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Abstract—Statistical model selection is a great challenge when
the number of accessible measurements is much smaller than
the dimension of the parameter space. We study the problem
of model selection in the context of subset selection for high-
dimensional linear regressions. Accordingly, we propose a new
model selection criterion with the Fisher information that leads to
the selection of a parsimonious model from all the combinatorial
models up to some maximum level of sparsity. We analyze the
performance of our criterion as the number of measurements
grows to infinity, as well as when the noise variance tends to
zero. In each case, we prove that our proposed criterion gives the
true model with a probability approaching one. Additionally, we
devise a computationally affordable algorithm to conduct model
selection with the proposed criterion in practice. Interestingly, as
a side product, our algorithm can provide the ideal regularization
parameter for the Lasso estimator such that Lasso selects the true
variables. Finally, numerical simulations are included to support
our theoretical findings.

Index Terms—Model selection, high-dimensional inference,
subset selection, Bayesian information criterion, Lasso, sparse
estimation, regularization

I. INTRODUCTION

STATISTICAL model selection is the task of selecting a
parsimonious model from a set of available competing

models in the N -dimensional parameter space that best fits the
measurements. This task is of such fundamental importance
that many problems in statistical inference can be considered
to be problems linked to model selection [1]. For this reason,
many model selection methods have been developed in the
classical setting in which the number of measurements, m,
can grow to infinity, but N and the number of available
competing models is fixed [2]–[8]. The Bayesian information
criterion (BIC) is one of these classical methods that has been
very successful due to its simplicity and effectiveness [3]. In
fact, when N is fixed, it is shown that BIC is asymptotically
consistent in selecting the true model as m grows to infinity
[5], [9]. However, in high-dimensional settings, in which the
number of accessible measurements is much smaller than the
dimension of the parameter space (N � m), BIC and other
classical model selection methods are ineffective and prone to
overfitting [10], [11].

To overcome this issue, a novel extension to BIC (EBIC) is
proposed in [11]. EBIC is a generic model selection method
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in the sense that it generalizes the set of competing models
to the collection of all plausible combinatorial models up to
cardinality K, with K � m. It is shown that under a suitable
asymptotic identifiability condition, EBIC can consistently
select the true model as m grows to infinity [11]. However,
as indicated in our simulations the empirical performance of
EBIC can sometimes be unsatisfactory for practical sizes of m.
Moreover, in scenarios when m is fixed but the noise variance,
σ2, tends to zero, our results show that EBIC is inconsistent.

In this paper, we consider the problem of generic model
selection for high-dimensional data. Accordingly, inspired by
EBIC and the model selection criteria with Fisher information
[6], [12], we propose a model selection criterion named as
extended Fisher information criteria (EFIC). Some preliminary
results of this work have been previously published in [13].
Here, we analyze the performance of EFIC for the linear
regression problem as m → ∞, as well as when the noise
variance tends to zero. For both cases, we prove that the
EFIC’s selected model coincides with the true subset with
a probability approaching one. Our theoretical findings are
also confirmed by numerical simulations. More specifically,
the numerical simulation illustrates the superiority of EFIC to
EBIC for practical sizes of m or when σ2 → 0. Additionally,
to practically perform model selection with EFIC , we devise
a computationally affordable algorithm that is assisted by
the modified-LARS algorithm [14] providing the Lasso path.
As a side effect of our algorithm, one can find the ideal
regularization parameter in the Lasso estimator, in the sense
that Lasso provides the variables of interest.

To assist the reader, we list some of the most frequently
addressed notations in the following. Given sequences f(m)
and h(m), as m → ∞, the notation f(m) = o(h(m))
means that |f(m)/h(m)| → 0, f(m) = O(h(m)) means that
there exists a constant C1 such that |f(m)| ≤ C1|h(m)| and
f(m) = Ω(h(m)) means that there exists a constant C2 > 0
such that |f(m)| ≥ C2|h(m)| [15].

I {i1, i2, . . . , ik}
S the set corresponding to the true model
xI [xi1 , xi2 , . . . , xik ]T

J
⋃K
k=0{I| |I| = k}

I̊k {I| |I| = k,S ⊂ I}
Ĭk {I| |I| = k,S 6⊂ I}
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II. GENERALIZED MODEL SELECTION

Let y ∈ Rm be the measurement vector and suppose that
under hypothesis HI we have

HI : y = s(xI) + σε, I ∈ J .

Here, the set I = {i1, i2, . . . , ik},

1 ≤ i1 < i2 < · · · < ik ≤ N,

represents the data model with the convention of I = ∅
for k = 0. The unknown vector xI ∈ Rk is the collec-
tion of xi’s with the support I from the general parameter
vector x ∈ RN , xI =

[
xi1 , xi2 , . . . , xik

]T
. The set

J =
⋃K
k=0{I| |I| = k} is the collection of all the combina-

torial competing models up to cardinality K � m and |I|
denotes the cardinality of the set I. It is assumed that the
continuous function s(·) is known and maps RN to Rm, and
N is linked to m by N = md where d > 1 is a constant.
Moreover, the elements of the noise vector ε are independent
and identically Gaussian distributed with εi ∼ N (0, 1), and
the unknown standard deviation σ ≥ 0 is considered as a
nuisance parameter. Subsequently, under each equi-probable
HI , the probability density function p(y;θI |HI) is known
apart from θI , [σ2,xI ]T . Our main interest is to propose
a criterion to identify the true unknown subset S from the
collection of competing subsets J , given that the measurement
y ∈ Rm is generated by hypothesis HS . The estimate of this
criterion, Î, should fulfill

Pr
{
Î = S

}
→ 1 as σ → 0,

Pr
{
Î = S

}
→ 1 as m→∞.

A standard approach to find Î is to minimize a penalized
log-likelihood [2]–[7]. To adapt this approach to the needs of
generalized model selection, [11] suggests to add a binomial
coefficient penalty to the BIC’s objective function. As a result,
EBIC selects Î by

min
I∈J

{
−2 ln p(y; θ̂I |HI)+(|I|+1) lnm+2ć ln

(
N

|I|

)}
, (1)

where θ̂I is the maximum likelihood (ML) estimate of θI ,(
N
|I|
)

is a binomial coefficient, and ć > 1− 1/(2d) is a con-
stant that controls the penalty level. The advent of the binomial
coefficient penalty term is the consequence of considering the
binomial model spaces. By introducing this penalty, EBIC
penalizes the log-likelihood rigorously to compensate for the
effect of a large collection of binomial spaces. It is proven
that the EBIC’s estimate satisfies Pr{Î = S} → 1 as m→∞
[11]. However, its empirical performance for problems of
practical size is not satisfactory. See e.g. Fig. 3 in Sec.
V. Moreover, EBIC exploits BIC’s criterion, in which some
approximations have been considered. Namely, approximating
the determinant of the Fisher information matrix by m|I|+1.
This is acceptable for many cases but not always appropriate,
e.g. for polynomial regressions and in high signal-to-noise
ratio scenarios [16]. Due to such an approximation, EBIC is
inconsistent in selecting the true model as σ → 0. See Fig. 4
in Sec. V.

To fulfill our goal in estimating the model, we propose a new
model selection criterion for high-dimensional data, EFIC, as

min
I∈J

{
−2 ln p(y; θ̂I |HI)+ln det F(θ̂I)+2cd|I| lnm

}
. (2)

Here, F(·) is the Fisher information matrix defined by

F(θI) , −E


∂2 ln p(y;θI |HI)

∂xI∂xTI

∂2 ln p(y;θI |HI)
∂xI∂σ2

∂2 ln p(y;θI |HI)
∂σ2∂xTI

∂2 ln p(y;θI |HI)
∂σ4

 ,

(3)
where E denotes the expected value operator and the expec-
tation is taken with respect to p (y;θI |HI). The choice of
d|I| lnm in (9) is due to approximating ln

(
N
|I|
)
. To show this,

note that

ln

(
N

|I|

)
=

|I|−1∑
i=0

ln(N − i)− ln(|I|!).

Now, since |I| ≤ K � m and N = md, we have

ln

(
N

|I|

)
= |I| lnN(1 + o(1)) = d|I| lnm(1 + o(1)),

as m→∞. The choice of the constant c is discussed in Sec.
III. In the following, we will make a detailed analysis of EFIC
for the linear regression problem.

A. EFIC for Linear Regression

Now consider s(xI) as a linear function of xI . Thus,

HI : y = AIxI + σε, I ∈ J , (4)

where the matrix AI is the collection of the columns of
the known regressor or sensing matrix A ∈ Rm×N with the
support I. Then, for the preceding linear regression, the log-
likelihood becomes

ln p(y;θI |HI) = −m
2

ln(2πσ2)− 1

2σ2
‖y −AIxI‖22, (5)

where ‖·‖2 represents the Euclidean norm. The ML estimate
of θI is

θ̂I , [σ̂2, x̂I ]T =

[
1

m
‖Π⊥I y‖22 , A†Iy

]T
, (6)

where the matrix A†I = (AT
IAI)−1AT

I is the Moore-Penrose
pseudo-inverse of AI and the matrix Π⊥I = I−AIA

†
I is the

orthogonal projection matrix onto the null-space of AT
I . Next,

take the second derivative of ln p(y;θI |HI) with respect to
the corresponding unknown parameters,

∂2 ln p (y;θI |HI)

∂xI∂xTI
= − 1

σ2
AT
IAI ,

∂2 ln p (y;θI |HI)

∂xI∂σ2
= − 1

σ4
AT
I (y −AIxI),

∂2 ln p (y;θI |HI)

∂σ4
=

m

2σ4
− 1

σ6
‖y −AIxI‖22.
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By taking the expectation of the preceding identities with
respect to p(y;θI |HI), we obtain the Fisher information
matrix of θI as

F(θI) =
1

σ2

(
AT
IAI 0
0 m

2σ2

)
.

Next use the properties of the determinant function to get

det F(θI) =
m

2

(
1

σ2

)|I|+2

det(AT
IAI).

Inserting σ̂2 from (6) into the preceding identity and taking
logarithm from both sides leads to

ln det F(θ̂I) = ln(m/2)− (|I|+ 2)[ln‖Π⊥I y‖22 − lnm]

+ ln det(AT
IAI). (7)

From (6) and (5),

−2 ln p(y; θ̂I |HI) = m ln‖Π⊥I y‖22 +m(1 + ln
2π

m
). (8)

Eventually, by inserting (7) and (8) into (2) and ignoring the
constant terms we get

Î = arg min
I∈J

g(I), (9)

where

g(I) =

g1(I)︷ ︸︸ ︷
(m−|I|−2) ln‖Π⊥I y‖22
+ln det(AT

IAI)+(1+2cd)|I| lnm︸ ︷︷ ︸
g2(I)

. (10)

To gain intuition for the behavior of g(I), it is helpful to
break it into two terms as g1(·) and g2(·), and consider the
behavior of each term with respect to I’s that deviate from the
true model. In this regard, first split J \ S into two classes of
overfitted and misfitted models as

J \ S =

{ K⋃
k=|S|+1

I̊k
}⋃{ K⋃

k=0

Ĭk
}
,

where

I̊k , {I
∣∣|I| = k,S ⊂ I},

Ĭk , {I
∣∣|I| = k,S 6⊂ I}.

Next consider the term g1(·). Observe that g1(·), which is a
function of the estimate of σ2, inflates as I deviates from S
such that I ∈ Ĭk, since

‖Π⊥IASxS‖22 = ‖Π⊥IAS\IxS\I‖22 > ‖Π
⊥
SASxS‖22 = 0

for I ∈ Ĭk. However, in contrast to the misfitted models, for
overfitted models of the form

S ⊂ IS∪ik+1
⊂ IS∪{ik+1,ik+2} ⊂ · · · ⊂ IS∪{ik+1,...,iK},

(11)
g1(·) monotonically decreases as

‖Π⊥S y‖22 > ‖Π
⊥
S∪ik+1

y‖22 > ‖Π
⊥
S∪{ik+1,ik+2}y‖

2
2

> · · · > ‖Π⊥S∪{ik+1,...,iK}y‖
2
2

Π⊥S y

span(AS)

yΠ⊥S∪ik+1
y

span(AS∪ik+1
)

Fig. 1. Projecting y into the orthogonal subspaces of the nested models of
S and I{S∪i1} makes g1(S) ≥ g1(I1).

for ik+l 6∈ S with l ≥ 1. See Fig. 1 for a geometrical
illustration. By this argument we can see that g1(·) measures
the goodness of the fit and gets smaller as the complexity of the
model increases in I ∈ I̊k. Unlike g1(·), g2(·) measures the
complexity of the model and, generally speaking, it increases
as the cardinality of the model increases. Intuitively, by this
increase, g2(·) attempts to counterbalance the decrease in g1(·)
and therefore preventing (9) from overfitting.

B. Identifiability of The Model

A model is considered to be identifiable if no other model
of the same or smaller size can describe the given (noise
free) measurements equally well. In the linear regression
setup, this is equivalent to say y = ÃSxS 6= ÃIxI for
{I||I| ≤ |S|, I 6= S}. Here, Ã denotes the normalized version
of the sensing matrix A in the sense that Ã has unit-norm
columns. The identifiability of the true model in the high-
dimensional linear regression setup is uniformly maintained if
the minimal eigenvalue of all restricted sub-matrices, ÃT

I ÃI
for {I||I| ≤ 2K}, is bounded away from zero [17]–[19].
This is a reasonable constraint; for instance, when Ã is a
sub-Gaussian random matrix, one can roughly conclude from
Chapter 9 in [19] that the minimal restricted eigenvalue of Ã
is bounded away from zero, even if N grows exponentially
with m.

Having this stated, we need to lower bound the minimal
eigenvalues of all restricted sub-matrices of at most size 2K.
Now, inspired by [20], we introduce our slightly more general
assumption in comparison with what is traditionally assumed,
such as e.g. the restricted isometry property in [21], as we
allow the minimal restricted eigenvalues to slowly converge
to zero.
Restricted eigenvalue property: The normalized matrix Ã
satisfies the restricted eigenvalue property if any restricted sub-
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matrix ÃT
I ÃI obeys

min
|I|≤2K

Λmin(ÃT
I ÃI) ≥ Cmin

lnm
,

for some constant Cmin > 0. Here, Λmin(·) denotes the
minimum eigenvalue of the corresponding matrix. Clearly, for
a fixed m, the value of Cmin indicates the degree of correlation
between ãi’s.

III. PERFORMANCE ANALYSIS OF EFIC FOR THE LINEAR
REGRESSION

Desirably, a statistical inference method provides the true
unknown parameter in an asymptotic regime. To examine the
asymptotic properties of EFIC, we evaluate the probability of
(9) selecting the correct model as σ → 0, as well as when
m→∞.

A. Deterministic Optimality Conditions for EFIC
Prior to investigating the asymptotic properties of EFIC, we

first present the sufficient non-asymptotic conditions, under
which EFIC selects the true model. Later, in Theorem 1
and 2, we show that these conditions are satisfied with high
probability in the corresponding asymptotic regimes.

Lemma 1. Let S ∈ J be the true model and suppose that
I 6= S denotes any other competing subset in J . Additionally,
assume that the matrix A satisfies the restricted eigenvalue
property. Then, for a particular realization of ε, the minimizer
of (9) obeys Î = S, if

I1 : ln
‖Π⊥S ε‖

2(m−|S|−2)
2

‖Π⊥I ε‖
2(m−|I|−2)
2

< Υ(I)− lnσ2∆, I ∈
K⋃

k=|S|+1

I̊k,

I2 : ln

(
σ2‖Π⊥S ε‖22

)(m−|S|−2)

‖Π⊥I y‖2(m−|I|−2)
2

< Υ(I), I ∈
K⋃
k=0

Ĭk,

where ∆ =
∣∣|I| − |S|∣∣ and

Υ(I) = ln
det(AT

IAI)

det(AT
SAS)

+
(
|I| − |S|

)
(1 + 2cd) lnm.

Proof. The strict minimizer of (9) coincides with the subset
S if g(S) < g(I) for any I ∈ J \ S . Thus, using (10), it is
sufficient to show that

(m− |S| − 2) ln‖Π⊥S y‖22 + ln det(AT
SAS)

+ (1 + 2cd)|S| lnm < (m− |I| − 2) ln‖Π⊥I y‖22
+ ln det(AT

IAI) + (1 + 2cd)|I| lnm (12)

is equivalent to the I1 and I2 inequalities. In this regard, by
the definition of the projection matrix, we have ΠIASxS =
ASxS for I ∈ I̊k. Thus,

Π⊥I y = Π⊥I (ASxS + σε) = σΠ⊥I ε, ∀ I ∈ I̊k. (13)

Moreover,
Π⊥S y = σΠ⊥S ε. (14)

If (13) and (14) are inserted into (12), then, with some
straightforward manipulations, we obtain I1. Next, use (14)
and (12) to obtain I2. Also note that, because of the restricted
eigenvalue property, AT

IAI and AT
SAS are full-rank and

therefore ln det(·) is finite.

B. Model Selection as σ → 0

As mentioned before, it is of course desirable that EFIC
selects the true model for high signal to noise ratio data. This
motivates us to examine the performance of EFIC as σ → 0.

Theorem 1. Let m be the fixed number of measurements and
assume that N = md. Then, under the restricted eigenvalue
property, the estimate of (9), Î, obeys Î = S with a probability
approaching one as σ → 0.

Proof. Based on Lemma 1, the minimizer of (9) coincides
with S if I1 and I2 are satisfied. Having this stated, we
begin by showing that as σ → 0 the inequality I1 holds
with a probability approaching one. In this regard, consider
the event of the form

ÅI : ρ(I) < eΥ(I)/σ2∆, I ∈ I̊k

for |S|+ 1 ≤ k ≤ K, where ρ(I) is defined by

ρ(I) = ‖Π⊥S ε‖
2(m−|S|−2)
2 /‖Π⊥I ε‖

2(m−|I|−2)
2 .

Observe that ‖Π⊥I ε‖22 is a Chi-square random variable with
m− |I| degrees of freedom. Therefore, Pr{‖Π⊥I ε‖22 = 0} =
0. This implies that ρ(I) is a well defined random variable
[22], and therefore we can consider the probability of ÅI
happening. Now we look at the term eΥ(I)/σ2∆. It is clear
that, due to the restricted eigenvalue property, there exists some
constant α ∈ R for which ln[det(AT

IAI)/ det(AT
SAS)] > α,

and therefore eΥ(I)/σ2∆ → ∞ as σ → 0. Hence, we have
Pr{ÅcI} → 0 as σ → 0, where ÅcI denotes the complement
event of ÅI . Finally, by using Boole’s inequality, we have

Pr
{
I1

}
= Pr

{ K⋂
k=
|S|+1

⋂
I∈I̊k

ÅI

}
≥ 1−

K∑
k=
|S|+1

∑
I∈I̊k

ÅcI → 1

as σ → 0.
Continuing with I2, let the event ĂI be

ĂI : ‖Π⊥S ε‖22 < β(I)/σ2, I ∈ Ĭk,

where β(I) is defined by

β(I) =
[
eΥ(I)‖Π⊥I y‖2(m−|I|−2)

2

] 1
m−|S|−2 .

Now observe that ‖Π⊥I y‖22 → ‖Π
⊥
IASxS‖22 in probability

as σ → 0. Moreover, we know from Lemma (4)-(i) in the
Appendix that ‖Π⊥IASxS‖22 > 0. Because of this and the fact
that eΥ(I) > 0 we can conclude that β(I) > α′ as σ → 0, for
some positive constant α′. As a result, β(I)/σ2 → ∞ when
σ → 0 for any I ∈ Ĭk. Therefore, the probability of the event
ĂI happening converges to one as σ → 0. Again, we use
Boole’s inequality to show that Pr{I2} → 1 as σ → 0.

Theorem 1 implies that, when the noise power is negligible,
S is the global minimizer of g(·) if the restricted eigenvalue
property is satisfied. Now, to show the inconsistency of EBIC
as σ → 0, let us to restate the equivalent of I1 for EBIC.
In this regard, first insert (8) into (1) and ignore the constant
terms to get

gEBIC(I) = m ln‖Π⊥I y‖22 + (1 + 2ćd)|I| lnm.
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Next, by imitating the argument in Lemma 1, we can say

ln

(
‖Π⊥S ε‖22
‖Π⊥I ε‖22

)m
< (|I| − |S|)(1 + 2ćd) lnm, I ∈

K⋃
k=|S|+1

I̊k,

which is the equivalent form of I1 for EBIC. Clearly, for a
fixed m, EBIC cannot assure Pr{Î = S} → 1 as σ → 0.

C. Model Selection as m→∞
In the following, we state our second main result which

presents the asymptotic behavior of EFIC as m→∞.

Theorem 2. Suppose that the matrix A ∈ Rm×N , with
N = md, satisfies the restricted eigenvalue property. More-
over, assume that the columns of A fulfill

‖ai‖22 = Ω(ma) (15)

for some constant a > 0. Then, the EFIC’s estimate obeys
Î = S with probability one as m → ∞, if c is chosen such
that

c > 1− a

2d
+

1

d
.

Proof. The proof of Theorem 2 consists of three main parts.
We start by finding the asymptotic behavior of Υ. Then, we
establish the probability of I1 happening as m → ∞ and,
finally, we do the same for I2.

The asymptotic behavior of Υ(I): Normalize the columns
of AI as ÃI = AIW

−1
I,I , where WI,I is a diagonal matrix

with the diagonal elements defined by wii = ‖ai‖2 for i ∈ I.
Now using the properties of the determinant function, we have

ln det
(
AT
IAI

)
= ln det(W2

I,I) + ln det(ÃT
I ÃI)

=
∑
i∈I

lnw2
ii +

|I|∑
i=1

ln Λi(Ã
T
I ÃI),

where Λi(·) denotes the i-th eigenvalue of the corresponding
matrix. Then, observe that, by Gerschgorin’s Theorem,

|Λi(ÃT
I ÃI)− 1| ≤

∑
j∈I,j 6=i

|ãTi ãj | ≤ |I| − 1.

Therefore, because of (15), we can say

ln det(AT
IAI) =

∑
i∈I

lnw2
ii(1 + o(1)) (16)

as m → ∞. Now, after inserting (16) into Υ(I) and some
straightforward simplifications, we conclude that for I ∈ I̊k

Υ(I) =
[∑
i∈I\S

lnw2
ii

]
(1 + o(1)) + ∆(1 + 2cd) lnm

≥ ∆(1 + a+ 2cd) lnm (1 + o(1)) , (17)

and for I ∈ Ĭk

Υ(I) =
[∑
i∈I\S

lnw2
ii −

∑
i∈S\I

lnw2
ii

]
(1 + o(1))

+
(
|I| − |S|

)
(1 + 2cd) lnm (18)

as m→∞.

Establishing the probability of I1 as m→∞: Rewrite the
left-hand side of I1 as

ln
‖Π⊥S ε‖

2(m−|S|−2)
2

‖Π⊥I ε‖
2(m−|I|−2)
2

= (m− |I| − 2) ln
‖Π⊥S ε‖22
‖Π⊥I ε‖22

+ ∆ ln‖Π⊥S ε‖22. (19)

Observe, now, that

‖Π⊥S ε‖22 = ‖Π⊥I ε + (Π⊥S −Π⊥I )ε‖22 = ‖Π⊥I ε + Π̄I\Sε‖22,

where Π̄I\S is defined as Π̄I\S = ΠI −ΠS . Moreover, note
that, Π⊥IΠS = 0 since S ⊂ I. Thus, we rewrite

‖Π⊥S ε‖22 = ‖Π⊥I ε‖22 + ‖Π̄I\Sε‖22.

Then, by using the properties of the logarithm function, we
can say

ln
‖Π⊥S ε‖22
‖Π⊥I ε‖22

= ln

(
1 +
‖Π̄I\Sε‖22
‖Π⊥I ε‖22

)
≤
‖Π̄I\Sε‖22
‖Π⊥I ε‖22

.

Next we insert the preceding inequality into (19) to get

ln
‖Π⊥S ε‖

2(m−|S|−2)
2

‖Π⊥I ε‖
2(m−|I|−2)
2

≤ (m− |I| − 2)
‖Π̄I\Sε‖22
‖Π⊥I ε‖22

+ ∆ ln‖Π⊥S ε‖22. (20)

Considering (20) together with I1, it is clear that on the event

E̊k : max
I∈I̊k

{
(m− |I| − 2)

‖Π̄I\Sε‖22
‖Π⊥I ε‖22

+ ∆ ln‖Π⊥S ε‖22
}

< min
I∈I̊k
{Υ(I)} − lnσ2∆

for all k ∈ {|S|+ 1, . . . ,K}, I1 is satisfied. Consequently,
when ε is a random vector

Pr I1 ≥ Pr

{
K⋂

k=1+|S|

E̊k

}
. (21)

As m→∞, the event E̊k can be restated by its asymptotic
equivalent. In this regard, using the law of large numbers,
‖Π⊥S ε‖22 → m− |S|, together with (17) yields

E̊k : m
maxI∈I̊k‖Π̄I\Sε‖22
m−maxI∈I̊k‖ΠIε‖22

< ∆(a+ 2cd) lnm (22)

as m → ∞. Now we continue the argument with the goal
of showing, under some suitable condition for c, Pr E̊k = 1
as m→∞. The idea is to use the extreme value theory to
show that maxI∈I̊k‖Π̄I\Sε‖22 and maxI∈I̊k‖ΠIε‖22 are of
the order of lnm in probability, i.e. maxI∈I̊k‖Π̄I\Sε‖22 =
Op(lnm) [23]. To develop this idea, consider ‖Π̄I\Sε‖22’s as
a sequence of

(
N
∆

)
random variables, identically distributed,

having Chi-square distribution with ∆ degrees of freedom,
‖Π̄I\Sε‖22 ∼ χ2

∆. Therefore, by applying Lemma 2 and
Lemma 3, we can conclude that, for any t > 0, the centered
and normalized maximum of this sequence obeys

Pr

{[
max
I∈I̊k

{
‖Π̄I\Sε‖22

}
− h
]
≤ 2t

}
≥ exp(−e−t)
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as m→∞, where h is defined by

h = 2 ln

(
N

∆

)
+ (∆− 2) ln ln

(
N

∆

)
.

Next, replace h with its asymptotic approximation

h = 2d∆ lnm(1 + o(1))

and let t = γ lnm. Thus, as m→∞,

Pr

{
max
I∈I̊k

{
‖Π̄I\Sε‖22

}
≤ 2(∆d+ γ) lnm

}
≥ 1−m−γ ,

(23)

where γ > 0 is a constant. Then, the Borel-Cantelli lemma
implies that for γ > 1

max
I∈I̊k

{
‖Π̄I\Sε‖22

}
≤ 2(∆d+ γ) lnm (24)

with probability one as m→∞. Continuing, one can use the
same argument to obtain

m− max
I∈I̊k
‖ΠIε‖22 = m(1 + o(1)) (25)

with probability one. We conclude from (22), (24) and (25)
that under the condition of

2(∆d+ γ) < ∆(a+ 2cd),

for ∆ = 1, . . . ,K − |S|, the event E̊k occurs with probability
one. Finally, because of (21), one can say that I1 holds with
probability one.

Rearranging the preceding condition as

c > 1 +
γ

∆d
− a

2d
, (26)

provides the guideline for choosing c upon setting ∆ = 1.
Establishing the probability of I2: Rewrite I2 as

(m−|I|−2) ln
‖Π⊥I y‖22
σ2‖Π⊥S ε‖22

−(|I|−|S|) ln‖Π⊥S ε‖22+Υ(I) > 0.

Then, it is clear that on the event

Ĕk: min
I∈Ĭk

{
(m−|I|−2) ln

‖Π⊥I y‖22
σ2‖Π⊥S ε‖22

−(|I|−|S|) ln‖Π⊥S ε‖22+Υ(I)

}
>0, (27)

for all k such that 0 ≤ k ≤ K, I2 holds. Thus, when ε is a
random vector, we can say

Pr I2 ≥ Pr

{
K⋂
k=0

Ĕk

}
. (28)

The next step is to establish a lower bound on the asymp-
totic equivalent of (m− |I| − 2) ln

‖Π⊥I y‖22
σ2‖Π⊥S ε‖22

. In this respect,

expand ‖Π⊥I y‖22 as

‖Π⊥I y‖22 = A1 + σ2‖Π⊥I ε‖22, (29)

where A1 is defined as

A1 = ‖Π⊥IASxS‖22

(
1 + 2σ

εTΠ⊥IASxS

‖Π⊥IASxS‖22

)
.

However,

A1 ≥‖Π⊥IASxS‖22

×
(

1− 2σ

‖Π⊥IASxS‖2
max
I∈Ĭk

∣∣∣εT Π⊥IASxS

‖Π⊥IASxS‖2

∣∣∣︸ ︷︷ ︸
ζ1

)
.

Continuing, when ε is a random vector, because of Lemma
4-(ii) and the Borel-Cantelli lemma, we have

max
I∈Ĭk

∣∣∣εT Π⊥IASxS

‖Π⊥IASxS‖2

∣∣∣ ≤ 2

√
ln

(
N

|I|

)
(30)

with probability one. Moreover, by considering Lemma 4-
(i), the restricted eigenvalue property and ‖ai‖22 = Ω(ma), we
can say ‖Π⊥IASxS‖2 = Ω(

√
ma/ lnm). Because of this and

(30), we can conclude that ζ1 = 0 with probability one as
m→∞. Again, use Lemma 4-(i), so that

A1 ≥ Cmin‖xŚ‖
2
2

∑
i∈Ś w

2
ii

lnm
,

where Ś is defined by Ś , S \ I. Next, consider (29) together
with the preceding inequality and that ‖Π⊥S ε‖22 → m− |S|.
Thus, as m→∞, we have

(m− |I| − 2) ln
‖Π⊥I y‖22
σ2‖Π⊥S ε‖22

≥ m ln
(

1 +
A1

σ2m
−

maxI∈Ĭk‖ΠIε‖22
m︸ ︷︷ ︸
ζ2

)
T
≥ m ln

(
1 +

Cmin‖xŚ‖22
σ2m lnm

∑
i∈Ś

w2
ii − 2(d|I|+ γ́)

lnm

m

)
.

Note that the inequality T is due to the fact that ζ2 ≤ 2(d|I|
+ γ́) lnm

m with probability one for some constant γ́ > 1, cf.
(24). Now, by exploiting the preceding inequality and (18),
we can bound the inner expression in Ĕk from below as

A2 + O(lnm), (31)

where

A2 =m ln

(
1 +

Cmin‖xŚ‖22
σ2m lnm

∑
i∈Ś

w2
ii(1 + o(1))

)
−
∑
i∈Ś

lnw2
ii.

It is straightforward to show that A2 is an increasing function
of w2

ii. Therefore, since w2
ii = Ω(ma), A2 has the smallest

growth if 0 < a ≤ 1, so that

A2 ≥ b|Ś|
‖xŚ‖22
σ2

ma

lnm
, 0 < a ≤ 1,

for some constant b > 0. This implies that A2 is the dominant
term in (31) and therefore, the event Ĕk occurs with probabil-
ity one as m→∞. Finally, since (28), we obtain Pr I2 = 1
as m→∞.

In summary, because Pr I1 = 1 under the condition (26)
and that Pr I2 = 1, Lemma 1 provides that Î = S with
probability one.

We would like to remark that the condition for choosing
c in Theorem 2 can be restated as c > 1− a/(2d) + γ/d for
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γ > 0 where γ affects the probability of success. In fact,
our proof indicates that when γ ≤ 1 one can only assure the
event Î = S in probability as m→∞, whereas when γ > 1,
this event occurs with probability one as m→∞. Having this
stated, we also would like to emphasize on the effect of γ > 1
on the performance of EFIC for practical size of m. In this
regard, (23) indicates that when γ is large, the probability of
success of I1 is elevated. However, at the same time, a large
γ lowers the probability of success of (31), and consequently
Pr I2, for small size m. The latter happens since a large γ
may cause the O(lnm) term to dominate A2. In conclusion,
we do not recommend to use a large γ. In the simulations in
Section V we use γ = 2.

IV. COMPUTING EFIC FOR LINEAR REGRESSIONS

Finding the optimal solution of (9) essentially involves an
exhaustive search over J . However, the size of J grows
as |J | = O(NK), and therefore, solving (9) with an ex-
haustive search is impractical, even for a moderate size N .
To overcome this issue, motivated by the intrinsic nature of
the Lasso estimator as a model selection method, we exploit
Lasso to improve the computational performance of (9). The
Lasso estimator is a well-known model selection method that
estimates the unknown model by solving

x̂L(λ) = arg min
x̃∈RN

1

2
‖y − Ãx̃‖22 + λ‖x̃‖1, (32)

where λ ≥ 0 is a regularization parameter that controls
ÎL(λ) = supp(x̂L(λ)), the vector x̃ is linked to x as
x = W−1x̃ and W is a diagonal matrix with the diagonal
elements defined as wii = ‖ai‖2 [24]. If λ is properly chosen,
then under some suitable conditions, Lasso can estimate the
model correctly [25], [26]. To elaborate on the effect of λ on
the solution of Lasso, one should note that for the choice of
λ ≥ λ1 = ‖ATy‖∞, Lasso’s estimate is an empty set, then as
λ decreases, ÎL(λ) evolves at some pivotal λj’s, providing the
solution set of {ÎL(λj)}Kj=1 [14], [27]. Having this stated, we
use the modified-LARS algorithm to obtain {ÎL(λj)}Kj=1 [14],
and then we apply (10) on the solution set of Lasso to solve
(9); see Alg. 1. Note that we use the normalized regressor
matrix Ã in the Lasso estimator, but the un-normalized A in
computing the EFIC criterion in (9). This is because EFIC
is derived under the assumption that the dependence on m
should be reflected in A and not in x. However, when using
Lasso it is recommended to normalize the regressors.

Algorithm 1 Model selection by combining EFIC and the modified-
LARS algorithm.

for j = 1 to K do
{ÎL(λj)} ← execute modified-LARS at step j
evaluate g(ÎL(λj))

end for
Î = arg min{ÎL(λj)}Kj=1

g(ÎL(λj))

Compared to performing an exhaustive search, we reduce
the search cost in solving EFIC from O(mdK) to the com-
putational cost of modified-LARS, which is O(m2) at each
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Fig. 2. The behavior of a few model selection criteria versus the indices of
the solution set of Lasso. The setting is σ2 = 10−1, |S| = 5, m = 100 and
N = dmde, for d = 1.3. Label six corresponds to the true model.

step [14]. Another observation is that we can find the ideal λ
value for the Lasso estimator without knowing σ. In details,
when σ is known, by choosing λ = (1 + τ)σ

√
2 lnN for some

τ > 0, Lasso performs near-ideal in estimating the model [26].
However, the proper choice of λ when σ is unknown is rather
challenging [28] and to the best of our knowledge, selecting
λ in such scenarios is still a practical issue. We would like
to remark that the choice of Lasso is not a necessity and the
operator can potentially use any other viable variable selection
method for high-dimensional data.

A numerical example of the behavior of the objective
function of a few model selection criteria versus {ÎL(λj)}20

j=1

is depicted in Fig. 2. The setup for this numerical evaluation
is as σ2 = 10−1, |S| = 5, m = 100, N = dmde, for d = 1.3.
The abrupt decrease in the value of the objective functions
at label six is due to the perfect model selection. After label
six, g(·) monotonically increases. As was mentioned before,
this increase is caused by g2(·) in order to offset g1(·) from
overfitting. EFIC has estimated the model correctly whereas
EBIC and BIC fail in doing so. Here and in the empirical
section, we set ć = 1 in EBIC, as it is also applied in [11].
One should note that, by choosing ć > 1− 1/(2d), EBIC’s
estimate theoretically satisfies Pr{Î = S} → 1 as m → ∞.
However, when m is of practical size, EBIC’s performance
is sensitive to the value of ć. That is to say, small ć causes
EBIC to overestimate the size of the model, whereas large ć
would cause the opposite. Therefore, by setting ć just above
the threshold level 1− 1/(2d), EBIC’s performance would
deteriorate in the numerical simulations presented herein. Fig.
2 also shows that BIC is too liberal to find the true model.

V. EMPIRICAL RESULTS

In this section, we provide some numerical results to il-
lustrate the empirical performance of EFIC in selecting the
correct model. Additionally, we compare the performance of
EFIC with the following existing model selection methods.
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Fig. 3. The empirical probability of {Î = S} versus m when A has an
uncorrelated structure. Here, µ = 0, σ2 = 10−0.3, |S| = 5 and N = dmde
for d = 1.3.

A. Some Existing Model Selection Methods for High-
Dimensional Data

1) Square Root (SR)-Lasso: Replacing the least squares
term in (32) with its square-root results in the SR-Lasso
estimator [29],

min
x̃∈Rm

‖y − Ãx̃‖2 + λSR‖x̃‖1.

The parameter λSR can be chosen by

λSR = c1
√
mF−1

n (1− α1

2N
).

Here, F−1
n (·) is the quantile function for a normal distribution,

and c1 and α1 are constants that are recommended to set to
1.1 and 0.05, respectively. Note that SR-Lasso does not need
to know σ to choose its regularization parameter λSR.

2) Combined BIC (COBIC): The objective function of BIC
is presented in an elegant simple form [3]. This simplicity
is achieved under some suitable conditions, one of which
concerns the signal to noise power ratio. On this subject,
it is shown that as the noise power converges to zero, a
modified version of BIC, namely COBIC, is needed [16]. Here,
an extended version of COBIC, where we have added the
binomial coefficient penalty similar to EBIC, is considered
as

min
I∈JSR

{
m ln σ̂2 + f + 2 ln

(
N

|I|

)}
,

where f is defined as

f = max
(
−(|I|+ 2) ln σ̂2, (|I|+ 1) lnm

)
.

B. Results

Here, to support our theoretical findings, we measure the
empirical probability of Î = S. The general setting for our
numerical simulation is as follows. In each Monte Carlo trial,
the true support, S, is chosen randomly from

(
N
|S|
)

possible
choices, when |S| is fixed to five. The elements of the true
parameter xS is drawn from the Bernoulli distribution of the

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ln 1/σ2

P
r{
Î
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Fig. 4. The empirical probability of {Î = S} versus ln(1/σ2) when A has
an uncorrelated structure. Here, µ = 0, m = 120, |S| = 5 and N = dmde
for d = 1.3.

sample space {1,−1}. The rows of the measurement matrix,
a∗i’s, are chosen as i.i.d. multivariate Gaussian random vectors
from N (0,C), where the matrix C ∈ RN is structured as

C =


1 µ µ . . . µ
µ 1 µ µ . . . µ
µ µ 1 µ . . . µ
...

...
...

µ µ . . . µ 1

 ,

and the constant µ determines the degree of correlation be-
tween ai’s. The structure of C also implies that ai’s are
statistically equiangular. The dimension of the parameter space
is linked to the number of measurements as N = dmde, where
d·e is the ceiling function and d is fixed to 1.3. The vector ε is
a white Gaussian noise with ε ∼ N (0, I). To select parameter
a for EFIC, recall that the smallest ‖ai‖22 for 1 ≤ i ≤ N
determines the constant a. Furthermore, note that ‖ai‖22 = m
with very high probability for a Gaussian random A. This
motivates us to set a = 1. Finally, as mentioned at the end of
Section IV, we let γ = 2 which results in c = 1 + 3/(2d).

Fig. 3 shows the empirical probability of correct model
selection versus m when A has an uncorrelated structure, i.e.
µ = 0. Here, the noise variance is fixed as σ2 = 10−0.3.
The measured probabilities are the result of calculating the
success rate over 500 Monte Carlo trials. Here, Lasso-oracle
represents the performance of Lasso when |S| is known.
Recall that, in our algorithm, the exhaustive search over J
is replaced by Lasso; therefore, it is natural to have Lasso-
oracle as the performance benchmark. As can be seen, for
m ≥ 80 EFIC coincides with Lasso-oracle and both achieve
Pr(Î = S) = 1 for m ≥ 120. The numerical results conform
that EFIC is consistent in selecting the true model as m grows.
Moreover, the numerical simulation shows that Pr{Î = S}
for EBIC improves very slowly for m ≥ 100. The slack
pace in the improvement is due to the conservative choice
of ć = 1. COBIC is practically identical to EBIC for this
example and therefore its curve is not displayed in Fig. 3. The
performance gap between SR-Lasso and Lasso-oracle is very
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Fig. 5. The empirical probability of {Î = S} versus m when A has a
correlated structure. Here, µ = 0.25, σ2 = 10−0.3, |S| = 5 and N = dmde
for d = 1.3.

big for m < 140, nevertheless, SR-Lasso manages to achieve
ideal performance as m grows. Finally, Lasso-σ shows how
Lasso behaves if λ = 7σ

√
2 lnN when σ is known [26].

We now consider the effect of a decrease in σ on Pr(Î =
S) = 1 when m = 120 and A has an uncorrelated structure.
Fig. 4 illustrates the empirical probability of correct model
selection versus ln 1/σ2 over 5000 Monte Carlo trials. As
can be seen, all information criteria perform poorly for large
σ. This can be linked to the poor performance of Lasso
in estimating the model in presence of strong noise. As
σ slightly decreases, EFIC achieves the ideal performance.
However, in contrast to EFIC, the success rate of EBIC always
stays below 0.95. This indicates that EBIC is inconsistent in
finding S as σ → 0. Fig. 4 also shows that COBIC achieves
Pr(I = S) = 1 at a very slow pace. Finally, note the
unsatisfactory performance of SR-Lasso. This is because SR-
Lasso requires a larger m than Lasso to achieve the same
performance in estimating models.

Next, we examine the effect of the correlation in the
structure of A on the performances of the model selection
criteria. Fig. 5 illustrates the empirical probability of correct
model selection versus m over 500 Monte Carlo trials when
µ = 0.25. Here, the rest of the setting is identical to the
corresponding uncorrelated case. As can be seen, EFIC’s and
Lasso-oracle’s performances are identical and both achieve
Pr{Î = S} = 1 for m ≥ 200. Note that based on
Algorithm 1, the performance of EFIC is tied to the solution
set of Lasso. Thus, EFIC cannot outperform Lasso-oracle.
Predictively, due to the correlation between ai’s, Lasso-oracle
requires relatively larger number of measurements to achieve
ideal model selection. The numerical simulation again shows
that the performance of EBIC improves very slowly for
m ≥ 200. Interestingly, the performance gap between Lasso-
σ and Lasso-oracle is tightened. Finally, SR-Lasso performs
rather poorly which indicates that SR-Lasso is more sensitive
to the correlation in the structure of A than Lasso.

Fig. 6 shows the empirical probability of Î = S versus
ln 1/σ2 over 5000 Monte Carlo trials. Here, µ = 0.25 and m
is fixed to 200. EFIC performs as good as the benchmark
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Fig. 6. The empirical probability of {Î = S} versus ln(1/σ2) when A has
a correlated structure. Here, µ = 0.25, m = 200, |S| = 5 and N = dmde
for d = 1.3.

for ln 1/σ2 ≥ 0 and it achieves ideal model selection for
ln 1/σ2 ≥ 1. In contrast, EBIC’s performance does not
improve as ln 1/σ2 gets larger than one, indicating the in-
consistency of EBIC as σ → 0. The numerical simulation
also shows that COBIC’s estimate achieves Pr{Î = S} = 1
for a very small σ. Lasso-σ shows an abrupt change in its
performance. This is due to setting τ to a relatively large value
[26]. Predictively, SR-Lasso again performs poorly.

VI. CONCLUSION

Many real life applications face the challenging task of
model selection when the number of accessible measurements
is much smaller than the dimension of the parameter space.
To accomplish this task, we have proposed a new criterion
for high-dimensional linear regression. Additionally, we have
analyzed the behavior of the proposed criterion as m → ∞
as well as σ → 0. In both cases, we have shown that the
probability that our criterion gives the true model approaches
one. Moreover, we propose a computationally affordable al-
gorithm to practically perform the model selection with the
proposed criterion. This algorithm implicitly determines the
regularization parameter in the Lasso estimator for precise
variable selection. Finally, some numerical simulations are
conducted to support our theoretical findings. Moreover, we
would like to remark that our focus in this paper has been
on perfect variable selection. Arguably, there are also other
broader aspects to the problem of model selection. In some
applications, selecting relevant variables is indeed a major
interest whereas in others the predictive ability of the model
is the main focus. Hence, other measures of performance
such as positive discovery rate, false discovery rate, and
prediction mean square error should also be considered in
future evaluations of EFIC and related approaches.

VII. APPENDIX

Lemma 2. Let Mn = maxi{X1, X2, . . . , Xn}, where
X1, X2, . . . , Xn is a sequence of i.i.d. random variables
having Chi-square distribution with r degrees of freedom.
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Then, the centered and normalized maxima of this sequence
has the Gumbel distribution such that

Pr

{
Mn − hn

2
≤ x

}
d−→ exp

(
−e−x

)
as n→∞,

where
hn = 2 lnn+ (r − 2) ln lnn(1 + o(1))

and d−→ denotes convergence in distribution.

Proof. Based on Fisher-Tippet theorem, if there exists a se-
quence of norming constants {cn > 0} and {dn} such that

Pr

{
Mn − dn

cn
≤ x

}
d−→ G(x) as n→∞,

where G(x) is a non-degenerate distribution function, then G
belongs to one of the extreme value distributions [23], [30].
Knowing that the Chi-square distribution is a special case
of the Gamma distribution, verifies that χ2 random variables
belong to the maximum domain of attraction of the Gumbel
distribution, so that G(x) = exp(−ex) [23]. Accordingly,
Proposition 3.3.25 in [23] provides a possible choice of the
norming constants. Exploiting the provided constants on page
159 in [23], we have

dn = 2 lnn+ (r − 2) ln lnn(1 + o(1)), cn = 2.

Lemma 3. Let Mκ = maxi{Xi}κi=1 where X1, X2, . . . , Xκ

is a sequence of i.i.d. random variables having Chi-square
distribution with r < m degrees of freedom. Further, let
M̄κ = maxi{‖Πiε‖22}κi=1 where {Πi}κi=1 is a set of or-
thogonal projection matrices projecting onto r-dimensional
subspaces of Rm, and ε ∈ Rm is a normalized zero-mean
Gaussian vector, ε ∼ N (0, Im).

If m < rκ, then, for each t > 0,

Pr
{
M̄κ ≤ t

}
≥ Pr

{
Mκ ≤ t

}
. (33)

Proof. Consider the random vectors t and t̄, defined as

t =
[
t1 t2 . . . tκ

]T
,

t̄ =
[
U1 U2 . . . Uκ

]T
ε,

where the ti’s are r-dimensional real Gaussian random row
vectors such that t ∼ N (0, Irκ) and Xi = tit

T
i . Moreover,

{Ui ∈ Rm×r}κi=1 are orthonormal matrices such that Πi =
UiU

T
i . Observe that Mκ and M̄κ are obtained by applying

the function

f
([

b1 b2 . . . bκ
]T)

= max
j

{
‖bj‖22

}κ
j=1

on t and t̄, respectively, where bj ∈ Rr. Note that the sub-
vectors of t̄, t̄i = UT

i ε, are r-dimensional real Gaussian
random vectors similar to the ti’s. However,

t̄ ∈ span
( [

U1 U2 . . . Uκ

]T )
,

whereas t ∈ Rrκ. This implies, when m < rκ, t̄ is constrained
to a subspace of Rrκ and therefore (33) follows.

Lemma 4. Let Ś be Ś = {S \ I} for I ∈ Ĭk and constant
B > 0 . Then, we have

(i) ‖Π⊥IASxS‖22 ≥ Λmin(ÃT
I∪ŚÃI∪Ś)‖xŚ‖22

∑
i∈Ś w

2
ii;

(ii) Pr

{
max
I∈Ĭk

∣∣∣εT Π⊥IASxS

‖Π⊥IASxS‖2

∣∣∣ > B
√

2 ln
(
N
|I|
)}

≤ (
√
πB)−1

[
ln
(
N
|I|
)]−1/2[(

N
|I|
)]1−B2

.

Proof. For (i), split S into two disjoint subsets as S = {S ∩
I} ∪ {S \ I}. Since span(AS∩I) ⊂ span(ΠI), we have

‖Π⊥IASxS‖22 = ‖Π⊥IAŚxŚ‖
2
2. (34)

Now consider the closest point theorem to show that

‖Π⊥IAŚxŚ‖
2
2 = min

ν∈R|I|
‖AŚxŚ −AIν‖22

T1= min
ν∈R|I|

∥∥∥∥ [ÃŚ ÃI
] [WŚ,ŚxŚ
−WI,Iν

] ∥∥∥∥2

2

T2

≥ Λmin(ÃT
I∪ŚÃI∪Ś) min

ν∈R|I|

∥∥∥∥ [WŚ,ŚxŚ
−WÍ,Íν

] ∥∥∥∥2

2

≥ Λmin(ÃT
I∪ŚÃI∪Ś)‖xŚ‖

2
2

∑
i∈Ś

w2
ii,

where the identity in T1 is because of normalizing the corre-
sponding columns of A and the inequality in T2 is due to the
definition of the smallest eigenvalue.
For (ii), define t as t = Π⊥IASxS/‖Π⊥IASxS‖2 and note
that, when ε is a random variable, εT t is a standard Gaussian
random variable with εT t ∼ N (0, 1). Exploiting Boole’s
inequality, for any α > 0, we have

Pr
{

max
I∈Ĭk

|εT t| > α
}
≤ 2

(
N

|I|

)
Pr{εT t > α}.

Continuing, by the tail distribution of a Gaussian random
variable, we have

Pr{εT t > α} < 1

α
√

2π
e−α

2/2.

Now letting α = B
√

2 ln
(
N
|I|
)

results in the statement in (ii).
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