where a process is
started but not finished;

• AG(Request → AFAcknowledge) - always every request will be even-
tually acknowledged;

• AG(Request → A(Request U Acknowledge)) - always if a request oc-
curs then it will continuously hold until it is eventually acknowledged.

2.3 The SMV System

The Cadence version of the SMV model checker can be used for verifica-
tion of synchronous or asynchronous concurrent finite state models against
a specification given in the temporal logic CTL*. The verification of a prop-
erty terminates either with a report true, if the model satisfies the spec-
ification, or with a counter example, which shows why the property does
not hold. The SMV language allows a modular hierarchical description of a
model, where a module can instantiate another module.
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Figure 2.1. A three bit binary counter with decimal output

Let’s consider the three bit counter with decimal output in Figure 2.1.
The values of the binary input set are counted by three counter cells and the
output values of the cells are decoded into decimal values by the decoder.
The corresponding SMV program is given in Figure 2.2.

The SMV language provides finite data types - Boolean, enumerated and
array with a fixed size. The first two lines of the code define new data types
Int 0 1 and Int 0 7. The former represents an enumerated definition, where
symbolic values of the data type are given in curly braces. The domain of
Int 0 7 is defined through the lowest and the highest values. Although the
integers are defined as enumerated, the SMV tool interprets them as integers
and provides Boolean and arithmetic operations on them. The considered
model defines three modules - main, cnt cell and decoder. The module main
is a component of every SMV program and has a special meaning similar to
the main module in the C language. The module starts with the declaration
of the variable set that has type Int 0 1. Since there is no assignment to
the variable, the model checker can select a value from the domain of that
variable in a non-deterministic manner at every execution cycle.

User defined modules are considered as variables. The module cnt cell is
instantiated three times and the module decoder once, as variables bit1, bit2,
bit3 and adapter respectively in the main module. The connections between
components are described in these definitions. For instance, the signal set is
connected with bit1, and bit1 assigns a value to bit2. The expression bit1.out
denotes the output out of the component bit1.

The model checker verifies the system against properties that are a part
of the main module. Properties are called “specification” and their defi-
nitions start with SPEC. In this example two properties are defined. The
first says that the system output gets always eventually the value 7, and
the second one says that there exists a possibility that the output value will
be 7. The former claim is false, because the input set may have always the
value 0, and in this case the output value will never be 7.
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typedef Int 0 1 {0, 1};
typedef Int 0 7 0..7;

MODULE main(){
set : Int 0 1 ;
bit1 : cnt cell(set);
bit2 : cnt cell(bit1 .out );
bit3 : cnt cell(bit2 .out );
adapter : decoder (bit1 .state , bit2 .state , bit3 .state);

SPEC (AF (adapter .out = 7));
SPEC (EF (adapter .out = 7));

}

MODULE decoder (i1 , i2 , i3 ){
out : Int 0 7 ;
out := 4 ∗ i3 + 2 ∗ i2 + i1 ;

}

MODULE cnt cell(i1 ){
out , state : Int 0 1 ;
init(state) := 0;
next(state) := case{

state = 0 : i1 ;
state = 1 & i1 = 0 : 1;
state = 1 & i1 = 1 : 0;
};

out := case{
state = 1 & i1 = 1 : 1;
default : 0;
};

}

Figure 2.2. The three bit counter of Figure 2.1 described in the SMV
language
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The module decoder has three binary inputs (i1, i2, i3) and one output
(out) of type Int 0 7. The module consists of the declaration of the output
variable out, and an arithmetic expression, which evaluates the output.

The last module, cnt cell consists of two binary variables state and out.
The special SMV operators init and next provide an opportunity to de-
fine sequential machines. For example, the initial value of state is 0 and
through the use of the operator next, the case expression assigns values at
the following execution cycles. The operator next may be interpreted as a
unit delay. Case expressions are given in the form, where each line contains
a condition and an arithmetic expression that are separated with a colon.
The conditions in a case expression are checked in a top-down manner. For
example, if state and i1 are both equal to 1, then the value 1 is assigned to
the variable out, otherwise the default value is 0.

2.4 Synchronization Techniques

Although most of the design transformations refine only one design block
at a time, the change in a single block may influence the entire system on a
global perspective. In addition to verifying the local correctness of refined
system blocks, the timing problems caused by refinements in computation
blocks at a high abstraction level are addressed.

Retiming and pipelining are two well-known techniques that address la-
tency and data arrival problems. In order to reduce the circuit area or a
critical path, retiming algorithms [61, 57] relocate already existing memory
elements. Although retiming techniques address synchronization problems,
these problems are not caused by additional delays inserted into the model.
On the other hand, the introduction of additional delays in the model is
elaborated in pipelining transformations. Pipelining in software is simpler,
since different models from the perfectly synchronous one are used there. In
software the synchronization points are not defined by clock events, but ac-
cording to the instances when certain computation tasks are completed. In
hardware the data synchronization is solved by a pipeline controller, derived
from a high level system specification [107]. The synchronization techniques
in Chapters 7 and 8 make it possible to introduce pipelining at system level in
synchronous models with nested feedback loops, without adding controllers
or changing computational models.

In order to avoid synchronizations problems caused by refinements that
increase the delays of computation blocks, desynchronization [11, 78] or
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latency insensitive design [26] (LID) techniques can be applied. The for-
mer technique can be used to transform a synchronous model to a globally
asynchronous locally synchronous (GALS) model, which is less sensitive to
delayed data transfer over the asynchronous media. A comparison between
synchronous, latency insensitive and asynchronous design approaches is pre-
sented in [27]. LID targets the mapping of an IP-block based synchronous
model to hardware, where longer wires entail delayed data arrival. The syn-
chronization problem is solved by (1) wrappers around IP-blocks stalling
computation if input data is not available, and (2) by handshake channels
and relay stations between IP-blocks that replace synchronous communica-
tion. The handshake mechanism distributes stalling messages and a relay
station buffers data items if the destination process cannot consume them.
A bridge-based approach is described in [103]. In this approach the relay
stations are replaced with some interface logic in both ends of the communi-
cation channels between IP-blocks and instead of single wires the channels
contain many parallel wires for the data transfer. In [28] an approach is
proposed, which replaces LID protocols with schedulers at every IP-block.
Although this method drastically simplifies the implementation of LID, it
is still much more complex to refine a model including schedulers at the
system level, compared to the refinement in a pure synchronous model.

Although both GALS and LID models are common in practice, they
have side effects that the synchronization algorithms in Chapters 7 and 8
avoid. The proposed algorithms avoid unnecessary discontinuities in the
design process caused by changes in the computational model. It is imprac-
tical to switch the computational model due to a single local refinement.
The use of the same computational model makes it much easier to verify
refined models against each other. In addition, verification in deterministic
synchronous models by using simulation or formal methods is simpler than
in other models. On the other hand the proposed synchronization tech-
niques are complementary applicable within refinements in a synchronous
island of a GALS model or in an IP-block of an LID model. The latency
equivalence of the original model and a refined model after synchronization
can be checked by using validation techniques described in [103].

2.5 Design Methodologies and Languages

This section introduces other design methodologies, concerning transforma-
tional design refinements and verification approaches.
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A general overview about transformations from a formal problem spec-
ification to an efficient program is presented in [70], and transformations
of functional and logical programs in [74]. Transformational approaches
have been used mostly for development of software programs [74] to ob-
tain from an initial specification a final program with the same semantics or
with a subset of the initial semantics if the specification is non-deterministic.
Transformational approaches are also used in hardware design [95], but they
include mainly semantic-preserving transformations.

The CIP (computer-aided, intuition-guided programming) project [8]
is an example of transformation system, where program development starts
with describing the problem as a formal specification, and continues through
a gradual development process until an executable program is created for
the expected target machine. This process is based on transformation rules,
which preserve semantics and thus it is ensured that the final product satis-
fies the initial specification. As pointed in [8] stepwise refinement by using
non-semantic-preserving transformations requires to repeat verification after
each step. Therefore the CIP project allows only formal, provably semantic-
preserving transitions.

Metropolis [37] is a design environment, which relies on the ideas of
platform based design. Platforms, as models in Metropolis, are constructed
in the sense of processes, media and schedulers that provide a clear sepa-
ration of computation, communication and coordination. The design flow
starts with creating an abstract specification model, which will be refined
in order to achieve an implementation in certain architecture. The refine-
ment verification checks if the behavior of the refined model belongs to the
abstract behaviors. The verification is performed with control flow graphs,
which are created for both the abstract and refined models. For example
in [30] Metropolis meta-models are translated to Promela, the input lan-
guage of the SPIN model checker, and both system level representations
and refined representations are verified against assertions or temporal logic
properties.

The SpecC [38] methodology addresses the System-On-a-Chip design
process, by using the SpecC language. The SpecC language [42] is based
on C and allows to describe the specification, and hardware and software
components by using the same semantics. The SpecC methodology consists
of well-defined design models and well-defined transformations, which refine
one model to another according to a top-down approach. The models are
described at different levels of abstraction: specification, architecture, com-
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munication and implementation levels. In the first phase of the refinement,
the system architecture is derived from an abstract high level specification,
and hardware components are allocated. In the second phase, the commu-
nication protocols are synthesized, and finally the communication model is
translated into an implementation model. Models at all abstraction levels
are described in the same SpecC language. Hence all models are executable
and the same test-benches can be used for validation through the whole
design process. Compared to the ForSyDe methodology, SpecC does not in-
clude stepwise refinements by non-semantic-preserving transformations and
therefore does not address related verification problems.

In [104] the flow equivalence of the initial and refined SpecC models at
different levels of abstraction are formally verified by using model checking.
In this approach the multi-clocked formal description of models is imple-
mented by using the Polychrony workbench.

Lava [18, 100] is a hardware description language based on Haskell [105].
It is used for structural description of hardware, which can be translated
to VHDL. In order to perform the verification of a circuit, Lava links the
system description code with verification properties and applies theorem
proving to check if the circuit satisfies specified properties. Lately, following
the approach used in Lava, a similar compiler that translates the ForSyDe
model to a synthesizable VHDL description has been developed [5]. Since
the Lava and ForSyDe compilers create similar intermediate representations
of the model, it is possible to improve the ForSyDe compiler so that the same
theorem proving method can be used for verification of ForSyDe models as
well.

Esterel [15, 16] is a synchronous language for programming reactive
systems. Based on the formal semantics an Esterel model can be verified
through theorem proving or a semantic check method, where the verified
property is defined as a syntactic rule. Similarly to ForSyDe, a finite state
model can be derived from an Esterel program, which translated into a finite
state machine is a source model for verification tools to perform behavior
analysis and proofs. Due to many supporting verification tools developed
specially for Esterel, it is a popular design language used for safety critical
systems and aerospace industry [67].

Lustre [46, 106] is a synchronous data-flow language for programming
critical real-time systems. The advantage of the ForSyDe methodology is
that a system model may have control and data-flow behaviors at the same
time. The Lustre program includes a system description as a set of in-
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put/output relations, assumptions about the behavior of the environment
as a set of assertions and, finally, a set of properties, which are checked by a
verification tool. The verification is similar to the symbolic model checking
and it is based on binary decision diagrams for state space exploration.



Chapter 3

The ForSyDe Methodology

The ForSyDe methodology [90] has been developed for system level design.
The design development process starts at a high abstraction level and the
abstraction gap between the system specification and an implementation is
filled by transformational design refinement (Figure 1.2). The design process
starts with the creation of the functional system model that is synchronous,
deterministic and described in the functional language Haskell [105]. The
design process continues with the stepwise refinement, which transforms the
system model to an implementation model. The refinement is done through
a series of applications of well-defined design transformations that are given
in the design transformation library. The system model, the implementation
model and all intermediate models are described in the functional domain
that makes it easier to verify them against the design specification consider-
ing design constraints, since the same verification techniques can be used for
all models. The implementation model as a result of the refinement process
has all the lower level details required for mapping to hardware (VHDL)
and software (C++).

3.1 The System Model

The system model uses a synchronous model of computation, which de-
scribes the system functionality at a high abstraction level in terms of
unlimited resources without including lower level implementation details.
A system is defined as a set of concurrently executed processes that are
connected by synchronous signals.

27
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Signal si is defined as a sequence of events {vi
0, v

i
1, . . . , v

i
j , . . .}, where vi

j

is the value of the j-th event (with time tag j) of signal si. All signals share
the same set of tags for synchronization purposes. The signal direction is
from the source process to the destination process, and every process has
only one output signal.

There are two kinds of events: (1) present events that carry a value and
(2) absent events that are used only for synchronization. An absent event
⊥j shows that a signal contains no value at a time instant j. The mark >
is used as an abstract value when referring to present values, and ⊥ denotes
absent values. For example, the abstract presentation of the signal of absent
extended integers {11, 42,⊥3, 24, . . .} is {>,>,⊥,>, . . .}. To extend a data
type T to T⊥ the ⊥-value is added to its domain.

Processes are defined through process constructors, which are higher or-
der functions that take combinational functions and values as arguments and
produce processes. This approach allows to separate computation (combina-
tional functions) from communications (process constructors). The seman-
tics of the process constructors is introduced in [84]. The general processes
that a system contains are combinational processes Pcomb, state machine
processes PFSM and simple delays P∆, and more complex components can
be constructed by combining them.

combnSY (f)

s1
s2

sn

s′

Pcomb(f, s1, s2, . . . , sn) = s′

where
f(v1

i , v
2
i , . . . , v

n
i ) = v′i
s1 = {v1

0 , v1
1 , v

1
2 , . . .}

s2 = {v2
0 , v2

1 , v
2
2 , . . .}

...
sn = {vn

0 , vn
1 , vn

2 , . . .}
s′ = {v′0, v

′
1, v

′
2, . . .}

(3.1)

Figure 3.1. The combinational process constructor combnSY

A combinational process takes arguments as a dedicated n-input combi-
national function f(x1, . . . , xn) and n input signals. For each tag j, a com-
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binational process consumes from its input signals s1, . . . , sn events with the
tag j carrying values v1

j , . . . , v
n
j and produces an event with the tag j and a

value v′j = f(v1
j , . . . , v

n
j ) to its output signal s′:

Pcomb(f(x1, . . . , xn), s1, . . . , sn) = s′ = {v′0, v
′
1, . . . , v

′
n, . . .} =

= {f(v1
0 , . . . , v

n
0 ), f(v1

1 , . . . , v
n
1 ), . . . , f(v1

j , . . . , v
n
j ), . . .}

Combinational processes are defined by using process constructors
combnSY (Figure 3.1), where n depends on the number of input signals
the process is connected with.

A delay process P∆(st0, s1) has arguments as an initial state value st0
and an input signal s1 = {v1

0 , v
1
1 , . . . , v

1
j , . . .}.

P∆(st0, s1) = s′ = {st0, v
1
0 , v

1
1 , . . . , v

1
j , . . .}

A finite state machine process PFSM (Figure 3.2) with a state function
fst, an output function fout, an initial state st0, n input signals s1, . . . , sn

and an output signal s′ is defined as:

PFSM(fst, fout, st0, s1, . . . , sn) = s′

where
s′ = Pcomb(fout, s

′′, s1, . . . , sn)
s′′ = Pcomb(fst, (P∆(st0, s

′′), s1, . . . , sn))

st0

s1

sn

s′s′′

fst fout

Pcomb Pcomb

P∆

Figure 3.2. Finite state machine

The system is constructed as a network of processes and modeled as a set
of equations. For a hierarchical description of the system a set of processes
may be composed as a block. An example of a process network with the
corresponding system description as a netlist is given in Figure 3.3. The
system contains two blocks block1 and block2 . Block1 includes two processes
P1 and P2, and process P3 belongs to block2 .
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block1 (s′1, s
′
2) = (s′3, s

′
4)

where
(s′3, s

′
5) = P1 (s′1)

(s′4) = P2 (s′5, s
′
2)

block2 (s′′1) = (s′′2)
where

(s′′2) = P3 (s′′1)

system (s1) = (s4)
where
(s3, s4) = block 1 (s1, s2)

(s2) = block 2 (s3)

system

P1 P2

P3

block2

s′′1

s2

s′2s′3

s3

s′5

s′′2

s1 s′4 s4s′1

block1

Figure 3.3. A network of processes

3.2 Implementation Models

An implementation model is the result of the refinement process. In con-
trast to the system model, which is a network of concurrent synchronous
processes, it may also include synchronous sub-domains with a different
signal rate. Synchronous sub-domains violate the synchronous assumption
since not all signals share the same set of tags. Thus they are not allowed in
the system model, but are introduced by well-defined transformations during
the refinement process. Inside a synchronous sub-domain the synchronous
assumption is still valid and the same formal techniques can be used as for
the system model. The implementation model contains lower level imple-
mentation details that are required for hardware (VHDL) or software (C++)
synthesis.

3.3 Design Refinement

A main strength of the ForSyDe methodology is the design transformations
based design development process, which stepwise refines the initial system
model into a final implementation model. The design transformations are
well defined and in addition to common semantic-preserving transformations
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the ForSyDe methodology supports non-semantic-preserving design trans-
formations. The latter allows to start the design process at a significantly
higher abstraction level, where the system is described in the sense of ideal
resources, that is not possible if only semantic-preserving transformations
are applied. On the other hand, if the design refined by semantic-preserving
transformations can be considered to be correct-by-construction, it is oblig-
atory to verify that the implementation model derived by the application of
non-semantic-preserving transformations satisfies the given specification.

The designer applies transformations to a system model by choosing
transformation rules from the transformation library. The transformation
rules are characterized by a name, the required format and constraints on
the initial process network, the format of the transformed process network
and the implication for the design, i.e., the relation between the initial and
the transformed process networks is expressed by the characteristic function
[93].

3.4 State of the ForSyDe Methodology

Today the ForSyDe methodology supports modeling of concurrent reac-
tive systems at different levels of abstraction. The ForSyDe libraries pro-
vide process constructors for describing systems in data flow, synchronous
and timed models of computations. An objective of the currently running
ANDRES project [1] is to integrate these different computation models in
the same system description in order to provide more flexibility for an-
alyzing the functionality of embedded systems. In addition, this project
addresses functional adaptivity issues in the system description and imple-
mentation. For the sake of clarification it has to be mentioned, that the
thesis address verification and synchronization only in the context of the
synchronous model of computation.

The fundamental and established concept of the design development
process based on the design transformation is summarized in [93], though
the number of design transformation rules in the ForSyDe design library is
rather small. In addition to the design process, the mapping of an imple-
mentation model, which is the result of the refinement process, to hardware
and software is explained in [94, 5] and [91], respectively. A formal set
of synchronization components for refinements into hardware and software
implementations are presented in [60].
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3.5 ForSyDe Constructions in the SMV Language

In order to formally verify ForSyDe models, the SMV model checker has been
used. The following sections give short guidelines for describing ForSyDe
models in the SMV language. Text files in both languages have a com-
mon structure. Files in both cases include (a) data type definitions, (b)
user defined function descriptions, (c) process definitions and (d) a system
structural description, which shows how processes are connected with each
other. User defined functions, processes, and the system structure that in
the ForSyDe language are expressed as Haskell functions, are defined as
modules in the SMV language. However, there are only minor differences in
terminology between functions and modules.

3.5.1 Example: Process Receive in ForSyDe

Let’s consider the following definition of the process Receiver in the ForSyDe,
explained in more details in Section 5.2, in order to illustrate the mapping
from ForSyDe to SMV:

data RecState = WaitDataReady | WaitData | OutputData

receive = moore2SY recStateFn recOutFn (WaitDataReady , 0 )

recOutFn :: (RecState , Int )− > (AbstExt RecMsg ,AbstExt Int )
recOutFn (WaitDataReady , ) = (Prst Ack ,Abst )
recOutFn (WaitData , ) = (Prst Ready ,Abst )
recOutFn (OutputData , v ) = (Abst ,Prst v )

The process Receiver is an FSM process, with a state function recStateFn
and an output function recOutFn . The state of Receiver may have three
values WaitDataReady , WaitData and OutputData, which are defined as an
enumerated data type in the first line of the given ForSyDe description. On
the following line, the process receive is defined as a Moore state machine
with the state function recStateFn , the output function recOutFn and the
initial state value (WaitDataReady , 0 ). The top most line starting with
recOutFn defines input/output data types of the Receiver output function,
and the following lines describe the behavior of the output function. The
next state function is not presented since its layout is close to the output
function.
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3.5.2 Data Types

With some minor modifications, it is possible to define equivalent data types
for all ForSyDe data types in SMV. SMV provides Booleans and enumerated
data types, structures and arrays.

Enumerated An enumerated data type definition in ForSyDe starts with
the word data that follows by the data type name and a list of pre-
defined values, as shown below:

data data type name = value1 | value2 | . . . | valuen

An equivalent construction in SMV has the following format:

typedef data type name { value1 , value2 , . . . , valuen};

The following is an example of the RecState definition in SMV:

typedef RecState {WaitDataReady , WaitData , OutputData };

Integers Contrary to the ForSyDe language, integer is not a predefined
data type in SMV. Similarly to enumerated data types, the user has to
define integers as a bounded set of values. However, SMV treats these
enumerated values as integers in arithmetic and logic expressions. Two
equivalent constructions that define an integer data type including the
values from 0 to 7 are given below:

typedef Int 0 7 {0, 1, 2, 3, 4, 5, 6, 7};
typedef Int 0 7 {0..7};

Constructors All absent extended data types in ForSyDe are defined by
constructors. For example, the following is a data type definition of
absent extended integers in ForSyDe:

data AbstExt a = Abst | Prst a;
type Abst Int = AbstExt Int ;

The constructor based data types in ForSyDe have equivalent defini-
tions as structures in SMV, which have the following format:
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typedef data type name struct {
component name1 : data type1 ;
component name2 : data type2 ;
. . . . . .
component namen : data typen ;

};

Absent extension AbstExt can be defined as an enumerated data type
comprising of values Abst and Prst in SMV. Let the elements of the
absent extended integers in SMV be (1) a constructor Con carrying a
value Prst or Abst and (2) a component Val with the values from 0 to
7. The SMV definitions of these data types are given below:

typedef AbstExt {Prst ,Abst};
typedef Abst Int 0 7 struct {

Con : AbstExt ;
Val : Int 0 7 ;

};

To the i-th component ci of a variable v can be turned by v.ci in
SMV. For example, to add the constant y = 2 to an absent extended
integer x and to assign the result to a variable z, the following SMV
expressions can be used:

#define y 2
z.Con := x.Con
z.V al := x.V al + y

Due to the definition of absent extension in SMV, similarly to present
events, all absent events carry a value. However, this does not influence
model checking, since the values assigned to absent events are neither
used in the system specification nor in the verified properties. In fact,
ForSyDe models do not give any value to absent events and the SMV
tool allows to leave these values undefined.

Lists The SMV model checker can only verify finite models. Therefore, the
lists with unlimited number of elements in ForSyDe models have to be
bounded to include only a finite number of elements. In this case a list
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can be defined as an array with a fixed number of elements in SMV.
As a complement, a counter is needed in the list definition, in order
to know how many elements are currently stored in the list. When an
element is added or removed from the list, the counter value has to
be updated. An SMV definition of a list that can include maximum
seven Booleans is given below:

typedef List Bool 7 struct {
counter : Int 0 7 ;
list : array 0..6 of Boolean;

};

Tuples n-tuples in ForSyDe can be modeled as n-element structures in
SMV, where all structure elements have the same type. The definition
of a ForSyDe tuple as a structure in SMV is not necessary if the tuple
is used in a function output description. The values of a multi-output
function are combined together to a tuple in ForSyDe, since functions
definition in ForSyDe may have only one output. SMV does not have
this kind of restriction and the function outputs can be defined as
separate signals without using tuples.

3.5.3 Arithmetic and Logic Expressions

Boolean and Arithmetic Operators

SMV uses the values 0 and 1 as Boolean values that are equivalent to the
values False and True in ForSyDe. Equivalent Boolean operators in both
languages are listed in Table 3.1, and arithmetic operators in Table 3.2.
Although exclusive or and implication are not explicitly defined in ForSyDe,
these operators are extensively used in temporal logic property definitions.

Table 3.1. Boolean operators

Operation ForSyDe Operator SMV Operator

Logical and (x && y) (x & y)
Logical or (x || y) (x | y)
Logical not not(x) (~x)
Exclusive or not defined (x ^ y)
Implication not defined (x -> y)



36 Chapter 3. The ForSyDe Methodology

Table 3.2. Arithmetic operators

Operation ForSyDe Operator SMV Operator

Addition (x + y) (x + y)
Subtraction (x − y) (x − y)
Multiplication (x ∗ y) (x ∗ y)
Integer Division div x y (x/y)
Remainder of Division mod x y x mod y

The comparison operators in ForSyDe and SMV are presented in Table
3.3. The operators equal and not equal can be applied to Boolean and
enumerated values, and the rest of the operators to integers as well. In order
to avoid confusions with equality operators, it is appropriate to mention
that the syntactic element for assignment ’=’ in ForSyDe corresponds to
the syntax ’:=’ in the SMV language.

Table 3.3. Comparison operators

Operation ForSyDe Operator SMV Operator

Greater than (x > y) (x > y)
Less than (x < y) (x < y)
Greater than or Equal to (x >= y) (x >= y)
Less than or Equal to (x <= y) (x <= y)
Equal to (x == y) (x = y)
Not Equal to (x/=y) (x~=y)

Conditionals

If-then-else conditional expressions have the following format in ForSyDe:

if condition1 then statement1
else if condition2 then statement2
. . .
else if conditionn then statementn
else default statement
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Equivalent expressions in SMV are defined by using case statements as
shown below:

case { condition1 : statement1 ;
condition2 : statement2 ;
. . .
conditionn : statementn ;
default : default statement ;

};

3.5.4 Functions and Pattern Matching

Pattern matching is a common construction to describe functions in ForSyDe.
A general structure of the pattern matching statements is given below1:

−− input1 input2 . . . inputn = output
fun pattern1 ,1 pattern1 ,2 . . . pattern1 ,n = statement1
fun pattern2 ,1 pattern2 ,2 . . . pattern2 ,n = statement2
. . .
fun patternm,1 patternm,2 . . . patternm,n = statementm

Every line in the function definition above, presents one pattern including
n components, one for each input variable. A pattern component can be a
literal value, a variable, a tuple pattern, a constructor pattern or wild-card
(don’t care). The evaluation of a pattern matching statement starts from
the top. The first pattern (patterni ), where all components (componenti ,j )
match input values, evaluates the function output by statementi .

Literal value An argument matches the pattern component if it is equal
to the value that is given in the pattern component;

Variable All arguments match variables. A variable can be distinguished
from an enumerated value according to the first letter in the string,
which represents it. All variable names in ForSyDe start with small
letters and enumerated values start with capital letters;

Tuple An argument matches a tuple pattern if all elements in the argument
match their respective components in the pattern. For instance, the
pattern (7, x) contains two components, where the first one is a literal
value and the second is a variable. This two component tuple pattern
matches any argument, where the first component is equal to 7;

1Lines starting with ” −−” are comments in the ForSyDe language
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Constructor Constructor patterns are very similar to the tuple patterns.
An argument matches a constructor pattern if all elements in the argu-
ment match the respective components in the pattern. In the follow-
ing example, present values match the first pattern and absent values
match the second one.

fun :: AbstExt Int − > Int −− type definition
fun Prst x = x + 1 −− pattern one
fun Abst = 0 −− pattern two

Wild-card Wild-card “ ” is used as a default value, that matches any ar-
gument value.

Pattern matching constructions can be expressed by case statements
in SMV, where literal value patterns are defined by equality comparisons.
Variables in patterns become arguments for the respective arithmetic/logic
statements. Patterns, which do not include any literal value, are equivalent
to “default” choice in case statements.

The following definition of the function fn illustrates the mapping from
pattern matching constructions to SMV case statements.

fn :: AbstExt Int − > (Int , Int) − > Int
fn Prst 7 (b, c) = c + 2
fn Prst a (b, 3) = a + b
fn Abst (b, c) = c
fn (b, c) = b

The function has two inputs with the data types absent extended integer
and tuple of integers, respectively. Let o1 denote the function output, i1
denote the first input argument, and i2 and i3 denote the tuple elements
of the second input argument. As defined before the data type AbstExt is
a structure of two components, which are denoted as Con and Val. The
function fn has the following format in SMV:

o1 := case { i1.Con = Prst & i1.V al = 7 : i3 + 2;
i1.Con = Prst & i3 = 3 : i1.V al + i2;
i1.Con = Abst : i3;
default : i2;

};

Since all input values match the last pattern in fn, the pattern is defined
as the default choice in the SMV case statement.
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Functions

The general function structure in ForSyDe is given in the following:

−− fn name input1 − > input2 − > (output1, output2)
fn2 :: type1 − > type2 − > (type3, type4)
fn2 pattern1,1 pattern1,2 = (statm1,1, statm1,2)
fn2 pattern2,1 pattern2,2 = (statm2,1, statm2,2)
. . . . . . . . . . . . . . . . . .

All lines in a function description start with the function name. The first
line describes the data types of inputs and an output, separating them by
”− > ”. In ForSyDe, every function has exactly one output and the right
most data type on the first line corresponds to the function output. The
rest of components belong to the function inputs. Components of a tuple
input or output are considered as separate inputs and outputs in SMV.

After data type descriptions, the following lines define the function be-
havior in the pattern matching form. In SMV, functions are described as
modules. An example of a module that is equivalent to fn2 is the following:

MODULE fn2 (i1, i2){
o1 : type3;
o2 : type4;
o1 := case {condition1 : statem1,1(i1, i2);

condition2 : statem2,1(i1, i2);
. . .

};
o2 := case {condition1 : statem1,2(i1, i2);

condition2 : statem2,2(i1, i2);
. . .

};
}

A module starts with the function name and the names of local input
variables, given by the designer. The module continues with the data type
declaration of outputs and the description how the outputs are evaluated.
All components of a tuple output are evaluated separately. Conditioni in
the given case statements is an equivalent interpretation of the conditional
defined by patterni .

Function definitions may use function calls, though recursive calls are not
allowed in SMV. Therefore, ForSyDe models with recursive function calls
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cannot be verified by SMV. The following functions fn3 and fn4 illustrate
the use of function calls in ForSyDe.

fn3 :: Int → (Int, Int)
fn3 a = (a − 1, a + 1)

fn4 :: Int → (Int, Int)
fn4 0 = (0, 0)
fn4 a = (fn3 (2 ∗ a))

The following SMV modules are equivalent to the functions fn3 and fn4

in ForSyDe:

MODULE fn3 (i1){
o1 : Int 0 7 ;
o2 : Int 0 7 ;
o1 := i1 − 1;
o2 := i1 + 1;

}

MODULE fn4 (i1){
o1 : Int 0 7 ;
o2 : Int 0 7 ;
s1 : fn3(2 ∗ i1);
o1 := case { i1 = 0 : 0;

default : s1.o1;
};

o2 := case {i1 = 0 : 0;
default : s1.o2;

};
}

The module fn4 uses an internal signal s1 to refer to the function fn3 with
the argument 2 ∗ i1. In order to address the output signals of the module
fn3 in the function calls, constructions s1.o1 and s1.o2 are used.
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An equivalent module to the Receiver output function recOutFn (Sec-
tion 3.5.1) is presented below:

MODULE recOutputF (i1, i2){
o1 : AbstRecMsg;
o2 : Abst Int 0 7 ;
o1 .Con := case { i1 = WaitDataReady : Prst ;

i1 = WaitData : Prst ;
i1 = OutputData : Abst ;

};
o1 .Val := case { i1 = WaitDataReady : Ack ;

i1 = WaitData : Ready ;
i1 = OutputData : Ack ;

};
o2.Con := case { i1 = WaitDataReady : Abst ;

i1 = WaitData : Abst ;
i1 = OutputData : Prst ;

};
o2.V al := case { i1 = WaitDataReady : i2 ;

i1 = WaitData : i2 ;
i1 = OutputData : i2 ;

};
}

The module starts with the data type definitions of the receiver output.
The original tuple output is split into two outputs o1 and o2. Since the data
types of both outputs are absent extended and absent extension is formed
as a two element structure in SMV, the elements Con and Val are evaluated
in separate case expressions.

3.5.5 Processes

In ForSyDe, processes are described by using process constructors that are
higher order functions. A process constructor takes a set of functions and
initial state values as arguments and applies these functions to the values
consumed from the input signals. In SMV, processes can be defined as mod-
ules that use function calls to modules, which correspond to combinational
functions in ForSyDe.
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Combinational Processes

In ForSyDe, combinational processes are defined by process constructors
combnSY , where n shows the number of process inputs. CombnSY takes one
value from all input signals and applies a dedicated n-variable combinational
function to the input values at every clock cycle. In SMV, there is no
difference in a module definition whether the module receives a single input
assignment or a sequence of assignments as a signal. Therefore, an SMV
module describing a combinational function is equivalent to the ForSyDe
combinational process with the same function.

Delay Process

In order to solve the computation in feedback loops in the perfectly syn-
chronous models, the feedback signals have to be initialized. ForSyDe mod-
els use delaySY processes to give initial values to feedback loops. DelaySY
sends out its initial state value st0 at the first clock cycle, and the received
input values one clock cycle after arrival. The process delaySY is defined
in SMV as follows:

MODULE delay(i1, . . . , in′){
o1 : data type of the output component1 ;
. . .
on′ : data type of the output componentn′ ;
init(o1) := st01;
. . .
init(on′) := st0n′ ;
next(o1) := i1;
. . .
next(on′) := in′ ;

}

The module has n′ inputs and outputs since tuple inputs in ForSyDe are
split into components in SMV. Similarly, the initial value st0 of the delay
process is decomposed into n′ component values.

State Machine Processes

Process constructor mealySYn takes a next state function f , an output
function g and an initial state value vinit as arguments and models a finite
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Figure 3.4. Process and module of the Mealy FSM

state machine. The definition of an n-input Mealy finite state machine is
the following:

ProcessMealy = mealySYn(f, g, vinit)

The layouts of the process mealySYn in ForSyDe and the corresponding
module in SMV are presented in Figure 3.4. The definition of a Mealy state
machine process as a module in SMV, leaving out the next state and output
functions, is the following:

MODULE ProcessMealy(i1, . . . , in′){
s1 : data type of the state;
. . .
sr′ : data type of the state;
o1 : data type of the output ;
. . .
om′ : data type of the output ;
StateFunction : f(s1, . . . , sr′ , i1, . . . , in′);
OutputFunction : g(s1, . . . , sr′ , i1, . . . , in′);
init(s1) := vinit1;
. . .
init(sr′) := vinitr′ ;
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next(s1) := StateFunction .o1;
. . .
next(sr′) := StateFunction .or′ ;
o1 := OutputFunction .o1;
. . .
om′ := OutputFunction .om′ ;

}

The definition of a module that corresponds to a Moore finite state
machine process is identical to the Mealy one, though in a Moore machine
input arguments do not appear in the function call to the state machine
output function. For example, the process Receive defined as a Moore state
machine has the following coding in SMV:

MODULE Receive(i1, i2){
s1 : RecState ;
s2 : Int 0 7 ;
o1 : AbstRecMsg ;
o2 : Abst Int 0 7 ;
FunRecState : recStateF (s1, s2, i1, i2);
FunRecOutput : recOutputF (s1, s2);
init(s1) := WaitDataReady ;
init(s2) := 0;
next(s1) := FunRecState.o1 ;
next(s2) := FunRecState.o2 ;
o1 := FunRecOutput .o1 ;
o2 := FunRecOutput .o2 ;

}

The input, state and output signals of the Receive process that in the
ForSyDe model are defined as tuples are described by separate variable pairs
(i1, i2, s1, s2, o1, o2) in SMV. In order to evaluate the state and output vari-
ables, the module Receive uses function calls to the modules implementing
the receiver state and output functions.

3.5.6 Netlist

In ForSyDe a system is modeled as a network of processes that are con-
nected by signals. For example, the connections of a system including three
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computation processes P1, P2, P3 in Figure 3.5 are described as follows:

system (sin) = (sout)
where

s1 = P1 (sin)
(s2, s3) = unzipSY (s1)
s4 = P3 (s3)
sout = P2 (s2, s4)

The signals sin and sout are the input and output signals of the system.
The task of the additional process unzipSY is to separate the tuple output
signal s1, produced by P1, to the component signals s2 and s3.

P2

sin s1

s3 s4

s2 sout

P3

P1 unzipSY

Figure 3.5. A network of processes in ForSyDe

The first line in a netlist defines the system name and specifies the input
and output signals. The lines below of where describe connecting signals
between processes. Since components of a tuple signal in ForSyDe are mod-
eled as separate component signals in SMV, processes zipSY and unzipSY
are excluded from SMV models. Thus the SMV network in Figure 3.6 is
equivalent to the network in Figure 3.5.

s4

sin
M1

M3

M2

sout
s1.o1

s1.o2

Figure 3.6. A network of processes in SMV
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In SMV, the connections between processes are described in the main
module. The main module of the system in Figure 3.6 has the following
definition:

MODULE main(){
sin : type of sin ;
s1 : M1 (sin);
s4 : M3 (s1.o2);
sout : M2 (s1.o1, s4);

}

The main module starts with the type definitions of the system input signals,
with the definition of the signal sin in the given example. On the following
lines, the module continues with the instantiation of the modules M1, M2,
M3 including the description of connections between modules. Since the
unzipSY process is not considered in the SMV model, the signals s2 .o1 and
s2 .o2 are equivalent to the ForSyDe signals s3 and s4 respectively.

s6

unzip3SY

delaySY

unzipSYFIFO
chin s1 s8 chout

s2 s7

s3

send

receive

s4
s5

channel (chin) = (chout )
where

s1 = FIFO (chin , s4)
s2 = send (s1, s8)
s3 = delaySY (s2)
(s4, s5, s6) = unzip3SY(s3)
s7 = receive (s5, s6)
(s8, chout ) = unzipSY (s7)

Figure 3.7. The process network and the netlist of an asynchronous channel

Let’s consider the netlist definition of a channel, which implements asyn-
chronous data transfer from the channel input chin to chout , in Figure 3.7.
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The channel includes three finite state machine processes: FIFO , send and
receive. FIFO stores arrived data items if send and receive are busy with
a handshake protocol based data transfer of a previously arrived data item
through the channel. For a more detailed description of the channel, see
Section 5.2.

After excluding zipSY and unzipSY processes from the process net-
work, an equivalent module network in SMV has the structure as shown in
Figure 3.8.

s3.o1

FIFO
chin s1

s2

s7.o2

Delay

s7.o1
Send Receive

s3.o2

s3.o3

Figure 3.8. The module network of the channel

The main module of the asynchronous channel has the following defini-
tion in SMV:

MODULE main(){
chin : Abst Int 0 7 ;
s1 : FIFO (chin, s3.o1);
s2 : Send (s1, s7.o1);
s3 : Delay (s2);
s7 : Receive (s3.o2, s3.o3);

}

3.6 Summary

This chapter defines mapping rules that show how to describe ForSyDe syn-
chronous models in the input language of the SMV model checker. The
SMV model checker is used to formally verify the correctness of refined
models that is explained in the following chapters. The given rules cover
data type, function and process definitions, and internal connections be-
tween processes. Based on these rules the mapping from ForSyDe to SMV
can be automated by creating a similar compiler as in [5], which translates
synchronous ForSyDe models to VHDL. However, it is not possible to map
any ForSyDe model to SMV. The SMV model checker does not support re-
cursive function calls and data types with unspecified domains. Therefore,
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recursive function calls should be forbidden and the ideal data types and
infinite lists, used in the high level system description, have to be replaced
with finite ones before the mapping to SMV.



Chapter 4

Design, Refinement and

Verification

4.1 Design

The system development in the ForSyDe methodology starts with describing
the system functionality as an ideal system model, that reflects the system
specification written in a native language. The model at a high abstraction
level is ideal in the sense that it has no side effects caused by lower level
implementation details. For example, arithmetic functions are described
without applying limits on the operand or output bit-widths and due to
that functions are free of overflow behaviors. Similarly, the size of storage
elements is not limited, in order to avoid exceptional behaviors caused by
buffer overflows, for instance. The model is synchronous and deterministic,
which makes it easy to simulate and analyze or to compare it against other
models for equivalence check.

The main task of the design refinement process is to extend the sys-
tem model with details that are necessary for the design implementation in
software and hardware. The last stage of the refinement process is an im-
plementation model, which can be mapped to software and hardware mod-
els. Obviously, for an implementation the unlimited bit-widths and infinite
storage units have to be replaced with realistic counter parts. Thus, the
objective of the system level design refinement process is to fill the abstrac-
tion gap between the initial system model and an implementation model,
which includes all lower level details that are required to continue the design
process by today’s synthesis tools.

49
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4.2 Refinement

The design refinement from the system model to an implementation model
is performed by a stepwise application of design transformations [90], as
illustrated in Figure 4.1.

(M1, R2, PN2 )

T2

model

System
M0

M1 (Mn−1 , Rn, PNn)

Tn

model

Mn

Impl.
(M0, R1,PN1 )

T1

Figure 4.1. Design flow

Starting from the system model M0 an implementation model Mn is de-
veloped by a series of transformations Ti. In every step, for a given model
Mi, a process network PN in Mi and a transformation rule R, the trans-
formation T (Mi, R, PN) → Mi+1 = M [R(PN)/PN ] refines the process
network PN . The result of the transformation is an intermediate system
model Mi+1, where in contrast to the model Mi the process network PN is
replaced with R(PN). For example, in Figure 4.2 the model M is refined
to M ′ by the transformation T , which replaces a process network PN with
a modified process network PN ′.

Process network PN

Model M

P ′
6P2 P3

P1

P ′
3

P4

Process network PN ′

P4

T (PN) = PN ′

P5

Model M ′

P1

P ′
2

P5

Figure 4.2. Design transformation

A basic assumption of the design and verification strategy is that the de-
signer only uses those design transformations in the refinement process that
are available in the design transformation rule library. Hence, ad-hoc design
refinements based on the designer intuition are forbidden. Despite that, if
there is a need for a special transformation that is not yet included in the de-
sign library, the new transformation can be defined with all necessary details
and stored in the library within the system development process. All design
transformations in the library are specified by name, the requirements to
the original process network, the formats of the original and refined process
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networks, and the implication for the design. The implication is expressed
by characteristic functions [94] that describe the relation between the input
and output events in a process network.

According to the characteristic function a transformation can be clas-
sified either as semantic-preserving or non-semantic-preserving. Semantic-
preserving transformations do not change the meaning of the model in the
sense that the input and output events of the original and a refined process
networks are identical. These transformations mainly change the struc-
ture of the model by decomposing and merging of processes, and relocating
functions between processes in order to optimize the design. Non-semantic-
preserving transformations change the meaning of the model and introduce
new behaviors. In spite of the change in semantics, the refined model may
still behave equivalently to the original model if it is expected that the re-
fined model has to implement only a subset of the behaviors of the original
model. A correctly behaving refined model is not always identical to the
original model. For instance, an infinite FIFO buffer may be replaced with
a realistic finite one, without any impact on the system functionality if the
data rate on the buffer input does not exceed the limit, which causes the
buffer to overflow. Whether the buffer size corresponds to the expected data
rate or not can be proved formally. Also the increase in computation time
and input/output latency may leave the refined model in the range of ac-
ceptable designs according to the design constraints. Thus, the verification
task is to show that a refined model is either identical to the original model
or satisfies the given design constraints.

4.3 Design Transformations and Verification

The initial system model in the ForSyDe methodology is derived from the
system specification. Since this model expresses the ideal functionality of
the system, the design correctness at this level can be checked by using
simulation techniques. The system model that is defined in the sense of
ideal and unlimited resources, does not contain corner-case behaviors caused
by overflows and out-of-range computation results. In contrast to lower
level models, the input stimuli that are used for simulation of the system
model, does not have to target exceptional cases. Therefore, simulation
based techniques are appropriate at this level. In further design refinements
and verification steps it is assumed that the initial system model behaves
correctly. Thus, after verifying that the behavior of an implementation
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model is equivalent to the system model and it satisfies the design constraint,
the design is considered to be correct by construction.

Instead of verifying an implementation model directly against the sys-
tem model, it possible to divide the complex verification task into smaller
subtasks if the design development processes involves only predefined design
transformations. Since semantic-preserving transformations do not change
the meaning of the model, the verification of models that are refined by
this kind of transformations is not necessary. Thus, only these intermediate
models have to be verified, which are created by non-semantic-preserving
transformations. Since a single transformation involves only small changes,
the design correctness check has to target only these particular changes.

4.4 Verification after Non-semantic-preserving Re-
finements

For the sake of efficient verification, every non-semantic-preserving transfor-
mation in the design library has to provide a specific verification strategy.
This strategy targets exactly those critical properties, which must be checked
in the refined model, and leaves the preserved system behaviors unconsidered
in this verification step. Therefore, in addition to the design transformation
library, the design methodology has to include (1) the verification property
library, (2) the stimuli generator library and (3) the abstraction technique
library (Figure 4.3). Non-semantic-preserving transformations point to pre-
defined properties in the verification library, which are necessary to verify in
the refined model. The abstraction technique library provides abstraction
techniques to simplify models before model checking, and stimuli generators
generate proper input stimuli to the system block in verification.

4.4.1 Verification Property Library

The verification property library has to contain generic properties for every
non-semantic-preserving transformation. After the designer applies a trans-
formation Ti to the model Mi, Ti points to a set of properties that the refined
process network PNj in the model Mi+1 has to satisfy. The properties in
the library are predefined according to the impact of the transformation and
target particular details that may violate the system specification and may
not satisfy the design constraints. Since the details of a property depend
on the actual design constraints, the library includes incomplete property
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templates, where parameters are used instead of constant values. It is a
designer’s task to assign values to template parameters and to finalize prop-
erties. Since the Cadence SMV model checker [102] is used for verification
of synchronous ForSyDe models, the properties are described as CTL* tem-
poral logic expressions [31].

4.4.2 Abstraction Technique Library

Together with the predefined verification properties the design methodol-
ogy has to provide abstraction techniques for every specific property in the
abstraction technique library. It is important to select proper abstraction
methods, since the memory demands and the time spent for verification
depends directly on how much the design is simplified. The main idea of
the abstraction is to exclude all irrelevant details and to reduce the model’s
state space. At the same time the relevant system behaviors regarding the
verified property have to be preserved in the model. Thus, the application
of an unsuitable abstraction technique may remove an erroneous behavior
from the model rendering further model checking meaningless.

4.4.3 Stimuli Generator Library

One objective of the abstraction is to limit the number of different input
values that are used within the property checking. Since the refined pro-
cess network is considered separately from the whole system, it is required
to provide external input stimuli, which correspond to the verified prop-
erty [108]. In some cases the stimuli can be expressed in the verification
property or be defined as the input data type of the abstract block. For
instance, if only a small set of input values is enough to decide the correct-
ness of a block, the abstract input domain can be defined as a new data
type in the SMV language. If there is no explicit assignment to this input,
the model checker assigns values from the abstract domain to the block’s
input in a non-deterministic manner. In order to model a sequence of values
that varies regularly in time, reconfigurable finite state machine based input
stimuli generators have to be provided in the stimuli generator library. The
designer can parameterize them to generate specific input patterns according
to the verified properties and the design constraints.



4.4. Verification after Non-semantic-preserving Refinements 55

4.4.4 Summary

The complete verification flow is presented in Figure 4.3. The transformation
rule Ri+1 refines the process network PNj of the model Mi into Ri+1(PNj).
The transformation rule Ri+1 points to a set of properties. Each property
template refers to an abstraction technique and an input stimuli genera-
tor. The property template and the input stimuli generator are completed
according to the design constraints and the abstraction technique. The ab-
straction technique simplifies the refined process network, which is thereafter
mapped to the SMV language. Finally, the SMV model checker verifies if
the composed property holds in the abstract model, which is connected to
the input stimuli generator.

block1 block2

s1 s2

Model Mi+1

T (ideal FIFO) = (finite FIFO)

block1 block2

s1 s2

Model Mi

ideal FIFO

finite FIFO

size = ∞

size = 20

PN

PN ′

Figure 4.4. Refinement of a FIFO buffer

Figure 4.4 illustrates a non-semantic-preserving design transformation
that replaces an ideal FIFO buffer between two design blocks with a finite
FIFO. According to the design constraints, block1 writes k data items to
the buffer within every k + l clock cycles, and block2 consumes one item in
every second clock cycle. The design transformation points to the property,
which has to express that the expected data rate on the FIFO input does
not cause the buffer to overflow.

The CTL template of the property is: AG(size ≤ x). In this template
the designer has to assign a value to the parameter x, that corresponds
to the size of the finite FIFO buffer, and replace the term size with the
variable name that shows how many elements are stored in the buffer. Let
the variable cnt FIFO give the number of elements in the FIFO buffer,
and let the maximum number of storage slots in the buffer be equal to 20.
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The completed property is: AG(cnt FIFO ≤ 20 ). Since the FIFO buffer is
not sensitive to the actual values on its input s1, the abstraction technique
replaces the actual input domain with a reduced one that contains only one
value. The property points to two input stimuli generators; one produces
input data items from the abstract input domain following the input data
rate, and the other one sends the read requests every second clock cycle. The
abstract model is translated into the SMV language and the SMV model
checker verifies if the abstract model connected with the stimuli generators
satisfies the given property.

4.5 Discussion

The step by step refinement and verification technique has many advan-
tages. First of all, the designer does not need to invest time to find out
critical issues that have to be verified in refined process networks. Instead
of formulating the expected system behaviors as complex temporal logic ex-
pressions, every non-semantic-preserving transformation points to already
defined property templates. These templates can be completed according to
the design constraints that requires less designer’s effort than specifying and
writing the same properties from scratch. In addition, the verification tech-
nique points to the suitable abstraction technique that simplifies the model
before model checking, and provides stimuli generators to model required
input streams from abstract input domains.

Although the creation of the verification property, the abstraction tech-
nique and the stimuli generator libraries takes a remarkable amount of time,
these libraries have a huge value in the design process. Obviously, it is more
efficient if a verification expert creates properties and selects abstraction
techniques, than leaving the same work to the designer. Once a transforma-
tion is equipped with verification facilities, designers do not need to do the
same work over and over again, to figure out after every use of a transfor-
mation, how to verify the refined system block. Since one set of properties
and abstraction techniques suits many transformations, the introduction of
new transformations takes less time if it is possible to adapt already existing
properties to the new context.

Due to the limits coming from formal verification tools and a huge va-
riety of possible designs, the proposed verification technique addresses only
the local correctness of refined system blocks. In order to find out how
a local refinement influences the system in the global sense, static analy-
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sis techniques have to be applied. For example, if a refinement decreases
the throughput in one block, it has to be ensured that the modification
corresponds to the design constraints and the system does not exhibit any
deadlock. The global synchronization problems that are caused by local
temporal refinements, which increase the latency of refined system blocks,
are addressed in Chapters 7 and 8.

The verification technique implies strong requirements on the system
specification and constraints. The system specification has to be very de-
tailed, describing the functionality and constraints of each system block. If
this information is lacking, the completion of the verification properties is
rather impossible, since it is not known what the constraints are that the
refined system block has to satisfy.
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Chapter 5

Verification of Communication

Refinements

5.1 System Level Communication Refinement

The initial high level system description omits all communication caused side
effects that may influence the ideal system functionality. Communication
between processes and sub-system blocks is performed by synchronous sig-
nals and lower level implementation constraints are not taken into account
in the system model. These signals are ideal in the sense that no delays nor
loss of data occur and thereby they provide reliable data transfer from one
computation unit to another. This abstract system view makes it simple
to model and analyze the system functionality. Since communication and
computation take no time in this model, different system structures may be
explored by decomposing and merging computation processes without any
changes to the system functional behavior.

Compared to the system model, an implementation model has to be
detailed for mapping to software and hardware models and has to satisfy
the constraints of the actual communication mechanisms. In general, fea-
tures such as a noticeable latency, limited bandwidth, loss of data, etc., are
apparent parts of actual communication channels. No doubt, these side ef-
fects change the system functionality. One possible method is to implement
abstract communication channels between system components on a bus ar-
chitecture. The refinement to a bus architecture, including the selection of
a proper bus protocol and the generation of interfaces and drivers according
to the constraints on the expected data loads, can be done automatically,
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as described in [3, 99]. Another approach is to develop the desired com-
munication mechanism by a series of refinement steps at different levels of
abstraction. The parameters of the communication mechanism have to be
configured according to the expected data rate, so that after refinements an
implementation model satisfies the system specification and the design con-
straints [80, 35]. For example, the ideal and perfect communication channel
in the system model can be replaced with a channel, which implies an ac-
ceptable latency. However, it is required that the receiver side computation
block has some flexibility and does not behave unexpectedly if there are
delays in the data arrival. Similarly, an ideal buffer on the sender side of
a channel, which stores data items when the channel is busy with a data
transfer, can be replaced with a realistic finite buffer. The replacement is
valid if the buffer is large enough to operate with the expected data rate
from the sender side, which is specified according to the design constraints.

The lower level communication details are introduced by communication
refinements in the ForSyDe methodology. According to their effect, the
design transformations that increase the latency of communication channels
and introduce potential loss of data are classified as non-semantic-preserving
transformations. Although the behavior of a refined model may be expected
to be equivalent to the initial system model, it is crucial to verify that the
model actually satisfies the design constraints.

General properties for verification of refined communication channels are
developed in the following sections. The properties target reliability, latency,
bandwidth and order preserving issues. The verification of communication
refinements is explained in the context of a refinement, described in [92] that
replaces a synchronous channel with an asynchronous one, which implements
a handshake protocol. This transformation introduces limited bandwidth
and possible lossy data transfer due to a limited number of slots in the
channel buffer, and a noticeable latency increase.

5.2 Refinement from a Synchronous into an Asyn-

chronous Channel

The refinement of a synchronous channel into an asynchronous channel,
which implements a handshake communication protocol, involves four mod-
els at different levels of abstraction, as illustrated in Figure 5.1.

In the initial model (Figure 5.1.a) communication between two subsys-
tem blocks is performed over an ideal synchronous channel, which has no
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Figure 5.1. Refinement into a handshake protocol

delay and where both blocks operate at the same clock frequency. A prereq-
uisite for this communication refinement is that the data type of the channel
must be absent extended (V⊥). The refinement is done in three steps. The
first step, classified as semantic-preserving, introduces an identity process
between Block1 and Block2 , and the second step, non-semantic-preserving,
refines this process into a handshake protocol implemented by three pro-
cesses: infinite FIFO buffer , Send and Receive (Figure 5.1.c). Send and
Receive are Moore state machine processes, whose state transition diagrams
are presented in Figures 5.2 and 5.3, respectively. States are drawn so that
the identifier of a state is shown above the horizontal line, and the output
values in this state are below the line. A missing output value in a circle
means that no present value is assigned to the output signal in this state
and the process emits Abst value instead. For example let’s consider Fig-
ure 5.3, when the process Receive is in the state WaitData it announces
the message Ready to Send and the rest of the output signals hold the Abst
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values in this clock cycle. The arcs between states are labeled with input
values that trigger certain transitions. Similarly, the missing labels on arcs
are considered as the Abst values in the state transition graphs.
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Figure 5.2. State flow graph of the process Send
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Figure 5.3. State flow graph of the process Receive

The refined channel transfers only present values from Block1 to Block2 .
When Receive has no present data item to deliver to Block2 it sends an Abst
value. The handshake protocol is defined so that blocks on different sides of
the channel can operate at different clock frequencies. The protocol operates
as follows. When Send is idle it tries to read data from FIFO by sending
the message ReadFIFO to FIFO. If the data arrive from FIFO, Send starts
a data transmission over the interface, and emits the message DataReady to
Receive. After that Send waits for the reply message Ready from Receive.
If this message arrives it means that Receive is ready for the data transfer.
When Ready appears, Send transmits the data until Receive answers with
an acknowledgment Ack, about the data arrival.

The behavior of the channel in Figure 5.1(c) is clearly different from the
original model, since the communication protocol between Send and Receive
performs a number of steps when transporting a data item. Therefore the
latency in the number of clock cycles has increased. In addition, the hand-
shake channel can transport only one data item at a time, which decreases
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the channel bandwidth. However, due to the ideal FIFO buffer, none of
the data items waiting for transfer are lost. On the other hand, at a lower
abstraction level this ideal buffer has to be replaced with a finite one, as
shown in Figure 5.1(d), which may cause the loss of data.

5.3 Properties of Communication Channels

This section illustrates the development of verification properties for the
communication transformation that is presented in Figure 5.1. These are
general properties, and they can be used for verification of other communi-
cation channels as well. However, in practice, additional properties have to
be defined to cover all specifics of each particular transformation.

The main objective of the verification properties is to check that the
characteristics of the selected handshake protocol and the size of buffers
correspond to the data rate on the channel input. The properties are de-
fined as temporal logic expressions that can be verified by model checkers.
In order to shorten the verification time and to reduce the memory require-
ments of the model checker, it is necessary to simplify the model by using
appropriate data abstraction techniques. Comparing the models in Fig-
ure 5.1(a) and 5.1(d) it can be noticed that in opposite to the synchronous
channel, the asynchronous channel is sensitive to the data type of the in-
put values. However, the channel’s behavior depends only on the types of
input events, and the actual values of present events are processed in the
same way. Therefore, the present data values on the channel input can be
modeled as abstract data items during verification. However, depending on
each actual property, the input domain has to contain a different number of
present values.

5.3.1 Property 1: Reliability

Reliability is a highly important property of every communication channel.
It requires that all data values, in the current context present values, ap-
pearing to the channel input will eventually be transferred to the channel
output. Since the asynchronous implementation of the channel includes a
sender side FIFO buffer, which has a limited storage capacity, it is obvious
that any sufficiently high input data rate will cause buffer overflow and there-
fore the loss of data. In order to verify that a data item is lost only when
the buffer limits are exceeded, the following property has to be checked:
“if there is at least one empty slot in the FIFO buffer when a data item is
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entering the channel, then eventually the data item will be transmitted on
the channel output”. If the property holds, it shows that the data can only
be lost by the buffer overflow. The CTL* specification of this property is:

AG((fifo size < SIZE − 1 & ch input .Con = Prst & ch input .Val = 0 )
− > AF (ch output .Con = Prst & ch output .Val = 0))

The terms ch input and ch output refer to the channel data input and
output, respectively. The variable fifo size represents the current number of
elements in the FIFO buffer. The constant SIZE is defined as the maximum
number of elements the FIFO buffer can store. Instead of the actual data
type, the property uses integers as an abstract data type. The given property
can be read as saying that always, if the FIFO buffer has at least one empty
slot and the channel input holds the value Prst 0, then always eventually the
channel emits the value Prst 0. If this property holds for the value Prst 0,
then it holds for any other present value as well, since the channel behavior
does not depend on the integer value on the channel input. In order to
distinguish the value Prst 0 on the channel input from any other values that
may be stored in the buffer, the abstract input domain has to include at
least one more present value, for example Prst 1. For the verification of this
property a model checker can assign non-deterministically any sequence of
values from the respective data domain to the channel input. The input
stimuli generator in the SMV language for the reliability property is the
following:

MODULE genPropR(){
o1 : Abst Int 0 1 ;

};

The data type Abst Int 0 1 includes the absent value Abst and the integers
Prst 0 , Prst 1 . For the data type definitions in SMV, see Section 3.5.2.

5.3.2 Property 2: Latency

As discussed above, the handshake protocol implies a delay. According to
the simulation of the channel in the synchronous model, where both the
sender and receiver side blocks operate at the same clock frequency, the
channel delay is seven clock cycles. More precisely, it takes seven cycles to
transport a data item from the channel input to the channel output if the
process Send is in the initial state at the moment when the data item enters
the channel. In order to verify that this is always true, the channel has to
be verified against the following property:
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AG ((input .Con = Prst & fifo size = 0 &
Send state = ReadFifo)

− > (AX AX AX AX AX AX AX output .Con = Prst))

In the given statement the variable Send state represents the state of
Send and the initial state of the Send process is ReadFifo. The given prop-
erty says, if a present value appears to the channel input when the FIFO
buffer is empty and Send is in the state ReadFifo, then after seven clock cy-
cles the present value is transferred to the channel output. The same input
stimuli generator as for the latency property can be used, although here it is
sufficient to have only one present value in the channel input data domain.
This is equivalent to the generator below:

MODULE genPropL(){
o1 : Abst Int 0 ;

};

5.3.3 Property 3: Bandwidth

Bandwidth is a relevant parameter of communication channels that can be
defined by the maximum number of data items that a channel is able to
transfer from the input to the output within a fixed time interval. For ex-
ample, the previously defined latency property states that the data transfer
through the channel takes a certain number of clock cycles - seven cycles for
the particular model in Figure 5.1(c). Apparently, it is valid to predict that
if within every seven clock cycles at most one present value arrives at the
channel input, then all data are transferred over the channel.

A configurable stimuli generator that produces a sequence of frames,
where every frame of length frame size contains at most max P present
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values, is given below:

MODULE genPropB (){
data : {Abst ,Prst};
cnt P : 0 .. max P ;
cnt F : 0..frame size;
o 1 : Abst Int 0 ;
init(cnt F ) := 0;
next(cnt F ) := (cnt F + 1) mod (frame size + 1);
init(cnt P) := 0;
next(cnt P) := case{cnt F < frame size & data = Abst : cnt P ;

cnt F < frame size & data = Prst : cnt P + 1;
cnt F = frame size : 0;
};

data := case{cnt P < max P : {Abst ,Prst};
default : Abst ;
};

o1 .Con := data ;
o1 .Val := 0;
}

The generator includes two counters: cnt F to count the length of a
frame, and cnt P to keep track of how many present values the current
frame already contains. If the number of present values in a frame has
not reached its upper limit the variable data may get assignments Abst or
Prst . The value of data determines the output values of the generator.
The constructor based variable o1 contains two components: o 1 .Con for
the absent and present extension and o 1 .Val carrying the abstract integer
value 0.

If the input stimuli by genPropB causes overflow of stored values that are
waiting for transmission in the FIFO buffer, then the input load is too high
for the channel or the FIFO size is not properly dimensioned. In order to
verify that the channel is able to provide lossless data transfer for a specified
input data rate, the following property has to be checked:

AG (fifo size ≤ SIZE )

Coming back to the assumption about the channel in Figure 5.1(d) that
the data transfer through the channel takes seven clock cycles, an input
signal where each frame with seven events contains at most one present event
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should not cause the buffer to overflow. In contrast to the assumption, the
SMV model checker finds that the proposed property is not true, and gives
a trace of transitions, which leads to a state, where the property is violated.
After increasing the frame length from seven to nine, the model checker
reports that the new property is satisfied. The former property did not
hold because after the process Receive has received one data item it takes
two clock cycles for the process Send to ask for the next data item. Thus,
the prediction about the channel bandwidth was misleading. The wrong
presumption is a typical mistake, which shows that in order to validate a
system, it is essential to incorporate formal techniques, instead of using only
designer intuition or simulation techniques.

5.3.4 Property 4: Order

Systems in ForSyDe are described by using the synchronous model of com-
putation, where synchronous signals establish the order of events. In the
model in Figure 5.1(a), Block2 receives all data items in the same order as
Block1 sends them to the channel. To ensure that after the communication
refinement the Receive side subsystems (Figure 5.1.d) process present events
in the initial order, present values can be equipped with distinct and ordered
indices, that can be used to recover the order of the input values. On the
other hand it can be verified whether the asynchronous channel always pre-
serves the order of present values by itself or not. An abstract input stimuli
generator for the verification of the order property is the following:

MODULE genPropO(){
o1 : Abst Int 0 2 ;
val : Int 0 2 ;
con : AbstExt ;
init(con) := Abst ;
next(con) := {Abst , Prst};
init(val) := 0;
next(val) := case{

con = Prst : (val + 1) mod 3;
con = Abst : val ;
};

o1.Con := con;
o1.Val := val ;

}
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The module generates an input signal to the channel by preserving the order
Prst 0 , Prst 1 , Prst 2 , Prst 0 , . . . and adding an arbitrary number of absent
values between the present values.

The two latest present values are always stored in the following observer
module that has to be connected to the channel output.

MODULE observer(i1){
st1 : Int 0 2 ;
st2 : Int 0 2 ;
init(st1 ) := 0;
init(st2 ) := 0;
next(st1 ) := case{

i1 .Con = Prst : i1 .Val ;
i1 .Con = Abst : st1 ;
};

next(st2 ) := case{
i1 .Con = Prst : st1 ;
i1 .Con = Abst : st2 ;
};

}

The order property has the following form:

E((fifo size < (SIZE − 2)U(observer .st1 = 1 & observer .st2 = 2))

The property says that there exists a computation path, where in each
state the FIFO does not store more than (SIZE − 2) values, until the ob-
server has saved an output sequence, where the next present value after
Prst 2 is Prst 1 . A channel does not preserve the order of input values, if
the property is satisfied. Prst 2 always comes after Prst 1 in the generated
input sequence, and the property cannot hold in a correctly behaving chan-
nel. In order to exclude the scenario that a Prst 2 gets lost due to the FIFO
overflow, it is assumed that there are always at least two empty slots in the
buffer. Since the channel behavior does not depend on the exact values of
the present events on the channel input, this property holds for any input
sequence of present values.

5.4 Discussion

Similarly to the Open Verification Library [41] that provides assertions to
verify RT-level designs, the collection of properties defined in this chapter
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can be viewed as a part of a library that targets the verification of com-
munication channels. Although these properties are defined regarding one
specific design transformation and an asynchronous channel, they capture
general behaviors of communication channels. For any particular transfor-
mation that creates some other channel, the given properties can be used as
templates to derive new and suitable verification properties. A clear benefit
of this kind of library is that the designer does not need to spend time for
figuring out which kind of properties of the refined model should be verified
and how to express them as temporal logic expressions. After finding that
one certain handshake protocol together with the limits on the buffer size
cannot satisfy the data rate on the channel input, another protocol may
be introduced and the same properties checked again. Although predefined
properties simplify the design analysis process, the designer has the task to
estimate the data rate on the channel input, if the expected data rate is not
given in the design specification. Obviously this estimation is decisive, since
wrong assumptions lead to a faulty design implementation.
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Chapter 6

Verification of Computation

Refinements

6.1 Introduction

The design of arithmetic computation blocks at a high abstraction level
starts with describing their functionality by using ideal arithmetic operators.
Since the main focus at this level is on the system functionality, the system
structure is secondary. The idea of the design refinement process is to derive
a final implementation where arithmetic blocks have an optimal granularity
and the computation load is efficiently shared among sub-blocks.

The simplest transformations that change the structure of computation
blocks are the splitting and merging of combinational processes. For ex-
ample, a design transformation that merges two combinational processes
with one input and one output is presented in Figure 6.1. The transformed
process that applies the sequential composition (g◦f) of combinational func-
tions f and g to input values is semantically equivalent to the composition
of processes that apply the same functions sequentially. Therefore, verifi-
cation in the transformed process is not essential, since the applied design
transformation is semantic-preserving. The counter part to combinational
merge is a split transformation that decomposes the computation into sev-
eral processes. A more advanced transformation introduces resource sharing
in arithmetic computation blocks as illustrated in Figure 6.2.

The main idea behind resource sharing is to reuse computational re-
sources. Instead of implementing an arithmetic function as a large com-
binational circuit, it can be mapped to a smaller sequential design, where

71
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Transformation : Comb1Merge(PN )
Original process network :
sout = PN sin

where
s1 = comb1 f sin

sout = comb1 g s1

Transformed process network :
sout = PN ′ sin

where
sout = comb1 (g ◦ f) sin

comb1 g ◦ f

P1

PN ′

PN

P1

comb1 f

P2

comb1 g

Tr . Comb1 Merge

sin

sin sout

sout

s1

Figure 6.1. Transformation: merging of single input combinational pro-
cesses

computation is distributed in time. In the sequential design a controller ex-
ecutes the computation in a data path and a register file stores intermediate
computation results. For example, the functionality of many digital signal
processing applications is expressed as a polynomial or a rational function
that can be split into smaller data path operations [75].

Figure 6.2 illustrates the resource sharing refinement in an n-th order
FIR filter1 [79]. In the initial system model (Figure 6.2.a) the filter is de-
scribed as a composition of a shift register and a combinational process,
which calculates the polynomial function f(d, c) =

∑n
i=1(ci ∗ di) over the

filter coefficients ci and the i-cycles delayed input data values di. Instead of
the direct form realization in Figure 6.2(b) that includes n multipliers and
n − 1 adders, the polynomial function f can be implemented on a sequen-
tial design, which uses only one adder and one multiplier in Figure 6.2(c).
The sequential model contains two additional signals start and ready . Start
triggers the controller to begin computation and ready notifies when the
computation result is available on the output. The controller is configured
so that it writes the value zero to the internal register reg at the first clock
cycle after high ready . At each of the following clock cycles the data path
calculates a term ci ∗ di , and sums the terms together in the register.

In contrast to the simple semantic-preserving merging and splitting trans-
formations, the resource sharing transformation is clearly non-semantic-

1Finite Impulse Response filter
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Figure 6.2. Resource sharing in an n-th order FIR filter

preserving. Compared to the original model, where computation takes no
time, the sequential design has a noticeable delay due to the feedback loop.
Since the additional signals start and ready , and the functionality of the
controller are not defined in the design specification, the correctness of the
refined block can be checked only based on the block’s input/output func-
tionality.

One method to verify that the sequential block behaves correctly is to ap-
ply symbolic execution [52, 53], which analyzes the computation in the data
path according to the instructions from the controller and finds the func-
tionality of the block in terms of symbolic input values. In the ideal case
the functionality has a polynomial form that can be compared against the
polynomial specification of the original block. However, the controller may
be configured to run different micro programs, which are selected according
to the values on the controller inputs. For example, instead of calculating
always multiplication di ∗ ci, the controller may perform more optimal op-
erations: di ∗ ci = 0 if di == 0, di ∗ ci = ci if di == 1, di ∗ ci = ci + ci if
di == 2. Thus, different micro programs may calculate polynomials, which
have formats that are very different from the polynomial function of the
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system specification. An alternative is to use symbolic execution to find
the maximum possible degrees of input variables in the output polynomials
without finding the exact polynomials. Based on the fundamental theorem
of algebra [39] a finite number of input vectors can be used to decide if
the sequential implementation calculates the same function as defined by
the polynomial specification. The number of required input vectors is de-
termined by the maximum degrees of input variables in the specification
polynomial and in the functions calculated by the sequential implementa-
tion. This approach, denoted as polynomial abstraction, allows to replace
the infinite domains of input variables of a sequential design with finite small
ones and to use a model checker for verification.

6.2 Polynomial Abstraction

The polynomial abstraction technique is developed for the verification of
sequential designs, whose functionalities are expressed as polynomial or ra-
tional functions by using model checking. It is also applicable for the verifi-
cation of two sequential models against each other, if they implement poly-
nomial functions. A sequential implementation (Figure 6.3) may operate on

Controller

real numbers

System

Data path

booleans

integers

integers
real numbers

Figure 6.3. System structure

real numbers, integers and Booleans, where the real numbers or integers are
the operands in the polynomial specification. Data paths may include oper-
ations that are created by combining the ideal functions +,−, ∗, /. Similarly
to the polynomial specification, the output values of the sequential design
are not limited to any fixed bit-widths. The verification technique requires
that data path operations are correct, or their correctness is checked sepa-
rately.

The objective of the abstraction technique is to minimize the input do-
mains of the data path input signals and thereby to reduce the size of the



6.2. Polynomial Abstraction 75

sequential model. Polynomial abstraction cannot reduce the domains of in-
put signals, whose values are used in computations in the data path if the
computation result determines the controller behavior. The domains of this
kind of input signals have to be finite and may contain only integer values.
In other words, feedback signals directed from the data path to the con-
troller are forbidden. If this kind of signal exists, it is considered as a part
of the controller. Despite that, the controller behavior may be determined
by integer input signals, if the values on inputs are compared to constants
in equality expressions. For example, the data value di in the FIR filter
can be directly compared to the values 0 and 1 in order to choose between
different computation paths, which correspond to different polynomial func-
tions. The abstraction technique requires that the system calculates only a
finite number of different polynomial functions. Each combination of input
values has to correspond to a certain finite sequence of data path commands
executed by the controller.

6.2.1 Theoretical Background

The polynomial abstraction technique relies on the fundamental theorem of
algebra. The theorem is used in [87] to show that a finite set of input assign-
ment vectors can be used to find whether two multi-variable polynomials are
identical or not. The number of different values assigned to each individual
input depends on the maximum degree of the respective input variable in
these polynomials. Two polynomials Pa(x) = Akx

k + Ak−1x
k−1 + . . . + A0

and Pb(x) = Bkx
k+Bk−1x

k−1+. . .+B0 are identical if all their respective co-
efficients are equal, i.e., ∀i, (0 ≤ i ≤ k), Ai = Bi. In this case the coefficients
of their difference polynomial Pc(x) = (Pa(x) − Pb(x)) are equal to zero.
The fundamental theorem of algebra says that a degree k uni-variable poly-
nomial has exactly k +1 complex roots unless all of its coefficients are equal
to zero. For clarification, the value v is a root of P (x) if P (v) = 0. If Pa(x)
and Pb(x) calculate pairwise the same result for k + 1 input assignments,
then according to the fundamental theorem of algebra the coefficients of the
difference polynomial Pc(x) are equal to zero and the polynomials Pa(x) and
Pb(x) are identical. In [87] it is proven that the same decision mechanism
is valid for multi-variable polynomials as well. The identity checking can be
performed by using integer values that are special cases of complex num-
bers. Two multi-variable polynomials Pa(x) and Pb(x) are identical if they
calculate pairwise the same result for all combinations of input assignments,



76 Chapter 6. Verification of Computation Refinements

where xi (xi ∈ x) gets k + 1 distinct values and the maximum degree of xi

in Pa(x) and Pb(x) is k.
If a sequential design implementation calculates function I(x) and its

specification is defined by function S(x), a bounded number of different val-
ues, determined by the maximum degrees of variables in these polynomials,
can be used to verify if I(x) == S(x). The given theoretical background
allows to reduce the infinite domains of real number input signals to finite
integer ones for model checking. Thus, the behavior of the sequential design
block can be checked by following the block’s input/output functionality.

Although the set of input values, used for verification is reduced and
finite, some values may still grow quite large in the data path. For instance,
the degree of x in P (x) = x10 is 10 and an implementation of this func-
tion can be verified by only eleven different input values (0, 1, . . . , 10). The
greatest value calculated by the function P (x) = x10 is P (10) = 1010 ≈ 233,
which means that a model checker has to create 33 binary variables to store
the function values. In order to reduce the memory demands, an additional
state space reduction has to be performed. Based on the arithmetic iden-
tity presented in (6.1) the following Theorem 6.2, allows to verify a set of
reduced models instead of the initial model, which calculates larger values.
Theorem 6.2 is equivalent to the Chinese remainder theorem used in [33].

Let Z denote the set of integers and Z
+ denote the set of positive integers.

((a mod ni) OPj (b mod ni)) mod ni == (a OPj b) mod ni |

OPj ∈ {+,−, ∗}, ni ∈ Z
+ and a, b ∈ Z (6.1)

Theorems on Modulo Calculation

Let the function rpn(x, y) evaluate to one, if x and y are relatively prime
numbers, and to zero otherwise. Two or more numbers are relatively prime
if they have no common integer divisor other than one. Let Z

i consist of all
possible i-component tuples from the set Z.

Theorem 6.1 Two polynomial functions S(x) and R(x) calculate pairwise
the same results vj on the input assignments v (v ∈ Z

i), if:

vj ∈ [v0, v0 + n1n2[,

n1, n2 ∈ Z
+ and rpn(n1, n2) = 1,

S(v) mod n1 = R(v) mod n1,

S(v) mod n2 = R(v) mod n2 (6.2)
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The theorem says that if two polynomial functions S(x) and R(x) ex-
tended with modulo computations (mod n1 and mod n2) calculate pairwise
the same result on a set of input assignments, then S(x) and R(x) calcu-
late pairwise identical values on the same input assignments, if these values
vj belong to the domain [v0, v0 + n1n2[. In other words, if the conditions
in (6.2) holds for the assignment v, then two different values v1 and v2 do
not exist in the domain [v0, v0 + n1n2[ such that S(v) = v1, R(v) = v2.

Proof

Let’s make a contradictory assumption that there exists an assignment v
such that S(v) mod n1 = R(v) mod n1, S(v) mod n2 = R(v) mod n2,
S(v) = v1, R(v) = v2, but v1 6= v2 and (abs(v1 − v2)) < n1n2.

According to the conditions in (6.2):

v1 mod n1 = v2 mod n1

v1 mod n2 = v2 mod n2 (6.3)

Based on (6.1) the equations in (6.3) can be written in the following form:

(v1 − v2) mod n1 = 0

(v1 − v2) mod n2 = 0 (6.4)

Since the results of the modulo computations in (6.4) are equal to zero, there
exist integer constants c1 and c2 so that:

(v1 − v2) = c1n1

(v1 − v2) = c2n2 (6.5)

From the equations in (6.5), it can be derived that c1n1 = c2n2, which can
be written in the following form:

c1

c2
=

n2

n1
(6.6)

According to the contradictory assumption, v1 is not equal to v2, and re-
ferring to (6.5), c1 and c2 cannot not be equal to zero. Since n1 and n2

are relatively prime numbers and c1 and c2 are integers, the least values
that satisfy the equation in (6.6) are c1 = n2 and c2 = n1. In this case
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v1 − v2 = n1n2 and two different values v1,v2 cannot belong to the same do-
main [v0, v0 +n1n2[. Based on the latter it is valid to deduce the correctness
of Theorem 6.1.

�

Relatively prime numbers have the following property:
if rpn(n1, n2) = 1, rpn(n2, n3) = 1 and rpn(n1, n3) = 1, then
rpn((n1n2), n3) = 1. Based on the previous property, Theorem 6.1 can
be extended in the number of relatively prime numbers.

Theorem 6.2 Two polynomial functions S(x) and R(x) calculate pairwise
the same result vr on the input assignments v (v ∈ Z

i), if:

∀i, (1 ≤ i ≤ m), ni ∈ Z
+,

∀i, j(1 ≤ i, j ≤ m and i 6= j), rpn(ni, nj) = 1,

vr ∈ [v0, v0 +

m
∏

i=1

ni[,

∀i, (1 ≤ i ≤ m), S(v) mod ni = R(v) mod ni (6.7)

Proof

The theorem can be proven by induction on the number of relatively prime
numbers ni.

Base Case. The proof of the base case (i = 2) follows directly from
Theorem 6.1.

Induction Step. In order to prove that Theorem 6.2 is valid for m
relatively prime numbers, let’s assume that it holds for m − 1 relatively
prime numbers (n1, . . . , nm−1):

S(v) mod (
m−1
∏

i=1

ni) = R(v) mod (
m−1
∏

i=1

ni) (6.8)

Let nm be a positive integer, so that ∀i, (1 ≤ i ≤ (m − 1)), rpn(ni, nm) = 1.
In this case rpn((

∏m−1
i=1 ni), nm) = 1. If S(v) mod nm = R(v) mod nm and

the condition in (6.8) holds then according to Theorem 6.1
S(v) mod (

∏m
i=1 ni) = R(v) mod (

∏m
i=1 ni).

�

Based on the previous theorem, the verification of the example polyno-
mial P (x) = x10 that requires 33 bits to represent the largest value, can be
replaced with the verification of eleven much smaller models calculating the
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functions P (x) = (x10) mod ni, ni ∈ {2, 3, 5, . . . , 31}. The multiplication
of the first eleven prime numbers {2, 3, 5, . . . , 31} is

∏11
i=1 ni ≈ 237 that is

greater than 233. The largest value 31 = 25 appearing in these models can
be represented with only 5 bits compared to the original 33 bits.

6.2.2 Roadmap of the Polynomial Abstraction Technique

The main steps of the abstraction technique are presented in Figure 6.4.
A design transformation replaces the combinational block with a sequential
design implementation and the task for verification is to find whether the
sequential design implements the functionality that is described by the orig-
inal combinational block. The computation in the data path may include
division operations that involve real numbers. Since model checkers can op-
erate only with integer values, the first step of the technique is to map the
refined model to a fractional model. Real number data signals are replaced
with pairs of integer signals in the fractional model. A similar replacement is
done for storage elements. Arithmetic operators in this model are replaced
with fractional ones, which instead of calculating division store the result as
a fraction of two integers.

The algorithm classifies the input signals of the fractional model as data
and control signals. The domains of data signals can be reduced by data
abstraction. The algorithm finds the maximum possible degrees of data
input variables in polynomial functions, which represent the functionality
of the sequential design, and specifies finite domains to the input signals
according to these degrees. In the next step the algorithm estimates the
maximum values that appear in the data path by using a domain propa-
gation method. In order to decrease the bit-widths of data path registers,
a number of smaller abstract models are created by applying the modulo
theorem. These abstract models are mapped to the SMV language and the
SMV model checker verifies whether they calculate the same results.

6.2.3 Fractional Model

The SMV model checker supports division on integers but the result is al-
ways stored as an integer value. According to the scope of the verification
technique, a design may have real number data inputs and division opera-
tions on data signals. Even if the abstract domains of the input variables are
composed so that they contain only integer values, the result of division may
still be a real number. In order to avoid real number values calculated in the
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data path, the refined sequential model is mapped to a fractional model. In
the fractional model all data values v that are results of division operations
are modeled as fractions vν

vδ
of respective numerator and denominator values

vν and vδ. Since the model operates with fractional values, all original arith-
metic functions have to be replaced with the equivalent fractional functions
as shown in Figure 6.5(b).

a)

OP
a
b

c OP

aν

aδ

bν

bδ

cν

cδ

b)

OP cν cδ

c = a + b aν ∗ bδ + bν ∗ aδ aδ ∗ bδ

c = a − b aν ∗ bδ − bν ∗ aδ aδ ∗ bδ

c = a ∗ b aν ∗ bν aδ ∗ bδ

c = a/b aν ∗ bδ bν ∗ aδ

Figure 6.5. Operations a) in the original model b) in the fractional model

Assertion 6.1 If a ∈ Z and b ∈ Z and OP ∈ {+,−, ∗} and c = (a OP b),
then c ∈ Z.

If all arithmetic functions in the data path are mapped to the functions pre-
sented in Figure 6.5 and the input stimuli include only integers, then based
on Assertion 6.1, all data signals carry only integer values, since all values
are calculated by arithmetic operations {+,−, ∗}. The relation between the
original and the fractional models are:

1. all data signals si in the original model are modeled as pairs of signals
sνi and sδi in the fractional model. The value vi on signal si is equal
to the division of vνi and vδi, which are respective values on sνi and
sδi;

2. arithmetic operations in the original model are replaced with fractional
operations according to Figure 6.5;
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3. all registers, multiplexers and other supporting elements connected
with data signals si, are modeled as pairs of respective elements con-
nected to signals sνi and sδi.

The mapping from the original model to the respective fractional model is
illustrated in Figure 6.6.

b)
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Figure 6.6. Data path a) in the original, and b) in the fractional model

6.2.4 Classification of Input Signals

Input signals of the sequential design are classified as control, data and semi-
data signals. The classification procedure is similar to the methods used in
[48, 72]. All Boolean signals are control signals. If an internal signal steers
the controller to choose between several next states within computation,
then the signal is a control signal. In other words, all signals that do not
appear in the conditional part of an if or case expression or as a pattern in a
pattern matching construction are data signals. If an output of a process is a
control signal then all the input signals of the process are regarded as control
signals as well. Clearly, the last definition is recursive. All these signals,
which are not marked as control signals are data or semi-data signals. Data
signals are not used in any conditional expression. However, if the value of
an input signal is directly used in a conditional expression and compared
against a constant for equality check, the signal is classified as a semi-data
signal.
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The domains of the control signals have to remain unmodified in order
to preserve all behaviors of the controller. If the design contains any con-
trol input with an infinite domain, then the designer has to specify a finite
domain for that input signal.

The domains of the data and semi-data signals can be reduced by the
polynomial abstraction technique. In addition to the values determined by
the degree, the abstract domain of a semi-data input signal has to include
the constant values from conditional expressions. For example, if in an FIR-
filter the data value di is compared against the values 0 and 1 and the degree
of di = 1, the abstract domain of di has to include the values 0 and 1, and
two additional arbitrary values.

For example, all input signals di and ci of the data path in Figure 6.2(c)
are data signals since their values do not determine the controller’s behavior.
Thus, the domains of these signals can be reduced according to their degrees.

6.2.5 Calculation of the Maximum Degrees

In order to find the degrees of data and semi-data variables in the system
output function, calculated by the sequential design, the degree calculation
method analyzes the computation in the data path by using an approach
that is similar to symbolic execution. Instead of actual values and arith-
metic operations, this method uses symbolic values, presenting the degrees
of input variables in the calculated functions, and special degree propagation
operations.

+

*

/

muxmux

Datapath

Controller

reg
x1

reg
x2

reg

reg

r1

r2

r1

Figure 6.7. A data path example
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Let’s consider the sequential design in Figure 6.7 with a data path and
a controller to explain the maximum degree calculation. In this system
the data path can compute three arithmetic operations on the values that
are stored in the input registers x1, x2 and in the internal registers r1, r2.
Data path operations, source registers from where operands are read and
destination registers where computation results are stored are determined
by the controller’s state.

Let the controller execute operations r1 = x1 + x2 in the first state,
r2 = r1 ∗ x2 in the second state and r1 = r2 ∗ r2 in the third state. Sym-
bolic execution follows the data path operations executed by the controller,
applies the same operations to the symbolic input values and the functions
stored in the registers and in such a way finds exact functions for each regis-
ter in every state. The function that evaluates the register r1 after the third
state is r1 = (((v1 + v2) ∗ v2) ∗ ((v1 + v2) ∗ v2)) = v2

1v
2
2 + 2v1v

3
2 + v4

2 , where v1

and v2 are symbolic values that correspond to the inputs x1 and x2, respec-
tively. The input variable v1 has the degree equal to two and the degree of
v2 is equal to four in the found function. Instead of finding the degrees by
composing the exact functions, the maximum possible degrees of the input
variables can be derived through the degree propagation technique.

Degree Propagation

The maximum degree calculation differs from symbolic execution in some
extent. The degree propagation technique assigns to every data input a
degree vector instead of symbolic values. Instead of composing a function in
symbolic input values to each data path register in every controller’s state,
the degree propagation technique calculates the maximum possible degrees
of input variables in the functions that evaluate registers.

Considering the previous example, the degrees of variables correspond-
ing to the inputs x1 and x2 are constant ones. The data path calculates
r1 = x1 + x2 in the first cycle, which means that the maximum degree of x1

in the register r1 is one, and the degree of x2 in r1 is one too. In the second
state the register r2 stores the result of the function r2 = r1 ∗ x2, where
the degree of x1 stays equal to the degree of x1 in r1, but the degree of x2

is increased by one. In the third state, the degrees in r1 are twice higher
than they were in r2. Thus instead of constructing the respective functions
for each register by symbolic execution, the maximum degree calculation
requires simple integer arithmetic.
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Due to the model, where functions and values are modeled as fractions,
the maximum degrees are represented in the fractional format as well. For
a function, expressed as a fraction of polynomials P (x)

Q(x) the maximum degree

fraction has the format
〈νx1

,...,νxn〉

〈δx1
,...,δxn〉

, where νxi
and δxi

are the maximum de-

grees of the input variable xi in the numerator and denominator polynomials,

respectively. For example, if a system calculates function G =
x3
1x2

2+2x1

x1x2+7 , the
maximum degrees of x1 and x2 in the numerator polynomial are three and
two, respectively, the maximum degrees of x1 and x2 in the denominator
polynomial are both one, and the maximum degree fraction of the system
output is 〈3,2〉

〈1,1〉 .
Since the functionality of a system input does not have any functional

dependence from other inputs, the degree of an input variable is equal to one,
and the maximum degree fraction of an input variable xi is:
〈νx1

,...,νxi−1
,νxi

,νxi+1
,...,νxn〉

〈δx1
,...,δxi−1

,δxi
,δxi+1

,...,δxn〉
= 〈0,...,0,1,0,...,0〉

〈0,...,0,0,0,...,0〉. The notation
〈νxi

〉

〈δxi
〉 is used to refer

to the degree of a variable xi. In this case the degree of an input variable
xi is denoted as 〈1〉

〈0〉 . The maximum degree calculation rules for the ba-
sic arithmetic operations, which are in the format z = x OP y, are given
in (6.9).

〈νz
1 ,νz

2 ,...,νz
n〉

〈δz
1 ,δz

2 ,...,δz
n〉

=
〈νx

1 ,νx
2 ,...,νx

n〉
〈δx

1 ,δx
2 ,...,δx

n〉
OP

〈νy
1 ,ν

y
2 ,...,ν

y
n〉

〈δy
1 ,δ

y
2 ,...,δ

y
n〉

,where

if OP == (′+′ or ′−′) then
νz

i = max ((νx
i + δy

i ), (δx
i + νy

i )) and δz
i = δx

i + δy
i ;

if OP ==′ ∗′ then
νz

i = νx
i + νy

i and δz
i = δx

i + δy
i

if OP ==′ /′ then
νz

i = νx
i + δy

i and δz
i = δx

i + νy
i

(6.9)

The maximum degree calculation starts from the state where the con-
troller turns when the control signal start goes high, and follows the state
trace that is determined by a combination of values on the control and semi-
data inputs. In every state, the degree calculations technique updates the
degree vectors of all these registers, which are destinations for data path op-
erations in the current state. The degrees of the register that evaluates the
data path output when the signal ready goes high determine the abstract
domains of the input values for model checking.
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According to the values on the control and semi-data inputs, the con-
troller may select between different functions to perform the computation,
but the degrees of these functions may not be identical. Therefore, the de-
gree calculation has to be performed for all different functions, which are
determined by the values on the control and semi-data inputs. The ab-
stract domain of a data or semi-data input signal xi is defined based on the
maximum degree of the input xi over all of these calculations.

The following illustrates the degree analysis for the output signal r1 of
the system in Figure 6.7 that calculates the function G. The controller’s
states and corresponding data path instructions are shown in Table 6.1.
Let the function D(P (x), xi) give the maximum degree of xi in P (x), and
D(ri(x)) denote the degree vectors of ri.

Table 6.1. A maximum degree computation example

state r1 r2 D(r1(x)) D(r2(x))

1 x1 ∗ x2 x1 + x1 〈1,1
0,0〉 〈1,0

0,0〉

2 r1 ∗ r1 〈2,2
0,0〉 〈1,0

0,0〉

3 x1 ∗ r1 〈3,2
0,0〉 〈1,0

0,0〉

4 r1 + r2 x1 ∗ x2 〈3,2
0,0〉 〈1,1

0,0〉

5 r2 + 7 〈3,2
0,0〉 〈1,1

0,0〉

6 r1/r2 〈3,2
1,1〉 〈1,1

0,0〉

The degree fractions of ri have the format
〈νx1

,νx2
〉

〈δx1
,δx2

〉 . In the initial state

the degree fractions are filled with zeros. In the first state the data path
calculates two operations: r1 = x1 ∗ x2 and r2 = x1 + x1. The degree of
x1 in r1 after the computation in the first state, according to the degree
calculation rules is:

D(r1(x), x1) = D((x1

1 ∗ x2

1 ), x1)

= D((x1∗x2),x1)
D((1∗1),x1)

= D((x1),x1)+D((x2),x1)
D((1),x1)+D((1),x1)

= 〈1+0〉
〈0+0〉

= 〈1〉
〈0〉
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Similarly, the degree of x2 is 〈1〉
〈0〉 . Thus, the degrees of r1 are 〈1,1〉

〈0,0〉 . The
degree of x1 in r2 = x1 + x1 is:

D(r2(x), x1) = D((x1

1 + x1

1 ), x1)

= max(D((x1∗1),x1),D((x1∗1),x1))
D((1∗1),x1)

= max(D((x1),x1),D((x1),x1))
D((1),x1)+D((1),x1)

= max(1,1)
0+0

= 〈1〉
〈0〉

The degree of x2 in r2 is 〈0〉
〈0〉 , since this input variable is not an operand of

the function that evaluates r2. The maximum degree calculation proceeds
as shown in Table 6.1, and terminates with the degree fraction 〈3,2〉

〈1,1〉 for r1.
Since the degree calculation in every state is based on the degrees in

previous states and does not consider the actual functions, the simplification
of a degree fraction by reducing the respective degrees νi and δi is not
allowed. For example, it is not valid to change the fraction 〈3,2〉

〈1,1〉 to 〈2,1〉
〈0,0〉 .

This kind of simplification is correct for the function
x3
1x2

2

x1x2
, but does not hold

for the function G =
x3
1x2

2+2x1

x1x2+7 . Thus, actually the technique finds the upper
bounds of degrees.

If the output polynomials according to the specification are P (x)
Q(x) and

the implementation functionality is expressed as R(x)
S(x) , then based on the

mathematical rule a
b

= c
d
⇒ ad = bc, the final maximum degree for the

input variable xi is calculated as:

max(D(P (x)S(x), xi),D(Q(x)R(x), xi))

The final maximum degrees of x1 and x2 for the function G are 4 and
3, respectively. If the degree of a data input variable x is k, then a model
checker can assign values from n to n + k to the input x, where n is an
arbitrarily chosen integer value. The input domain of a semi-data input is
extended with the constant values from the equality comparison expressions
against constants.

6.2.6 Domain Propagation

In addition to specifying the domains for the data input signals, the SMV
model has to contain the domain declarations of all internal and output
signals that are used in a function description. The declaration of a data
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path register has to cover all the possible values, which may be stored there,
regarding the input values and the behavior of the controller. The simplest
way is to specify a domain by the least and the greatest values. If the least
value of x is x− and the greatest value is x+, the domain of the variable
x can be described as [x−, x+], which means that x may have any value
between x− and x+.

The domain propagation rules for the basic arithmetic operations on
integer values are given in Table 6.2. The function P(x, y) calculates pairwise
multiplications on the least and the greatest values of operands x and y
from their respective domains. The result of P is a four element set, which
contains values: P(x, y) = {x− ∗ y−, x− ∗ y+, x+ ∗ y−, x+ ∗ y+}.

Table 6.2. Domain propagation rules for arithmetic operations

OP Domain Calculation

x + y [x−, x+] + [y−, y+] = [x− + y−, x+ + y+]

x − y [x−, x+] − [y−, y+] = [x− − y+, x+ − y−]

x ∗ y [x−, x+] ∗ [y−, y+] = [min(P(x, y)),max(P(x, y))]

According to the domain propagation rules, two operands a and b that
have domains [−5, 2] and [−3, 4], respectively, give P(a, b) = {15,−20,−6, 8}.
Thus, the result of multiplication of a and b is bounded by the minimum
value −20 and the maximum value 15, which form the domain [−20, 15].

The domain propagation rules for the fractional operations in Figure 6.5
are presented in Table 6.3.

According to the rules in Table 6.3, the output domain of a division
operation applied to the fraction of signals s and t, with domains [−2,4]

[3,5] and
[6,8]

[−7,9] , respectively, is:

[min(−2 ∗ −7,−2 ∗ 9, 4 ∗ −7, 4 ∗ 9), max(−2 ∗ −7,−2 ∗ 9, 4 ∗ −7, 4 ∗ 9)]

[min(3 ∗ 6, 3 ∗ 8, 5 ∗ 6, 5 ∗ 8), max(3 ∗ 6, 3 ∗ 8, 5 ∗ 6, 5 ∗ 8)]
=

[−28, 36]

[18, 40]

The domain propagation analysis is similar to the degree propagation.
Considering the domains that are specified by the degrees of input vari-
ables in the system output functions, the domains of data path registers are
found according to the sequence of instructions executed by the controller.
If the domain of an input signal xi in the sequential model is [x−

i , x+
i ], the
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Table 6.3. Domain propagation rules for fractions of signals

xν

xδ
+ yν

yδ

[x−
ν ,x+

ν ]
[x−

δ
,x+

δ ]
+

[y−
ν ,y+

ν ]
[y−

δ
,y+

δ ]
=

= [min(P (xν ,yδ))+min(P (xδ ,yν)),max(P (xν ,yδ))+max(P (xδ ,yν))]
[min(P(xδ ,yδ)),max(P(xδ ,yδ))]

xν

xδ
− yν

yδ

[x−
ν ,x+

ν ]
[x−

δ
,x+

δ ]
−

[y−
ν ,y+

ν ]
[y−

δ
,y+

δ ]
=

= [min(P (xν ,yδ))−max(P (xδ ,yν)),max(P (xν ,yδ))−min(P (xδ ,yν))]
[min(P(xδ ,yδ)),max(P(xδ ,yδ))]

xν

xδ
∗ yν

yδ

[x−
ν ,x+

ν ]
[x−

δ
,x+

δ ]
∗

[y−
ν ,y+

ν ]
[y−

δ
,y+

δ ]
= [min(P(xν ,yν)),max(P(xν ,yν))]

[min(P(xδ,yδ)),max(P(xδ ,yδ))]

xν

xδ
/yν

yδ

[x−
ν ,x+

ν ]
[x−

δ
,x+

δ ]
/
[y−

ν ,y+
ν ]

[y−

δ
,y+

δ ]
= [min(P(xν ,yδ)),max(P(xν ,yδ))]

[min(P(xδ ,yν)),max(P(xδ ,yν))]

respective domain of xi

1 in the fractional model becomes
[x−

i ,x+
i ]

[1,1] . The anal-
ysis starts from the state where the controller turns after the input signal
start goes high, follows the order of state transitions, and finishes in the
state where the output signal ready goes high. It is assumed that all state
traces lead to states where the signal ready is high. For every controller
state the domain propagation technique finds the domains of intermediate
computation results stored in the registers. The domain of a modified reg-
ister file element depends in the data path operation in a controller’s state,
and the domains of selected operands. If based on the control and semi-
data input values the controller may choose between several state traces to
execute instructions in the data path, the domain propagation analysis has
to be performed for all state traces. The declaration of a register ri in the
abstract model is determined by the least and the greatest values that were
stored through all state traces in ri.

Let the abstract domains of x1 and x2 of the function G be 0, . . . , 4 and
0, . . . , 3. The domain propagation for the function G, following the sequence
of the data path operations in Table 6.1, is illustrated in Table 6.4.

Let the specification and implementation polynomials be P (x)
Q(x) and R(x)

S(x) ,

respectively. The model checker verifies that P (x)S(x)) == Q(x)R(x).
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Table 6.4. Domain propagation in the computation of the function G

state r1 r2 Domain r1 Domain r2

1 x1 ∗ x2 x1 + x1
[0,12]
[1,1]

[0,8]
[1,1]

2 r1 ∗ r1
[0,144]
[1,1]

[0,8]
[1,1]

3 x1 ∗ r1
[0,576]
[1,1]

[0,8]
[1,1]

4 r1 + r2 x1 ∗ x2
[0,584]
[1,1]

[0,12]
[1,1]

5 r2 + 7 [0,584]
[1,1]

[0,19]
[1,1]

6 r1/r2
[0,584]
[0,19]

[0,19]
[1,1]

The value zero in the denominator domains does not cause division by zero,
since the fractional model does not use division. However, the final domain
has to be calculated as the multiplication of the numerator and denominator
domains. The domain for the function G is [0 ∗ 0, 584 ∗ 19] = [0, 11096].

6.2.7 Application of the Modulo Theorem

The theoretical background of the modulo theorem in Section 6.2.1 allows
to reduce the domains of data inputs and data path variables and thereby
to reduce the time and memory demands in model checking. The correct-
ness of the abstract fractional model is deduced from the verifications of
a number of drastically smaller models. In these smaller models all data
path arithmetic operations are extended with modulo computation, i.e., an
assignment statement r = x OP y in the original model is transformed to
r = (x OP y) mod ni. Constants ni belong to the set of relatively prime
numbers M = {n1, . . . , nm}. Every constant in M defines one model that
has to be verified. The amount of prime numbers in M depends on the least
and greatest values (v− and v+ respectively) computed in the data path in
the abstract model. The multiplication of the relatively prime numbers in
M has to give a greater value than is the difference between v− and v+, i.e.,
∏m

i=1 ni > (v+ − v−).
The domain of the function G is [0, 11096]. In order to encode 11096

values, the model checker has to create 14 binary variables, 214 = 16384
and 11096 < 16384. The multiplication of the relatively prime numbers
3,5,7,11,13 is greater than the largest value calculated by G. Thus, the
largest value, which is calculated by the models after extending them with
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the modulo calculations, requires only 4 bits. Since in the worst case the
computer resource demands in model checking grows exponentially with the
number of binary variables, the reduction from 14 bits to 4 bits is a signifi-
cant improvement, despite that five different models have to be verified.

6.2.8 Model Checking

In order to verify the refined sequential design against the polynomial specifi-
cation, the abstract models extended with modulo computation are mapped
to the SMV language, as explained in Chapter 3. According to the maxi-
mum degrees of the input variables in the output polynomials, new domains
are defined for all the data signals. If the maximum degree of a data signal si

is k then the model checker can assign values from n to n + k to that input.
In addition, the domain of a semi-data value includes constants from the
equality comparison expressions. The input domain of a semi-data variable
is composed so that the abstract values determined by the degree analysis do
not overlap with the values from the equality comparison expressions. The
domains of the control signals stay unchanged. The SMV model checker
verifies the following property. If the input values (v) on the combinational

specification (Sν(x)
Sδ(x) ) and a sequential implementation ( Iν(x)

Iδ(x) ) are equal, then

also the output values are equal, i.e., Sν(v)Iδ(v) == Sδ(v)Iν(v), in the state
where the signal ready goes high.

6.3 Verification of Loop-back Structures

6.3.1 Comparison between Spatial and Polynomial Abstrac-
tions

The spatial abstraction technique is illustrated in [72] by a verification case
study, where the correctness of a sequentially implemented multiplier is
checked. The sequential design multiplies two input values by using repet-
itive addition. The internal structure of the multiplier, equivalent to the
model in [72] is depicted in Figure 6.8. The system can be divided into
(a) a data path, which contains a couple of registers, a multiplexer and an
adder, and (b) a controller composed by a finite state machine and a register
that is extended with a decrement operation. The multiplier decrements the
value in the input register B′ by one, until the value in B′ is equal to zero.
The value in the other input register A is added to the value in the output
register C in parallel to every decrement.
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Figure 6.8. Internal structure of a repetitive multiplier

The task for model checking is to verify if the value in the register C
is always equal to the multiplication of the values in the registers A and
B when the signal ready goes high. The property expressed as a temporal
logic expression has the following form:

AG((FSM .finish = 1) − >(C.out = A.out ∗ B.out))

Since the value in the register B is changed within the computation and
at the same time the original value is required to check the property after
the computation, the register B is duplicated by B′.

The description of the original model of a multiplier with 12-bit input
and 24-bit output words includes 64 binary state variables: three 12-bit reg-
isters A, B, B′, and one 24-bit register C, three bits to encode the FSM
states, and one bit for the signal start . Both abstraction techniques clas-
sify the signal a as a data input, and the signals b and start as control
inputs. In order to preserve all controller behaviors, the domains of the
input signal b and the register B have to stay unchanged. Since the signal
a is a data input, spatial abstraction reduces the domain of the signal a
and the 12-bit register A to a 1-bit signal and a 1-bit register, respectively.
A 12-bit register is sufficient to store the greatest value of the multiplication
of a 12-bit and a 1-bit value. Consequently, the 24-bit register C can be
replaced with a 12-bit one. Altogether, the model reduced by the spatial
abstraction technique contains 41 binary state variables.
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According to polynomial abstraction, the degree of the input variable
a in the output polynomials is equal to one. Thus, the domain of a can
be reduced to include two values 0 and 1. Based on the domain propaga-
tion analysis, 0 and 4095 are the least and the greatest values, respectively,
in the abstract model. The application of the modulo theorem allows to
extend all arithmetic operations with modulo computations (mod ni) and
consequently to reduce the size of registers that store data values, but not
B′. The multiplication of all values from the set of relatively prime numbers
{5, 7, 11, 13} is equal to 5005 that is greater than 4095. In the largest model,
where ni = 13, the greatest value stored in the register C requires 4 bits
instead of the original 24 bits or 12 bits after spatial abstraction. After the
application of the modulo theorem the model checker verifies the property:

AG((FSM .finish = 1) − >(C.out mod ni = ((A.out mod ni) ∗ (B.out mod ni)) mod ni)

The size of the reference register B can be reduced according to the value
ni as well. Thus the size of the largest model after polynomial abstraction
includes 25 binary state variables: one 1-bit register A, two 4-bit registers
B and C, one 12-bit register B′, and four bits for FSM and the signal start .

Although polynomial abstraction generates four models for verification,
compared to spatial abstraction the amount of time and the number of BDD-
nodes required for model checking are drastically reduced. The number of
state variables and resource demands for model checking are presented in
Table 6.5. The experiments were done on a Sun machine with 900MHz CPU
and 16GB RAM, by using the Cadence SMV tool [102].

Table 6.5. Polynomial abstraction versus spatial abstraction

The number of Reduction T ime BDD−
states variables in states nodes

Original model 64 − 10 days −
(estimated)

Model after 41 36% 4.4 hours 118M
spatial abstr .

Model after 25 61% 4.2 minutes 540k
polynomial abstr .
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6.3.2 Verification of FIR and IIR Filters

A possible internal structure of a 16th order FIR filter is depicted in Fig-
ure 6.2(c). The filter description contains a shift register that stores the
input data values for fifteen clock cycles. In the verification of the filter
implementation, it is considered that the shift register and the data path
components are correct. Thus, assuming that the shift register behaves cor-
rectly, the verification task is to check that the data path calculates correct
output values on the delayed input values di and the filter coefficients ci,
according to the filter specification in (6.10).

y =

15
∑

k=0

ci ∗ di (6.10)

The refined sequential design, which calculates the function in (6.10) has 33
inputs - 16 data inputs di, 16 coefficients ci that may vary in time, and an
additional input signal start . The input signals di and ci are classified as data
signals since they do not appear in any conditional expression. According
to the proposed degree calculation algorithm, the degrees of all data signals
are equal to one. Thus, for the verification it is sufficient to assign the
values 0 and 1 to the data inputs. According to the domain analysis, the
least and the greatest values calculated in the data path are 0 and 16.
Since the multiplication of the relatively prime numbers 3 and 7 is greater
than 16, the actual verification is done in two models where the data path
operations are extended with modulo 3 and 7 calculations. The size of the
data path internal register is reduced according to the maximum values
from the modulo operations as well. The total verification time of these
two models and the maximum number of allocated BDD nodes are shown
in Table 6.6.

Table 6.6. Verification Time and BDD Nodes

Design Function Time BDD−
sec. nodes

FIR filter
∑15

i=0 ci ∗ di 29.4 1.4M

IIR filter d7 ∗ b0 +
∑7

i=1(w7−i ∗ bi − w7−i ∗ ai ∗ b0) 2.5 458k

DFT 8 point FFT 1.5 91k

Cosines
∑4

i=0
x2∗i

(2∗i)! 9.5 153k
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The main difference between FIR and IIR2 filters is that the FIR filter
specification, defined in (6.10), is a function on delayed input values, but
the IIR filter specification in (6.11) comprises delayed output values as well.

yn =

N
∑

k=0

bkdn−k −

N
∑

k=1

akyn−k (6.11)
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Figure 6.9. IIR filter structures: (a) direct form I and (b) regular direct
form II

The IIR filter structure in Figure 6.9(a) corresponding to (6.11) can be
viewed as a sequential composition of two systems. The left hand part,
calculating a polynomial on the delayed input values dk and the coefficients
bk, is equivalent to the general FIR filter structure. The right hand part
stores the output values yk for N clock cycles, multiplies them with the
coefficients ak and adds the results to the output value from the left side
FIR structure. In order to obtain a more compact structure, the two parts
can switch their positions that makes it possible to merge the respective
delay elements. The filter structure after the last transformation is depicted
in Figure 6.9(b), and its specification is described by the equations in (6.12).

wn = −
N

∑

k=1

akwn−k + dn

2Infinite Impulse Response
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yn =
N

∑

k=0

bkwn−k (6.12)

The system, which calculates the IIR function (6.12) when N = 7, has been
implemented as a sequential design including a data path and a controller.
The controller was configured so that the data path calculates one of the
following terms d7 ∗ b0, w7−i ∗ bi, w7−i ∗ ai ∗ b0 at each clock cycle. The
variables d7, a, bi, wi are classified as data signals and their degrees are equal
to one. The abstract domains of these variables have to contain two values
for model checking, according to the degrees. A model checker requires only
four one bit signals for d7, a, bi, wi in the abstract model. The verification
of this implementation took less than 3 seconds and the SMV model checker
created less than 500k BDD-nodes.

Although both systems in Figure 6.9 give the same result for a given
input signal, the polynomial abstraction based verification technique can-
not verify directly that the direct form I implements the function in (6.12)
and the direct form II implements the function in (6.11). The limitation is
caused by the different input arguments in the functions in (6.12) and (6.11)
that makes it difficult to define reference points between two different im-
plementation models. For example, wn is not only a function on the input
values dn but also on the values wn−1, . . . , wn−N . At the same time wn−N

is a function on the values wn−(N+1), . . . , wn−(N+N) and the input value N
clock cycles before. Thus, all past input values starting from the reset state
have to be considered in order to verify that these two systems calculate the
same result at a time instant t.

In addition to the FIR and IIR filters a cosines function and an FFT
application implemented as a data path and a controller have been verified.
The time and the number of BDD nodes required for the verification are
shown in Table 6.6. All example functions listed in Table 6.6 are present in
today’s audio, video and communication devices that involve digital signal
processing.



Chapter 7

Synchronization after Temporal

Refinements

The basic concept of the synchronous model of computation is the syn-
chronous hypothesis that states that computation in processes and commu-
nication between them take no time. According to the synchronous hypoth-
esis a combinational process has no delay and the response to input values
appears on the process output in the same moment the input values arrive.
Compared to combinational processes, pipelined and resource shared com-
putation blocks contain additional delay elements that store intermediate
computation results. It is obvious that additional delay elements cause de-
layed data arrival at the outputs of pipelined and resource shared blocks.
Since the introduction of pipelining or resource sharing in combinational
processes involves delays, these refinements cause local temporal changes in
the corresponding refined models.

A refinement is classified as a local temporal refinement if it replaces
a combinational block with an equivalent block, which has a delay. The
original and replaced blocks compute the same results but because of the
delay the refined block produces one or more extra values on the output
signal. The longer delay causes mismatched data arrival at multi-input des-
tination processes, which are connected to the refined block. Due to this
mismatched data arrival, multi-input processes of the refined model operate
with different input assignments than the original model. The change in the
local temporal behavior of a sub-system is a potential source of errors in the
system. In order to avoid computation errors, concurrently processed data
items in the original model have to be processed concurrently in the refined

97
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model as well. The data items processed in the original model are denoted
as actual data items and considered as informative events. The objective of
the synchronization algorithm described in this chapter, is to insert synchro-
nization delays into the model in addition to the refinement added delays.
The initial values of synchronization delays and the initial values of refine-
ment added delays are denoted as synchronization values and these values
are distinguishable from the actual data items. Synchronization delays are
located so that the actual data do not interfere with the synchronization val-
ues. Although the additional synchronization values appear on the system
output, the actual data values are issued in the same order as in the original
model. In other words, the refined and synchronized model is latency equiv-
alent to the original one. Two signals are latency equivalent if they have
the same order of informative events. Two models are latency equivalent if
they produce latency equivalent output signals on latency equivalent input
signals.

7.1 Introduction

Let’s consider the introduction of resource sharing in a combinational com-
putation block, as explained in Chapter 6, to illustrate the impact of a local
temporal refinement on the entire system. The block B, in Figure 7.1, con-
tains one process with a combinational function fn1 . In the block B′ the
function fn1 is mapped to basic data path operations, which are executed by
the controller following an m-step schedule. The block B and the block B′

can be viewed as two different implementations of the same combinational
function fn1 . Due to the reuse of operations in the data path, the con-
troller stores intermediate computation results in the register file and uses
them in further computation steps. The feedback loop through the data
path and the register file has to include at least one delay process, since
the data path and the register file have zero-computation time according
to the synchronous hypothesis and zero-delay feedback loops are forbidden
in the used synchronous model. Even if the block is surrounded by clock
domain interfaces, so that it operates at m-times higher clock frequency, the
block B′ still has one clock cycle delay. Therefore, the behavior of the block
B′ is identical to the behavior of B′′, which composes a delay process and
the process Pcomb with the combinational function fn1 . The initial value
of the additional delay process is not described in the system specification,
and processing of this unexpected value by other processes causes the entire
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Figure 7.1. Resource sharing adds an extra delay to the system.

system to behave different from the original model with the block B. The
unexpected values are reflected on the output signal as well and the reaction
of the refined model to an input signal is erroneous.

In order to ensure that the initial values (synchronization values) from
the refinement added delay processes and from the synchronization delays do
not influence the system behavior, (1) the initial values have to be distinct
from the values used in the original model. In addition, (2) combinational
and finite state machine processes have to react to synchronization values
by emitting synchronization values, and (3) finite state machine processes
have to preserve their current states at clock cycles when synchronization
values appear on their inputs.

Let the notation of present (>) and absent (⊥) values be used in this
chapter to distinguish between the actual data values and the synchroniza-
tion values, respectively. Let P⊥

∆ denote a delay process initialized with the
synchronization value. If the original model is already described in the sense
of present and absent values, then all values of the original model are con-
sidered as present values in the context of synchronization in this chapter
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and in Chapter 8. The absence of a value in the original model is consid-
ered as an informative event in the context of the proposed synchronization
techniques. Hence, two different types of absent values simply have to get
different encodings in the system implementation.

In a synchronous model, each process consumes exactly one event from
all of its inputs at every clock cycle. It is not possible that a multi-input pro-
cess consumes only synchronization values from its inputs and drops them
until all inputs hold present values. In order to ensure that multi-input
processes can apply their functions to the same set of input values as in the
original model, the system structure has to avoid that multi-input processes
receive values of different types (⊥ and >) concurrently. The algorithm
under discussion synchronizes the system by inserting synchronization de-
lays into the model in addition to the temporal refinement added delays.
Similarly to the added refinement delays, the synchronization delays are ini-
tialized with ⊥-values. The algorithm locates the synchronization delays
such that the synchronization values from the refinement added delays ar-
rive at the inputs of multi-input processes in the same clock cycles with the
synchronization values from the synchronization delays.

7.2 Preparing for Synchronization

For the sake of simplicity, let the system model contain only combinational
processes Pcomb , finite state machine processes PFSM and delay processes
P∆, the latter two are initialized with actual data values (>). Every pro-
cess has exactly one output that can be connected to the inputs of more
than one process. All processes belong to the same clock domain and none
of the processes operates with synchronization values (⊥) before temporal
refinements. In order to prepare processes to operate with synchronization
values, the following extensions are necessary:

1. In a combinational process Pcomb the function fn(x1, . . . , xn) applied
to the input values v1, . . . , vn in the original model has to be replaced
with a new extended function fn(x1, . . . , xn) that is defined as follows:

fn(v1, . . . , vn) =

{

fn(v1, . . . , vn) , if ∀i, (1 ≤ i ≤ n), vi 6= ⊥
⊥ , if ∃i, (1 ≤ i ≤ n), vi == ⊥
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2. The next state function fnnst and the output function fnout of a finite
state machine process PFSM in the original model have to obtain the
following extended functionality, where st denotes the current state
and v1, . . . , vn are the input values:

fnnst (st , v1, . . . , vn) =

{

fnnst(st , v1, . . . , vn) , if ∀i, (1 ≤ i ≤ n), vi 6= ⊥
st , if ∃i, (1 ≤ i ≤ n), vi == ⊥

fnout (st , v1, . . . , vn) =

{

fnout (st , v1, . . . , vn) , if ∀i, (1 ≤ i ≤ n), vi 6= ⊥
⊥ , if ∃i, (1 ≤ i ≤ n), vi == ⊥

A finite state machine with the extended functionality preserves its
current state and emits a synchronization value, if its inputs hold
synchronization values in the current clock cycle.

7.2.1 Definitions

In order to analyze the system structure before temporal refinements in
the sense of delays, the synchronization algorithm constructs a delay graph.
This graph abstracts all combinational and finite state machine processes,
and presents only delay processes. The graph is used to analyze the delays
of all loops and acyclic paths that the system contains.

Definition 7.1 (Path) A path in the system model is a sequence
{P1, P2, . . . , Pn} of processes Pi connected by signals si, such that
∀i, (1 ≤ i ≤ (n − 1)),∃si connecting the output of Pi and an input of Pi+1,
and the path contains each process Pi only once, i.e., ∀i, (1 ≤ i ≤ n) and
∀j, (1 ≤ j ≤ n), Pi 6= Pj .

Pathk(Pi, Pj) denotes a path from process Pi to process Pj .

Definition 7.2 (Loop) Pathk(Pi, Pj) is a loop if there exists a signal sj

connecting the output of Pj and an input of Pi, i.e., loop is a cyclic path.

Definition 7.3 (Pair of paths) Two paths, path1(Pi, Pj) and path2(Pk, Pl),
form a pair of paths if Pi == Pk, Pj == Pl, ∀Px, (Px ∈ path1 ∧
∧Px 6= Pi ∧ Px 6= Pj) and ∀Py, (Py ∈ path2 ∧ Py 6= Pk ∧ Py 6= Pl), Px 6= Py.
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Two paths form a pair if they have the same first process and the same last
process, and the paths do not share any other process.

System inputs and outputs can be viewed as shift registers that produce
or consume one event at every clock cycle. Therefore, before creating the
delay graph, one delay process is added to every system input and output.
This extension makes it possible to express not only the delays between
internal processes in the delay graph, but also the delays related to the
inputs and outputs. For example, without this extension it is not possible
to analyze the delays of paths between an input and some internal process.

Definition 7.4 (Delay graph) The delay graph G(W,E) contains one ver-
tex wi (wi ∈ W ) for each delay process P∆i in the system model. The graph
contains an edge ei,j (ei,j ∈ E) from vertex wi to vertex wj, if there is at
least one path from delay process P∆i to delay process P∆j and the path does
not include any other delay process.

Similarly to Definitions 7.1 and 7.2 that are given for the system model, a
path is a sequence of vertices and a loop is a cyclic path in the delay graph.
If a loopi runs through processes P1, . . . , Pn then the graph G contains a
loop with the same number of vertices as many delay processes are in loopi.
The latter holds for pairs of paths as well.

Let the function |pathk(Pi, Pj)|∆ calculate the number of delay processes
in pathk from process Pi to process Pj . In other words, the function gives
the delay of a path in terms of clock cycles.

7.3 Synchronization Requirements

The synchronization algorithm considers two facts:

Statement 7.1 Loops reproduce synchronization events.

After extending the functions of combinational and finite state machines
processes they append ⊥-values if ⊥-values appear on their inputs. There-
fore, after adding one P⊥

∆ delay process to loopi, all processes in this loop
regularly operate with ⊥-values at every n-th clock cycle, if |loopi|∆ = n.

The regularity of ⊥-values on a process inputs can be denoted as a pat-
tern.

Assumption 7.1 The system does not include any disjoint subpart, i.e.,
dividing the system into two arbitrarily chosen subparts, there is always at
least one path between the subparts.
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A delay process P⊥
∆ , added to a loop, causes all processes in the system

to operate with ⊥-values, as illustrated in Figure 7.2. All signals, which
start from the loop carry ⊥-values, and all signals directed to multi-input
processes in the loop have to regularly deliver ⊥-values, such that each multi-
input process receives only values of the same type at every clock cycle.

loopi

Pcomb

. . .>⊥> . . .>⊥> . . .

Network

Process
Process

Network

P⊥

∆

. . . >⊥> . . . >⊥> . . .
. . .>⊥> . . .>⊥> . . .

Figure 7.2. All processes operate with ⊥-values after temporal refinements.

Definition 7.5 (Pattern) A pattern is a minimal sequence
P = p0p1 . . . pi . . . pn−1 of values ⊥ and > (pi ∈ {⊥,>}), which cannot
be constructed by a single repetitive subpart p0 . . . pi.

Definition 7.6 (Pattern equivalence) Two patterns P ′ = p′0 . . . p′n−1 and
P ′′ = p′′0 . . . p′′n−1 are equivalent, if they have the same length and there exists
a constant k such that ∀i, (0 ≤ i ≤ (n−1)), p′i == p′′j and j = (i+k) mod n.

For example, the sequence ⊥>⊥> is not a pattern, since it can be
presented by the repetitive subpart ⊥>. At the same time ⊥> is a pat-
tern according to the definition. The pattern P1 = >⊥⊥>> is equiva-
lent to the pattern P2 = >>⊥⊥>, but not to P3 = >⊥>⊥>. In other
words, patterns stay equivalent after rotating elements in them, but not
after shuffling. Patterns show in which order processes receive ⊥- and
>-values. For example, if combinational processes P1, P2 and delay pro-
cess P∆ in pathi = {P1, P2, P∆, P3, P4} operate with the pattern P1, then
combinational processes P3 and P4 operate with the equivalent pattern P2,
as illustrated in Figure 7.3.

Statement 7.2 Based on the Assumption 7.1, to ensure that all processes
receive only values of the same type at every clock cycle, all processes in the
system have to operate with equivalent patterns.
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>⊥⊥>>P1 P2 P∆ P3 P4
>>⊥⊥> >>⊥⊥> >>⊥⊥> >⊥⊥>>

Figure 7.3. Equivalent patterns on a path before and after a delay process

The length of patterns has to correspond to the delays of all loops and the
delay differences in all pairs of paths.

The original model, before temporal refinements, does not include P⊥
∆

delay processes. According to Definition 7.5, processes operate with one
element patterns > in this model. Let N denote the pattern length. Al-
though the model does not process ⊥-values, it is possible to say what the
pattern length (N + 1) is for the system after the first temporal refinement.
In order to calculate the pattern length, the delays of loops and the delay
differences in pairs of paths have to be found. A pattern fits to a loop, if the
number of delay processes in the loop is a multiple of the pattern length. If
the system does not contain any pair of paths, the greatest common integer
divisor (gcd) of the delays of loops determines N . For example, the system
in Figure 7.4 contains two loops with two and four delay processes, respec-
tively, and N = gcd(2, 4) = 2. After a temporal refinement in this system,
all processes have to operate with three element patterns that are equivalent
to ⊥>>.

>⊥>

P∆

P∆

P∆Pcomb

P⊥

∆ P∆

P∆P⊥

∆

P⊥

∆

P∆

>⊥>

Figure 7.4. Possible locations of synchronization delays in a system with
two loops

Similarly to the delays of loops, the pattern length has to match the de-
lay differences in pairs of paths. The idea of the synchronization is to avoid
that values of different types arrive at a multi-input process in the same
clock cycle. For example, in Figure 7.5 combinational processes P1 and P2

are connected by two paths. Since these paths have different delays, one
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Figure 7.5. Synchronization in a pair of paths

and three, respectively, ⊥-values sent by P1 arrive in different clock cycles
at P2. However, P2 may receive ⊥-values concurrently on both inputs, if the
system operates with patterns that are equivalent to >>⊥, and one synchro-
nization delay process P⊥

∆ is added on the lower path. Hence, the pattern
length calculation based on the original model has to take into account the
delay differences in pairs of paths as well. The initial pattern length before
temporal refinements is calculated as the greatest common divisor of the
delays of loops and the delay differences in pairs of paths.

7.4 The Synchronization Algorithm

7.4.1 Outline of the Algorithm

The algorithm is divided into preparation and synchronization phases. In the
preparation phase, before any temporal refinements, Algorithm 7.1 analyzes
the structure of the original model. After finding all loops and pairs of paths,
the algorithm calculates the initial pattern length N , forms an ordered N -
element set of labels and gives a label to every delay process in the model.
The algorithm performs the labeling so that delay processes, which have
the same delay to a multi-input process (or the delay difference is equal to
k ∗ N (k ∈ N) 1) get identical labels. In the second phase, Algorithm 7.2
synchronizes the system by adding synchronization delay processes P⊥

∆ to
the model. Synchronization delays get places according to the labels, which
were assigned by Algorithm 7.1.

1
N is the set of natural numbers
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7.4.2 Preparation before Temporal Refinements

Algorithm 7.1 Labeling of Delay Processes

Step 1 Find all loops in the delay graph.

Step 2 Find all pairs of paths in the delay graph.

Step 3 Calculate the delays of loops ∆i = |loopi|∆.

Step 4 Calculate the delay differences in all pairs of paths
∆j = abs(|patha|∆ − |pathb|∆).

Step 5 Calculate the greatest common integer divisor N of all values ∆i

and ∆j that were found in the previous steps. N is the initial length
for the patterns.

Step 6 Create an ordered N -element set Label that contains distinct la-
bels - {L0, L1, . . . , LN−1}. In the following, capital letters A,B,C, . . .
are used as labels.

Step 7 Select an arbitrary vertex in the delay graph and give the first
label L0 to the vertex and to the corresponding delay process in the
model.

Step 8 Label all vertices and delay process according to the following
rules. If vertex wi has got label Lj and there is an edge from wi to
wl give the label Lj+1 (L0 if j == (N − 1)) to wl. Similarly, label
wk with Lj−1 (LN−1 if j == 0) if there is an edge from wk to wl and
wl has got the label Lj.

Step 9 Give labels to input events. If a vertex, which corresponds to a
system input has got label Li, give Lk to the j-th input event, where
k = (i − j) mod N .

The following techniques find loops and pairs of paths that correspond
to Definitions 7.2 and 7.3 by analyzing the delay graph.
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Finding loops (Step 1, Algorithm 7.1)

The technique models vertices wi in the graph G as processes Di and edges
eij between vertices as signals between processes Di and Dj . Each process
Di gets a distinct stamp zi. At every step all processes receive and emit a
set of vectors containing stamps. If a vector on the input of process Di does
not contain stamp zi, Di adds zi to the end of the vector and forwards the
extended vector to the process output. Process Di stores received vectors
that already contain stamp zi and does not forward them. A stored vector
with the first stamp equal to zi and received by Di, contains an ordered
sequence of stamps of all processes in a loop. In order to decrease the
number of vectors, only those processes emit vectors with their stamps at
the first step, whose outputs are connected to more than one process. This
restriction does not leave any loop uncovered, under assumption that at
least one such a process can be found in each loop. Since a vector can pass
no process twice, the maximum number of steps the technique has to run is
bounded by the number of delay processes in the model.

Finding pairs of paths (Step 2, Algorithm 7.1)

The pair finding technique models the graph G as a set of processes and
signals, and gives a distinct stamp zi to each process Di, as it was done
in the finding loop technique. At the first step only those processes whose
outputs are connected to more than one process emit vectors with their
stamps. At every further step all processes add their stamps to the end
of received vectors and forward them. Multi-input process Di discards a
received vector if the vector already contains its own stamp zi. All other
vectors received by Di get extended with the stamp zi, are stored in the
process, and after that forwarded to the process output. Again, it takes a
fewer number of steps than the number of processes Di in the model. In
the end of the run, each pair of stored vectors, which have identical stamps
only in the first position and in the last position, contains stamps of pairs
of paths.

Example 7.1

Let’s consider the system in Figure 7.6 that illustrates the preparation
phase of the synchronization algorithm. The original model in Figure 7.6(a)
is constructed as a process network that includes eight combinational pro-
cesses P1, . . . , P8 and four delay processes P∆9, . . . , P∆12. The delay graph
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presenting connections between the input, the output and the delay pro-
cesses in the original model is shown in Figure 7.7(a). Algorithm 7.1 per-
forms the following steps:

P7 P6

P1 P5
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e1 A

⊥ C
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⊥ C

C CA
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B
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P2 P4

Figure 7.6. Synchronization example: (a) model after labeling, (b) after
the first refinement, (c) after the second refinement

Step 1 According to the delay graph, delay processes form two loops:
loop1 = {w10, w11, w12, w9} and loop2 = {w10, w11}.

Step 2 Pairs of paths starting from win are:
(path1 = {win, w9}, path2 = {win, w11, w12, w9}),
(path3 = {win, w9, w10}, path4 = {win, w11, w10}),
(path5 = {win, w11}, path6 = {win, w9, w10, w11}),
(path7 = {win, wout}, path8 = {win, w9, w10, wout}),
(path7 = {win, wout}, path9 = {win, w11, w10, wout}),
(path7 = {win, wout}, path10 = {win, w11, w12, w9, w10, wout}),
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Figure 7.7. Delay graph (a) before and (b) after the first temporal refine-
ment

and a pair starting from w11 is:
(path11 = {w11, w10}, path12 = {w11, w12, w9, w10}).

Step 3 The delays of the loops are: ∆1 = |loop1|∆ = 4, ∆2 = |loop2|∆ = 2.

Step 4 The delay differences in the pairs of paths are:
∆3 = |path2|∆ − |path1|∆ = 4 − 2 = 2,
∆4 = |path4|∆ − |path3|∆ = 3 − 3 = 0,
∆5 = |path6|∆ − |path5|∆ = 4 − 2 = 2.
∆6 = |path8|∆ − |path7|∆ = 4 − 2 = 2,
∆7 = |path9|∆ − |path7|∆ = 4 − 2 = 2,
∆8 = |path10|∆ − |path7|∆ = 6 − 2 = 4.
∆9 = |path12|∆ − |path11|∆ = 4 − 2 = 2.

Step 5 The greatest common divisor of the previously found
values ∆i, (1 ≤ i ≤ 9) is N = gcd(∆i) = 2.

Step 6 An N-element ordered set of labels is Label = {L0 = A,L1 = B}.

Step 7 Let w9 be the first labeled vertex and let the assigned label be A.

Step 8 The vertices w11 and wout have label A, and the vertices win, w10

and w12 have label B. The respective delay processes in Figure 7.6
obtain the same labels.

Step 9 The input events with the even indices get label B and the events
with the odd indices get label A.
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The preparation algorithm gives labels so that delay processes, which
have the same delay to a multi-input process have identical labels. If the
delay processes with identical labels store at each clock cycle only values of
the same type (> or ⊥), then multi-input processes receive only values of the
same type. The synchronization algorithm ensures that the latter behavior
is preserved after temporal refinements.

7.4.3 Synchronization

The impact of a temporal refinement in a combinational process Pi can be
viewed as the insertion of a delay process P⊥

∆x at the output of the original
process Pi. In order to balance the delays of paths after temporal refine-
ments Algorithm 7.2 follows the given labels and adds synchronization delay
processes P⊥

∆ to the refined model.

Algorithm 7.2 Balancing the Delays of Paths

Step 10 Add the temporal refinement produced delay P⊥
∆x to the model

and the respective vertex wx to the delay graph.

Step 11 Find the closest vertices wa and wb having edges from wa to wx

and from wx to wb, respectively.

Step 12 Take the labels of P∆a and P∆b. These labels locate in neighbor
positions Li−1 and Li (or LN−1 and L0) in the set Label .

Step 13 Associate a new label with P⊥
∆x.

Step 14 Preserving the order, shift all labels from positions Li, . . . , LN−1

to Li+1, . . . , LN .

Step 15 Insert the new label, associated with P⊥
∆x into the position Li

and increase the value of N by one (Nnew = Nold + 1).

Step 16 Insert a synchronization delay process P⊥
∆ with the label Li into

every path between processes with labels Li−1 and Li+1, if these
paths do not include any other P∆ or P⊥

∆ processes. Update the
delay graph.

Step 17 Extend all input signals with ⊥-events, so that a new ⊥-event
(with label Li) enters to the system after every event that is labeled
with Li+1.
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Example 7.1 continues

Let’s consider two temporal refinements in the process P2 in Figure 7.6(b)
and in P1 in Figure 7.6(c). The original model in Figure 7.6(a) is already
labeled by Algorithm 7.1. The additional refinement produced delay process
P⊥

∆13 expresses the increase of the delay in the process P2. Algorithm 7.2
performs the following steps to synchronize the model after the first refine-
ment.

Step 10 The first temporal refinement adds the process P⊥
∆13 at the output

of P2, and the vertex w13 to the delay graph in Figure 7.7(b).

Steps 11 and 12 The closest vertices to w13 are win, w12 and w9 with
labels L1 = B, L1 = B and L0 = A, respectively.

Step 13 Let C be the new label associated with P⊥
∆13.

Steps 14 and 15 C gets the position L0 and the updated content of the
set of labels is Label = {L0 = C,L1 = A,L2 = B}.

Step 16 The algorithm inserts a synchronization delay process into the
paths between processes with labels B and A, i.e., it adds P⊥

∆14 between
P∆10 and P∆11 that is also between win and wout.

Step 17 In the synchronized model, the input signal is extended so that
an additional synchronization value ⊥ with label C comes after every
actual data item with label A.

The second refinement in the process P1 adds the process P⊥
∆15 to the

model, as shown in Figure 7.6(c). The algorithm adds synchronization delay
processes P⊥

∆15 and P⊥
∆16 and input events with label D to ensure that values

of the same type arrive at multi-input processes at each clock cycle.

7.4.4 Complexity of the Algorithm

In the worst case the number of paths grows exponentially with the number
of delay processes in the model, which gives the finding loops and pairs of
paths sub-algorithms exponential complexity. Let the number of vertices in
the delay graph be nw. Let the number of vertices with multiple output
edges be nm. Let the average number of output edges of all vertices be
nk. The number of vectors grows nk times after every step in the finding
loops and pairs of paths algorithms. The model contains nm vectors in the
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beginning, and after x steps the number of vectors grows up to (nm(nx
k)).

The maximum value of x is nw since the number of delay processes in a loop
is bounded by the number of delay processes in the model. Thus, the upper
bound of vectors and paths is (nm(nnw

k )). Hereby, it is important to note
that delay processes only are presented in the delay graph. It is assumed that
memories and buffers, similarly to finite state machine processes react to a
synchronization value by sending a synchronization value to the output in
the same moment, and those processes do not have delay for synchronization
values. In addition, not all delay processes belong to each path.

The rest of steps in Algorithms 7.1 and 7.2 have linear complexity. Once
Algorithm 7.1 has analyzed the model and given labels, Algorithm 7.2 has
only to be applied after every temporal refinement.

7.4.5 Reuse of Synchronization Delays

The introduction of new delay processes that model the delays caused by
temporal refinements is not always necessary, since it may be possible to
reuse previously added synchronization delay processes for this purpose.
For example, the synchronization delay process P⊥

∆14 in Figure 7.6(b) can
be combined with the process P5 in order to model the refinement added
delay in P5. In addition, it is allowed to shift P⊥

∆ delay processes to proper
places in a non-branching structure between other delay processes. The
shifting is valid since the reactions of (Pcomb ◦ P⊥

∆ ) and (P⊥
∆ ◦ Pcomb) are

identical2. In both cases the first computation result is a ⊥-value, which is
followed by the reaction of Pcomb to the input signal.

Figure 7.8 presents two choices how to model the impact of a temporal
refinement in the combinational process P1. In the model in Figure 7.8(a)
a synchronization delay process P⊥

∆6 is added to the system and combined
with P1. In the alternative case in Figure 7.8(b) an already existing syn-
chronization delay process P⊥

∆5 is shifted to the left and thereafter combined
with P1. Clearly, the latter solution is more reasonable since it performs the
same temporal refinement without increasing the system’s delay.

The shifting of delay processes is not limited to non-branching structures.
A couple of simple examples of relocating synchronization delay processes
in branching structures, known from retiming techniques, are presented in
Figure 7.9. As shown in Figure 7.9(a), in order to model the impact of a
temporal refinement in P1, the delay processes have be moved from both

2Sequential composition (◦) of processes P1(x) and P2(x) is defined as P1(x) ◦P2(x) =
P1(P2(x))
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Figure 7.8. Relocation of synchronization delay processes
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Figure 7.9. Relocation of synchronization delay processes in branching
structures
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branches next to P1. In the opposite case, refining P2 or P3, the delay
process P∆ab has to be duplicated and shifted to both branches. A similar
approach is used in join structures, as shown in Figure 7.9(b).

7.4.6 Applicability of the Algorithm

The proposed synchronization algorithm is applicable to any system. The
proofs of the following two assertions show that (1) for any system there exist
equivalent patterns that fit, and (2) all multi-input processes in a system
synchronized according to these patterns, receive only one type of values at
each clock cycle.

Assertion 7.1 For any given system there exists a pattern that fits.

Proof : In order to find the initial pattern length, Algorithm 7.1 calculates
the greatest common integer divisor of the delays of all loops and the delay
differences in all pairs of paths. Since the integer value one is a common
divisor of any set of integers, the respective one element pattern > fits to
any system. After a temporal refinement all processes in this kind of model
operate with patterns equivalent to ⊥>.

�

Assertion 7.2 In a system that is synchronized according to patterns equiv-
alent to ⊥> none of the multi-input processes receive values of different types
at any clock cycle.

Proof : Let’s replace all delay processes P∆ in the original model with se-
quential compositions of delay processes P⊥

∆ ◦ P∆. In the modified model
all processes, including multi-input ones, operate with the actual data (>)
values at every odd clock cycle and with synchronization (⊥) values at every
even clock cycle, i.e., processes operate with patterns equivalent to ⊥>. All
combinational processes locate between P∆ and P⊥

∆ processes. As explained
in Section 7.4.5, it is valid to shift P⊥

∆ processes between P∆ processes. Thus,
there is a P⊥

∆ process for any combinational process Pi that can be shifted
at the output of Pi in order to model the impact of a temporal refinement.
Since such a sifting does not change the order of delay processes, all multi-
input processes receive values of the same type at every clock cycle. The
described model is equivalent to the model synchronized by the synchroniza-
tion algorithms after a temporal refinement in an arbitrary combinational
process Pi.

�
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7.5 Implementation Options

The synchronization algorithm extends a system after a temporal refinement
so that the system operates with N

Ninit
times more input events than the

original model, where Ninit is the initial and N the final pattern length. Due
to the extra ⊥-values the system has to operate at a higher clock frequency
than the original model, to obtain the same performance. In order to adapt
the refined and synchronized model to the original environment and to add
additional ⊥-values to input signals, finite state machine based interfaces
can be used. As illustrated in Figure 7.10, an interface consumes input
values from the environment and forwards them according to the pattern,
which is defined for the input. Similarly, additional ⊥-values have to be
removed from output signals.

N

system

. . . ,⊥, e3, e2,⊥, e1, e0

N

Ninit
. . . , e3, e2, e1, e0

. . . , e′3, e′2, e′1, e′0

. . . ,⊥, e′3, e′2,⊥, e′1, e′0

Ninit

Figure 7.10. System with input and output interfaces.

The extension with synchronization values in data types can be imple-
mented by a one-bit signal. In Figure 7.11 a data type V⊥ is divided into a
pair of signals - one carrying the actual data values V and the other indi-
cating if the current value is a synchronization value (0) or an actual data
item (1). In order to preserve the current state of a finite state machine,
when a synchronization value appears on its input, the clock signal driving
the internal register in the state machine is gated by an AND-gate. An
alternative is to add the one-bit signal to the inputs of the next state and
output functions, and to extend the functions as described in Section 7.2.

The synchronization delay processes can be implemented as registers in
hardware. Since the algorithm leaves some freedom where to place synchro-
nization delays P⊥

∆ on a path containing only combinational and finite state
machine processes, retiming techniques can be used to find an efficient so-
lution. For example, after switching the positions of the processes P2 and
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Figure 7.11. Implementation of extended data types in finite state ma-
chines.
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∆4 in Figure 7.12(a), it may be possible to increase the clock frequency of

the system twice, if the latencies of P1 and P2 are equal.
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Figure 7.12. Retiming on hardware implementation.



Chapter 8

Synchronization with Sensitive

Delay Elements

The synchronization algorithm developed for temporal refinements in Chap-
ter 7 extends a system with additional synchronization delay processes. Af-
ter synchronization the system acts so that the initial values from synchro-
nization delay processes and computation results on these values do not
interfere with the actual data. The main idea of the algorithm is to place
synchronization delay processes so that all paths to any multi-input process
deliver synchronization events concurrently. The number of additional de-
lay processes required for synchronization and the ratio between the actual
data and synchronization events depend on the system structure. In the
worst case, if the delays of loops and the delay differences in pairs of paths
are not multiples as in Example 7.1, all delay processes become duplicated
and the number of events grows twice after a single temporal refinement.
However, it may be possible to improve the ratio between the actual data
and synchronization values so that a system with N = 1 according to Algo-
rithm 7.1, does not necessarily process twice as much values after a temporal
refinement as the original model.

The delay of a path is defined as the number of delay processes on this
path. Thus, it takes as many clock cycles to transport a synchronization
value through a path as many delay processes the path contains. In order
to deliver synchronization values faster to multi-input processes, a shorter
delay for synchronization values can be achieved through a particular modi-
fication in some delay processes. The modification makes a delay process not
to cause any delay for synchronization values, and these values simply pass

117
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by the actual data values. In other words, a synchronization value overtakes
the actual data, and therefore arrives at an input of a multi-input process
at one clock cycle earlier. Thus, the modification makes the delay process
sensitive to the types of input events. For example, an ordinary delay pro-
cess with an initial value v0 and an input sequence of values v1, v2,⊥, v3, v4

produces the output sequence v0, v1, v2,⊥, v3, v4. A sensitive delay process
(P∆) with the same initial value and input sequence produces the sequence
v0, v1,⊥, v2, v3, v4.

a)
P4 P3P5 P∆12 P∆11

P1 P∆9 P2 P∆10

P8 P∆13 P7 P6

loop2

loop1

b)
P5 P∆12 P4 P⊥

∆18 P∆11 P3
P⊥

∆17

P1 P⊥
∆15 P∆9 P2 P⊥

∆16 P∆10

P8 P∆13 P7 P⊥
∆14 P6

c)
P5 P∆12 P4 P⊥

∆15 P∆11 P3

P8

P1 P∆9 P2 P∆10

P∆13 P7 P⊥
∆14 P6

Figure 8.1. Two synchronized loops, which do not have the same number
of delay elements
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Figure 8.1 indicates the general difference between models synchronized
by the algorithm in Chapter 7 and the algorithm, which uses sensitive de-
lay elements that is elaborated in this chapter. Two loops in the model in
Figure 8.1(a) have four and three clock cycle delays, respectively, and the
greatest common divisor of these values is N = gcd(4, 3) = 1. After a tem-
poral refinement in P6 that introduces P⊥

∆14, the former algorithm adds four
synchronization delay processes to the model, as shown in Figure 8.1(b).
The refined and synchronized model has to process twice as much events as
the original model to compute the same result. An improvement in perfor-
mance can be achieved through the introduction of sensitivity in one of the
delay processes in loop1, for example in P∆11. Since the delays for ⊥-values
in loop1 and loop2 are equal after this modification, one additional delay
process P⊥

∆15 is needed to synchronize the model in Figure 8.1(c) after the
same temporal refinement in P6. Also the ratio between the actual data and
synchronization values is significantly improved.
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Figure 8.2. Rotating tokens in loop1 with a sensitive delay process

Figure 8.2 illustrates the flow of abstract tokens in loop1 within the
first ten clock cycles. The first element in a pair under each delay process
expresses the value stored in the delay process and the second element shows
the value on the output at time instants ti. In contrast to the ordinary delay
processes P∆9, P∆10, P∆12, P

⊥
∆15 whose output values are equal to the values

they store at any clock cycle, the sensitive delay process P∆11 forwards
received ⊥-values to the next delay process immediately. Instead of storing
the received ⊥-value, P∆11 keeps the currently stored value. Therefore,
the process P1 receives synchronization values after every three clock cycles
from both loops, although loop1 contains one more delay process than loop2.
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After synchronization, the model in Figure 8.1(c) is latency equivalent to the
model in Figure 8.1(a), and P1 operates with the same pairs of the actual
data values in both models.

8.1 Definitions

A few more definitions are needed in addition to those in Sections 7.2 and 7.3.

Definition 8.1 (Transformation SyncSens) Transformation
SyncSens(P∆ → P∆) replaces a delay process P∆ with a sensitive delay pro-
cess P∆, whose reactions to input values are described by the following func-
tions F∆ and F∆, respectively, (st0 is the initial value in the delay processes,
ui is an input and vi is an output value at a time instant i, (i = 0, 1, 2, . . .)):

F∆(ui, sti) = (vi, sti+1)
where

vi = sti
sti+1 = ui

F∆(ui, sti) = (vi, sti+1)
where

vi = if (ui == ⊥) then ⊥ else sti
sti+1 = if (ui == ⊥) then sti else ui

The function |pathk (Pi, Pj)|∆ finds the number of delay processes in pathk

between processes Pi and Pj excluding modified sensitive delay processes P∆.
The function value is equal to the latency of the path to move a synchro-
nization value (⊥) from Pi to Pj .

8.2 Synchronization Requirements

Similarly to the synchronization algorithm in Chapter 7, based on Assump-
tion 7.1 all processes have to operate with equivalent patterns. Hence, each
loop gets extended with at least one synchronization delay process P⊥

∆ after
a temporal refinement. If the shortest loop in the original model includes r
delay processes then after a temporal refinement, all processes in the model
operate with equivalent patterns containing one synchronization value (⊥)
and at most r actual data values (>). Let R = (1⊥ : r>) denote the ratio
between the synchronization and actual data values in a pattern. The main
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aim of the algorithm is to introduce sensitivity in delay processes such that
the delay for ⊥-values in all loops and the delay difference in pairs of paths
correspond to the best possible ratio R that is defined by the delay r of the
shortest loop in the original model. The algorithm attempts to synchronize
the system to operate with R = (1⊥ : r>).

There are two cases to consider for loops. The algorithm extends a
loop, which originally contains k ∗ r delay processes P∆, (k ∈ N), with k
synchronization delay processes P⊥

∆ , locating them so that the delay between
any two P⊥

∆ -s is equal to r. If the number of delay processes in a loop is
not a multiple of r, but equal to k ∗ r + δ, (δ < r and k ∈ N), the algorithm
selects δ proper delay processes and modifies them by the transformation
SyncSens. The result of the modification is a loop, where the delay for
synchronization values (⊥-values) is equal to k ∗ r, i.e., |loop|∆ = k ∗ r.

After a temporal refinement the model can operate with the ratio
R = (1⊥ : r>) if all loops satisfy the following condition.

Condition 8.1

|loopi|∆ mod r == 0 and |loopi|∆ ≥ r, if R = (1⊥ : r>)

Similar to loops, also pairs of paths have to have a delay differences that
correspond to R. The delays for ⊥-values in path1(Pa, Pb) and path2(Pa, Pb)
that form a pair of paths have to be equal or have to differ by k ∗ r clock
cycles. Only in this case values of the same type (⊥ or >) arrive concurrently
at Pb at every clock cycle.

The model can operate with the ratio R if all pairs of paths fulfill the
following condition.

Condition 8.2

(|path1(Pa, Pb)|∆ − |path2(Pa, Pb)|∆) mod r == 0, if R = (1⊥ : r>)

The number of delay processes that have to be modified by the trans-
formation SyncSens in a loopi or in a pairi of paths, in order to satisfy the
previous Conditions 8.1 and 8.2, can be expressed as an offset δi.

The offset of a loopi is:

δj = |loopj |∆ mod r (8.1)
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The offset of a pairi of patha and pathb is:

δi = min(δia, δib)
where

δia = (|patha|∆ − |pathb|∆) mod r
δib = (|pathb|∆ − |patha|∆) mod r

(8.2)

Since a pair is formed by two paths, the offset of a pair depends on in which
path the delay processes are modified by SyncSens. For this reason, the
offset computation in the paths finds the minimum value. The model is
balanced for a given ratio R if the offsets of all loops and pairs of paths are
equal to zero.

The offset δi of any loopi is always lower than the number of delay
processes in loopi and the offset δj of pairj is always less or equal to the
number of delay processes in the paths that belong to pairj. This leaves
several options for the selection of the delay processes to be modified. Since
loops and pairs share delay processes, the modification in one loop or pair,
to turn its offset to zero, may cause an offset growth in another loop or pair.
Therefore, it is important to find a proper combination of delay processes,
which satisfies all loops and pairs. The combination can be viewed as a

binary vector
→
b= 〈b0, b1, b2, . . .〉 with the length equal to the number of

delay processes in the original model. If bi is equal to one, the delay process
P∆i is not sensitive and has one clock cycle delay for any input value. If bi is
equal to zero, P∆i is replaced with P∆i and implies zero delay on ⊥-values.

Due to the system structure it may turn out that it is not possible

to select the vector
→
b such that all loops and pairs of paths satisfy Con-

ditions 8.1 and 8.2 at the given ratio R = (1⊥ : r>). In this case the
algorithm is allowed to replace one P∆ process with P∆ in the shortest loop,
which determines the ratio R. The new ratio what the algorithm follows is
R = (1⊥ : (r − 1)>). The introduction of sensitive delays in the shortest
loop continues until the ratio R = (1⊥ : 1>). As proven in Section 7.4.6 it
is possible to synchronize any system to operate with the latter ratio.

8.3 Algorithm

8.3.1 Outline of the Algorithm

In the preparation phase the algorithm analyzes the system structure by
using the delay graph and finds the delays of loops and the delay differences
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in pairs of paths. Based on the ratio R that is specified by the shortest loop,
the algorithm calculates an offset for each loop and pair of paths. According
to the offsets, a set of delay processes are selected, which have to be sensitive
in order to make the system operate with the ratio R. The sensitivity to
the types of input values is introduced by the transformation SyncSens .
All unmodified delay processes get labels according to their location. After
a temporal refinement, Algorithm 7.2 follows the given labels and inserts
synchronization delays P⊥

∆ so that the system becomes synchronized.

8.3.2 Preparation Phase

Algorithm 8.1 Labeling of Delay Processes

Step 1 Find all loops in the delay graph.

Step 2 Calculate the delays of loops ∆i = |loopi|∆.

Step 3 Find a loop with the smallest delay r that determines the initial
ratio R = (1⊥ : r>).

Step 4 Find all pairs of paths in the delay graph.

Step 5 Calculate the delay differences in all pairs of paths
∆j = abs(|patha|∆ − |pathb|∆).

Step 6 Calculate an offset δ for each loop and pair of paths.

Step 7 Based on the offsets find a combination
→
b of delay processes that

after modifications by the transformation SyncSens allows the sys-
tem to operate with the ratio R. If for the given ratio does not
exist such a combination, repeat this step with a new ratio, where
r = (rold − 1), until a proper combination is found.

Step 8 Apply the transformation SyncSens to the delay processes indi-

cated by the found combination
→
b .

Step 9 Create an r-element ordered set Label that contains distinct labels
- {L0, L1, . . . , Lr−1}.
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Step 10 Select an arbitrary vertex in the delay graph that represents an
unmodified delay process. Give the first label L0 to the selected
vertex and to the respective delay process.

Step 11 Label all unmodified delay process and corresponding vertices,
according to the following rules. If vertex wi has got label Lj and
there is an edge from wi to wl give the label Lj+1 (L0 if j == (r−1))
to the vertex wl. Similarly, label wk with Lj−1 (Lr−1 if j == 0) if
there is an edge from wk to wl and wl has got the label Lj.

Step 12 Give labels to input events. If a vertex that represents a system
input has got label Li, give label Lk to the j-th input event, where
k = (i − j) mod r.

The finding loops and pairs of paths techniques and the labeling issues
were elaborated in Chapter 7, and the following discussion concentrates

mainly on the search of vector
→
b .

8.3.3 Finding a Combination Vector
→

b

In order to analyze the system structure in the sense of delay processes and

to find a vector
→
b , the information about all loops and pairs of paths is

collected into a matrix M. Columns ci in M correspond to delay processes
P∆i and rows rj correspond to loops loopj and pairs pairj; each loop and
pair has its own row in M. Matrix element m(rj , ci) has the value one if
P∆i belongs to loopj , otherwise m(rj , ci) = 0. For paths, patha and pathb

(|patha|∆ ≥ |pathb|∆) in pairj between processes P∆k and P∆l, m(rj , ci) = 1
if P∆i ∈ patha, m(rj , ci) = −1 if P∆i ∈ pathb and all other matrix elements
in rj , including m(rj , ck) and m(rj, cl), are equal to zero.

The delay of loopj can be calculated by summing up the values in rj (Σrj)
and the delay difference in pairj is equal to the absolute value of the sum of
the values in rj (absΣrj). Referring to the left hand side of Conditions 8.1
and 8.2, Σrj = |loopj|∆ and absΣrj = abs(|patha|∆ − |pathb|∆).

The offset δj of loopj calculated on the values in rj is:

δj = (Σrj) mod r (8.3)



8.3. Algorithm 125

The offset δj of pairj formed by patha and pathb in rj is:

δj = min(δja, δjb)
where

δja = (Σrj) mod r
δjb = (−Σrj) mod r

(8.4)

The content of every row rj in the matrix M determines one offset δj .
The application of the transformation SyncSens to delay process P∆i turns
all values in column ci in M equal to zero, and thereby changes the values
of offsets as well. Thus, the application of the transformation SyncSens to

delay processes that are indicated by the vector
→
b is equivalent to update

the content of the matrix M. New values in every row rj can be calculated

by multiplying the current values in rj with the respective values in
→
b ,

mnew (rj , ci) = mold(rj , ci) ∗ bi.

A vector
→
b makes the model balanced if the following condition holds.

Condition 8.3

∀j, (
∑

i

(m(rj , ci) ∗ bi)) mod r == 0

Utilization of a Model Checker

A proper vector
→
b that satisfies Condition 8.3 can be found by using a model

checker. In the model checking problem the vector
→
b is modeled as a binary

vector and the model checker can nondeterministically assign the values 0
and 1 to each element bi, which corresponds to the delay process P∆i. The
specification that has to be checked is composed by a set of logic expressions
that are derived from Condition 8.3. The expression for loopj is:

expj = ((
∑

i(m(rj , ci) ∗ bi)) mod r == 0)
∧

∧

((
∑

i(m(rj , ci) ∗ bi)) ≥ r)
(8.5)

The expression for pairj of patha and pathb is:

expj = ((
∑

i(m(rj , ci) ∗ bi)) mod r == 0) (8.6)

The task for the model checker is to verify if there exists a content of
→
b such

that the following specification is satisfied:

SPEC = ¬E(exp1&exp2&exp3& · · ·) (8.7)
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The specification says that there does not exist a case (a vector
→
b ), where all

expressions expj are true at the same time. If the model checker finds that
the given specification is not satisfied, it reports a counter example. The
counter example is a combination of values assigned to bi-s, which violates
the specification. Since the specification is defined through negation the
values in the counter example satisfy all expressions expj .

If bi is equal to zero in the counter example, delay process P∆i has to be

replaced with P∆i
, otherwise P∆i stays unmodified. The found vector

→
b may

not be optimal because it corresponds to one arbitrary counter example. In
order to limit the number of sensitive delays, the SPEC in model checking
may include an additional expression: expk =

∑

i(bi) ≥ nu, where nu is the
least number of unmodified delay processes that are allowed in the model.
The expression expl = bi == 1 requires that the delay process P∆i has to
stay unmodified, and the expression expm = bi ∨ bj says that only one of
P∆i and P∆j may be modified.

Algorithm 8.1 labels all unmodified delay processes in the original model,
and Algorithm 7.2 inserts synchronization delays between unmodified delay
processes according to the given labels after temporal refinements.

8.4 Example

The following example illustrates the synchronization of a model by using
sensitive delay elements after a temporal refinement. The model contains
fifteen computation blocks that all contain one delay process P∆j. Hence
the delay graph of the model in Figure 8.3 is identical to the structure
of the system abstracting from all combinational and finite state machine
processes. The model contains six loops and fourteen pairs of paths. Pro-
totype tools of the finding loop and pairs algorithms (Section 7.4.2) that
were implemented in the ForSyDe modeling environment spent less than 0.1
seconds on a Sun Ultra 80 machine (450MHz CPU and 4GB RAM) to find
all loops and all pairs of paths. Examples of loops are: loop1 with vertices
{P∆9, P∆10, P∆11}, loop2 with vertices {P∆9, P∆10, P∆12, P∆11}, loop3 with
vertices {P∆6, P∆13, P∆14, P∆15}. In the matrix M, shown in Figure 8.4,
the first six rows correspond to the loops. Matrix element m(rj , ci) has the
value one if P∆i

belongs to loopj. The rest of the rows in the matrix M
represent pairs of paths, where the delay processes of the shorter path are
marked with −1 and the longer path with 1.
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Figure 8.3. Delay graph of a system before temporal refinements

The shortest loop in the model that determines the ratio R is formed
by three delay processes. Therefore after a temporal refinement the model
should operate with the ratio R = (1⊥ : 3>). The sums of elements Σrj

and the offsets δj according to the ratio R are given in the right hand side
columns in Figure 8.4.

For the SMV model checker [102] it took 0.11 seconds to find which delay
processes have to be sensitive in order to make the model balanced and to
operate with the given ratio, i.e., all loops and pairs satisfy Conditions 8.1
and 8.2, respectively. The model checker found a counter example, where

b6, b7, b12 in
→
b are equal to zero and the rest of the elements are equal to

one. The application of the transformation SyncSens to the delay processes
P∆6, P∆7, P∆12 makes them sensitive, and replaces all values in the columns
c6, c7, c12 with zeros (the shadowed columns in M). The updated values of
Σri and δi are presented as Σri and δi, respectively, in Figure 8.4. After the
transformations, all rows in the modified matrix satisfy Condition 8.3, and
all loops and pairs of paths satisfy Conditions 8.1 and 8.2.

According to the value of r, the set of labels contains three labels:
{L0 = A,L1 = B,L2 = C}, which are used to label all unmodified delay
process P∆ as shown in Figure 8.5.

Let a temporal refinement increase the delay in the block the delay pro-
cess P∆11 belongs. The impact of the transformation is equivalent to insert-
ing an additional delay process P⊥

∆16 as shown in Figure 8.5. Since the refine-
ment places P⊥

∆16 between delay processes with labels B and C, the new label
D of P⊥

∆16 gets the position L2 in Label , i.e.,



128 Chapter 8. Synchronization with Sensitive Delay Elements

1 1 1 1
1 1 1 1

ci
rj

2

4
5
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

1 1 1
1 1 1 1

1 1 1 1 1
11111

1 1 1 1

1 1 1 1 11 1 1
1

1 1 1 1
11

1
-1 1 1
-1 1 1 1 1 1 1 1 1 1 1
-1 -1 -1

1 1 1 1 1
-1 -1 -1

-11 1 1
1

-111 1 1
-1 -1 1 1 1 1

1 1 1 11
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1

11 1 1 1 1 1 1
11 1 1

Σrj

3
4
4
9
8
9
1
9
1
5
1
6
1
3
4
5
0
0
8
4

1 1

δj

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1

1

1

1

1

1

0

0

0

0

0

0

0
0

2

2

2

2

1

1

7
8
9

loop1

loop2

loop3

loop4

loop5

loop6

pair2 ,4

pair2 ,4

pair2 ,6

10pair6 ,13

11pair10 ,6

12pair10 ,9

13pair10 ,11

14pair10 ,13

15pair11 ,6

16pair11 ,9

17
18pair12 ,6

pair11 ,13

19pair12 ,11

20pair12 ,13

3
3

3
6
6
6
0
6
0
3
3
3
0
3
3
3
0
0
6
3

Σrj

1

δj

1 1 1

Figure 8.4. Matrix M

Label = {L0 = A,L1 = B,L2 = D,L3 = C}. The input signal
{e0, e1, e2, e3, e4, e5, e6, ...} gets labels {eB

0 , eA
1 , eC

2 , eB
3 , eA

4 , eC
5 , eB

6 , ...}. Algo-
rithm 7.2 synchronizes the model by adding the synchronization delay pro-
cesses P⊥

∆17, P⊥
∆18 and P⊥

∆19 to the model. After extending the input signal
with regular ⊥-events, the signal obtains the following format:
{⊥D, eB

0 , eA
1 , eC

2 ,⊥D, eB
3 , eA

4 , eC
5 ,⊥D, eB

6 , ...}. All processes in the synchro-
nized model operate with the ratio R = (1⊥ : 3>). The refined and
synchronized model and the original model are modeled in the ForSyDe
environment, and they produced latency equivalent signals. Without us-
ing sensitive delay processes for synchronization the model after the same
temporal refinement should operate with the ratio R = (1⊥ : 1>).
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Figure 8.5. Delay graph after temporal refinement

8.5 Hardware Implementation of Sensitive Delays

Sensitive delays are implemented as Mealy state machines in the ForSyDe
synchronous model. A possible hardware implementation of a sensitive delay
process (P∆2) with an additional and -gate is depicted in Figure 8.6. Again,
a one-bit signal is used to notify processes if the value on a process input
belongs to the actual data or is used for synchronization. The and -gate
ensures that the sensitive delay process does not update its content if a
synchronization value (⊥) appears at its input. Since synchronization values
overtake the actual data stored in sensitive delays, synchronization values
on the one-bit signal have to reach the next unmodified delay element within
one clock cycle, as it is with the signal s1 in Figure 8.6. Therefore the given
solution requires that the communication delays are marginal compared to
the computation delays.

8.6 Discussion

The described synchronization algorithms in Chapters 7 and 8 use simple
delay elements to synchronize models after temporal refinements. The given
approaches allow to keep the synchronous computational models through
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Figure 8.6. Hardware implementation of a sensitive delay

the whole system level design development process if necessary. Hence, it
avoids discontinuities in the design flow that are caused by switching to
other models, for instance to the LID or GALS models. In general, it is
impractical to change the computational model due to a single temporal
refinement, since it obliges the designer to reconsider the issues that are
specific to every particular model of computation. Staying at the same
computational model does not limit the choice for final implementations,
since a synchronous model can be mapped to the GALS and LID models
and implemented in software or hardware. On the other hand, after moving
to the latter models, no additional synchronization is required after further
temporal changes.

In the proposed synchronization techniques, after every temporal refine-
ment, the application of Algorithm 7.2 increases the number of synchro-
nization delay processes unless already existing synchronization delays are
reused. In the worst case the number of additional delay processes in the
model grows to the same number as the original delay processes. In addition,
a one-bit signal is added to the actual data signals to distinguish between
the actual data and synchronization values. Compared to the proposed so-
lution, an LID implementation uses one-bit signals in both directions to
distribute stalling messages. In addition, the handshake communication
channels and wrappers contain additional buffers and combinational logic
blocks. The input/output latency grows in both solutions, since loops repro-
duce both stalling events in LID and synchronization values in the proposed
techniques.
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The LID and GALS approaches are common practice in IP-block based
designs. However, they have a disadvantage at system level. It is much
simpler to refine a synchronous functional models through formal design re-
finements or to verify a synchronous deterministic design by using formal
verification techniques like model checking. Although LID models by defi-
nition are synchronous, the pure synchronous communication mechanism is
replaced with handshake communication channels. The handshake protocol
with the stalling mechanism is a source of additional system behaviors that
makes model checking more involved.

The proposed algorithms add synchronization delay processes that can
be implemented as pipeline registers between combinational blocks at the
RT-level. The given techniques leave some flexibility to relocate synchro-
nization delays between other delay elements by using retiming techniques
and in such a way to fulfill the latency constraints.
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Chapter 9

Refinement and Verification of

Digital Audio Equalizer

In several research projects that address design development issues in the
ForSyDe methodology, a digital audio equalizer has been used as an example
system for case studies. According to this custom, this chapter illustrates
how the proposed verification and synchronization techniques are applied
within the design development process of the equalizer. The digital equalizer
model was described for the first time in [19]. The model considered in this
chapter has some slight differences from the original, but these changes
do not cause any conceptual difference. A detailed ForSyDe model of the
equalizer with coding in the Haskell language is available in [90].

The input/output interfaces of the equalizer, depicted in Figure 9.1,
are the audio input, the button settings input and the audio output. The
listener tunes the sound through pushbuttons, whose settings drive the am-
plifications levels of different sound frequency bands of the input signal. In
addition to the user settings, the equalizer interferes to adjusts the amplifi-
cation levels, if the strength of the bass frequencies of the output signal is
threatening to destroy the loudspeakers.

The functionality of the equalizer is divided into four major blocks.
Audio Filter uses three FIR-filters to separate the high and low frequency
bands from the middle ones. Two amplifiers follow the amplification levels
provided by the button control block and either turn down or up the bass
and treble bands. The output signals from the amplifiers are summed to-
gether with the middle band to give the audio output signal of the equalizer.
Audio Analyzer applies an FFT technique to observe the bass level in the

133
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Figure 9.1. Digital audio equalizer

output signal. Distortion Control decides whether it is necessary to adjust
the current amplification level or not. The Button Control block holds the
button settings and adjust the amplification levels according to the data
from the distortion control block.

9.1 Refinement of the FIR-filters and the FFT
unit

A common style is to describe the polynomial functions of signal processing
blocks in the initial system model as combinational processes by using un-
limited resources as data types with unbounded domains of values and ideal
arithmetic functions. Instead of implementing the FFT and FIR-filter blocks
as large combinational circuits, resource sharing can be introduced in them.
Following the approach described in Chapter 6, their combinational func-
tions can be implemented as sequential computation blocks, which include
a controller to execute operations in a data path, and a register file to store
intermediate computation results. The sequential blocks are separated from
the rest of the design by clock domain interfaces, since the computations in
the refined blocks take more clock cycles than in the original model.



9.2. Synchronization 135

In order to verify that the data paths compute the same results as the
combinational blocks in the original model, the polynomial abstraction tech-
nique can be used. The number of data input signals of the 16th order FIR-
filter and the 8-point FFT are 32 and 16, respectively. The combinational
functions of the FIR-filters and FFT can be described as polynomials, where
the degrees of variables are equal to one. The degree equal to one means that
the input domain of a variable has to contain two values in model checking.
Therefore, all input variables that are used to describe the sequential behav-
iors of the FIR-filter and FFT units can be replaced with one-bit variables
in the SMV models. In fact, the least possible number of bits to represent
a variable is one. The SMV model checker requires less than two minutes
and creates 1.5 million BDD nodes to verify that these sequential blocks
implement the expected combinational functions. The verification was done
on a Sun machine with 900MHz CPU and 16GB RAM.

9.2 Synchronization

The design transformation that introduces resource sharing in the FIR-filter
computation blocks is classified as a temporal refinement, according to the
description in Section 7.1. Although it is verified that the original and refined
blocks compute the same results on input values, the sequential block has a
longer latency. The longer latency causes a block to emit values in the first
clock cycles that were not defined in the design specification or in the initial
system model. In order to ensure that these unexpected values do not change
the actual data values, the technique proposed in Chapter 7 synchronizes the
system after these local refinements by inserting additional synchronization
delay elements into the model. Let the clock domain interfaces, surrounding
the refined FIR-filters, be configured so that the refined sequential blocks
have externally only one clock cycle delay. Let the refinements started from
the process PFIR.L in Figure 9.2.

The model has two loops, which both include only one delay process,
P∆1 and P∆2, respectively. Hence, the delays of loop1 and loop2 are equal
to one. All pairs of paths either do not include any delay process, or the
delays of paths are equal. Thus, the delay differences in all pairs of paths
are equal to zero. The greatest common divisor N of these values is one.
According to Algorithm 7.1, all delay processes and input events have the
same label A from the set of labels: {L0 = A}.
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The first refinement increases the delay in the process PFIR.L by one
clock cycle that is equivalent to add the delay process P⊥

∆3 at the output of
PFIR.L, as illustrated in Figure 9.3. Algorithm 7.2 labels P⊥

∆3 with a new
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Figure 9.3. The audio equalizer after refinement in PF IR.L

label B and the updated set of labels is {L0 = A,L1 = B}. Since the label B
is associated with the synchronization value ⊥, all processes have to operate
with patterns equivalent to ⊥>. In order to synchronize the refined model,
the algorithm adds four synchronization delay processes P⊥

∆4, . . . , P
⊥
∆7. The

synchronization processes are placed so that on every path from the system
input to the delay process P∆1 and P∆2 is one synchronization delay process,
and on every path from P∆1 and P∆2 to P∆1 and P∆2 is one synchronization
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delay process as well. Two of the added synchronization processes P⊥
∆5 and

P⊥
∆6 are reused, when PFIR.M and PFIR.H are refined in the same way

as PFIR.L. In addition, the input signal contains regular ⊥-values after
the synchronization. Although, the refined and synchronized model has to
process twice as much input events as the original model, however, these
two models are latency equivalent.

Alternatives to the applied synchronization technique are to use GALS
or LID design approaches. A possible system structure of the equalizer that
is implemented as an LID model is presented in Figure 9.4. In these models
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Figure 9.4. Implementation of the audio equalizer as an LID model

the equalizer is divided into (a) three synchronous islands communicating
through the asynchronous media or (b) three stallable synchronous blocks
surrounded by wrappers and communicating over channels by using a hand-
shake protocol. The equalizer is divided into three islands, since after the
delay growth in the FIR-filters, the actual data items do not arrive anymore
concurrently at the amplifiers. A wrapper or an interface between the asyn-
chronous media and a synchronous island triggers computation on island2

as soon as all necessary input data have received. Either the interface or the
buffers and wrappers store the available data until the delayed data from
island1 are received. Although the GALS and LID methods do not add any
explicit delay process for synchronization, there are buffers in the interfaces,
channels and wrappers that increase the circuit area. The synchronization
value (⊥) extension in all data types is equivalent to the one-bit stalling
signals in the LID model. Similarly to the pattern ⊥>, the LID model stalls
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computation in every second clock cycle, since feedback loops reproduce
stalling events [27].

The GALS and LID approaches are very popular and common in today’s
design implementations. However, they may not be the best candidates for
the synchronization after local temporal refinements in system level mod-
els. Due to the complex communication mechanism between synchronous
islands, formal verification and formal refinements in these kinds of models
are considerably more complex.

9.3 Refinement of Communication Channels

The initial equalizer model is described by means of synchronous processes
that communicate via synchronous signals. Instead of implementing the
whole equalizer as a synchronous circuit in hardware, a part of the equal-
izer’s functionality can be mapped to software. Due to the lower computa-
tion load in the distortion and button control blocks than in the rest of the
system, these two blocks can be implemented in software. In addition, the
amplification levels are not so often modified by the distortion control block
or according to changes in the button settings. The delay processes P∆1

and P∆2 can be extended with finite state machines, which store the current
amplification level, and the button control block be modified so that it sends
only information about changes in the amplification levels. Thereafter the
synchronous signals from audio analyzer to distortion control and from but-
ton control to audio filter can be replaced with the asynchronous channels,
which implement the handshake protocol, described in Section 5.2. In order
to transport data over the channel, the handshake protocol requires more
time than the initial synchronous signal. Clearly, the behavior of the latter
model is not latency equivalent to the original model. On the other hand,
if the delay from a change in buttons settings to the impact on the audio
output is not noticeable to the listener, the model may be implemented in
software and hardware by using the asynchronous channels.

The asynchronous channel includes a FIFO buffer, which has to have
a bounded number of slots for a final implementation. Let’s replace the
ideal FIFO buffer with a realistic finite one, which contains eight slots.
It is important to verify that the expected data rate does not cause the
buffer to overflow, i.e., the channel is reliable. Let assume that the data
rate is at most four data items within 36 clock cycles. The properties in
Section 5.3, including the reliability property, were configured according to
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the given buffer size and the expected data rate, and verified by the SMV
model checker on a SUN machine with 900MHz CPU and 16GB RAM. The
amount of time and the number of BDD-nodes created by the model checker
to prove that these properties hold, are presented in Table 9.1.

Table 9.1. Verification time and number of BDD nodes

Property CPU time (sec.) BDD nodes

Property 1 : Reliability 0.37 32490

Property 2 : Latency 0.11 3111

Property 3 : Bandwidth 0.38 34748

Property 4 : Order 2.56 163219

If the buffer size is too small for the expected data rate or the latency
is too high, the designer has to modify the buffer size or to define a new
handshake protocol. In order to verify that the new protocol is reliable,
provides a certain bandwidth or satisfies the expected data rate, the same
properties have to be checked. However, an arbitrary asynchronous channel
may include an unexpected behavior, which is not covered by these four
properties. Therefore, it is very important that after the development of
a new design transformation, the verification engineer approves the use of
existing verification properties or defines a new complete set of properties.
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Chapter 10

Conclusion

10.1 Summary

The design process of digital systems is becoming more and more complex
due to the continuous growth in the number of different functions that such
systems have to perform. It is far from trivial to develop an optimal im-
plementation from a given system specification in a limited amount of time.
The objective of system level design methodologies is to start the system
design at a higher level of abstraction by describing the system functionality
without lower level implementation details nor targeting a certain architec-
ture. This kind of abstract system model makes it possible to capture the
system functionality more efficiently and to analyze what are the require-
ments for an optimal implementation. Due to the large number of different
functions and the huge abstraction gap it is not realistic to verify a detailed
implementation model directly against the abstract specification model.

The thesis addresses verification issues in system design methodologies
like ForSyDe. In ForSyDe, the abstract system model is the entry point
of the design refinement process, which introduces lower level details and in
such a way develops a final implementation model. The refinement process is
divided into refinement steps, which are performed by using well-defined de-
sign transformations. The proposed verification strategy takes into account
the characteristics of design transformations and based on them either (a)
considers that the refined model is correct by construction or (b) provides
attributes to verify the refined model immediately after applying the trans-
formation. Semantic-preserving transformations do not change the meaning
of a model, hence it is not necessary to verify the model after refinement. On
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the contrary, non-semantic-preserving transformations change the meaning
of a model, and for them, the verification attributes include critical proper-
ties that have to be checked after refinement. The properties are defined as
temporal logic expression and refined models can be formally verified against
them, by using model checkers. The rules for mapping of ForSyDe models
to the input language of the SMV model checker are provided.

In addition to the verification properties, the attributes include abstrac-
tion techniques to reduce the size of refined models and, hence, to reduce
the computer resource requirements for model checking. For computation re-
finements the polynomial abstraction technique is developed. This technique
analyzes the computation steps in sequential design blocks that implement
combinational functions, and defines abstract finite domains of input values
for model checking. The domains are defined according to the degrees of
input variables in the calculated output polynomials. The abstraction tech-
nique is efficiently applied to DSP applications like FIR and IIR filters at
a high level of abstraction where the actual word lengths of input variables
are not defined.

The verification attributes have to be provided to all non-semantic-
preserving transformations in the design library and the attributes of new
transformations have to be defined during the design process. Due to the
size of models, the properties address only local correctness of refined design
blocks and the global influence has to be analyzed separately. Two syn-
chronization algorithms for local temporal refinements in the synchronous
models of computation at system level are developed. The refined and syn-
chronized model stays latency equivalent to the original one that is achieved
by using simple delay elements and/or introducing sensitivity in delay el-
ements. The advantage of these techniques is that they do not switch the
synchronous computation model to another and do not introduce complex
communication mechanisms or schedulers.

The main objective of the thesis is to show how formal verification tech-
niques, like model checking, can be integrated into the formal system devel-
opment process. The verification approach takes into account the concrete
design refinements and provides assistance to the designer through prede-
fined verification attributes.
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10.2 Future Works

Design transformations The number of design transformation rules in
the ForSyDe design library is rather small today. The design library
has to be extended, to make it possible to apply the methodology to
larger case studies. New transformations have to be developed, tar-
geting a certain application domain since it is beyond a small research
group’s ability to address all kinds of systems. Together with new
transformation rules, verification properties have to be defined so that
the designer can easily check whether the refined models satisfy the
system constraints.

Data type refinements Today, the ForSyDe methodology includes design
transformations in communication, computation and time domains,
but refinement and verification in the data type domain is not yet
handled. Refinements, which replace ideal operations with fixed word
length ones, are especially interesting. The introduction of fixed-point
or saturation arithmetic involves new behaviors in the refined block
and has a global influence to the model. Hence, it is necessary to
verify that the refined model satisfies the design constraints.

Polynomial abstraction As already said, refinements to fixed-point and
saturation arithmetic operations should be included in the method-
ology. At the moment, the polynomial abstraction technique is ap-
plicable to models where computation is performed on values from
unlimited input domains. In order to verify the same computation
blocks at lower levels of abstraction, where overflow behaviors are in-
cluded, the polynomial abstraction technique should be extended to
handle also modulo calculation and saturation arithmetic operations.

Verification techniques Model checking is the only formal technique that
is used for verification in the ForSyDe methodology but also other
techniques should be incorporated if they can perform the verification
of refined models more efficiently. One possible technique is theorem
proving.

Mapping to SMV So far the mapping of ForSyDe models to the input
language of the SMV model checker is done manually. An automatic
translation tool should be developed, based on the defined mapping
rules.
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[67] S. Nadjm-Tehrani and J.-E. Strömberg. Formal verification of dynamic
properties in an aerospace application. Formal Methods in System
Design, 14(2):135–169, March 1999.

[68] NuSMV: a new symbolic model checker. online [available]
http://nusmv.irst.itc.it/.

[69] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, Saratoga, NY, June 1992. Springer-Verlag.

[70] H. A. Partsch. Specification and Transformation of Programs.
Springer-Verlag, 1990.



152 References

[71] V. Paruthi and A. Kuehlmann. Equivalence checking combining
a structural SAT-solver, BDDs, and simulation. In International
Conference on Computer Design (ICCD’00), Austin, Texas , United
States, 2000.

[72] V. Paruthi, N. Mansouri, and R. Vemuri. Automatic data path ab-
straction for verification of large scale designs. In International Con-
ference on Computer Design (ICCD’98) Topic : Verification and Test,
1998.

[73] J. Peng, S. Abdi, and D. Gajski. Automatic model refinement for
fast architecture exploration. In Proceedings of the Asia South Pacific
Design Automation Conference (ASP-DAC’02), 2002.

[74] A. Pettorossi and M. Proietti. Rules and strategies for transforming
functional and logic programs. ACM Computing Surveys, 28(2):361–
414, June 1996.

[75] A. Peymandoust and G. D. Micheli. Using symbolic algebra in algo-
rithmic level DSP synthesis. In Proceedings of the 38th Annual Con-
ference on Design Automation (DAC’01), 2001.

[76] J. Plantin and E. Stoy. Aspects of system-level design. In Proceedings
of the seventh international workshop on Hardware/software codesign
(CODES’99), 1999.

[77] A. Pnueli, Y. Rodeh, O. Strichmann, and M. Siegel. The small
model property: how small can it be? Information and Computa-
tion, 178(1):279–293, 2002.

[78] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asyn-
chronous implementation of modular synchronous specifications. In
Proceedings of the International Conference on Application of Con-
currency to System Design, St Malo, France, 2005.

[79] J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Prentice
Hall, 3 edition, 1996.

[80] N. H. Z. Radu Marculescu, Umit Y. Ogras. Computation and com-
munication refinement for multiprocessor SoC design: A system-level
perspective. ACM Transactions on Design Automation of Electronic
Systems Special Issue on Novel Paradigms in System-Level Design,
11(3), July 2006.



References 153

[81] T. Raudvere, I. Sander, and A. Jantsch. Application and verification of
local non-semantic-preserving transformations in system design. sub-
mitted to IEEE Transactions on Computer-Aided Design, 2007.

[82] T. Raudvere, I. Sander, and A. Jantsch. Synchronization after de-
sign refinements with sensitive delay elements. In Proceedings of
CODES+ISSS’07, Salzburg, Austria, October 2007.

[83] T. Raudvere, I. Sander, and A. Jantsch. A synchronization algorithm
for local temporal refinements in perfectly synchronous models with
nested feedback loops. In Proceedings of the Great Lakes Symposium
on VLSI (GLSVLSI’07), Stresa, Italy, March 2007.

[84] T. Raudvere, I. Sander, A. K. Singh, D. Gurov, and A. Jantsch. The
ForSyDe semantics. In Proceedings of the Swedish System-on-Chip
Conference (SSoCC’02), Falkenberg, Sweden, March 2002.

[85] T. Raudvere, I. Sander, A. K. Singh, and A. Jantsch. Verification
of design decisions in ForSyDe. In Proceedings of CODES+ISSS’03,
Newport Beach, California, USA, October 2003.

[86] T. Raudvere, A. K. Singh, I. Sander, and A. Jantsch. Polynomial
abstraction for verification of sequentially implemented combinational
circuits. In Proceedings of the conference on Design, automation and
test in Europe (DATE’04), Paris, France, February 2004.

[87] T. Raudvere, A. K. Singh, I. Sander, and A. Jantsch. System level
verification of digital signal processing applications based on the poly-
nomial abstraction technique. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD’05), San Jose, California,
USA, November 2005.

[88] D. I. Rich. The evolution of SystemVerilog. IEEE Design and Test,
20(04):82–84, 2003.

[89] P. Sanchez and S. Dey. Simulation-based system-level verification us-
ing polynomials. In Proceedings of the IEEE International High Level
Design Validation and Test Workshop (HLDVT’99), November 1999.

[90] I. Sander. System Modeling and Design Refinement in ForSyDe. PhD
thesis, Royal Institute of Technology, 2003.



154 References

[91] I. Sander and A. Jantsch. System synthesis based on a formal com-
putational model and skeletons. In Proceedings IEEE Workshop on
VLSI’99, pages 32–39, Orlando, Florida, April 1999. IEEE Computer
Society.

[92] I. Sander and A. Jantsch. Transformation based communication and
clock domain refinement for system design. In Proceedings of the 39th
Annual Conference on Design Automation (DAC’02), New Orleans,
USA, June 2002.

[93] I. Sander and A. Jantsch. System modeling and transformational de-
sign refinement in ForSyDe. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 23(1):17–32, January 2004.

[94] I. Sander, A. Jantsch, and Z. Lu. Development and application of
design transformations in ForSyDe. In Proceedings of the conference on
Design, automation and test in Europe (DATE’03), Munich, Germany,
March 2003.

[95] T. Seceleanu. Systematic Design of Synchronous Digital Circuits. PhD
thesis, University of Turku, Finland, 2001.

[96] Semiconductor Industry Association. International
technology roadmap for semiconductors. available:
http://www.itrs.net/Links/2005ITRS/ExecSum2005.pdf.

[97] N. Shekhar, P. Kalla, and F. Enescu. Equivalence verification of arith-
metic datapaths with multiple word-length operands. In Proceedings of
the conference on Design, automation and test in Europe (DATE’06),
2006.

[98] K. Shimizu, D. L. Dill, and A. J. Hu. Monitor-based formal specifi-
cation of PCI. In Proceedings of the International Conference on For-
mal Methods in Computer-Aided Design (FMCAD’00), Austin, Texas,
November 2000.

[99] D. Shin, S. Abdi, and D. D. Gajski. Automatic generation of bus func-
tional models from transaction level models. In Proceedings of the Asia
South Pacific Design Automation Conference (ASP-DAC’04), 2004.

[100] S. Singh. System level specification in Lava. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE’03), 2003.



References 155

[101] J. Smith and G. D. Micheli. Polynomial methods for component
matching and verification. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD’98), San Jose, California,
USA, 1998.

[102] The SMV model checker. online [available] http://www-
cad.eecs.berkeley.edu/∼kenmcmil/smv/.

[103] S. Suhaib, D. Mathaikutty, D. Berner, and S. Shukla. Validating fami-
lies of latency insensitive protocols. IEEE Transactions on Computers,
pages 1391 – 1401, 2006.

[104] J.-P. Talpin, P. L. Guernic, S. K. Shukla, F. Doucet, and R. Gupta.
Formal refinement checking in a system-level design methodology.
Fundamental Informatica, 62(2):243–273, 2004.

[105] S. Thompson. Haskell - The Craft of Functional Programming.
Addison-Wesley, 2 edition, 1999.

[106] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time Simulink to Lustre. ACM Transactions on Embedded Computing
Systems, 4(4), 2005.

[107] M. Weinhardt and W. Luk. Pipeline vectorization. In IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
pages 234–248, Feb 2001.

[108] Y. Zhu and J. H. Kukula. Generator-based verification. In Proceed-
ings of the International Conference on Computer-Aided Design (IC-
CAD’03), 2003.


