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Abstract

The development of graphic processing units have during the last decade improved signif-
icantly in performance while at the same time becoming cheaper. This has developed a
new type of usage of the device where the massive parallelism available in modern GPU’s
are used for more general purpose computing, also known as GPGPU. Frameworks have
been developed just for this purpose and some of the most popular are CUDA, OpenCL and
DirectX Compute Shaders, also known as DirectCompute. The choice of what framework
to use may depend on factors such as features, portability and framework complexity. This
paper aims to evaluate these concepts, while also comparing the speedup of a parallel imple-
mentation of the N-Body problem with Barnes-hut optimization, compared to a sequential

implementation.
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Chapter 1
Introduction

This report is the summary of a M. Sc. in Media Technology and Engineering master thesis
performed at Linkoping University at the company MindRoad AB. The paper describes an
qualitative comparative study between some of the general-purpose computing on graphics
processing units (GPGPU) frameworks that are in use today. The comparison will focus
on the differences in GPGPU frameworks in terms of performance, framework features,
portability, how easy it is to develop applications in the various frameworks as well as
code complexity and understandability of the application developed, with less focus on the
performance. The GPGPU frameworks that is evaluated and compared in this study are
CUDA [1], Open Computing Language (OpenCL) [7] and DirectCompute [9].

1.1 Motivation

During the last decades, the performance of central processing units (CPU) have kept a steady
linear inclination. CPU manufacturers have been able to put more and more components
such as micro-transistors on a single chip which is the reason why the development of more
and more powerful CPU’s have been developed. In a paper from 1965, Gordon Moore made
the observation that the number of transistors in a integrated circuit doubles approximately
every two years [35]. This observation has gotten the name Moore’s Law and today almost
50 years later, Moore’s observation is still valid and applicable. The number of transistors
are still increasing, but the performance of single-core CPU’s have started to decline. The

development has ran into three walls:
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* Instruction Level parallelism (ILP) wall — There is not enough instruction level

parallelism to keep the CPU busy
* Memory wall — A growing gap between the CPU speed and off-chip memory access

* Power wall — Increased clock rate needs more power which in turns leads to heat

problems

These problems have started a trend among CPU manufacturers to create CPU’s that
have more than a single core on the chip, and the production of single-core CPU’s have
drastically decreased. Today all major chip manufacturers produce multicore CPU’s and
most devices use a multicore chip, furthermore the number of cores available on chips seems
to be increasing. This multicore concept is not a new technology, graphics processing unit’s
(GPU) have been using this technology for a long time, and modern GPU’s may contain
hundreds of cores. This has started a trend to not just use the computing power within a
GPU to render graphics to the screen, but to use this massive amount of parallelism for more
general computing. This has led to the development of frameworks specifically intended
for GPGPU purposes, and some of the most popular frameworks that are used today are
CUDA developed by Nvidia, OpenCL maintained by the Khronos group and backed by a
huge variety of companies, as well as DirectCompute developed by Microsoft as a part of
DirectX.

While the performance inclination of CPU’s have started to decline, the opposite can be
said for GPU’s. As can be seen in figure 1.1, the performance of GPU’s have drastically
increased during the last decade. One of the main reasons for this inclination is the gaming
industry where the demand for more realistic and immersive graphics are pursued, which has

led to GPU’s becoming cheaper and at the same time more powerful.
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Fig. 1.1 Performance comparison of GPU’s over time. [14]

1.2 Aim

This paper aims to evaluate different GPGPU frameworks in terms of performance, portability,
code complexity and features with less focus on the performance evaluation. A suitable
benchmarking algorithm will be implemented in the GPGPU frameworks CUDA, OpenCL
and DirectX DirectCompute. The parallelized implementations will be evaluated against a
sequential implementation of the same problem.

1.3 Research questions

* What is a suitable benchmarking algorithm?

* How does a parallel implementation of the algorithm compare to a sequential imple-
mentation?

* What framework-specific optimization’s can be done for the implementation?
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* How does the frameworks compare in terms of portability, code complexity and

performance and features?

1.4 Delimitations

The selected algorithm will only be implemented in the discussed frameworks:

 CUDA
* OpenCL

* DirectCompute

Even though other optimization algorithms exists for the N-Body problem, only the
Barnes-Hut algorithm will be implemented in this work, see section 2.5. The reason for
this is because the thesis will not focus on evaluating the performance of the frameworks
when running the selected algorithm, but on the comparison between frameworks in terms of
portability, code complexity and features, which multiple optimization techniques implemen-
tations won’t contribute to. Furthermore to give the implementation a fair comparison, the

tree-structure used in Barnes-Hut will be constructed on the host.

1.5 Related work

This section describes previous research on the subject, both in terms of what previous work
and research has been done on the N-Body problem and Barnes-Hut, as well as comparisons
between the discussed frameworks.

1.5.1 Framework comparison

In 2016 a similar master thesis was performed by T. S6rman where the frameworks CUDA,
OpenCL, DirectCompute and OpenGL Compute Shaders was compared as well as how
the GPGPU implementations performed compared to an multithreaded implementation
in OpenMP [39]. The thesis compares the different frameworks primarily in terms of
performance, unlike this thesis which puts more focus on the portability, code complexity
and features of the different frameworks.
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The algorithm Sorman evaluated is a parallel implementation of the Fast Fourier Trans-
form (FFT), and the result showed that the fastest framework, CUDA, was twice as fast as
the slowest, OpenCL, and that the compute shader based frameworks OpenGL and DirectX,
are competitive with both CUDA and OpernCL in terms of performance.

A lot of previous research has been abducted on the subject of comparing the performance
between CUDA and OpenCL. K. Karimi et. al. performed an performance comparison
between the two frameworks which showed similar results to Sormans comparison [30].
Although the performance gap was more subtle in Karimi. et. al. work, the result still showed
that CUDA was faster than OpenCL.

Another comprehensive study between the two frameworks was abducted by J. Fang
et. al. [23]. The conducted study compares OpenCL and CUDA in terms of performance
when a wide variety of benchmarking algorithms, such as graph traversal, reduction as well
the N-Body problem and more, are executed in the two frameworks. Unlike the previously
discussed comparisons, the result showed that under a fair comparison the performance

difference between the two frameworks was very subtle although OpenCL beeing the fastest.

Another comparison study between CUDA, OpenCL and OpenGL Compute Shaders, as
well as a CPU multicore implementation using OpenMP has been made by R. S. Oliveira
et. al. [34]. The comparison was based of implementations of the Cardiac Monodomain
Equations, and the results showed that the OpenGL approach was the fastest with a speedup
of 446 compared to the parallel CPU implementation for a solution of a non-linear system of
ordinary differential equations (ODEs). CUDA was the fastest for a numerical solution of
parabolic partial diffential equations (PDEs) with a speedup of 8. OpenCL was the slowest
for solving the PDEs and as fast as CUDA for solving ODEs.

1.5.2 N-Body with Barnes-Hut

The N-Body problem is a common problem, and a lot of previous work has been done
regarding the algorithm. In the book GPU Gems 3, L. Nyland et. al. at NVIDIA corporation
describes a parallel CUDA implementation of the N-Body used to generate an astrophysical
simulation [33]. The implementation is done in CUDA, and describes various methods
how the CUDA implementation can be optimized with the use of e.g. shared memory,
loop-unrolling and coalesced memory accesses. The result of the performance can be seen
in figure 1.2. The implementation described in this article does not use the Barnes-Hut

algorithm to further speed up the simulation, but instead use what Nyland et. al. call all-pairs,
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meaning that all N-bodies are compared to all other, resulting in the base problem further

described in section 2.4.3.

250 —

GFLOPS

1024 1538 2048 3072 4096 6144 8192 12288 16384
N

Fig. 1.2 N-Body performance increase as N grows. [33]

Another paper describing the N-body problem, and how it can be applied to astrophysical
simulations is a paper by S. J. Aarseth [15]. Aarseth’s work describes the historical develop-
ment of the N-body problem, as well as a detailed description of the physical properties of
the problem.

M. Burtscher et. al. made an implementation of the N-Body problem in CUDA with the
Barnes-Hut optimization [18]. With focus on optimizing the implementation, the major part
of the algorithm was performed on the GPU, resulting in minimal overhead of copying data
back and forth between the host and device. M. Burtscher et. al. divided the implementation

into six main steps, all performed on the GPU:

[S—

. Compute bounding box around all bodies

2. Build hierarchical decomposition by inserting each body into octree
3. Summarize body information in each internal octree node

4. Approximately sort the bodies by spatial distance

5. Compute forces acting on each body with help of octree

6. Update body positions and velocities
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The implementation was only done in CUDA and the paper focuses on how the imple-
mentation is optimized by e.g maximizing coalescing, minimize GPU/CPU data transfer,
loop-unrolling etc. The resulting performance of the simulation when run in a sequential
CPU implementation, all-pairs parallel implementation as well as a parallel Barnes-Hut

implementation can be seen in figure 1.3.
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Fig. 1.3 Runtime per simulated step in M. Burtscher et. al. CUDA implementation of the
N-Body problem. [18]






Chapter 2
Theory

This chapter describe background theory about parallelism, and why it has become a highly
relevant topic in modern system architectures. It also describes the different frameworks
and libraries evaluated in this work, as well as some typical parallelizable problems. Finally,
benchmarking algorithms are presented and a motivation why each algorithm is suitable for
this kind of evaluation.

2.1 Background

As mentioned in section 1.1, the performance inclination of single-cored CPU’s has reached
a limit. The reason for this decline is due to three walls.

The ILP-wall which states that there is not enough instruction level parallelism to keep
the CPU busy. Some techniques do however exist such as Very Large Instruction Word
(VLIW) and the Superscalar Architecture but they are limited by the hardware complexity.

The second wall, the Memory wall is reached because of the gap between the CPU speed
and accesses to off-chip memory.

As mentioned in section 1.1 and visualized in figure 2.1, Moore’s law is still valid, but the
increased amount of on-chip micro transistors needs an increased amount of power, which

leads to overheating problems and has been named the Power wall.

The solution to all of these problems are however the same. Although it is not possible to
increase the single-thread performance, we can put more cores on a chip. Today, all major
CPU manufacturers develop multi-core CPU’s, and most devices used in our everyday life
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such as smartphones, laptops and desktop CPU’s have a multi-core architecture, and the

number of cores on a chip seems to be increasing, see figure 2.1
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Fig. 2.1 Development of CPU’s. [31]

The idea of putting multiple cores on a single chip which may be run in parallel is not
new technology, GPU’s has long been using this architecture and modern GPU chips contains
hundreds of cores. This massive amount of parallelism and parallel computing power are
designed to render graphics on screen and perform fast algebraic calculations commonly
used in computer graphics such as matrix or vector operations, and is thus parallel in nature.
But it can also be used for more general purpose computing, as quoted by Thompson et. al.
"...Most of this time, however, this power is going unused because it is only being exploited

by graphics applications" [40].

2.1.1 GPGPU History

With the release of programmable shaders and floating point precision GPU’s in 2001, the
idea of performing general purpose computing on the GPU became popular. Early research
on the subject implemented simple, well-parallelizable problems such as vector or matrix
additions, and one of the first scientific GPGPU problems that outperformed the CPU was a
implementation of LU factorization [22]. Another early research on the subject performed
by Thompson et. al. from 2002 showed that a simple arithmetic operation applied to all
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elements of a vector of varying sized, outperformed the CPU once the problem size grew

large enough, which is generally the case for GPGPU applications [40].

These early adaptations of GPGPU used the traditional rendering pipeline by performing
computations in the fragment/pixel shaders of the application, using the two major application
programming interfaces (API) OpenGL and DirectX. Although this approach adds some
limitations, it is still widespread and are still in use today. Since then, both OpenGL and
DirectX has released shaders specifically designed for GPGPU. These types of shaders
are known as Compute Shaders (CS), and Microsoft released their CS support with the
DirectCompute API, as a part of the DirectX collection of APIs.

The GPU manufacturer Nvidia realized the potential of GPGPU and developed the CUDA
framework to make GPGPU programming easier by adding lots of features and simplifying
the data transfer. Later on, OpenCL was released with the same purpose but with focus on
the portability, with a lot of backing major companies such as Apple and IBM and it is today
maintained by the Khronos group.

2.2 GPU Architecture

As previously discussed in section 1.1, whilst a CPU may have a few cores ( 8 cores on a
modern desktop machine) that can be run in parallel, modern GPUs have hundreds of cores.
Although not as powerful as a single CPU core, this extensive amount of cores allows for
massively parallel computation to be made. Moreover, the GPU allows for a much higher
theoretical bandwidth than a CPU as is illustrated in figure 2.2.
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Fig. 2.2 Theoretical giga-floating point operations per second (GFLOPS) performance of
CPUs versus GPUs. [36]

This is due to the efficient area use of the GPU architecture as visualized in figure 2.3, but in
particular the SIMD architecture (Single Instruction, Multiple Data). SIMD simplifies the
instruction handling since all cores receive the same instruction which is applied to multiple
data in parallel, usually stored in list structures. The instruction that should be applied to
each data-element is written as a separate piece of code, separated from the main program
and run on the device (GPU, FPGA or other parallel hardware). Different frameworks use
different languages in which this code is implemented, but the general GPGPU term used for

this is a kernel. The most common way of executing a kernel is done in the following steps:

1. Allocate memory from the host (typically CPU) to the device (GPU or other parallel
hardware).

2. Copy data from the host to the allocated memory on the device.
3. Launch the kernel, executing on the data that was just copied.

4. Copy back the result from the device to the host.
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(a) (b)
Fig. 2.3 Area use of CPU (a) and GPU (b)

2.3 Frameworks

This section describes the different frameworks that are a subject of comparison in this
comparative study. Each section contains sample code of a very simple vector addition kernel
for the respective frameworks. The popularity of the frameworks is based upon the chart in
figure 2.4 from Google Trends.

® CUDA ® OpenCL © DirectCompute

Search term Search term Search term

Average Jan 1,2004 Nov 1,2008 . Sep1,2013

Fig. 2.4 Popularity (based on Google Trends) over time of CUDA, OpenCL, DirectCompute.
The numbers represent search interest relative to the highest point on the chart for the given
region and time.

2.3.1 CUDA

Released in 2007, CUDA developed by Nvidia was the first major GPGPU framework to be
released. It aims to make the parallelization of a problem more manageable by providing
an easy to work with API. One downside of CUDA is that is has a weak portability and can
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only be run on Nvidia GPU’s. Despite this limitation it is a very popular framework among
GPGPU developers, see figure 2.4 [1]. The installation procedure is very simple, all that is
needed is a CUDA development toolkit which can be downloaded from Nvidia’s webpage,
and compatible hardware.

CUDA is an extension of the C/C++ language, allowing the developer to write both
device and host code in a C/C++ like fashion. To run and compile CUDA, a custom compiler
is used, NVCC. To define what parts of the code that should be run on the host and the device
the keywords __host__ and __device__ is used, although the __host__ keyword is rarely seen
since it is specified per default. To specify that the next block of code is a kernel the keyword
__global__is used. Each thread in a CUDA program is organized in a block, which in turn
is organized in a grid, see figure 2.5. When launching a kernel, arguments specifying the
grid and block-dimension must be supplied. There exists a few different types of memory in
CUDA, these memory types are listed in table 2.1

A very simple CUDA kernel that performs a vector addition can be seen in Listing 2.1.

Memory Location Cached Access Scope
Register On-chip Cached Access Thread
Local Off-chip No Read/write Thread
Shared On-chip No Read/write Block
Global Off-chip N/A Read/write Global + host
Constant Off-chip Yes Read Global + host
Texture Off-chip Yes Read Global + host
Table 2.1 CUDA memory types.
__global_ void add(int *out, const int *in_a, const int *in_b)
{
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idx < SIZE)
out [idx] = in_al[idx] + in_b[idx];
}

Listing 2.1 CUDA vector addition kernel
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Fig. 2.5 Hierarchical CUDA model for grids, blocks and threads.

2.3.2 OpenCL

For a couple of years, CUDA was the only framework developed for the sole purpose of
GPGPU and Nvidia had no competitors on the GPGPU front. That is until Apple took
the initiative to develop a competitor, and backed by a lot of major companies, OpenCL
was developed. OpenCL sought to offer a more portable and a wider array of supported
parallel hardware, and OpenCL offers the ability to run parallel implementations on other
devices than just GPU’s such as FPGA’s and ARM devices. OpenCL is an open standard,
and implementations are available from Apple, AMD, Intel, Nvidia and more [7]. Because
of this, the portability of OpenCL is good, and it can be run on most systems, provided a
parallel hardware is present. Since there are multiple implementations of OpenCL, the setup

procedure differs, but OpenCL is usually provided by the manufacturers drivers.

The syntax in OpenCL is quite similar to that of CUDA although some differences exist.
Although the hierarchy model is very similar, OpenCL uses different terms for these, as well

as for the memory types. These are listed in table 2.2.

OpenCL CUDA

Compute Unit Multiprocessor (SM)
Work item Thread

Work group Block

Local memory Shared memory
Private memory Registers

Table 2.2 CUDA vs OpenCL terms
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Similar to CUDA, OpenCL uses keywords, the keyword that specifies a kernel is __kernel.
Data that resides in the global and local memory are specified using the __global and __local
keywords. Whilst CUDA automatically selects a target device of the available hardware
on the system, OpenCL needs to know what parallel device to run on. Thus the setup
procedure differs slightly from the procedure described in section 2.2. Before copying data
and executing the kernel, a OpenCL application first have to do the following steps before
doing the steps described in 2.2:

1. Get a list of platforms
2. Choose a platform

3. Get a list of devices
4. Choose a device

5. Create a context

6. Load and compile kernel code

A simple kernel that does the same thing as the CUDA kernel described in listing 2.1,
that is perform a vector addition on two vectors, are given in listing 2.2.

__kernel void vectorAddition(__global read_only int* vectorl,
__global read_only int* vector2,

__global write_only int* vector3)

int indx = get_global_id (0);
vector3[indx] = vectorl[indx] + vector2[indx];

Listing 2.2 OpenCL vector addition kernel

2.3.3 DirectCompute

Initially released with the DirectX 11 API, DirectCompute is Microsoft’s technology for
GPGPU, and unlike CUDA or OpenCL which relies on launching kernels, DirectCompute
runs a CS as a part of the graphics pipeline. Although released with the DirectX 11 API,
DirectCompute runs on GPUs that use either DirectX 10 or 11 [9]. Since DirectCompute is a
part of the DirectX API, no additional setup is required, but DirectCompute can only be run

on Windows PCs that have a supported DirectX version.
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Since DirectCompute is not a framework, but a API of the DirectX suite and uses the
concept of CS to perform GPGPU calculations, it is quite different from CUDA or OpenCL.
All of the computing in DirectCompute is done in a CS, which would be the equivalent to
a kernel in CUDA or OpenCL. The setup process is quite similar to the one described in
section 2.2, but uses the traditional graphics way of copying data between the host and the
device using buffers, which are copied to the CS before the CS is run. The CS is written in
the high-level shading language (HLSL) also developed by Microsoft, and a simple CS that
performs a vector addition (using a structured buffer) can be seen in listing 2.3.

struct BufType
{
int i;
float f£f;
s

StructuredBuffer <BufType> Buffer0 : register (t0);
StructuredBuffer <BufType> Bufferl : register(tl);
RWStructuredBuffer <BufType> BufferOut : register (ul);

[numthreads (1, 1, 1)]
void CSMain( uint3 DTid : SV_DispatchThreadID )
{
BufferOut [DTid.x].1i
BufferOut [DTid.x].f

BufferO[DTid.x].i + Buffer1[DTid.x].1i;
BufferO[DTid.x].f + Buffer1[DTid.x].f;

Listing 2.3 DirectCompute vector addition CS

2.4 Algorithm evaluation

In this section, algorithms that are suitable for a benchmarking application is briefly explained
and discussed. The discussed algorithms are compared, and a motivation of the selected

algorithm are given which is explained and discussed further in section 2.5.

2.4.1 Parallel QuickSort

As a popular sequential sorting algorithm, the QuickSort algorithm invented by C.A.R Hoare,
is a recursive divide-and-conquer based sorting algorithm [27]. The algorithm has a time

complexity of O(n log n) in the best case, a worst case complexity of O(n?), and an average
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run time of O(n log n). A pivot element A[g] is selected from the array to be sorted. The
array is then partitioned into two subarrays A|[p...q — 1] such that all elements are less than
Alg], and A[g + 1...r] such that all elements are greater than or equal to A[g]. After this
partitioning step, the pivot element are in its correct position. This procedure are then applied
recursively to the subarrays until the entire array is sorted. Pseudocode for the algorithm
can be seen in Algorithm 1. The comparison part of the algorithm is well suited for a
parallel implementation, but due to the data dependency of the algorithm, parallelizing the
partitioning stage is a more difficult task. Some implementations and papers describing how
the algorithm can be parallelized do however exist [19][37][20].

Algorithm 1 Quicksort pseudocode

1: procedure QUICKSORT(A, o, hi)
2 if lo < hi then
3 p := PARTITION(A, lo, hi)
4 quicksort(A,lo,p—1)
5: quicksort(A, p+ 1, hi)
6: procedure PARTITION(A,lo, hi)
7 pivot := Alhi
8 i:=lo—1
9 for j:=lotohi—1do

10: if A[j] < pivot then

11: i=i+1

12: swap(Ali],A[j])

13: if A[hi] < A[i+ 1] then

14: swap(Ali+ 1], A[hi))

A parallel implementation of the Quicksort algorithm would be an interesting algorithm
to use for a benchmark application of this degree. The performance of an parallel implemen-
tation could be compared to the classical sequential QuickSort algorithm for varying problem

sizes, although due of the triviality of the implementation this algorithm was discarded.

2.4.2 Distance transform

First presented by C.Green of Valve Softworks, a method which allows improved rendering
of glyphs composed of curved and linear elements was proposed [24]. The technique works
by generating a distance transform (DT) from a high-resolution texture by measuring the
distance between a background texel to the closest foreground texel. The distance field is

then stored into a channel of a lower-resolution texture, resulting in a texture with a arbitrary
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resolution, whilst occupying a small amount of video random access memory (VRAM). This
low-resolution texture can then be rendered by using alpha-testing and alpha-thresholding

features of modern GPU’s with great results as illustrated in figure 2.6.

(a) Alpha-blended (b) Alpha tested (c) Green’s technique

Fig. 2.6 Vector art encoded in a 64x64 texture using (a) simple bilinear filtering (b) alpha
testing and (c) Green’s distance field technique

S. Gustavson et. al. later proposed an improved version of Green’s technique, using
the Euclidean distance to generate a DT [26]. Whilst Green’s description of the proposed
algorithm was quite sparse, Gustavson et. al. technique described the general implementation
more detailed. Although the general technique described by Green and Gustavson et. al.
only describe the two dimensional case, the distance transform has also been extended to

three dimensions [29].

One of the problems with the discussed distance transform is the ability to produce sharp
features such as corners, and solutions to this problem has not been further investigated.
Since the technique works on pixel/voxel level, the algorithm is well parallelizable, and an
idea to further investigate this discussed problem was presented. This would however drift

apart from the main idea of this research and was thus discarded.

2.43 N-Body

The final proposed algorithm is the N-Body problem. Although the base implementation of
the algorithm is fairly trivial and embarrassingly parallel, the algorithm can be optimized by
using the Barnes-Hut algorithm, reducing the time complexity from O(n?) to O(n log n) [17].
The N-Body problem as well as the Barnes-Hut algorithm is further described in section 2.5.
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2.4.4 Choice of algorithm

The choice of algorithm to be implemented and used to evaluate the different frameworks
in this work was motivated to be complex enough so that a fair comparison between the
frameworks could be made. If the algorithm was too trivial or embarrassingly parallel,
the risk would be that framework specific features could be less utilized, and it would be
difficult to compare the frameworks in this aspect. It would also raise the risk where the

framework-part of the implementation is to small for a fair comparison to be made.

With this in mind, the algorithm had to be complex enough so that a fair comparison
could be made, but not to complex so that the algorithm couldn’t be implemented in the given
amount of time. Another motivation of the choice of algorithm was that it would include

more complex data structures, and not just lists like arrays or vectors.

The algorithm that best suits this motivation is the N-Body problem when optimized using
the Barnes-Hut algorithm. Although the base case of the algorithm is embarrassingly parallel
and fairly trivial, when optimized using the Barnes-Hut algorithm it gets more complex. The
implementation must be able to handle the creation and traversal of trees which is not a very

common implementation in GPGPU applications.

2.5 N-Body

The following section will describe the theory behind N-Body problem. A description of
base problem is presented, followed by a description of the Barnes-Hut algorithm, and how

it can be applied to the N-Body simulation to improve the performance.

2.5.1 Base problem

An N-body simulation is a numerical approximation of the behaviour of bodies in a system.
A common implementation of the N-Body problem is a astrophysical simulation where
each body represents a celestial body such as a star, galaxy or planet. Other astrophysical
applications of the N-body problem can be used on a smaller scale to simulate a e.g. 3-body
simulation of the earth, moon and sun. The simulation approximates how the celestial bodies
behave over time when each body is affected by gravitational forces from all the others. It

has also been used in physical cosmology, where N-Body simulations have been used to



2.5 N-Body 21

study the formation of e.g. galaxy filaments and galaxy halos from the influence of dark
matter. [32]

The N-body problem has also been used in Plasma physics, where the bodies are ions or
electrons, and in molecular dynamics where the bodies represent molecules or atoms (usually
in fluid state). In fluid dynamics the vortex blob method for solving Navier-Stokes equations,
and boundary value problems have been solved rapidly by using N-Body methods. [25]

Another application where the N-Body simulation are known to be used is protein folding,
where N-body simulations are used to calculate electrostatic and van der Waals forces. It is
also used in the computer graphics field, where it is used for turbulent fluid flow simulation

and global illumination computation. [33].

The simulation made in this work is a astrophysical simulation of a cluster of stars, where
each star is affected by gravitational forces from all others. As mentioned earlier this is one
of the most common applications of N-Body problem and many papers and implementations

regarding this kind of simulation has been made earlier [15][18][33].

General formulation

Consider n point masses m; where i € [1,2,...,n]. Each point mass has a position vector p; in
two or three dimensional space R3. Newton’s second law states that mass times acceleration
m,dd’;’ is equal to the sum of all of the forces applied on the mass. In a astrophysical
simulation, the only force applied to a body is the gravitational force, and Newtons law of
gravity says that the gravitational force applied to a mass m; by a mass m; is given by the
equation

Gmimj(l’j —Di)

lp;—pill?

where G is the gravitational constant and ||p; — p;|| is the magnitude of the distance between

Fj= @.1)

the masses. Summing over all masses, the total gravitational force F; applied to mass m;

results in the N-body equations of motion:

Fi= mz (2.2)

i Gmimj( pj— Pi)
dt2 o

iz =il

Equation 2.2 has to be applied to each point mass i in each timestep of the simulation,
and thus have to be compared to all other n — 1 point masses in the system resulting in a time
complexity of O(n?). Pseudo-code of this all-pairs n-body calculation using equation 2.2 can



22 Theory

be seen in algorithm 2. By analyzing equation 2.2 and the pseudocode given in Algorithm
2, we can conclude that there are two parts of the algorithm that can be parallelized. Using
p = n processors, the outer for-loop in the main procedure can be parallelized, resulting in
each particles body-body interaction is calculated by a single process. Once the particles
velocities have been updated, the position updating is embarrassingly parallel using a suitable

integration scheme, e.g Runge-Kutta or Euler integration.

Algorithm 2 All pars N-body pseudocode

: procedure BODYFORCE(p;, p;)
: F:=0

1

2

3 Gmimj := G* p;.m*p;.m

4: dPos .= p;—p;

5: distance := dist(dPos)

6 magn3 := abs(dist)?

7 F; := Gm;m j * dPos /magn3

8 return F;

9: procedure MAIN

> Update velocities

10 fori:=0tondo

11 pi := particlesli]

12: F;:=0,0,0

13: for j:=0,j#itondo

14: pj:= particlesj]

15: F; := Fi+ BodyForce(p;,p;)
16: od

17: plil.v=pli].v+dt*F;

18: od

> Update positions
19: fori:=0tondo

20: pi := particles]i]
21 Pi-POS = p;i.pos+ p;.vxdt
22: od

Although this all-pairs implementation is straightforward and could be implemented
effortlessly, with the time complexity O(n?) it is not very performance efficient and scales
badly as the size of the problem grows. Various methods to improve the performance of the
algorithm has been investigated by using hierarchical methods such as fast multipole method
(FMM), the Barnes-Hut algorithm and a radiosity method. [38][17]

Both Barnes-Hut, further discussed in section 2.5.2, and the FMM uses a recursive

decomposition of the computational domain into a tree structure. The FMM is very similar
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to the Barnes-Hut method. The main difference between FMM and Barnes-Hut is that while
the Barnes-Hut only computes particle-particle, or particle-cell interactions, the FMM also
computes interactions between internal cells directly. Due to the FMM method beeing more
complex, only the Barnes-Hut algorithm is implemented in this work [38]. The radiosity
implementation is mostly used in computer graphics when computing global illumination

and is not further discussed here.

2.5.2 Barnes-Hut algorithm

Invented by J. Barnes and P. Hut, the Barnes-Hut algorithm is a hierarchical tree based force
calculation algorithm with the time complexity O(n log n) [17]. The algorithm is described
in three dimensional space, but is trivially adapted to two dimensional space as needed.

The algorithm uses a hierarchical tree-structured subdivision of space into cubic cells,
each divided into eight subcells whenever more than one particle is found to occupy the same
cell. The root of the tree does thus represent the entire spatial space the particles reside in.
When calculating the force applied to a single particle, only particles that are close enough
under a certain condition, will be accurately force calculated. Particles that are far away from
the particle will have a small impact on the resulting force, and can thus be approximated.
In Barnes-Hut this is done by calculating each cells center of mass after the tree has been
constructed. The tree is then traversed for each particle, if the cell’s center of mass is far
enough away from the particle, the entire subtree of that cell is approximated by a single
"particle" at the cell’s center of mass. If however the cell’s center of mass is not far enough

away from the particle the cell’s subtree must be traversed [38].

The tree is built by recursively adding particles into the initially empty root cell, subdi-
viding into eight children when necessary. The resulting tree’s internal nodes are space cells,
and the leaves of the tree are individual particles. A two dimensional spatial representation
as well as the resulting tree can be seen in figure 2.7. Each node in this tree structure has four
children and is thus called an quadtree. In three dimensional space, each node will thus have
eight children, and this kind of tree-structure is called a octree. The tree is then reconstructed
at every timestep to avoid ambiguity and tangling. For a timestep ¢, the N-Body simulation

procedure can be summarized in the following steps, each which can be run in parallel [18]:

1. Compute bounding box around all bodies
2. Build hierarchical decomposition by inserting each body into the octree

3. Summarize body information in each internal octree node



24 Theory

4. Approximately sort the bodies by spatial distance
5. Compute forces acting on each body with help of the octree

6. Update body positions and velocities

ik /%\

L
(XN}

(a) Spatial domain (b) Quadtree representation

Fig. 2.7 Barnes-Hut recursive subdivision, visualized in 2D for simplicity
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3.1 Implementation

A common application where GPGPU is used is when computing calculation heavy simula-
tions such the N-Body problem described in this thesis. Other common visualizations where
GPGPU can be applied is to visualize fractals such as the Julia or Mandelbrot set, named
after the french mathematician Gaston Julia and Benoit Mandelbrot. GPGPU has also been
used in medicine for accelerated medical image reconstruction [16], as well as accelerating
the Marching Cubes algorithm [28].

This section describes the implementation of the visualization and the parallel N-Body
algorithm in all discussed frameworks, as well as how the measurements were performed
and what framework specific features was used. All implementations was implemented in

C/C++. The visualization was implemented in the cross-platform API OpenGL on a PC.

3.2 Visualization

Although not necessary for the evaluation, a visualization of the system was implemented.
This was the first step in the implementation process, and the visualization was made using
OpenGL. The purpose of the visualization is to make it easier to test and debug the application,
which is very difficult without a proper way of visualizing the calculated positions. The
N-Body visualization is very similar to a particle system, where each body is represented by a
particle. To be able to visualize a very large amount of bodies, the visualization performance

is critical, and there are a few ways of implementing a particle system in OpenGL.
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The first, and perhaps the most intuitive way is to render a sphere in all positions, by
calling glDrawArrays N times e.g. in a for-loop. This is very inefficient in two regards; a
sphere requires a lot of vertices to appear smooth, and drawing a large amount of spheres
requires a large amount of vertex data. The second reason this is inefficient is because all
SM’s (Streaming Multiprocessor) on the GPU will be dedicated to drawing a single polygon,
resulting in a huge amount of performance loss. However, since the particles are so small,
they don’t have to be rendered with a high resolution. A commonly used trick when rendering
particle systems is to represent each particle as a quad with a semi-transparent texture with
a circle. Each particle will thus only consist of four vertices, which is far less than if each
particle was represented by a sphere. The quad is then rotated so that the quad always faces
the camera, giving the illusion that the particle is actually a sphere (or whatever shape the

texture represents). This technique is known as billboarding.

The solution to the second problem is a bit more complex, and a few solutions exists.
One way is to generate a single vertex buffer object (VBO) with all the particles in them.
This is a easy and effective solution that works on all platforms.

The second way is to use geometry shaders to render a particle in each position. The
downside to using geometry shader is that geometry shaders is only supported in systems
with OpenGL version 3.2+, and is thus not very portable.

The third way is to use instancing, meaning that a single mesh is used, but many instances
of the mesh. This solution has a nice balance between performance and availability and was
thus chosen in this implementation. To achieve this, two main VBO’s are used: one VBO
containing the positions of the quad, i.e. four vertex coordinates, and a second VBO of size
n containing the positions of the instances of the quad, where n is the number of instances.
The quad is then rendered using glDrawArraysInstanced (GL_TRIANGLE_STRIP, 0, 4, n) [11],
where the first parameter states that the object should be rendered as a triangle strip, i.e. a
series of connected triangles, sharing vertices. The second parameter specifies the starting
index in the enabled arrays. The third parameter specifies the number of indices to be
rendered, and the fourth the number of instances. The quad positions are passed to the vertex
shader as an attribute, and the shader then translates the quad into its correct position. The
result of the implementation can be seen in figure 3.1, where n = 3.5 x 10°, running at a
stable 60fps on a Nvidia GTX970 GPU. Each quad is rendered in a random (x,y,z) position

in a given bounding box.
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Fig. 3.1 Instanced quad rendering, 3.5%10%nstances

3.3 Sequential

This section will describe how a sequential implementation of the all-pairs N-body algorithm
was implemented, followed by an optimized sequential implementation using the Barnes-Hut
method. [17]

3.3.1 All-pairs implementation

With the particle system visualization implementation described in section 3.2 as a template,
a sequential all-pairs N-Body simulation was implemented. A particle is represented by a
data structure which contains the position, velocity and mass of the particle. These particles
are then instantiated and given a random position. All particles are given the same amount
of mass, which makes it easier to analyze the simulation. To make the visualization more
visually interesting, the particles are placed in a galaxy like structure using polar coordinates
using a random ¢ angle, and a random radius r such that x = r cos ¢, y = r sin ¢@. If the
particles index is even it is translated with a constant length in the positive x-direction, whilst
if the index is odd, it is translated in the negative x-direction resulting in two separated galaxy

shapes.
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To further mimic the behavior of a galaxy, each particle is given a speed according to:
v=(c—p)xz (3.1)

where v is the velocity of the particle, c is the center of the galaxy, p is the position of the
particle and z is the z vector (0,0, 1). This results in that each particle will spin around the

center of the galaxy, simulating how stars in a real galaxy behaves.

Once the system has been initialized, the integration is done in two separate steps. First,
the net force F applied on each particle is calculated as it is affected by gravity from all others
according to equation 2.2. In a sequential all-pairs implementation, this is typically done by
using a nested for-loop resulting in a time complexity of O(n?). The next step is to update

the position of the particle which is done using a first order Euler integration according to:
P =p+Fx*At (3.2)

where p’ is the new particle position, p is the old position, F is the net force applied to the
particle and At is the delta time of the simulation. Since this is a first-order method, the error
grows quickly with a local error proportional to the square of the step size, and a global
error proportional to the step size. The step size of the Euler method used in this simulation
does thus depend on the delta time which may vary on different systems. To prevent this a
constant Af = c is used, with a small enough constant ¢ so that the integration is accurate
enough. This simulation does not aim to be a physical accurate simulation so this integration
method works well in this implementation.

3.3.2 Octree construction

The next step in the implementation was to start working on the Barnes-Hut algorithm by
creating an octree from the particles in the particle system. This procedure follows the theory
described in section 2.5.2 and illustrated in figure 2.7. The octree is represented as a data
structure containing the spatial bounds of the cell, the spatial position of the node’s center
of mass, as well as the total mass contained in the node. It also contains it’s eight children,
which are of the same kind of data structure, thus resulting in a recursive data structure. The
first step to building the tree is to find the bounds of the entire particle system, which is
done in a simple reduction algorithm. With this information, the root cell of the octree can
then be constructed with the given bounds. The next step is to insert the positions of the

particles which is done recursively. The position of the particle to be inserted is passed as an
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parameter, and the tree is then recursively traversed to find the respective node to insert the
particle in. If this node is found to be already occupied with another particle, the node is then
subdivided into eight new nodes, and the two particles are then moved into their respective

new nodes.

A problem with the insertion is to know what octant the particle should be inserted to.
Since there are eight octant’s this can be represented as a single byte. By comparing the
position to be inserted with the middle of the cells x,y,z dimensions, this problem is reduced
to a single binary expression by following a set of fixed rules. Pseudocode for this procedure
can be seen in algorithm 3, the procedure insert is called for the root of the tree once for
each particle. The resulting octree applied to a system with 2048 particles is visualized in
figure 3.2.

Once the tree has been constructed, the next step is to calculate each nodes center of mass
(COM) and the total mass contained inside the spatial domain that the node represents. This
is again done by utilizing recursion. Each nodes COM is the average of it’s children’s COM
and its total mass is the sum of it’s children’s total mass. The algorithm starts by calculating
the root’s COM and total mass, which recursively steps through the tree, calculating the
COM of each nodes as it traverses the tree. The termination condition of the recursion is
when a leaf node, or a empty cell is reached.
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(a) Particle system

(b) (a) with rendered octree bounds

Fig. 3.2 Particle system subdivided into an octree
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Algorithm 3 Building octree pseudocode

1

10:
11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

2
3
4
5
6:
7
8
9

: procedure INSERT(x,y,z,data)

if node.isEmpty then > Turn into leaf
node.posx := x
node.posy :=y
node.posz .=z
node.data := data

else > Node already contains data
if node.isChild then > Subdivide and move into appropriate child

INSERTSUB(node.posx,node.posy,node.posz,node.data)
node.data = NULL

INSERTSUB(X,y,z, data)

: procedure INSERTSUB(x, y, z,data)

sub:=0

if x > midX then > Children 0,2,4,8 have positive x-coordinates
sub+ =1

newMinX := midX
newMaxX := maxX
else
newMinX = minX
newMaxX = midX
if y > mid, then > Children 0,1,3,4 have positive y-coordinates
sub+ =2

newMinY := midY

newMaxY := maxY
else
newMinY := minY,
newMaxY := midY ;
if z > midZ then > Children 0,1,2,3 have positive z-coordinates
sub+ =4

newMinZ := midZ
Nyax,; ;= maxZ
else
newMinZ := minZ
newMaxZ := midZ
if !children[sub] then > sub will now contain the octant index, sub € 0,8
children[sub| := newOctreeNode(
newMinX ,newMinY ,newMinZ,

newMaxX ,newMaxY,newMaxZ)
children[sub)— > insert(x,y,z,usryata)
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3.3.3 Barnes-Hut force calculation

Once the tree has been built and the COM of each node has been calculated, the force
calculation can begin. Besides the tree, an container containing information about all
particles in the systems is used to simplify the data management. Each particle in this
container is similar to that of the cells in the tree described in section 3.3.2. The particle data
structure contains information about the particles mass, position and velocity. This makes
the force calculation simpler since the tree can be traversed once for each particle when
calculating its net-force, which is a procedure that can easily be parallelized.

The force calculation for a particle p starts by traversing the tree from the root and then
recursively traverses the tree. For each node it traverses, the euclidean distance from the
particles position to the COM of the current node is calculated according to:

d(q,p) =d(p,q) = \/(px —42)* + (py = 4y)* + (P: = 42) (3.3)

where g and p is the position of the particle and the node. If this distance is equal to zero, it
means that the current node is the same node as the particle, and the traversal continues. If
the COM of the node is far away enough, the entire sub-tree of the node can be approximated
as a single point mass and the force can be calculated using the COM and the mass of the
node. If the node is to close to the particle, the sub-tree has to be "opened" and the traversal
continues through the sub-tree, recursively calculating the net-force as the tree is traversed.

One of the problems with the force calculation is what the distance that decides if a node
is far away enough so that the sub-tree can be approximated should be. Barnes. et. al. does
not mention a general strategy how this distance condition is specified [17] . Burtscher et.
al. uses a constant cutoff distance, which specifies when a node is far away enough [18].
This implementation uses a more general approach to this problem. The average width of
the nodes bounds is calculated according to equation 3.4, where the max and min variables
represent the bounds of the current node. The calculated average width is then used to
calculate the ratio between the width and the distance to the node. If this width-to-distance
ratio is smaller than a constant ¢, the node is considered to be far away enough to be evaluated

as a single point.
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Wave =((max, — miny )+
(maxy, — miny)+ (3.4)

(max; —min;))/3

When the net-force for all particles have been calculated, the positions of the nodes is
updated. It is important that this step is done after all of the forces have been calculated to get
a correct simulation. When the forces are calculated, the velocity property of each particle is
updated. The position update is then done by applying equation 3.2 for each particle. With
the position update, the simulation step is concluded. The tree is deallocated before beeing

rebuilt in the next simulation step.

34 CUDA

Once a sequential implementation was in place the work on porting the implementation to
CUDA was started. The octree data structure was built using pointers, pointing to its child
sub-trees. This creates two problems when copying the tree structure to the GPU. The first
problem is that the size of the tree is unknown and changes very frequently as the tree is
rebuilt every simulation step, resulting in an uncertain amount of data to be transferred to the
device. Although the size of the tree can be calculated, either when the tree is beeing built, or
by a simple depth- or breadth-first traversal of the tree once the tree has been constructed,

this solution does however only solve the first problem.

The second problem is that pointers in the octree point to a memory location in the heap
memory, which when transferred to the device must be updated to point at the correct position
on the device, which would be a performance heavy task. Moreover, complicated structures
involving a lot amount of pointers works poorly performance-wise in CUDA, since all the

pointer chasing might drastically decrease the total memory bandwidth.

The solution to both problems is to flatten the tree into an array with a fixed size n > N,
where N is the number of bodies. The tree will have N leaves, so the size of the array has to
have a fixed size which is bigger than the amount of bodies. This was done in two steps. The
first step was to do an iterative breadth-first traversal of the tree, starting from the root, and
inserting the traversed nodes into the array, as well as assigning the index to each node. This
results in that the array will be sorted top-down, left-right from the tree with the root at index

one, visualized on a binary tree in figure 3.3. Now that the tree has been flattened into a
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single list, the child pointers of each node can be replaced with the indices of the child nodes
which lies in the same list as the node, making the requirement of pointers in the CUDA

kernel redundant and avoiding the the pointer chasing issue.

O,

o ulivoN
R@ @G{G@ @R

Fig. 3.3 Order of the flattened tree when a breadth-first flattening algorithm is applied to a
binary tree

Now that the octree has been flattened into a tree, it can effortlessly be copied to the
device since both the size of the flattened tree is known, and the pointers to each nodes
children has been abstracted away and been replaced with indices in the flattened tree. The

flattened octree list can simply be passed to the kernel as an argument.

The remaining part of the algorithm is now reduced to two well parallelizable problems.
The first is to calculate the net force of each particle, and the second to update the positions
of each particle. The sequential force calculation handles one particle at a time, and traverses
the tree once for each particle. This problem is well parallelizable by letting each thread
handle one particle. The position update was parallelized in a similar fashion, each thread
updates the position of a particle in parallel by using the Euler integration method described

in equation 3.2.

The sequential algorithm which was implemented before the CUDA implementation
started utilizes recursion to traverse the tree when calculating forces. All Nvidia GPU’s of
compute capability 2.0 and higher support a stack and can thus utilize recursive functions in
CUDA, making the tree traversal in the kernel very similar to the sequential tree traversal.
However since recursive calls can’t be inlined, and since the amount of overhead spawned
when allocating memory for the recursive calls increases, they might significantly decrease
the performance due to the spawned overhead when using recursion. Thus an iterative

tree-traversal was implemented as well in a breadth-first fashion.

One way of doing an iterative breadth-first traversal is by using a queue. All children

of the active node is pushed onto the queue, and in each iteration the first element of the



3.4 CUDA 35

queue is selected, iteratively pushing each nodes children onto the queue. CUDA does not
support the use of the std: :queue in kernel code, so a manual FIFO (First In, First Out) queue

data-structure was implemented.

Since CUDA supports C++ in kernels the queue could be implemented as a datastructure,
containing expected member functions such as push (), pop() etc. To avoid pointer chasing,
the queue is implemented using an indexed array as well as integers indexing the front and
the back of the queue. The code for the queue can be seen in listing 3.1.
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struct MyQueue {

static const int MAX_SIZE = 10000;
int £ = -1, r = -1;
int A[MAX_SIZE];

bool empty () {

return (f == -1 && r == -1);
¥
bool isFull () {

return (r + 1) % MAX_SIZE == f ? true : false;
}

void push(int x) {
if (isFull()) {

return;
}
if (empty ()){
f =1 = 0;
}
else {
r = (r + 1) % MAX_SIZE;
}
Alr] = x;
}
void pop ()
{
if (empty()) { return; }
else if (f == 1r) {
r =f = -1;
}
else {
f = (f + 1) % MAX_SIZE;
}
}

int front (){
if (empty()) {
return -1;
}
return A[f];

Listing 3.1 Device queue used for iterative traversal of the tree
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3.5 OpenCL

Once the CUDA implementation was done, the work started on the OpenCL implementation.
To be able to perform a fair comparison between the selected frameworks, the same host
program that was used for the CUDA implementation was used for the OpenCL implementa-
tion. This works well since the main program is implemented in a way so that the device
part of the code is well abstracted away from the main application. The host is responsible
for building the octree, flattening the octree into an array as well as the graphical simulation,
the device part of the code is responsible for calculating forces and updating the positions
of the bodies. The device part of the application is separated into its own class object, thus

abstracting it away from the main application.

The OpenCL distribution used in this implementation is Nvidia’s OpenCL implementa-
tion, version 1.2, which is the newest version developed by Nvidia and adds some restrictions
further discussed in section 4.2. Although OpenCL are in many aspects very similar to
CUDA, some major differences exist. Since OpenCL does not only target GPU devices,
but a wider range of parallel hardware (see section 2.3.2), the implementation needs to
specify what device that the parallel kernel should run on. This step is automated by CUDA
since it selects the default GPU device available on the system. Since this implementation
was performed at a system containing only one GPU, this implementation selects the first
available GPU residing in the system. Moreover, unlike CUDA where the device code is
processed at compile time using Nvidia’s NVCC compiler, OpenCL has to compile the kernel
code during runtime. Although the kernel code can be written inline as a string, the common
practice is to separate the device and host code which was done in this implementation. The
kernels are written in separate .c1 files which is read by the host application, and compiled

during run time.

Similar to the CUDA implementation, the parts of the N-Body simulation that has been
parallelized is the force calculation as well as the position updating. The flattened tree that
is to be copied to the device is a data structure containing a list of class objects, OctreeNode.
To get this data to the device in CUDA is to just do a simple copy of the array to the device
memory since CUDA kernels are based on C++ and does thus support classes. Nvidia’s
OpenCL version 1.2 which is used in this implementation uses the language OpenCL C for
device code and does thus not support this feature. Newer versions of OpenCL (v2.0, released
in 2013) does support OpenCL C++ in kernels which is based on C++11 and allows for the
creation of classes, templates, operator overloading, function overloading etc [10]. OpenCL
C++ does however not support certain C++ features such as exceptions, memory allocation,

recursion and function pointers. Although Nvidia is a major backer to OpenCL, Nvidia’s
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latest version of OpenCL is version 1.2, and does thus not support C++ features, so the device
code has to be written in OpenCL C. This means that the process of copying the flattened tree
to the device is more cumbersome than in the CUDA implementation. Although OpenCL C
does not support classes, it supports data structures to be copied between the host and the
device. Thus the flattened tree was restructured to contain data structure representations of
the OctreeNode class. This step is done in the host algorithm that flattens the tree. Now that
the tree has been flattened and each node is represented as a data structure instead of a class
object, the flattened tree can be copied to the device.

As mentioned in section 3.4, all Nvidia GPU’s of compute capability 2.0 support recursive
calls in kernels, and although the GPU used for the OpenCL implementation is the same as the
CUDA implementation and does thus hardware-wise support recursive calls, OpenCL does
not. The approach to the first implementation is thus different to the CUDA implementation
described in section 3.4. Since the recursive traversal of the tree is more intuitive and simpler,
it was the first force calculation algorithm that was implemented in CUDA, but since OpenCL
does not support recursion inside kernels, the iterative version was implemented straight
away. To perform a breadth-first tree traversal, the most common iterative way is to used a
queue, where non-visited nodes are enqueued. As mentioned in section 3.4, CUDA does not
support the std library, which is also the case in OpenCL, and an own implementation of a
queue was made. In CUDA this was done using a C++ struct, containing initialized member
variables and member functions expected from a queue such as push(), pop(), front() and
empty (). However since OpenCL C is based on C99, where data structures can’t contain
member functions, and structure variables can’t be given a default value, the code responsible

for pushing, popping etc. from the queue had to be inlined in the kernel.

3.6 DirectCompute

Compared to CUDA and OpenCL, DirectX Compute Shaders, or DirectCompute, is very
different. Whilst CUDA and OpenCL are frameworks developed with the purpose of GPGPU,
DirectCompute is more similar to traditional graphics programming and resembles traditional
GPGPU using fragment-/pixel-shaders. DirectX developed by Microsoft, for Microsoft
systems, is widely available on Microsoft systems, and DirectX 11 is included in systems

running Windows 7 or newer.

Released as a part of the Direct3D 11, Microsoft’s Compute Shader (CS) is an alternative
method of performing general purpose computing on the GPU [5]. Similar to a CUDA or

OpenCL kernel, the CS is similar to a vertex- or pixel-shader but with the purpose of doing
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more general computing, and is written in High Level Shading Language (HLSL), developed
by Microsoft.

Compared to CUDA and OpenCL, the initial setup procedure in a Direct Compute
application is more complex and a few steps has to be done before the application is ready to

perform the computations.

The first step is to create a device context and to create a target device on which the com-
putation will be performed. The device is created by calling the method D3D11CreateDevice,
with arguments defining what type of device that should be created. Since DirectCompute is
only supported on systems with Direct3D 10 or 11, this must be taken into account when
creating the device. To specify this, a D3D_FEATURE_LEVEL variable is passed as an argument
to the device creation method which specifies which feature levels the device will use. Once
the method has been called, the resulting feature level of the device can be determined. This
information is important because if the resulting feature level is too low, lower than 10.0, CS
is not supported. This method also allows the option to select what hardware the device is

referring to, in this implementation the default graphics card is selected.

The second step is to compile the actual HLSL compute shaders. The DirectX provides
a method for doing this depending on the DirectX version is running on the system. One
thing to keep in mind when creating the CS is what CS shader profile to use. Although
there’s not much feature-wise difference between CS 4.0 and 5.0, if the system is running
Direct3D (D3D) feature level of 11 we generally want to use CS 5.0 as it allows for better
performance on 11-class hardware [9]. The HLSL CS source file can then be compiled by
using either D3DCompileFromFile Or D3DX11CompileFromFile, depending on the feature level
of the hardware. If the source file is successfully compiled, a CS instance object can then be

created from the compiled shader code.

The process of performing the computation on the device is similar to the process in
CUDA and OpenCL. First memory has to be allocated on the device. DirectCompute uses
buffers to achieve this. These buffers have a wide variety of options which are set by using a
D3D11_BUFFER_DESC data structure instance, passed as an argument when creating the buffer.
This description may contain information such as if it is a constant buffer, if it is a raw
or structured buffer, the size of an element in the buffer as well as the total size of the
buffer. This data structure along with the data the buffer will contain is then be passed to
ID3D11Device: :CreateBuffer which creates an buffer instance object.

Before the CS can be launched, view interfaces has to be generated from the buffers
which can then be passed and accessed by the CS. Two types of view interfaces was used in
this implementation: ID3D11ShaderResourceView and ID3D11UnorderedAccessView, Where the
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Variable name Description

SV_Grouplndex Flattened 1D index of a thread within a
thread group

SV_DispatchThreadID Global thread index, sum of SV_GroupID *
numthreads and GroupThreadID

SV_GroupThreadlD 3D Indices for a thread within a group

SV_GroupID Indices for which thread group a compute
shader is executing in

Table 3.1 HLSL index variables.

main difference is the CS has read-only access to a a shader resource view (SRV), whilst the
CS has read-and-write access to a unordered access view (UAV) at the cost of performance.
UAVs does thus act as outputs from the compute shader and is the only type of view interface
that can be used as an output buffer. Constant buffers can be passed straight to the shader

without requiring the use of SRVs or UAVs.

Now all information needed to launch the CS is received. Although it requires a lot
of code to set up buffers and view interfaces, the process of launching a CS is trivial. We
first have to bind the shader to make it active, this is done by using the method cSSetShader
with the corresponding CS instance as an argument. We can then pass the view interfaces
and constant buffers to the CS in a similar fashion by calling CSSetUnorderedAccessVieuws,
CSSetShaderResources Or CSSetConstantBuffers. The CS is then launched by calling Dispatch
(X,Y,2), where X,Y,z specifies the number of thread groups to be launched in each dimension.
The number of thread groups (blocks in CUDA, work groups in OpenCL) is thus specified
from the host when dispatching the CS, the number of threads per group is specified on
the device in the CS by using the numthreads(X,Y,Z) attribute, which specifies how many
threads should be dispatched in each thread group. E.g a Dispatch(8,1,1) with a numthreads
(512,1,1) would dispatch a compute shader with a total of 8 thread groups, each group
containing 512 threads, thus the total number of threads would be 4096. The thread and
group index can then be retrieved with the keywords listed in table 3.1. The result from the
CS can then be retrieved by using the method Map, and copy the data back into its original

container with a memcpy.

Since all data that is to be passed to the CS has to be bound to a buffer, there is no way
of directly passing single data elements such as integers or floating points. The common
practice of achieving this is to create a data structure containing all single element variables,
and then generate a single element constant buffer with the data structure which is passed to
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Buffertype Description

cbuffer Constant buffer
RWBuffer Raw buffer
RWStructuredBuffer Raw structured buffer

Table 3.2 HLSL buffer types.

Register type Description

b Constant buffer

t Texture and texture buffer
C Buffer offset

s Sampler

u Unordered Access View

Table 3.3 HLSL register types.

the CS. Since it is a constant buffer, this buffer can be passed to the CS without the need of a
SRV or UAV.

The UAVs, SRVs and constant buffers are unlike OpenCL and CUDA not recieved as
arguments to the kernel function, but as "global" variables inside the shader code. The buffer
is recieved according to bufferType<T> bufferName : register(Type#) in the HLSL code,
where the # specifies in what register slot the buffer is assigned, which is specified when
setting the buffer from the host, and the Type is a single character describing the register type.
Although many types of HLSL buffers exists, the ones used in this implementation are listed
in table 3.2. The register types used in this implementation are listed in table 3.3.

Similar to the CUDA and OpenCL implementation, there are three datastructures that has
to be passed to the CS in order to calculate the forces and update the positions:

* The positions of the particles.

* A container with more information about each particle such as it’s velocity and mass.

¢ The flattened octree.

Both the position container and the particle container has to be updated in the CS, and are
thus passed to the shader as UAVs. The flattened octree container however is unmodified in
the shader and can be passed as a SRV to the shader for optimization purposes. To minimize
the amount of overhead generated by copying data between the host and the device, the

shader views are copied once before the force calculation CS is dispatched. There is no need
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to retrieve the result from this dispatch since the required data for the position update CS is
already on the device. Once both dispatches has been finished, the data can be copied back

into it’s original containers.

Two types of CS was used in the implementation, one CS responsible for calculating the
forces applied on each body in the system, and a second CS responsible for updating the
positions. Since the positions have to be updated after the force calculation has been finished
for each simulation step, two CS dispatches was made to be able to synchronize between the
thread groups.

The first CS, the force calculation CS, was ported from the OpenCL force calculation
kernel and is very similar. The CS responsible for updating the positions of the bodies is
very trivial. Since the force calculation has been done before this shader is dispatched, all
information needed to calculate the new position of the body is obtained. The position is
updated in the same way as in CUDA and OpenCL by using Euler Integration. Since the
positions have to be retrieved and read by the host to later be passed to the visualization, the

position vector is converted into a raw buffer, and passed to the shader as an UAV.

The force calculation CS is more complex than the position update CS. Since HLSL
does not support recursive calls, an iterative implementation using a queue was implemented.
Although shader model 5.0 used in this implementation support C++ like data structures and
classes with member functions and variables, some limitations exists. HLSL classes/data
structure cannot contain member variables with initial values. This can however easily be
avoided by e.g using a initialize member function. However when using a data structure
method inside a loop, the loop is forced to be unrolled. When performing the iterative tree
traversal using a queue, a while-loop is running until the queue is empty. The problem is that
the while loop cannot be unrolled, and thus it’s not a viable solution to use a data structure
representing a queue. The solution to this was similar to how the same problem was solved in
the OpenCL implementation as described in section 3.5, by in-lining the push/pop operations
inside the CS. The actual force calculation is very similar to the force calculation described

in section 3.4 and 3.5.
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Results

This section presents the results obtained by this evaluative study. Performance results
for the various frameworks is presented, obtained by measuring the execution time of the
implementations. Features of the different frameworks and the portability of the frameworks
are presented. Finally, a simple full vector addition implementation in the various frame-
works, including both the host and the device code, are presented and evaluated in terms of

cyclomatic code complexity for the various frameworks.

4.1 Performance

To measure the performance of all frameworks when performing the N-Body simulation, the
execution time was measured when simulating a fixed amount of timesteps for a dynamic
range of bodies. The std::chrono library was used the measure the execution time in
milliseconds. To minimize the performance degradation generated by the visualization, the
visualization was disabled when the tests were run. The tests were performed in Microsoft
Visual Studio 2012 by running the various implementations without the debugger since the
debugger drastically degrades the performance. The code was compiled by Microsoft’s
Visual C++ 11.0. The specifications for the system that the tests were performed on are listed
in table 4.1.
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Operating system Windows 7 Professional x64

CPU Intel Core 17-3770 @ 3.40GHz (8 CPUs)

GPU NVIDIA GeForce GTX 1050

RAM 16 GB
e

Manufacturer NVIDIA

Model GeForce GTX 1050

GPU Architecture Pascal

Compute Capability 6.1

Global Memory 2048mb

Memory Speed 7 Gbps

Memory Bandwidth 12 GB/sec

No. Multiprocessors 5

CUDA Cores 640

Warp size 32
. Famewoks

CUDA vo.1

OpenCL v1.2 (NVidia)

DirectX 11 11

CS Shader Profile CS5.0

Table 4.1 System specifications on which the tests were performed.

The total execution time of the frameworks are presented in figure 4.1. The total execution
time includes both the part of the algorithm that is executed on the host and the device
when simulating N-Body systems in the range N € [1024,20480] and was measured by
simulating 100 timesteps for each N without using any visualization and calculating the
average execution time for one timestep.
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Fig. 4.1 Total execution time

The part of the algorithm that is executed on the device, i.e. the force calculation and

position update was measured and is presented in figure 4.2.
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Fig. 4.2 Execution time of the GPGPU step

To be able to compare what parts of the algorithm that was the most time consuming, the

total execution time was broken apart and separated into 4 major parts:

* Build tree - The time it takes for the CPU to for each timestep build the tree from the
N-body system.

e Calc. tree COM - The time it takes for the CPU to traverse the tree and calculate each

cells COM, total mass and the number of bodies in the subtree.

* Flatten tree - The time it takes for the CPU to flatten the pointer based tree into an
container.

* Step - The time it takes to calculate the forces and update the positions. Executed on

the GPU (apart from the sequential implementation).



4.1 Performance 47

The measured execution times for these parts are presented in figure 4.3, 4.4, 4.5 and 4.6.
The sequential implementation has no need to flatten the tree every timestep as discussed in

section 3.3.2, why this is extradited from the graph.
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Fig. 4.3 CUDA execution time
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Fig. 4.6 Sequential execution time

To be able to compare the performance difference when using buffers containing data
structures and buffers containing class objects in CUDA, the execution time for both these
cases was measured, the result is presented in figure 4.7. Furthermore to be able to compare
the performance for CUDA when using recursion in the force calculation as discussed in
section 3.4, the execution time for this was measured and is presented in figure 4.8. The
default stack size in CUDA is only 1024 bytes and the recursive force calculation gets deep.
The stack size was thus increased to 2048 bytes when testing the recursive implementation to

prevent stack overflow from occurring.
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Fig. 4.8 Execution time, CUDA recursive force calculation vs iterative force calculation
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4.2 Features

The features of the various frameworks given the specifications that are listed in table 4.1 are
listed in table 4.2 [2][3][4].

The table lists the feature specifications for OpenCL 1.2, which is the newest Nvidia
version and was used in this implementation. OpenCL 2.0 brought major differences which
makes it a strong candidate feature-wise compared to CUDA, and OpenCL 2.0 supports the
OpenCL C++ kernel language, which thus makes it possible to create and utilize classes
in the kernel. OpenCL 2.0 also adds the ability to launch kernels from within kernels, i.e

Dynamic parallelism.

Furthermore, the table lists specifications for DirectCompute when run on Direct3D 11.x
hardware and thus using the CS 5.0 model. Older hardware (Direct3D 10.x) only supports
the CS 4.0 model which adds some further restrictions. The main differences is that while
CS 5.0 supports a max number of 1024 threads per group, CS 4.0 only supports 768. CS 4.0
does not support 3D grid dimensions, and have no atomic operations, scatter operations and
does not support double precision. Finally, while CS 5.0 supports eight UAVs which can be
bound to a shader, CS 4.0 only allows for one UAV.
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CUDA OpenCL (1.2) | DirectCompute (D3D11)

Kernel Language

Kernel classes

Kernel recursion

Dynamic parallelism

Class object buffers

Structured buffers

Warp size

Atomic Operations

64 bit precision
3D Grid Dimensions

No. Threads/group

Thread local mem.

Shared mem./group

Constant mem. size

Group synchronization

Gather operations

Table 4.2 Framework features 4.1.

Scatter operations

4.3 Portability

This section will describe the portability of the various frameworks. Limitations for each of
the evaluated frameworks and the portability based on market share statistics for operating
systems and GPU vendors are discussed.

OpenCL was developed with portability in mind, and is able to be utilized on systems with
compatible hardware. Since OpenCL is able to perform parallel computations on a wide
variety of devices, the portability of the framework is high and works on most systems.

CUDA only available on Nvidia GPUs, newer than the 8800 series, codenamed G80 (2006).
Cuda is obtained by downloading and installing the Nvidia CUDA Toolkit and is available
on all major operating systems.
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DirectCompute which is a part of the DirectX suite, only works on Microsoft Windows
systems with Direct3D 10.0 and up. DirectX 11 is included in systems running Windows 7
or newer which as of February 2018 is 96% of all windows systems, see fig 4.9. [13]

StatCounter Global Stats
sktop Windows Version Market Share Worldwide from Feb

Win7 O-Winl0 < Wing.1 © WinXP <-Wing - WinVista — Other (dotted)

Fig. 4.9 Desktop Windows Version Market Share Worldwide

The market share of the most popular desktop and laptop system operating systems
Windows, OSX and Linux, are presented in figure 4.10 (Q1 2018) [8]. The market share of
the GPU vendors AMD and Nvidia are listed in figure 4.11 (Q4 2017) [6].
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Fig. 4.10 Operating system market share (Q1 2018) [8]
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Fig. 4.11 AMD and Nvidia market share (Q4 2017) [6]

4.4 Complexity

Appendix A, B and C lists full code examples which performs a simple vector addition
accordingtoa+b=c = (a;+by,a,+by,...,a,+b,) in CUDA, OpenCL and DirectCompute
accordingly. To measure the complexity of the frameworks, these implementations was tested
using the freeware software SourceMonitor [12] which measures the cyclomatic complexity,
lines of code (not counting comments or empty lines), and the control flow graph depth.
This gives a more intuitive insight of the complexity of the discussed frameworks than if the
N-body implementations was to be measured. The results of the measurements are presented
in table 4.3.
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Lines 45

Statements 38

Max Complexity 4

Avg. Complexity 0.97

Max Depth 3

Avg. Depth 0.97
 OpenCLVectorAdditon

Lines 68

Statements 42

Max Complexity 4

Avg. Complexity 2.5

Max Depth 3

Avg. Depth 0.95
_ DirectCompute Vector Addition

Lines 241

Statements 144

Max Complexity 9

Avg. Complexity 4.14

Max Depth 5

Avg. Depth 1.31

Table 4.3 Metrics for the vector addition examples listed in Appendix A, B and C
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Discussion

This chapter discusses the results obtained from this study, as well as an objective and a

subjective conclusion of the discussed frameworks.

5.1 Performance

Although not in focus in this study, the performance is always an interesting factor when
comparing frameworks, and although a lot of comparison studies have been made between
CUDA and OpenCL, DirectCompute is usually left out of the picture. The outcome from
these kind of studies tend to show that CUDA usually outperforms the other frameworks,
although studies show that the performance can be very similar under a fair comparison as

previously discussed in section 1.5.1.

Figure 4.1 shows the total execution time for the various frameworks, as well as the
execution time for the sequential implementation. As expected, the parallel GPGPU im-
plementations outperform the sequential implementation considerably. For small N-body
systems ( 0.2 x 10%), the performance of the sequential compared to the parallel implementa-
tions are very similar but as the size of the problem grows the parallel implementations clearly
outperforms the sequential implementation and for very large problem sizes ( 2.0 % 10%) the

speedup between the sequential and the fastest parallel implementation OpenCL is 4.69.

Surprisingly, CUDA which is usually the fastest framework as discussed in section 1.5.1,
is the slowest of the evaluated frameworks in this implementation which is more clearly
presented in figure 4.2. There could be many reasons why this is the case. Due to the

nature of how the tree is structured and traversed, it is difficult to achieve coalesced memory
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accesses in the kernel which may prove that CUDA handles non coalesced memory accesses

more poorly than the other frameworks.

Furthermore, we can see that the although more unfamiliar framework DirectCompute is
a strong competitor to both CUDA and OpenCL. For small problem sizes, DirectCompute
outperforms both CUDA and OpenCL, and has a similar performance compared to OpenCL
for bigger problem sizes.

Visualized in figure 4.3-4.6, we can see that the parts of the algorithm that is performed
on the device, i.e. the force calculation and position update scales better than the tree
construction and the tree flattening which are the main bottlenecks of the performance.
Although more complex, both of these steps can be performed in parallel on the device as
described by M. Burtscher and K. Pingali [18]. By moving these steps, along with the COM
calculation, the overhead spawned by coping the data back and forth between the host and
the device every timestep would be eliminated and may further increase the performance of
the application.

Figure 4.6 shows the execution time of the sequential implementation, and shows that
the force calculation and the position update scales very poorly when run sequentially and is
thus the parts of the algorithm that are the most suited for beeing parallelized, which was

done in this implementation.

Out of the evaluated frameworks, CUDA is the only one able to copy class objects in a
buffer to the kernel. This eliminates the need to convert the class object based octree into
a data structure based octree. Although this data conversion is a fast operation which is
included in the Calc. Tree COM step, it is still interesting to compare how the use of class
objects buffers affect the performance. Figure 4.7 shows the execution time for CUDA when
using structured buffers and class object buffers. The execution time of these are very similar
and we can conclude that the usage of class object buffers in this case does not hurt the

performance, while at the same time keeps the code less complex.

Another feature only available in CUDA is the ability to use recursion in kernels. This
can be utilized in the force calculation when traversing the tree as discussed in section 3.4.
The execution time when using a recursive tree traversal was measured and compared to the
iterative tree traversal used in the other implementations. The result of this comparison is
presented in figure 4.8. As expected, the recursive implementation is more time consuming.
The most likely cause of this is due to the amount of overhead spawned when allocating stack

memory.
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5.2 Features

To be able to compare the features of the frameworks, the documentation of the frameworks
was studied and summarized in table 4.2. The table summarizes some of the most important
features of the respective framework and although a lot of the features are shared, CUDA has
the advantage feature wise. Features such as kernel classes, recursion, dynamic parallelism
and class object buffers are only supported in CUDA. These features are however very handy

and can simplify and abstract the code significantly.

Out of the features listed in table 4.2 only available in CUDA, kernel classes, kernel
recursion and class object buffers was used. This made the readability and understandably of

the code much better since it abstracted away a lot of the complexity.

Since neither OpenCL 1.2 or DirectCompute supports classes or C++ like data structures
inside the kernel/CS code, the queue had to be inlined as discussed in section 3.5 and 3.6
which decreases the readability of the application. For applications using larger more complex
kernels the ability to be able to write object oriented code may be an important feature, and
if the entirety of this implementation would be performed on the device, this feature would

be of most importance, making this a strong feature for CUDA to have.

Recursion was utilized when calculating the forces which also simplified the complexity
and readability. Although recursion simplified the tree traversal, it came at the cost of
performance as discussed in section 5.1. Since the overhead spawned by allocating stack
memory for the recursive calls is difficult to avoid, recursion often hurt the performance and
whether it should be used is a question about the performance-readability trade-off.

Although not used in this implementation, dynamic parallelism is a feature only available
in CUDA (available in OpenCL 2.0, see 4.2) which could be an alternative to recursive
function calls. Since it was not used in this implementation it is difficult to tell how dynamic
parallelism would affect the performance, although in a paper by J. DiMarco and M. Taufer
where dynamic parallelism was used on different clustering algorithms, speedups up to 3.03
times was observed and dynamic parallelism scaled better for larger problem sizes than when
not using dynamic parallelism [21]. Another paper by J. Wang and S. Yalamanchili showed
that using dynamic parallelism could achieve 1.13x-2.73x potential speedup but the overhead

caused by the kernel launching could negate the performance benefit. [41]
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5.3 Portability

To be able to compare the portability of the different frameworks and get a better understand-
ing of the extent on which a framework may run on, market share statistics for the most
popular operating systems and the two major GPU vendors for desktop systems Nvidia and
AMD are presented in figure 4.10 and 4.11.

OpenCL

As discussed in section 4.3, OpenCL is designed to be portable and can be run on almost
any device. Since almost all systems have either a GPU or a multicore CPU, both which
OpenCL supports, most systems are able to utilize the framework. When speaking in terms of
utilizing OpenCL for GPGPU however, the portability depends on whether the GPU hardware
developer supplies an OpenCL implementation. However both AMD and Nvidia which are
the two major GPU vendors today have OpenCL implementations, making OpenCL the most

portable of the evaluated frameworks.

CUDA

CUDA can only be utilized on systems with a Nvidia GPU with CUDA support. Although this
restriction, Nvidia supplies the CUDA toolkit for the three most popular desktop operating
systems Windows, macOS and Linux, making it OS independent. Figure 4.11 also shows
that as of Q4 2017 Nvidia controls 76% of the market share making the portability of CUDA
strong.

DirectCompute

DirectCompute, as discussed in section 4.3 is only available on Windows systems with
Direct3D 10.0 or higher. As discussed in section 3.6 and shown in figure 4.9, based on the
Windows market share, 96% of the windows systems does have support for DirectX 11. As
visualized in figure 4.10, Windows control 89% of the market share, making it not as portable
as CUDA nor OpenCL but a strong alternative on the Windows platform since its shipped
with the OS and no further installation is required.
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5.4 Complexity

As discussed in section 4.4, to be able to get a good understanding of the complexity of
the various frameworks, a vector addition application was implemented in all frameworks.
The code for these are given in Appendix A, B and C. The result of the measurements are

summarized in table 4.3.

Out of the evaluated frameworks, CUDA is the least complex with a max complexity of
4, and an average complexity of 0.97 which is also reflected in the attached code example
in Appendix A. With only 45 lines of code, a working CUDA vector addition can be
implemented. Furthermore, since CUDA uses its own NVCC compiler, the device code can
be included in the same file as the CUDA host code, which may increase the readability
of the implementation. The actual kernel launch is very similar to a normal function call,

making it more intuitive.

With a max complexity of 4, and a average complexity of 2.5, the OpenCL vector addition
implementation is the second least complex. Since the developer has to specify the target
device, the additional step of finding a compatible device and creating a context has to be
implemented, and thus the size of the OpenCL implementation grows to 68 lines. Although
the feature of selecting a device is possible in CUDA as well, it is not necessary since the
framework per default selects the default GPU. The process of copying data to the device is
done by using buffer objects and filling the buffers with the relevant data, whilst in CUDA
the data can be copied directly to the device. The usage of buffers adds another step to the
process, further decreasing the intuitiveness of the application. The actual copying of the
data and the kernel launch is done by using a command queue. For a developer without a
good knowledge in GPGPU, this may further decrease the intuitiveness of the application.

The most complex of the vector addition examples is the DirectCompute implementation
with a max complexity of 9 and an average complexity of 4.41. This is also reflected
in the size of the application with 241 lines, compared to only 45 in CUDA and 68 in
OpenCL. One of the reason why this is the case is because Direct3D 10 and 11 uses different
functions for doing the same thing, why these cases has to be tested. Similar to OpenCL,
DirectCompute also requires the developer to specify the target compute device and create
the context, making the implementation a bit more cumbersome than CUDA. Also similar to
OpenCL, DirectCompute handles the data transfer between the host and the device by using
buffers, although a second step is required before the buffer can be copied to the device. The
buffers have to be converted into access view, readable by the compute shader, making the
intuitiveness worse. Although the process of dispatching the CS is trivial, the process of
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retrieving the data to the host is a bit more complex and requires the usage of a debug buffer,
as well as mapping the resulting data to a mapped sub-resource, making the implementation

more complex.

From a subjective point of view, CUDA is the most intuitive of the various frameworks.
It’s API is well developed and forces the developer to write well structured and readable code.
Out of the evaluated frameworks CUDA is the one that mostly resembles sequential program-
ming which most developers are used to. Although OpenCL is similar to CUDA in many
ways, it more resembles graphical programming with the use of buffers. DirectCompute is the
most complex of the frameworks, but DirectX or similar graphics programming experience
may facilitate the implementation and understanding. Furthermore, as illustrated in figure
2.4, CUDA and OpenCL is the most popular GPGPU frameworks and is well documented
by the GPGPU community, making it easy to find sample applications and getting help from
the community which may also be an important factor. Since DirectCompute is relatively
unknown, this is more difficult and sample applications using DirectCompute is difficult to
find. The only examples found in this work was examples implemented by Microsoft.

5.5 Encountered problems

This section describes problems that arose during the implementation, and how they were

solved. Different approaches to how these problems could be solved is also discussed.

Copy the Barnes-Hut Octree to the device

One of the encountered problems that arose during the implementation phase was how to
copy the Octree, built on the host, to the device in order to calculate the net forces applied on
the bodies. The problem is that all of the evaluated frameworks requires information about
how large an element that is to be copied to the device is. The pointer based octree is a very
dynamic data structure and since it is rebuilt each step, might vary greatly in size. A second
problem with the pointer based octree is that the pointers point to memory location on the

host, which thus has to be updated after the octree has been copied to the device.

One way in which this could be solved would be to traverse the octree using either a
recursive or iterative tree traversal algorithm, calculating the size as it traverses the octree.
However, this solution would still make the octree reliant on a pointer based structure which

would result in a lot of pointer chasing on the device.
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The second and more common solution is to flatten the tree into a simpler data structure.
Similarly the tree has to be traversed and each node of the octree has to be copied to the
simpler data structure such as an array. This was the choosen solution, which also eliminated
the need for pointers since each node in the tree can be represented as an index in the array.

Iteratively traverse the octree

Since CUDA is the only framework which allows recursion in the kernel code, a way to
traverse the octree in an iterative manner had to be explored. This is however a common

problem which is usually solved by using either a stack or a queue.

Since there exists no queue or stack functionality in any of the frameworks kernel
code, a simple queue was implemented. In CUDA, which supports C++ like features, the
implementation was made as a structure with member functions and default variable values.
Since neither DirectCompute or OpenCL 1.2 which was used in this implementation supports
these C++ features, the queue code had to be inlined, resulting in a more complex code
structure.

Copying class objects to the kernel

Out of the frameworks that was evaluated in this study, CUDA is the only framework that
supports class objects in the buffer which is passed to the kernel. Both DirectCompute and
OpenCL (1.2) does however support buffers containing data structures. The solution was
thus to convert the class object based octree into data structure, which could be done whilst

flattening the tree to avoid unnecessary performance degradation.






Chapter 6
Conclusion

This work shows that the N-body problem, along with the Barnes-Hut optimization algorithm
is adaptable to be performed in parallel on a GPU. Tests show that when the problem grows
large, the parallel implementation scales better than a sequential implementation, although
the implementation could be significantly optimized by moving the entire implementation to
be performed on the device. The most computational demanding parts of the algorithm is the
force calculation and position updating as shown in figure 4.6, why these steps are the main

targets for parallelization.

Tests showed that the fastest framework OpenCL, outperformed the sequential implemen-
tation with a speedup of 4.69 for large problem sizes. CUDA which usually is the fastest
framework as discussed in section 1.5, was the slowest in this implementation. Reasons why

this is the case are discussed in section 5.1.

Furthermore, the N-body problem using the Barnes-Hut algorithm investigates the use
of complex data structures. Tree representations and method of tree traversals on the GPU
have been described in chapter 3 using iterative or recursive solutions where results show

that iterative solutions show a better performance.

One of the investigation areas of the frameworks was the features of the discussed
frameworks. To compare these, the documentation of the frameworks was studied and was
summarized in table 4.2. Features such as kernel recursion, dynamic parallelism and class
object buffers are only available in CUDA, although some features are available in newer
versions of OpenCL as mentioned in section 4.2. These features can be considered as strong
and which only are available in CUDA, making it the strongest framework in terms of

features.
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Another important aspect when choosing a framework is the simplicity and intuitiveness
of the framework. To estimate this, simple vector addition applications was implemented
which are listed in Appendix A, B and C. Measurements was done on these implementations
where the lines of code and the cyclomatic complexity was measured and the results of
these measurements are presented in table 4.3 and further discussed in section 4.4. With 45
lines of code, a simple CUDA vector addition was implemented, OpenCL required 68 lines
of code and DirectCompute requires 241. DirectCompute also had the highest cyclomatic
complexity of 9, which is also reflected in the large amount of code needed to get a simple

DirectCompute application running.

To evaluate the portability of the various framework, conclusions are based on market
share statistics of the most popular operating systems and GPU developers are used as a base
to get a better understanding about the portability. The results show that OpenCL is the most
portable of the discussed frameworks as it is able to run on the most platforms. CUDA and
DirectCompute are OS and device restricted, and the portability of these frameworks are
discussed and evaluated using the market share statistics as a base in section 5.3.

The development of the application started by making sequential implementation. With
this as a base, the first parallel implementation was made in CUDA, which was later ported
to OpenCL and DirectCompute. The reason why CUDA was the selected framework for
the initial parallel implementation was because CUDA has the most intuitive API and most
features. The parallel CUDA implementation was then ported to OpenCL and DirectCompute,
but since CUDA specific features was used, parts of the implementation had to be refactored.
A better approach to the implementation would be to implement the most complex framework,
i.e DirectCompute first, and then port the DirectCompute implementation to the other

frameworks.

Furthermore, the tree architecture in its current state is complex. Since this is one of the
core implementations of the applications, a re-implementation of the tree would result in a
large amount of refactoring, thus the tree implementation should have been simplified at the

start of the development process.

6.1 Future work

A topic for future work could be to move the entirety of the algorithm to be performed on
the device as the main bottleneck of the current implementation is the tree construction and

tree flattening steps as discussed in section 5.1. Although the implementation would be more
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complex, this would be an interesting topic and the performance comparison between the
application in it’s current stage could be compared to an implementation where the entire
algorithm is performed on the device. The performance is expected to drastically increase
since the time consuming step of flattening the tree would be redundant.

Furthermore, dynamic parallelism is a feature that might suit this type of problem. It
would be interesting to see how a implementation using dynamic parallelism would compare

to the implementation in it’s current stage.
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Appendix A

CUDA Vector Addition

#pragma once
#include

#include

#include <stdio.h>

#include <iostream >

const unsigned int SIZE = 1024;

// addition kernel
__global__ void add(const int =in_a, const int =in_b,
{
int idx = blockDim.x * blockIdx.x + threadldx.x;
if (idx < SIZE)
out[idx] = in_a[idx] + in_b[idx];

int main () {

// Host pointers for io data
int *a = new int[SIZE];
int *b = new int[SIZE];
int %c = new int[SIZE];

// Device pointers
int *xd_a, *d_b, =xd_c;

for (int i = 0; i < SIZE; i++){
ali]
b[i]

Il
-

2%1;

int

xout)
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CUDA Vector Addition

/1l Allocate memory on the device
const unsigned int size = SIZE % sizeof(int);
cudaMalloc ((void #*)&d_a, size);
cudaMalloc ((void ##)&d_b, size);
cudaMalloc ((void **)&d_c, size);

// Copy the input data to the device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice);

dim3 dimGrid (1) ;
dim3 dimBlock (SIZE) ;

/!l Launch kernel with the given grid and block dimensions
add <<<dimGrid, dimBlock >>> (d_a, d_b, d_c);

// Retrieve the result
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Assert that the result is correct
for (int 1 = 0; i < SIZE; i++){
if (a[i] + b[i] != c[i])

return 1;
}
std :: cout << << std::endl;
/1 Clean up

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
delete[] a; delete[] b; delete][] c;

return 0;
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Appendix B

OpenCL Vector Addition

#include <CL/cl.hpp>
#include <iostream >
#include <vector>

const int N_elements = 1024;

// Kernel source, is usually stored in a seperate .cl file

std:: string src =

int main ()

{

/1 Get list of available platforms
std :: vector<cl :: Platform> platforms;
cl::Platform :: get(&platforms);

/! Get list of devices
std :: vector<cl :: Device> devices;

platforms [0]. getDevices (CL_DEVICE_TYPE_ALL, &devices);

// Create a context from the devices
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OpenCL Vector Addition

cl:: Context context(devices);

/1l Compile kernel
cl::Program program(context,
src.length() + 1)));
program. build (devices ,

src.c_str (),
cl_int err =
// Input data
intx vectorl = int[ N_elements ];

ints vector2 int [ N_elements ];

1l
=
5)
3

I
(e}

for (size_t i i < N_elements; i++){

vectorl [i] = 1i;

i
vector2[i] = 2 % 1i;

// Create buffers from input data

cl:: Buffer veclBuff(context, CL_MEM_READ ONLY,
N_elements, vectorl);

cl:: Buffer vec2Buff(context, CL_MEM_READ_ONLY,
N_elements, vector2);

intx vector3 = new int[N_elements];

cl:: Buffer vec3Buff(context, CL_MEM_WRITE_ONLY,
N_elements, vector3);

/1l Pass

cl:: Kernel kernel (program,

kernel.setArg (0, veclBuff);

kernel.setArg(l, vec2Buff);

kernel .setArg(2, vec3Buff);

arguments to the vector addition kerel

// Create command queue and copy data to

cl :: CommandQueue queue(context, devices[0]);

queue . enqueueWriteBuffer (veclBuff, CL_TRUE, O,
N_elements, vectorl);

queue . enqueueWriteBuffer (vec2Buff, CL_TRUE, O,
N_elements, vector2);

// Launch kernel

queue . enqueueNDRangeKernel (kernel ,
N_elements), cl::NDRange(1024));

// Read back result

cl :: Program:: Sources (1,

cl :: NullRange ,

std :: make_pair(

)

sizeof (int) =

sizeof (int) =

sizeof (int) =

, &err);

the device

sizeof (int) =

sizeof (int) =

cl :: NDRange (
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queue .enqueueReadBuffer (vec3Buff, CL_TRUE, O,
N_elements, vector3);

// Assert that the result is correct

for (size_t i = 0; 1 < N_elements; i++){
if (vectorl[i] + vector2[i] != vector3[i])
return 1;
}
std :: cout << << std::endl;

delete [] vectorl;
delete [] vector2;

delete[] vector3;

return 0;

sizeof (int) =







O 0 3 O L B W N =

—
()

O 00 9 N Lt A W N =

—
(=)

Appendix C

DirectCompute Vector Addition

C.1 Vector Addition Compute Shader (.hlsl)

/! Vector addition compute shader

RWBuffer<int > Buffer0 register (u0);
RWBuffer<int > Bufferl register (ul);
RWBuffer<int > BufferOut register (u2);

[numthreads (1, 1,

void CSMain(uint3 DTid

1)]

{

BufferOut[DTid.x] =

}

: SV_DispatchThreadID)

BufferO[DTid.x] + Bufferl[DTid.x];

C.2 Vector Addition main (.cpp)

#include
#include
#include
#include

#include

<stdio .h>
<d3d11.h>
<d3dcompiler.h>
<iostream >

#pragma comment(lib , )
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#pragma comment(lib , )

#ifndef SAFE_RELEASE

#define SAFE_RELEASE(p) { if (p) { (p)—>Release(); (p)=nullptr; } }

#endif

#ifndef CHECK_ERR

#define CHECK_ERR(x) { hr = (x); if( FAILED(hr) ) { DXTraceW (
__FILEW__, __LINE__, hr, L#x, true ); exit(l); } }

#endif

#define NUM_ELEMENTS 1024

HRESULT CreateComputeDevice (ID3D11Devices* deviceOut,
ID3DI11DeviceContext#x contextOut, bool bForceRef){
xdeviceOut = nullptr;

xcontextOut = nullptr;

HRESULT hr = S_OK;

/1 We will only call methods of Direct3D 11 interfaces from a single
thread .
UINT flags = D3D11_CREATE_DEVICE_SINGLETHREADED;
D3D_FEATURE_LEVEL featureLevelOut;
static const D3D_FEATURE_LEVEL flvl[] = { D3D_FEATURE_LEVEL_11 0,
D3D_FEATURE_LEVEL_10_1, D3D_FEATURE _LEVEL 10 0 };

bool bNeedRefDevice = false;
if (!bForceRef)
{
hr = D3DI11CreateDevice(nullptr , /1 Use default graphics card
D3D_DRIVER_TYPE_HARDWARE, // Try to create a hardware
accelerated device
nullptr , // Do not use external

software rasterizer module

flags , // Device creation flags

flvl ,

sizeof (flvl) / sizeof (D3D_FEATURE_LEVEL) ,

D3D11_SDK_VERSION, // SDK version

deviceOut , // Device out

&featureLevelOut , // Actual feature level
created

contextOut); /1 Context out
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if (SUCCEEDED( hr))
{
// A hardware accelerated device has been created, so check

for Compute Shader support

// 1f we have a device >= D3D_FEATURE_LEVEL_11_0 created ,
full CS5.0 support is guaranteed, no need for further
checks

if (featureLevelOut < D3D_FEATURE_LEVEL_11_0)

{

// Otherwise , we need further check whether this device
support CS4.x (Compute on 10)

D3D11_FEATURE_DATA_D3D10_X_HARDWARE_OPTIONS hwopts;

(#deviceOut)—>CheckFeatureSupport(
D3D11_FEATURE_D3D10_X_HARDWARE_OPTIONS, &hwopts,
sizeof (hwopts));

if (!hwopts.
ComputeShaders_Plus_RawAndStructuredBuffers_Via_Shader| 4_
)
{
bNeedRefDevice = true;
printf(
)
}

if (bForceRef || FAILED(hr) |l bNeedRefDevice)
{
// Either because of failure on creating a hardware device or
hardware lacking CS capability , we create a ref device here
SAFE_RELEASE (% deviceOut) ;
SAFE_RELEASE (*x contextOut) ;

hr = D3DI11CreateDevice(nullptr , // Use default
graphics card
D3D_DRIVER_TYPE_REFERENCE, /!l Try to create a

hardware accelerated device
nullptr , // Do not use
external software rasterizer module

flags , // Device creation

flags



82 DirectCompute Vector Addition

78 flvl ,

79 sizeof (flvl) / sizeof (D3D_FEATURE_LEVEL) ,

80 D3D11_SDK_VERSION, // SDK version

81 deviceOut , // Device out

82 &featureLevelOut , // Actual feature
level created

83 contextOut); // Context out

84 if (FAILED(hr))

85 {

86 printf( )

87 return hr;

88 }

89 }

90

91 return hr;

92 |}

93

94 |HRESULT CreateComputeShader (LPCWSTR pSrcFile , LPCSTR pFunctionName ,
ID3D11Devicex pDevice, ID3D11ComputeShader++ ppShaderOut)

95 | {

96 HRESULT hr = S_OK;

97

98 DWORD dwShaderFlags = D3DCOMPILE_ENABLE STRICTNESS;
99

100 const D3D_SHADER_MACRO defines[] =

101 {

102 ) )

103 nullptr , nullptr

104 }s

105

106

107 /1 We generally prefer to use the higher CS shader profile when

possible as CS 5.0 is better performance on ll—class hardware
108 LPCSTR pProfile = (pDevice—>GetFeatureLevel () >=
D3D_FEATURE_LEVEL_11_0) ? : ;

109

110

111 ID3DBlob* pErrorBlob = nullptr;

112 ID3DBlob* pBlob = nullptr;

113

114 |#if D3D_COMPILER_VERSION >= 46

115 hr = D3DCompileFromFile (pSrcFile , defines,

D3D_COMPILE_STANDARD_FILE_INCLUDE, pFunctionName, pProfile ,
dwShaderFlags, 0, &pBlob, &pErrorBlob);
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#else
hr = D3DX11CompileFromFile(pSrcFile , defines , nullptr, pFunctionName
, pProfile, dwShaderFlags, 0, nullptr , &pBlob, &pErrorBlob,
nullptr);
#endif

if (FAILED(hr))

{
if (pErrorBlob){

std :: cout << (charx)pErrorBlob—>GetBufferPointer () << std::
endl ;

SAFE_RELEASE(pErrorBlob);
SAFE_RELEASE(pBlob) ;

return hr;

hr = pDevice—>CreateComputeShader (pBlob—>GetBufferPointer () , pBlob—
GetBufferSize (), nullptr, ppShaderOut);

SAFE_RELEASE(pErrorBlob);
SAFE_RELEASE(pBlob) ;

return hr;

HRESULT CreateRawBuffer (ID3D11Devicex pDevice, UINT uElementSize , UINT
uCount, voids plInitData, ID3DI1Buffer«x ppBufOut) {
#*ppBufOut = nullptr;

D3D11_BUFFER_DESC desc;
ZeroMemory(&desc, sizeof(desc));

desc.BindFlags = D3D11_BIND_UNORDERED_ACCESS |
D3D11_BIND_SHADER_RESOURCE;

desc.ByteWidth = uElementSize % uCount;

D3D11_RESOURCE_MISC_BUFFER_ALLOW_RAW_VIEWS ;

desc. StructureByteStride = uElementSize;

desc . MiscFlags
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if (pInitData)
{
D3D11_SUBRESOURCE_DATA InitData;
InitData .pSysMem = plnitData;
return pDevice—>CreateBuffer(&desc, &InitData, ppBufOut);
}
else
return pDevice—>CreateBuffer(&desc, nullptr, ppBufOut);

HRESULT CreateBufferUAV (ID3D11Devicesx pDevice, ID3D11Buffer« pBuffer,
ID3D11UnorderedAccessView#x ppUAVOut)

D3D11_BUFFER_DESC descBuf;
ZeroMemory(&descBuf, sizeof (descBuf));
pBuffer —>GetDesc(&descBuf);

D3D11_UNORDERED_ACCESS_VIEW_DESC desc;
ZeroMemory(&desc, sizeof (desc));

desc . ViewDimension = D3D11_UAV_DIMENSION_BUFFER ;
desc.Buffer. FirstElement = 0;

if (descBuf.MiscFlags & D3D11_RESOURCE_MISC_BUFFER_ALLOW_RAW_VIEWS)

{
// This is a Raw Buffer

desc . Format = DXGI_FORMAT R32 TYPELESS; // Format must be
DXGI_FORMAT_R32_TYPELESS, when creating Raw Unordered Access
View
desc.Buffer.Flags = D3D11_BUFFER UAV_FLAG_RAW;
desc . Buffer. NumElements = descBuf.ByteWidth / 4;
}
else
if (descBuf.MiscFlags & D3D11_RESOURCE_MISC_BUFFER_STRUCTURED)

{
// This is a Structured Buffer

desc . Format = DXGI_ FORMAT UNKNOWN; // Format must be must
be DXGI FORMAT UNKNOWN, when creating a View of a Structured
Buffer

desc.Buffer. NumElements = descBuf.ByteWidth / descBuf.
StructureByteStride ;
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else

{
return E_INVALIDARG;

return pDevice—>CreateUnorderedAccessView (pBuffer, &desc, ppUAVOut);

ID3DI11Buffer* CreateAndCopyToDebugBuf(ID3D11Devicex pDevice,
ID3D11DeviceContext* pd3dimmediateContext, ID3DI11Buffer+ pBuffer)

ID3D11Buffer+ debugbuf = nullptr;

D3D11_BUFFER_DESC desc;

ZeroMemory(&desc, sizeof (desc));

pBuffer —>GetDesc(&desc) ;

desc . CPUAccessFlags = D3D11_CPU_ACCESS_READ;
desc . Usage = D3DI1_USAGE_STAGING;
desc.BindFlags = 0;

desc . MiscFlags = 0;

if (SUCCEEDED(pDevice—>CreateBuffer(&desc, nullptr , &debugbuf)))

{
pd3dImmediateContext —>CopyResource (debugbuf, pBuffer);

return debugbuf;

int main ()

ID3DI11Devicex device = nullptr;
ID3D11DeviceContext* context = nullptr;
ID3D11ComputeShaders CS = nullptr;

if (FAILED(CreateComputeDevice(&device , &context, false))) exit(1l);
if (FAILED(CreateComputeShader (L s ,
device , &CS))) exit(1l);

HRESULT hr = S_OK;
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// Buffers

ID3D11Buffer+ b_inA = nullptr;

ID3DI11Buffer* b_inB = nullptr;

ID3DI11Buffer* b_out = nullptr;

// Access views

ID3D11UnorderedAccessViews b_inA_UAV = nullptr;
ID3DI11UnorderedAccessViews b_inB_UAV = nullptr;
ID3D11UnorderedAccessViews* b_out_UAV = nullptr;

// Setup data

i++){

int xi_inA = new int[NUM_ELEMENTS];
int xi_inB = new int [NUM_ELEMENTS];
int %i_out = new int[NUM_ELEMENTS];
for (int i = 0; i < NUM_ELEMENTS;
i_inA[i] = i;
i_inB[i] = 2 = i}
}

// Create buffers

CHECK_ERR(CreateRawBuffer (device
[0], &b_inA));

CHECK_ERR( CreateRawBuffer (device
[0], &b_inB));

CHECK_ERR(CreateRawBuffer (device
R &b_out));

// Create access views
CHECK_ERR(CreateBufferUAV (device
CHECK_ERR( CreateBufferUAV (device

CHECK_ERR( CreateBufferUAV (device
// Launch CS
{

context —>CSSetShader (CS,

b_out_UAV };

context —>CSSetUnorderedAccessViews (0, 3,
context —>Dispatch (NUM_ELEMENTS, 1,

// Unmap resources

nullptr ,
ID3D11UnorderedAccessViews aRViews[3] =

sizeof (int), NUM_ELEMENTS, &i_inA

sizeof (int), NUM_ELEMENTS, &i_inB

sizeof (int), NUM_ELEMENTS, nullptr

b_inA, &b_inA_UAV));
b_inB, &b_inB_UAV));
b_out, &b_out_UAV));

0);

{ b_inA_UAV, b_inB_UAV,
aRViews, nullptr);

1)
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ID3D11UnorderedAccessViews aRViewsNullptr[3] = { nullptr,
nullptr , nullptr };

context —>CSSetUnorderedAccessViews (0, 3, aRViewsNullptr, nullptr
)

// Retrieve results

{

/' Retrieve positions

ID3D11Bufferx resDebugbuf = CreateAndCopyToDebugBuf(device,
context, b_out);

D3D11_MAPPED_SUBRESOURCE mappedRes;

context —>Map(resDebugbuf, 0, D3DI1I_MAP READ, 0, &mappedRes);

memcpy (i_out, (ints*)mappedRes.pData, NUM_ELEMENTS+sizeof (int));
context —>Unmap(resDebugbuf, 0);

for (size_t i = 0; i < NUM_ELEMENTS; i++) {

if (i_inA[i] + i_inB[i] != i_out[i]) return 1;
1
std :: cout << << std::endl;
return O;







	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Aim
	1.3 Research questions
	1.4 Delimitations
	1.5 Related work
	1.5.1 Framework comparison
	1.5.2 N-Body with Barnes-Hut


	2 Theory
	2.1 Background
	2.1.1 GPGPU History

	2.2 GPU Architecture
	2.3 Frameworks
	2.3.1 CUDA
	2.3.2 OpenCL
	2.3.3 DirectCompute

	2.4 Algorithm evaluation
	2.4.1 Parallel QuickSort
	2.4.2 Distance transform
	2.4.3 N-Body
	2.4.4 Choice of algorithm

	2.5 N-Body
	2.5.1 Base problem
	2.5.2 Barnes-Hut algorithm


	3 Method
	3.1 Implementation
	3.2 Visualization
	3.3 Sequential
	3.3.1 All-pairs implementation
	3.3.2 Octree construction
	3.3.3 Barnes-Hut force calculation

	3.4 CUDA
	3.5 OpenCL
	3.6 DirectCompute

	4 Results
	4.1 Performance
	4.2 Features
	4.3 Portability
	4.4 Complexity

	5 Discussion
	5.1 Performance
	5.2 Features
	5.3 Portability
	5.4 Complexity
	5.5 Encountered problems

	6 Conclusion
	6.1 Future work

	References
	Appendix A CUDA Vector Addition
	Appendix B OpenCL Vector Addition
	Appendix C DirectCompute Vector Addition
	C.1 Vector Addition Compute Shader (.hlsl)
	C.2 Vector Addition main (.cpp) 


