Wiring Components of the Respiratory Chain
Modulation of the Respiratory Chain in Yeast and Bacteria

Jacob Schäfer

Academic dissertation for the Degree of Doctor of Philosophy in Biochemistry at Stockholm University to be publicly defended on Friday 28 September 2018 at 10.00 in Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B.

Abstract
The enzyme complexes of the respiratory chain are organized in supramolecular assemblies, so-called respiratory supercomplexes. In the yeast *Saccharomyces cerevisiae*, these supercomplexes consist of two copies of complex III (bc1 complex) and one or two copies of complex IV (cytochrome c oxidase, CytcO). Several factors, including lipids and small proteins, have been identified to facilitate or stabilize this organization.

Respiratory supercomplex factor (Rcf) 1 interacts with CytcO. In this work, we show that in the native *S. cerevisiae* mitochondrial membrane several forms of CytcO co-exist. Intact CytcO shows spectral and functional properties similar to those of CytcOs from other organisms characterized earlier. A second population displayed a lower midpoint potential of heme a3 as well as accelerated ligand binding, suggesting structural differences around the catalytic site. Severe structural changes of the catalytic site and the overall structure of the enzyme were found in a third population of CytcO. The fraction of the structurally altered CytcO increased upon removal of Rcf1. Here, a mechanism is proposed in which Rcf1 regulates function of the CytcO by altering the catalytic site so that electron transfer between heme a and heme a3 is slowed, resulting in a more exergonic O2-ligand binding. This scenario would in turn increase heat production on the expense of the proton electrochemical gradient.

Rcf1 was further shown to facilitate electron transfer from the bc1 complex to CytcO in a supercomplex by interacting with the electron carrier cytochrome c (cyt. c).

In addition, we purified and structurally and functionally characterized the supercomplex of *Mycobacterium smegmatis*, which contains a membrane-anchored cyt. c as a subunit of the bc1 complex.

Keywords: Cytochrome c oxidase, Electron transfer, Membrane protein, Ligand, Kinetics, Mechanism, Rcf1, Cytochrome c, Respiratory supercomplex, Cryo-electron microscopy.

Stockholm 2018
http://urn.kb.se/resolve?urn=urn:nbn:se:diva-158733

ISBN 978-91-7797-370-6

Department of Biochemistry and Biophysics
Stockholm University, 106 91 Stockholm
WIRING COMPONENTS OF THE RESPIRATORY CHAIN

Jacob Schäfer
Wiring Components of the Respiratory Chain
Modulation of the Respiratory Chain in Yeast and Bacteria

Jacob Schäfer
The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" but "That's funny..." - Isaac Asimov
List of Publications

This thesis is based on the following publications, which will be referred to by their roman numerals:

Reprints in this thesis were permitted by the publisher.
Additional Publications:

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNS</td>
<td>binuclear site</td>
</tr>
<tr>
<td>Cyt. c</td>
<td>cytochrome c</td>
</tr>
<tr>
<td>Cyt cO</td>
<td>cytochrome c oxidase</td>
</tr>
<tr>
<td>IMM</td>
<td>inner mitochondrial membrane</td>
</tr>
<tr>
<td>IMS</td>
<td>intermembrane space</td>
</tr>
<tr>
<td>PLS</td>
<td>proton-loading site</td>
</tr>
<tr>
<td>Q/QH₂</td>
<td>quinone/quinol</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SMP</td>
<td>submitochondrial particle</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>TMH</td>
<td>transmembrane helix</td>
</tr>
</tbody>
</table>
Introduction

Relax, take a deep breath and enjoy reading this thesis! Oxygen is filling your lungs, taken up by your blood and distributed to every cell of your body. In parallel, your last meal is metabolized and ultimately stored as chemical energy in small molecules. In the mitochondrion, the powerhouse of the cell, electrons pass along the respiratory chain, a series of enzymes (biological machines), while releasing chemical energy. In the majority of the machines of the respiratory chain, part of the energy is used to move protons, charged elementary particles, across biological membranes. This process can be compared to filling a water basin of a hydroelectric dam (see cover picture). At the final enzyme of the respiratory chain, the oxygen we breathe reacts with protons to form water. In this reaction, too, energy is released and used for the pumping of protons thereby generating a difference in concentration and charge between the two sides of the membrane. The ATP synthase, the “hydroelectric power plant” of the cell, uses the energy stored in this concentration and charge difference to create ATP, the universal energy carrier of the cell, very much like a turbine uses the energy of the height difference of the water, to convert the potential energy to mechanical energy.

This process is crucial for all respiring life and has been studied for decades. Molecular mechanisms of the machinery are now mostly understood. However, central aspects of the respiratory chain, for example its organization and interactions between the single enzymes, or the regulation of all these processes remain to be understood.

I hope that with my work described in this thesis I can add at least one puzzle piece to the big picture.
The respiratory chain and ATP synthesis

In the respiratory chain, chemical energy is transformed into potential energy (Figure 1). Electron donors, such as NADH or succinate, deliver electrons to the first complexes of the respiratory chain. The electrons are then passed along the enzyme complexes of the respiratory chain to the final electron acceptor, molecular oxygen.

Figure 1: Schematic representation of the respiratory chain complexes and the ATP synthase. The respiratory complexes, with the exception of Complex II, are involved in the translocation of protons across the membrane thereby maintaining a proton electrochemical gradient, which is then utilized by the ATP synthase to create ATP.

Using the energy released by this electron transport, the respiratory complexes translocate protons across the plasma membrane of bacteria or the inner mitochondrial membrane (IMM) of eukaryotes, respectively. These complexes maintain a proton electrochemical gradient to store energy, which is, for example,
used by the ATP synthase to provide the energy for creating ATP, the universal energy carrier of the cell\(^2\), or for transmembrane transport\(^3\).

On the following pages, the components of the respiratory chain are introduced and discussed in more detail.

Complex I

Complex I, or NADH:ubiquinol oxidoreductase, is the first enzyme of the respiratory chain. It couples the oxidation of NADH to NAD\(^+\) and the reduction of quinone (Q) to quinol (QH\(_2\)). These redox reactions are linked to the translocation of four protons across the membrane\(^4\):

\[
\begin{align*}
\text{NADH} + \text{H}^+ &\rightarrow \text{NAD}^+ + 2 \text{H}^+ + 2 \text{e}^- \\
\text{Q} + 2 \text{H}^+ + 2 \text{e}^- &\rightarrow \text{QH}_2 \\
4 \text{H}^*_N &\rightarrow 4 \text{H}^*_P
\end{align*}
\]

where P and N describe protons on the positive (inter membrane space (IMS)/extracellular) or negative (matrix/cytosol) side of the membrane, respectively.

Complex I is the largest protein complex of the respiratory chain. It contains up to nine iron sulphur (Fe/S) clusters and one flavin mononucleotide (FMN)\(^5\). The FMN is located close to the NADH binding site and connects the NADH with the series of Fe/S clusters, which span the distance to the quinone-binding site. This binding site is located at the interface between the membrane and soluble domain of the complex\(^6\).

While the redox reactions catalyzed by complex I take place in the soluble domain of the enzyme, proton translocation occurs in the membrane domain.

In the yeast *Saccharomyces cerevisiae*, the respiratory chain does not contain a typical Complex I. Instead, alternative NADH dehydrogenases located on the P-side (external, Nde1 and Nde2) or N-side (internal, Ndi1) catalyze the electron transfer from NADH to quinone, but in these enzymes this reaction is not coupled to proton translocation\(^7–9\).
Complex II

Respiratory Complex II, or succinate dehydrogenase (SDH), catalyzes the oxidation of succinate to fumarate, coupled with the reduction of Q to QH$_2$.

\[
\text{Succinate} \rightarrow \text{Fumarate} + 2 \text{e}^- + 2 \text{H}^+ \\
\text{Q} + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{QH}_2
\]

SDH is the only enzyme that is both part of the respiratory chain and the citric acid cycle. It is also the only enzyme of the respiratory chain that is not involved in the translocation of protons10.

Complex III

Quinol, reduced by the respiratory complexes I and II, is re-oxidized by Complex III, also called co-enzyme Q:cytochrome c oxidoreductase or \textit{bc}$_1$ complex. The \textit{bc}$_1$ complex consists of four to eleven subunits in bacteria or mammalia, respectively11. The three core subunits contain the cofactors heme c_1, two b hemes and a Fe/S-cluster. The Rieske iron sulfur protein subunit is flexible and shuttles electrons from the heme c_1-containing subunit cytochrome c_1 to the soluble electron carrier cytochrome c (cyt. c)11. In the reaction catalyzed by the \textit{bc}$_1$ complex, called the Q-cycle, two molecules of QH$_2$ are oxidized at the Q$_0$ site of the protein, releasing four protons to the outside of the bacterial cell or the mitochondrial IMS. Two of the four electrons are transferred to two molecules of oxidized cyt. c via the Rieske iron sulfur cluster and cyt. c_1. The two other electrons are transferred to hemes b_L and b_H and finally to the Q$_i$ site, where they reduce one molecule of Q. Two protons are taken up on the cytoplasmic side of bacteria or the mitochondrial matrix side. In summary, two protons are taken up on the N-side and four protons are released to the P-side12,13. The overall reaction catalyzed by the \textit{bc}$_1$ complex can be summarized as:

\[
2 \text{QH}_2 \rightarrow \text{Q} + 4 \text{H}^+ + 4 \text{e}^- \\
\text{Q} + 2 \text{H}^+_N + 2 \text{e}^- \rightarrow \text{QH}_2 \\
2 \text{cyt. } c^{3+} + 2 \text{e}^- \rightarrow 2 \text{cyt. } c^{2+}
\]
Complex IV

Complex IV, also called cytochrome c oxidase (CytO), catalyzes the oxidation of cyt. c and the reduction of the final electron acceptor O₂ to water. In this reaction four protons (further referred to as substrate protons) are taken up from the bacterial cytoplasm or mitochondrial matrix. The reaction is coupled to the translocation of four (pumped) protons across the membrane.

\[
\begin{align*}
4 \text{ cyt. } c^{2+} & \rightarrow 4 \text{ cyt. } c^{3+} + 4 \text{ e}^- \\
\text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^- & \rightarrow \text{H}_2\text{O} \\
4 \text{ H}^*_N & \rightarrow 4 \text{ H}^*_p
\end{align*}
\]

The majority of CytOs consist of three core subunits and, depending on the organism, up to ten additional supernumerary subunits \(^{14-16}\). The core subunits harbor four metal cofactors involved in the electron transport from cyt. c to O₂. A binuclear copper site, Cuₐ, is located close to the cyt. c binding site in subunit II. Buried within subunit I of the enzyme are a heme a and the active site, consisting of a heme a₃ and a mononuclear copper cofactor, CuB\(^{16}\). At least two proton pathways, so-called K- and D-pathway, named after key amino acids involved in proton translocation, connect the mitochondrial matrix with the active site of the enzyme\(^{17-20}\). CytO is described in more detail from page 33.

ATP Synthase

The proton electrochemical gradient maintained by the respiratory chain is utilized by the ATP synthase (sometimes called respiratory complex V) to form ATP from ADP and pyrophosphate (Pi)\(^2\). The ATP produced in this reaction is the universal energy carrier of the cell and can be used to power a wide range of processes.

ATP synthase consists of two main domains. The motor domain, also called F₀ domain, is located in the membrane. It is comprised of two parts, subunit a and a ring of c-subunits\(^{21}\). The catalytic domain, also called F₁ domain, contains three α- and three β-subunits as well as a γ-, δ- and ε-subunit that form the so-called central stalk. A peripheral stalk, containing two long, alpha-helical b-subunits, fixes the catalytic domain to the a-subunit\(^{22}\). Protons that move through the F₀ domain downhill the proton gradient power a rotation of the c-ring, which is connected to the central stalk with its asymmetric γ-domain. Conformational changes induced by this rotation provide the free energy necessary for the catalysis of the reaction of ADP and Pi to ATP.
Respiratory supercomplexes

Architecture of the respiratory chain

The respiratory chain has been investigated for many decades. An early model of the organization of the respiratory chain was introduced by Chance and Williams in the 1950s. This so-called “solid-state model” (Figure 2A) proposed an assembly of all respiratory components into one complex (the so-called oxysome), carrying out all reactions in a sequence23. The model was supported by the isolation and successive reconstitution of enzyme units containing complexes I and III or II and III24 and collective isolation of these units25.

Figure 2: Models of the organization of the respiratory chain. (A) The “solid-state model” describes the respiratory complexes as a single structural and functional unit, the so-called oxysome, with the redox factors Q/QH\textsubscript{2} and cyt. c (dark red) bound to the complexes23–25. (B) The “random collision model” describes the respiratory complexes as separate units that diffuse in two dimensions within the membrane. Redox factors like cyt. c can diffuse freely in the IMS26,27. (C) In the dynamic aggregate model, the two states described in A and B exist in an equilibrium28–30.
In this model, coenzyme Q is permanently bound to the respective components of the respiratory chain, preventing exchange of bound and free coenzyme Q31,32. This view was challenged in the 1970s by a model first proposed by Hackenbrock and colleagues (Figure 2B)26,27. The so-called “random collision model”, proposed lateral diffusion of respiratory complexes within the inner mitochondrial membrane and redox components that diffuse randomly between the complexes.

A few years later, a combination of these two models was presented as the “dynamic aggregate model”28 (Figure 2C), but was first dismissed in favor of the “random collision model”. Nearly 20 years later, with the first purification of so-called respiratory supercomplexes, super-assemblies of the respiratory complexes with different compositions (Figure 3), this model was brought back to attention and re-introduced as the “plasticity model”29,30.

Figure 3: Blue Native Gel showing the organization of respiratory complexes. BN PAGE analysis of Digitonin-solubilized mitochondria from ovine heart showing the coexistence of monomeric (blue) and dimeric (orange) forms of the respiratory complexes as well as the different supercomplexes (red) in one preparation (modified with permission from 33).
Supercomplex formation and factors

With the introduction of Blue Native polyacrylamide gel electrophoresis (PAGE) it became possible to identify the supramolecular assemblies of the respiratory chain, termed respiratory supercomplexes\(^3^4\). Initially observed in mitochondria from \textit{S. cerevisiae} and bovine heart, supercomplexes were later found in many other organisms, including bacteria\(^3^5–^3^7\), and human tissues\(^3^8\). Blue Native PAGE allows for the analysis of the distribution of free or associated respiratory complexes, showing that in yeast mitochondria, nearly all CytcO is associated with the \textit{bc} \textit{1} complex\(^3^5\). In bovine heart mitochondria, all complex I was shown to be associated with the \textit{bc} \textit{1} complex and CytcO, but some CytcO was found to be in a free form\(^3^4\). The fraction of respiratory complexes assembled into supercomplexes varies between organisms, tissues and metabolic conditions\(^3^5,^3^9\).

The complexes of the respiratory chain are fully assembled before the supercomplexes are formed\(^4^0\). Several factors are involved in the assembly and stabilization of respiratory supercomplexes. Cardiolipin, a lipid found in the inner mitochondrial membrane and the cytoplasmic membrane of bacteria, is associated with the \textit{bc} \textit{1} complex and CytcO. Removal of cardiolipin results in a smaller fraction of supercomplexes in yeast mitochondria\(^4^1,^4^2\), indicating a stabilizing role of the lipid.

In addition to lipids, several proteins have been identified to be involved in the assembly and stabilization of respiratory supercomplexes. Among the first proteins assigned with this function in yeast were the respiratory supercomplex factors (Rcf) 1 and 2\(^4^3–^4^5\) (see page 29). The alleged CytcO subunit Cox26 is another protein affecting the organization of supercomplexes. Cox26 is a protein located in the IMM, which is associated with the respiratory supercomplex via CytcO. Deletion of Cox26 in \textit{S. cerevisiae} results in a decrease in the amount of supercomplexes and an increase in the amount of free CytcO, as well as a small, but significant reduction in CytcO activity\(^4^6\).

Similar effects are observed upon removal of the protein Aim24, which is also located in the IMM, however not as a subunit of the CytcO. Deletion of Aim24 results in severe growth defects on non-fermentable media in combination with a decrease in the amount of \textit{III} \textit{2} \textit{IV} \textit{2} supercomplexes as well as a decrease in CytcO activity\(^4^7\).

In mammalia, an isoform of a CytcO subunit, the protein COX7a2l, was proposed to play a major role in the assembly of respiratory supercomplexes. In the absence
of COX7a2l, CytcO is not assembled into supercomplexes in certain mouse strains. It was therefore renamed to supercomplex assembly factor 1 (SCAF1)48. The relevance of Cox7a2l was however questioned after a study found unaltered formation of supercomplexes in the absence of the protein49. In a recent review, Letts and colleagues commented that the studies on respiratory supercomplexes were often carried out using different tissues and detergent concentrations, leading to contradictory results. They furthermore proposed the existence of at least two different assembly pathways of respiratory supercomplexes, either involving or lacking COX7a2l33.

Structures of supercomplexes

To gain further understanding of the function of and interactions within respiratory supercomplexes, significant effort was put into the determination of molecular structures of the assemblies.

In recent years, advances in the field of single particle cryo-electron microscopy (cryo-EM) yielded more and more structural information. Whereas the first publications only showed the arrangement of the respective complexes in a supercomplex, recent studies revealed interactions between the complexes on the scale of amino acid residues.

Information about the general arrangement of mammalian respiratory supercomplexes was obtained using negative stain imaging, but the resolution was very low (36 Å)50. A few years later, a 19 Å 3D map was published, allowing the fitting of previously determined crystal structures of the single respiratory complexes, and thus first proposing structural arrangements and predictions of the electron flow within respiratory supercomplexes from bovine heart51. Further studies yielded higher resolution maps, thus revealing information about subunits involved in the interactions and molecular mechanisms. Two major configurations of the mammalian respirasome (the supercomplex containing complex I, the \(bc_1\) complex and CytcO) were observed in two studies52,53, differing in the orientation of the \(bc_1\) complex dimer relative to complex I. The interactions in the two configurations, named “tight” and “loose”, are different. The functional relevance of such differences remains unclear, but it is an indication that the supramolecular assembly of the respiratory complexes is not necessarily well defined under all circumstances.
The structure of the III$_2$IV$_2$ supercomplex from *S. cerevisiae* has only been published at low resolution54. In this arrangement, CytcO subunit Cox5a can be identified at the interface between the complexes, which is further supported by cryo-EM experiments performed in our laboratory (Figure 4). Further progress towards an increase in resolution is required to obtain information about detailed interaction sites.

Figure 4: Arrangement of the bc$_1$ complex and CytcO from *S. cerevisiae* in a III$_2$IV$_2$ supercomplex. A low-resolution electron density map (10.7 Å, unpublished work by Moe *et al.*, 2018) was fitted with the structural model of the bc$_1$ complex (light green, PMID: 1KYO) and a homology model of CytcO (light blue, PMID: BBI46762-mmc3). CytcO interacting subunit Cox5a is shown in red.

Supercomplex function

Although the existence of supercomplexes has been widely accepted, their function remains largely obscure.

In some organisms, the formation of supercomplexes is essential for respiration, because they do not express soluble, but only membrane bound cyt. c55. The heme c-carrying protein can be incorporated as part of a subunit of the bcc$_1$ complex56 or CytcO57,58, where cyt. c is fused into the sequence of the cyt. c$_1$ subunit of the bc$_1$ complex or subunit II of the aa$_3$ CytcO. In these organisms,
close proximity of the respiratory chain complexes is required for electron transfer between the \(bc_1\) complex and CytcO via the membrane-anchored cyt. c.

Several roles have been proposed for respiratory supercomplexes. One of these roles is the stabilization of the single respiratory enzymes. Mutations in the \(bc_1\) complex have been shown to cause a decrease in abundance of complex I\(^{59}\). Furthermore, knock-out of Cox10, a protein required for assembly of CytcO, leads to a decrease in the amount of complex I\(^{60}\). It was concluded from these findings that the formation of supercomplexes is required for the assembly and stability of complex I. However, as pointed out by Milenkovic and colleagues\(^{61}\), this complex I deficiency could also be caused by indirect effects like an increased production of reactive oxygen species (ROS), which in turn affect assembly of complex I and formation of supercomplexes\(^{62,63}\).

Another possible role of supercomplexes is to enhance respiration by substrate channeling. Several studies proposed the existence of multiple, sequestered substrate pools\(^{64,65}\). However, no available structural information indicates the presence of substrate channels. Furthermore, several studies show the existence of a single quinone pool\(^{66,67}\). Having the redox centers of the respiratory chain in close proximity increases the probability of a substrate reacting with the components of one respirasome, however, this is also simply given by the close proximity of the respiratory enzymes in the highly crowded mitochondrial inner membrane\(^{61}\).

It was furthermore proposed that the formation of respiratory supercomplexes serves to prevent unspecific binding interactions in the highly crowded protein environment of the IMM\(^{61,66}\). A similar mechanism is used by proteins of the eye-lens of vertebrates, which form weak, reversible interactions to avoid irreversible nucleation\(^{68,69}\).

A fourth proposed role for the formation of respiratory supercomplexes is the decrease of production of or limitation of damage by ROS. The term ROS is used for several different oxygen radicals. In the respiratory chain, mostly superoxide (\(O_2^-\)) is created by incomplete reduction of molecular oxygen. Complex I\(^{62,70}\) and the \(bc_1\) complex\(^{63,71}\) are the major source of superoxide in the mitochondrion. Release of complex I from bovine heart supercomplexes results in a significant increase in superoxide production by complex I\(^72\). Furthermore it has been proposed that superoxide production in supercomplexes is decreased by restriction of the movement of the Rieske Fe/S subunit of the \(bc_1\) complex, preventing electron transfer from one quinol binding site to the Fe/S center and thus minimizing electron leakage\(^{33}\).
The topic is highly controversial and arguments for\(^7\) and against\(^6\) the kinetic relevance of respiratory supercomplexes have been brought forward.

A possible reason for the seemingly opposing results might be the use of different strains of organisms and tissue, different growth conditions as well as different detergent concentrations. It seems that small variations in the conditions can have major impact on the organization of the respiratory chain, illustrating its high degree of adaptation to metabolic changes.
The respiratory supercomplex factors

Among the first proteins reported to be involved in the assembly and stabilization of respiratory supercomplexes in \textit{S. cerevisiae} are Rcf1 and Rcf2, formerly Aim31 and Aim38, respectively.

The two proteins are members of the hypoxia-induced gene 1 (Hig1) protein family. Rcf2 is specific to yeast, while Rcf1 is conserved among a wide range of species, from alphaproteobacteria to humans\(^{43}\). The Hig1 homology domain of Rcf1 is located in the N-terminal region, while the C-terminus is unique to fungi.

Rcf1 and Rcf2 are integral membrane proteins, located in the IMM. A structural prediction of Rcf1 indicated the presence of two transmembrane helices (TMHs) in the Hig1 domain of the protein\(^{43}\). In the predicted structure of Rcf1, both C- and N-termini are located in the IMS. A more recent determination of the structure of Rcf1 using solution NMR shows the protein as a homodimer\(^{74}\) (for comparison of the structures see Figure 5). In this study, Rcf1 was expressed in \textit{Escherichia coli}, purified from inclusion bodies and re-folded into DPC micelles. Each monomer consists of five TMHs. Two of the \(\alpha\)-helices are consistent with the predicted transmembrane helical structures. The other three helices contain many charged residues and form the dimer interface. The charged regions have been proposed to form the interaction site with Cyt\(c\) in the monomeric form of Rcf1. The loop between TMHs 4 and 5 contains several charged residues that show interactions with cyt. \(c\) (Figure 5)\(^{74}\). In the solution NMR structure of Rcf1, the C- and N-termini are located on opposite sides of the membrane. Although the orientation of the protein in native membranes was not determined in this form, the most probable orientation can be suggested by the location of the loop interacting with cyt. \(c\), which has to be located in the IMS. Since this loop is on the same side as the N-terminus and opposite of the C-terminus, a \(C_N-N_P\) orientation is most probable for the dimer.

The two proteins Rcf1 and Rcf2 independently interact with the \(bc_1\) complex and Cyt\(c\)O in yeast. Rcf1 co-purifies with Cyt\(c\)O subunit Cox3 independently of the
assembly of the subunit into CytcO43. Genetic removal of Rcf1 results in a lack of assembly into CytcO of the supernumerary subunit Cox13, a membrane spanning subunit on the opposite side of the \(bc_1\) complex-CytcO interface. Loss of Cox13 has similar effects on oxygen consumption of mitochondria as loss of Rcf144. Deletion of both Rcf1 and Cox13, however, results in a more severe growth phenotype43,45 and an almost complete loss of III\textsubscript{2}IV\textsubscript{2} supercomplexes43.

Rcf1 is not a stoichiometric subunit of CytcO. Based on the co-purification of Rcf1 with CytcO or with CytcO assembly intermediates it was proposed that Rcf1 is a subunit of CytcO. However, Garlich and colleagues showed, using quantitative mass spectrometry of different CytcO subpopulations, that only a fraction of CytcO is bound to Rcf175.

Figure 5: Solution NMR and predicted structure of Rcf1. (A) In the predicted structure of Rcf143, both C- and N-termini are located on the P-side of the membrane. (B) The structure of Rcf1 in a DPC micelle, determined by solution NMR74, consists of five TMHs, with C- and N-termini at opposite sides of the membrane. The QRRQ motif (see page 31) and interacting residues with cyt. \(c\) (see page 29) are indicated in red and light blue, respectively.

Several roles have been proposed for Rcf1. Loss of the protein results in a shift in the equilibrium of the different supercomplex forms towards the smaller III\textsubscript{2}IV\textsubscript{1}. Furthermore, Rcf1 is involved in the assembly of CytcO subunit Cox13 and the supercomplex factor Rcf2 into the CytcO complex. Cox13 is not assembled into supercomplexes in the absence of Rcf1, while assembly of Rcf2 is blocked when either Cox13 or Rcf1 are absent44.

30
In addition to the proposed role in the assembly and stabilization of respiratory supercomplexes, Rcf1 also plays a role in regulation of CytcO activity. Upon removal of Rcf1, the activity of CytcO in mitochondria decreased to 30-60% of that measured with the wild-type CytcO.

Hig1 type 2 proteins, including Rcf1, show a conserved motif, \((Q/I)X_3(R/H)XRX_3Q\), termed QRRQ (Figure 5). Mutation of the second arginine to an alanine in Rcf1 (R67A) leads to a tighter association of Rcf1 and CytcO, possibly via Cox3. In contrast, mutations of both glutamates to alanines (Q61A, Q71A) weaken this interaction. The assembly of supercomplexes was not affected in these variants. It should be noted that this study was conducted with mitochondria lacking Rcf2, the role of which is still not understood.

A regulatory role has also been shown for the mammalian homolog of Rcf1, Higd1a. Addition of recombinant Higd1a to purified bovine CytcO resulted in an increase in CytcO activity, proposed to be linked to structural changes around heme \(a\). Furthermore, knock-down of Higd1a in mouse cardiomyocytes resulted in a significant decrease in CytcO activity, which could be rescued by overexpression of Higd1a.

In the fungal ageing model *Podospora anserine*, deletion of Rcf1 severely decreased the life span and growth rate of the organism and increased oxidative protein damage. Less is known about Rcf2. As Rcf1, also Rcf2 is located in the IMM. Assembly of Rcf2 into the CytcO complex is blocked in the absence of Cox13 or Rcf1. Unlike Rcf1, removal of Rcf2 has no negative effects on supercomplex formation or CytcO activity. Instead, upon removal of Rcf2, CytcO activity in mitochondria is slightly increased. However, removal of Rcf2 resulted in a significant increase in ROS production. Rcf2 interacts with CytcO through its C-terminal region. This C-terminus is homologous to Rcf1, containing the conserved Hig1 domain. The N-terminus is homologous to a recently characterized third respiratory supercomplex factor, Rcf3, whose function overlaps with that of Rcf2. As Rcf1, Rcf2 forms a complex in DPC micelles, with each monomer consisting of five TMHs.
Cytochrome c oxidase

General features of CytcO

Cytochrome c oxidase is the final enzyme of the respiratory chain. Electrons are transferred from reduced cyt. c to the final electron acceptor, molecular oxygen, which is reduced to water. This electron-transfer process is coupled to translocation of four protons per four electrons across the membrane.

More than 90% of oxygen consumed by living organisms on earth is processed by heme copper oxidases. This class of enzymes is divided into three subclasses. Here, we focus on the A-type oxidases, which include CytcOs from mitochondria, Paracoccus denitrificans, Rhodobacter sphaeroides and E. coli (for a structural comparison of bacterial and mitochondrial CytcOs see Figure 6).

CytcO contains three core subunits, which in most eukaryotes are encoded by mitochondrial DNA. A notable exception are some species of leguminous plants, in which subunit II is nuclear encoded. Subunits I and II harbor the redox-active metal cofactors (Figure 7). Subunit III, which is exclusively found in A-type oxidases, does not take part in the catalytic reaction. A number of accessory subunits, ranging from one in bacteria like R. sphaeroides to ten in mammalian CytcO, are part of the structure. Some of these accessory subunits have regulatory roles. The accessory subunits of eukaryotic CytcO are encoded by nuclear DNA.

The structure of subunit I of CytcO is highly conserved. It consists of twelve TMHs, which are slightly tilted with respect to the membrane plane. A separation in three clusters of four TMHs yields a quasi-3-fold symmetry, forming three hydrophilic pores filled with polar amino acids and water molecules. Two of these clusters harbor the well-characterized K- and D-proton transfer pathways, the third harbors the proposed H proton transfer pathway (see page 37). The iron atoms of both hemes as well as CuB are coordinated by a total of six histidine residues in subunit I (Figure 7C,E). The outer TMHs interact with TMHs of
other subunits and the lipids of the membrane. These interactions are mostly non-polar.

Figure 6: Subunit composition of CytcO. The core subunits I-III of CytcO are shown in red, light orange and light green, respectively. (A) CytcO from *R. sphaeroides* (PMID: 1M56)\(^{14}\). The only accessory subunit, subunit IV, is shown in blue. (B) CytcO from *S. cerevisiae* (PMID: BBI46762-mm3c)\(^{15}\), with its eight accessory subunits shown in grey. (C) CytcO from *Bos Taurus* (PMID: 1V54)\(^{88}\). The eight subunits homologous to the yeast subunits are shown in grey. Two additional subunits, VIIb and VIII, only present in mammalian CytcO are shown in blue.

Subunit I contains the catalytic site of the enzyme, also called the binuclear site (BNS), formed by two magnetically coupled metal cofactors: a high-spin heme, heme \({\text{a}}_3\), and a single copper ion, Cu\(_B\) (Figure 7). The iron atom of heme \({\text{a}}_3\) is coordinated by a highly conserved histidine, H376 (bovine CytcO numbering is used in this chapter unless specified otherwise) in helix X of subunit I. The propionates of the heme interact electrostatically with residues (R438 and R439) of TMHs in subunit I. Mutations of these residues alter rates of electron transfer and proton pumping in CytcO\(^{17,18,89–91}\). The copper ion is located approximately 5 Å from the iron of heme \({\text{a}}_3\) (Figure 7A), leaving space for small diatomic ligands like O\(_2\), CO or CN\(^-\) to bind to the heme. Cu\(_B\) is ligated by three histidines, one of which (His240) is covalently linked to a tyrosine (Y244) (Figure 7C,E). This tyrosine plays an important role in the catalytic cycle of CytcO (see page 38).

Subunit II consists of two TMHs and a cluster of 10 β-sheets. The β-sheets hold the binuclear Cu\(_A\), which is coordinated by two histidines, two cysteins, a glutamate and a methionine (Figure 7C,D). Electrons are transferred from bound cyt. c to Cu\(_A\), which is the primary electron acceptor in CytcO (Figure 7B). The TMHs of subunit II are in close contact with TMHs of subunit I. The residue E62
of subunit II serves as an entry point for protons to the K-pathway (see page 37)19,20,92.

As for subunit I, the structure of subunit III is highly conserved. However, this subunit is exclusive to A-type oxidases. It consists of seven TMHs, forming two clusters of two and five TMHs, respectively. These two clusters typically form a V-shaped structure, which acts as a channel for oxygen leading from the protein-membrane interface to the catalytic site in subunit I93,94. Several lipid molecules have been found bound to subunit III. The head groups of these lipids influence the rate of proton transport in subunit I by decreasing the pK_a of D91 and perturbing the water structure in the D-pathway (see page 37)85. Subunit III does not contain any redox cofactors, but removal of this subunit results in suicide inactivation of the enzyme during turnover95–97.

Electron transfer

To enable electron transfer in proteins at biochemically relevant rates, redox-cofactors must be no more than 25 Å from each other (although there are exceptions to that rule)98, which is fulfilled in the electron-transfer reactions of CytcO (Figure 7A).

In most CytcOs, weak electrostatic interactions in the formation of a cyt. c – CytcO complex result in rapid association and dissociation of cyt. c, enabling electron transfer to Cu_A99. In some organisms, cyt. c is covalently bound to either CytcO57,58 or the bc_1 complex55,56.

In the reaction of CytcO, electrons are transferred transiently from bound cyt. c, first to Cu_A, to heme a and finally to the BNS (Figure 7B). The rates of electron transfer from cyt. c to Cu_A and further to heme a could be determined using external electron sources, where release of electrons could be triggered by short light flashes100–103. Electron transfer from heme a to the BNS, however, occurs over a much faster time scale. To measure this rate, flash photolysis experiments (see page 46) were conducted starting with the so-called mixed valence CytcO, in which heme a_3 and Cu_B are reduced and CO is bound to heme a_3. Upon laser flash-induced dissociation of CO, the midpoint potential of heme a_3 is lowered, inducing electron back-flow to heme a and Cu_A and thus allowing determining the rates of these events104,105.
Figure 7: Redox cofactors of bovine CytcO. CuA, the electron acceptor from cyt. c (distance not drawn to scale), is located in subunit II. The remaining cofactors, heme a, heme a₃ and CuB, are located in subunit I. (A) Metal-to-metal distances between redox centers¹⁶,⁹⁹,¹⁰⁵. (B) Electron transfer rates between the redox centers¹⁰¹,¹⁰⁴,¹⁰⁵. (C-E) Residues ligating metal centers with indicated position in subunit I (red) or II (light orange)⁸⁸. (C) View from the membrane plane. (D) Ligands of CuA from the IMS. (E) Ligands of heme a and a₃ and CuB from the IMS.
Proton transfer

Protons are often transferred utilizing the so-called “Grotthus mechanism”. This process describes the diffusion of a proton through a hydrogen-bonded network in which covalent bonds are broken and formed\(^{106}\).

In Cyt\(c\)O the pumping of protons requires at least two components of a proton pathway: one part leads from the N-side of the membrane to a proton-loading site (PLS) buried in the enzyme, from which the proton is released to the P-side of the membrane. The other part leads from the PLS to the P-side of the membrane. While the former component is well characterized for most Cyt\(c\)Os, the location of the latter is still unclear. Two main pathways have been identified to translocate protons from the N-side to the proposed region containing the PLS (Figure 8).

![Proton pathways in Cyt\(c\)O](image)

Figure 8: Proton pathways in Cyt\(c\)O. The key residues of the two main proton pathways in Cyt\(c\)O, the D- and K-pathway are shown. All residues except E62\(^{II}\) are located in subunit I.

Protons enter the so-called **D-pathway** (named after D91) on the N-side of subunit I. The pathway itself consists of a series of polar residues and bound water molecules, ending at a glutamate (E242), approximately halfway into the membrane. It is yet unclear how protons are translocated from the glutamate to the BNS or to the PLS and further. The D-pathway is used to translocate at least two substrate protons to the active site, as well as all four pumped protons\(^{15,107}\).
In bovine Cyt cO, another pathway, called the H-pathway, was proposed to be involved in the translocation of pumped protons88.

The second well-characterized proton pathway in Cyt cO is the K-pathway, named after a highly conserved lysine (K319). The proton uptake site for this pathway is a glutamate, E62II, located on the N-side of subunit II19,108. The pathway ends on the highly conserved tyrosine (Y244) close to the catalytic site, which is linked to the hydroxyethyl farnesyl of heme \(a_3 \). The K-pathway transfers one or two substrate protons during the reductive phase of the catalytic cycle (Figure 9). It is not yet understood why A-type oxidases contain two proton pathways, while the B- and C-type oxidases only have one K-pathway analogue, responsible for the translocation of both pumped and substrate protons109,110.

Catalytic cycle

Intermediates of the catalytic cycle of Cyt cO have been observed using different techniques100–105,111. The reaction of Cyt cO proceeds via different intermediates, depending on the initial reduction state of the enzyme. In many experiments, the reaction is initiated using the fully reduced Cyt cO. During turnover in the native system, the full reduction of all redox cofactors is probably never achieved. The native mechanism can be mimicked by reducing only heme \(a_3 \) and Cu\textsubscript{B} (”mixed-valence” state)112. An overview of the intermediates and their transitions is shown in Figure 9.

The oxidative phase of the catalytic cycle involves the binding of oxygen and the successive oxidation of the catalytic site. In the reduced state (state \(R \)), the iron ion of heme \(a_3 \) is in a five-coordinated ferrous state (Fe \(a_3^{2+} \)) and Cu\textsubscript{B} is in a cuprous state (Cu\textsubscript{B}+). The heme iron is thus able to bind small ligands such as oxygen or carbon monoxide.

In the presence of oxygen, state A (named after compound A, initially proposed by Chance \textit{et al.}112) is formed113,114. The binding of oxygen to heme \(a_3 \) is only possible in the presence of reduced Cu\textsubscript{B}, possibly by removal of a blocking ligand of Cu\textsubscript{B} upon reduction115, enabling oxygen to bind “end-on” to the heme116. The affinity of oxygen to isolated heme \(a_3 \) is very low, which is incompatible with respiration at the low oxygen concentrations at which the respiratory chain operates117. Tight binding of oxygen to heme \(a_3 \) in Cyt cO is achieved by kinetic trapping of the oxygen by an electron transferred from heme \(a \). This mechanism yields a high apparent \(K_M \)118,119.
Figure 9: Catalytic cycle of CytC\(\text{O}\). The reaction of CytC\(\text{O}\) with oxygen proceeds in several steps. Electrons are transferred to the catalytic site, and protons are transferred to the catalytic site as well as pumped across the membrane. Protons are transferred via the D-pathway (blue) or K-pathway (orange). Reduction of the cofactors is indicated by red colour of the respective cofactor. The rates of the reactions are indicated for bovine and yeast (in parentheses) CytC\(\text{O}\).

In the next step, state P (for historical reasons named peroxy), is formed. The intermediate formed in this step depends on the initial reduction level of the enzyme\(^{116,120}\). In case of the “mixed valence” state, the more native form, the state \(P_M\) is formed. In the formation of this state, the electrons required to split the O-O bond are transferred from heme \(a_3\), Cu\(B\) and the covalently bound tyrosine (Y244), which forms a neutral radical. In a fully reduced enzyme, state \(P_R\) is formed, with oxygen receiving electrons from heme \(a\) instead of the tyrosine\(^{121}\).
A proton is provided by the tyrosine residue, resulting in the formation of a hydroxyl ligand on CuB.

Upon protonation of state P, state F (named after the ferryl state of the heme a_3 iron) is formed. In addition to the proton provided to form the water ligand of CuB, a proton is pumped across the membrane during the P-to-F transition122.

State O (for oxidized) is the state in which CytcO is usually isolated. The high-spin heme a_3 is in a ferric state ($\text{Fe} a_3^{3+}$) and CuB is in a cupric state (CuB^{2+})113,114. In the absence of electron donors, e.g. after isolation, this state exists in a “relaxed form”. The catalytically active form of the state is called O_H, formed after reduction and consecutive re-oxidation of the enzyme123,124. In the F-to-O transition, one proton is provided for the reaction, while another proton is pumped across the membrane125.

In the reductive phase of the catalytic cycle, first the one-electron intermediate E_H is formed, and then state R, with ferrous Fe a_3 and cuprous CuB. Each of these transitions is accompanied by pumping of one proton in each reaction123,126.

Yeast CytcO

The baker’s yeast *S. cerevisiae* is an excellent model organism for the study of eukaryotic systems. Yeast does not rely only on respiration, but can also grow using fermentation, enabling the construction of strains containing otherwise fatal variants of respiratory chain complexes. A high sequence similarity to bovine CytcO allows to draw conclusions about the mammalian CytcO from studies on the yeast system127–129. In *S. cerevisiae*, as in mammalian CytcO, the core subunits are encoded by the mitochondrial DNA, while the supernumerary subunits are encoded by the nuclear DNA. While manipulation of the mitochondrial genome is a difficult challenge in mammalian cell lines130, introducing mutations into the mitochondrial genome of *S. cerevisiae* is possible and commonly done131,132.

The core subunits of *S. cerevisiae* CytcO show high sequence similarity with the bovine subunits. All key residues of the K-pathway and all hydrophilic residues of the D-pathway, with the exception of S101 of bovine CytcO (a mutation of which did not alter CytcO activity in *P. denitrificans*133), are conserved in CytcO from *S. cerevisiae*, suggesting the use of these proton pathways also in this organism. There are, however, significant differences in the region of the H-
pathway, challenging the functional relevance of this pathway in the yeast CytcO.

Cox5 is the only subunit of CytcO from *S. cerevisiae* that is expressed in two isoforms. Cox5a is expressed under normoxic conditions, while Cox5b is expressed under hypoxic conditions. It has been suggested that the different isoforms of Cox5 modulate the environment of the catalytic site of CytcO and thus effect electron transfer between heme a and heme a_3.

Yeast CytcO subunits Cox12 and Cox13 show very high sequence similarity (43% and 33%, respectively) to the equivalent bovine CytcO subunits, suggesting similar roles in these CytcO, i.e. to stabilize a possible dimer interface of the enzyme.

Two subunits of bovine CytcO, subunits VIIb and VIII, are not found in *S. cerevisiae* (Figure 6).

The subunit composition of yeast and bovine CytcO is compared in Table 1.

<table>
<thead>
<tr>
<th>Yeast CytcO</th>
<th>Bovine CytcO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox1</td>
<td>Subunit I</td>
</tr>
<tr>
<td>Cox2</td>
<td>Subunit II</td>
</tr>
<tr>
<td>Cox3</td>
<td>Subunit III</td>
</tr>
<tr>
<td>Cox4</td>
<td>Subunit Vb</td>
</tr>
<tr>
<td>Cox5a</td>
<td>Subunit IV isoform 1/2</td>
</tr>
<tr>
<td>Cox5b</td>
<td></td>
</tr>
<tr>
<td>Cox6</td>
<td>Subunit Va</td>
</tr>
<tr>
<td>Cox7</td>
<td>Subunit VIIa isoform 1/2</td>
</tr>
<tr>
<td>Cox8</td>
<td>Subunit VIIc</td>
</tr>
<tr>
<td>Cox9</td>
<td>Subunit VIc</td>
</tr>
<tr>
<td>Cox12</td>
<td>Subunit VIb isoform 1/2</td>
</tr>
<tr>
<td>Cox13</td>
<td>Subunit VIa isoform 1/2</td>
</tr>
<tr>
<td>-</td>
<td>Subunit VIIb</td>
</tr>
<tr>
<td>-</td>
<td>Subunit VIII</td>
</tr>
</tbody>
</table>
Assembly of yeast CytcO

The assembly of CytcO in yeast involves more than 30 factors136, a selection of which are presented in the following section and shown in Figure 10. The core subunits are individually co-translationally inserted into the membrane by the Oxa1 complex.

Cox1 is associated with the proteins Cox14, Coa3 and Mss51 during the early assembly process137,138. In a later step the a hemes, previously converted from a precursor (heme b) by Cox10 and Cox15, are inserted into the Cox1 assembly intermediate139–141. Cu_B is inserted into the catalytic site with the help of Cox11, to which the copper is delivered by the metallo-chaperone Cox17142,143.

Cox2 is synthesized as a precursor protein (pre-Cox2) with a prolonged amino acid sequence144. The precursor form is, as Cox1, co-translationally inserted in the membrane by the Oxa1 complex145,146 before it is processed by the inner membrane peptidase (IMP) complex in association with Cox20147,148. After cleavage of the pre-Cox2 leader sequence, two copper ions are inserted into the Cu$_A$ site of Cox2 by the metallo-chaperone Sco1149. As in the case of Cox11, copper ions are delivered to Sco1 by Cox17150,151.

Cox3 associates with the accessory subunits Cox4, Cox7 and Cox13 during assembly. It was furthermore shown that Rcf1 interacts with the Cox3 assembly module during CytcO assembly152.

The combination of the different assembly modules for the formation of the holoenzyme remains unclear. To avoid accumulation of unassembled subunits in the mitochondria, they are degraded by AAA-proteases153,154. The entire assembly of CytcO is highly regulated155,156.

\textbf{Figure 10: Assembly of yeast CytcO.} Schematic representation of the proposed modular assembly of yeast CytcO. In short, the core subunits are assembled separately in three modules, which are then combined to the holoenzyme136. The metal cofactors are inserted in the course of the assembly of the core-modules with the assistance of different factors157,158. More than 30 factors are involved in the assembly process of CytcO.
Methods

Spectral features of Cyt\textsubscript{c}O

One of the main advantages in the study of heme-copper oxidases is their absorption of visible light. Heme proteins absorb light at specific wavelengths, which are influenced by the structure and oxidation state of the heme as well as its (protein-) environment159. This feature can be made use of in the study of Cyt\textsubscript{c}O, because changes in the surrounding of the hemes can alter the spectral properties of the enzyme. With the knowledge of the spectra of specific intermediates of the catalytic cycle, the reaction of Cyt\textsubscript{c}O can be followed in time.

\textbf{Figure 11: Absorbance spectra of yeast Cyt\textsubscript{c}O.} (A) Absorbance spectra of yeast Cyt\textsubscript{c}O. Oxidized (light orange), reduced (red), reduced/CO-bound (dark blue) and mixed valence state (light blue) \textbf{(B)} Reduced minus oxidized difference spectrum (red) and reduced/CO-bound minus reduced difference spectrum (blue). Positions of the major peaks are indicated in the figure.

In this work, we exploited the spectral signature of mainly four different states of Cyt\textsubscript{c}O (Figure 11A): the oxidized form, in which the enzyme is isolated, the reduced form and two forms in which the ligand CO is bound to heme \textit{a}_3 of either...
the two- ("mixed valence") or four-electron reduced ("reduced/CO-bound") enzyme. In these two complexes, heme a_3 is in its ferrous state (Fe a_3^{2+})160,161. The complex can be dissociated by means of a laser flash162.

In the reduced minus oxidized difference spectrum (Figure 11B, red spectrum), absorption of heme a and a_3 contributes approximately equally to a peak in the Soret-region, at 445 nm (55% heme a_3), while a peak at 602 nm is dominated by heme a (approx. 80%)163.

Upon binding of the CO ligand to heme a_3, the Soret-peak shifts from 445 to 430 nm. The heme a_3-CO complex also shows a peak at 592 nm, while the absorbance at 602 nm is decreased compared to that of the reduced state164 (Figure 11B, blue spectrum).

Flash photolysis

The heme a_3-CO bond is sensitive to light and can be broken by means of a laser flash. In a flash photolysis experiment, CytcO is prepared in its two- or four-electron reduced and CO-bound forms under an atmosphere of CO. After laser flash-induced dissociation from heme a_3, CO binds to Cu$_B$ over a picosecond time scale before equilibrating with the solvent. Recombination of CO with CytcO occurs via equilibration of the CO ligand with Cu$_B$ and yields the stable Fe a_3-CO complex within milliseconds165. The time-dependent dissociation and recombination of the heme a_3-CO complex can be followed spectrophotometrically165–167 (Figure 12).

Figure 12: Schematic illustration of a flash photolysis experiment. CytcO with bound CO is illuminated by a laser flash, which dissociates the CO bond (initial step on a ns time scale). The dissociation and recombination of CO can be followed in time spectrophotometrically.
To further analyze the time-dependent CO-recombination after laser flash-induced dissociation, the amplitudes of the CO-dissociation steps can be combined at different wavelengths in the construction of a kinetic difference spectrum for the different kinetic components (Figure 13). A kinetic difference spectrum carries information about the structural environment of the catalytic site, including e.g. solvent polarity or coordination of the heme iron. In an experiment in which a sample contains multiple populations of CytcO, construction of kinetic difference spectra for each population may reveal differences in the structure of the catalytic site in the different sub-populations.

Figure 13: Construction of a kinetic difference spectrum. (A) CO-recombination is recorded on a set of different wavelengths. (B) The amplitudes of each CO-recombination component can be combined to a kinetic difference spectrum, which can be used to characterize a CO-recombination component.
CytcO activity

To assess the steady state activity of CytcO, changes of oxygen concentration in a solution are measured using a Clark-type oxygen electrode (Figure 14A). The use of different substrates in combination with specific inhibitors of respiratory complexes allows the detailed determination of the electron flux through the respiratory chain.

![Figure 14: Oxygen reduction.](image)

(A) Using a Clark-type electrode, the change of oxygen concentration in a solution is monitored. Given a known concentration of CytcO, this rate can be converted into a steady-state activity of the enzyme. (B) The oxygen reduction rate is plotted against the concentration of oxygen in solution. By fitting a Michaelis-Menten curve (dark blue) to the data, kinetic parameters of the oxygen binding to the catalytic site can be determined.

When using quinol as a substrate, electron flow via the bc_1 complex and CytcO can be investigated. Using specific inhibitors, the electron flow can be blocked at different sites, allowing for a detailed analysis of the separate components of the respiratory chain. By varying the concentration of cyt. c, the binding kinetics of cyt. c to CytcO can be determined. Alternatively, plotting the oxygen-reduction rate of CytcO against the oxygen concentration in solution offers information on the substrate-dependent kinetics of oxygen binding to the catalytic site (Figure 14B).
Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) in combination with confocal microscopy (Figure 15A) provides information about physical, chemical or biological changes in systems containing one or two fluorophores. The parameter of interest in FCS is the fluctuation of fluorescence intensity over time. This fluctuation contains information about different properties of the investigated system, such as equilibria, diffusion or molecular interactions.

![Figure 15: Fluorescence correlation spectroscopy. (A) Schematic of the focus volume of a confocal microscope with a fluorescent probe. (B) Representative autocorrelation curves of four different systems: free fluorophore (red); fluorescently labelled protein in solution (orange), reconstituted in a vesicle (light blue) and interacting with another reconstituted protein (dark blue).](image)

The typical output of an FCS experiment is a so-called autocorrelation curve. The autocorrelation signal $G(\tau)$ is shown as a function of the lag time τ and, when fitted with an appropriate model, can give information about the number of molecules in the probe volume ($1/N = \text{amplitude of the curve}$), diffusion time ($\tau_D = \tau$ at inflection point of the curve) and more (Figure 15B).

By using two fluorophores with sufficiently different excitation wavelengths, interactions between two species can be investigated (fluorescence cross-correlation spectroscopy, FCCS).
Conclusion

While the respiratory chain has been studied for many decades, the idea of an organization of the respiratory chain into supercomplexes is still young. Factors involved in assembly and maintenance of these supercomplexes have only been described in the last few years, leaving many open questions about their molecular interactions and mechanisms.

In this work, the effect of the respiratory supercomplex factor 1 (Rcf1) on the respiratory chain, particularly on CytcO, was investigated. In addition to the previously proposed function of Rcf1 in the assembly of respiratory supercomplexes43–45, the protein influences the assembly and activity of CytcO44,152.

CytcO exists in different populations in the IMM of \textit{S. cerevisiae} (for the detailed study see \textbf{Paper I}). Three populations were identified in this work: (\textit{i}) Intact CytcO is fully active and having an unaltered catalytic site, as evident from studies of the ligand-binding kinetics and kinetic difference spectra (for background see page 46). This population largely dominates CytcO isolated from the wild-type strain and can be purified using Protein C-affinity chromatography. (\textit{ii}) In a second population of CytcO, the catalytic site of the enzyme is structurally altered, resulting in changes in ligand binding and the kinetic difference spectra. In this population, heme a_3 of CytcO has a lower midpoint potential than in the intact CytcO (for the detailed study see \textbf{Paper II}). This population is present upon genetic removal of Rcf1, indicating a regulatory role of the protein. We propose a mechanism in which, upon removal of Rcf1, the catalytic site of CytcO is altered in a way that electron transfer between hemes a and a_3 is slowed. The slowed electron transfer would be compensated for by a tighter binding of oxygen to heme a_3 to yield an unaltered apparent K_M value (see page 38). As result the O$_2$-ligand binding would be more exergonic, which would result in an increase in heat production on the expense of the proton electrochemical gradient. (\textit{iii}) A third population of CytcO was detected in the flow-through after affinity purification, indicating severe structural changes in
this CytcO that prevent binding to the affinity column. Ligand binding and the resulting kinetic difference spectra of this population are significantly altered, indicating severe changes in the surrounding of the catalytic site. In mitochondria, these populations were observed before76, however, due to similar ligand binding kinetics, populations (ii) and (iii) could not be distinguished from one another. Population (i) largely dominates wild-type CytcO in mitochondria, while populations (ii) and (iii) add up to approximately 60\% in mitochondria from \textit{rcf1}Δ strains. The partially severe changes in the structure of CytcO dominating the enzyme populations in \textit{rcf1}Δ strains support the role of Rcf1 as a factor also involved in assembly of CytcO (see page 42 and Figure 10).

In addition to its function in the modulation and assembly of CytcO, Rcf1 was shown to interact with the electron carrier cyt. \textit{c} (for detailed study see \textbf{Paper III}). Rcf1 was proposed to bind cyt. \textit{c} to CytcO and so facilitate electron transfer from the \textit{bc}\textit{1} complex to CytcO in a supercomplex76.

Attaching cyt. \textit{c} to a membrane anchor as part of a respiratory complex is not only seen in the case of yeast, but also in some bacteria, e.g. \textit{Mycobacterium smegmatis}. This bacterium does not have a water-soluble cyt. \textit{c}, but instead a membrane-anchored subunit of the \textit{bc}\textit{1} complex (here \textit{bcc}\textit{1} complex) mediates electron transfer from heme \textit{c}\textit{1} to Cu\textsubscript{A}. Here, the supercomplex of \textit{M. smegmatis} was purified and fully characterized (for detailed study see \textbf{Paper IV}). The supercomplex contains active \textit{bcc}\textit{1} complex and CytcO. The arrangement of the complexes was solved by cryo-EM to be symmetrical with two copies of the \textit{bcc}\textit{1} complex in the center and one copy of CytcO on each side. Surprisingly, a superoxide dismutase (SOD) was identified as part of the respiratory supercomplex from \textit{M. smegmatis}. The presence of this SOD in purified supercomplexes was confirmed by both activity measurements and unassigned density of the right size in the cryo-EM map.

To summarize this work, Rcf1 was found to function as a modulator as well as an assembly factor of CytcO and to further facilitate interaction between CytcO and its electron donor cyt. \textit{c}. Although a ground was laid for the understanding of the effect of Rcf1 on the respiratory chain, further experiments are required to investigate detailed mechanisms for these interactions.

Supercomplexes from \textit{M. smegmatis}, a close relative of the pathogenic organism \textit{Mycobacterium tuberculosis}, were characterized. The discovery of a SOD within the supercomplex opens new possibilities for drug development.
A major problem that is still unresolved is the location of Rcf1 relative to the bc_1 complex or CytcO, and thus the identity of interaction sites with CytcO and the bc_1 complex. Although several subunits of CytcO have been reported to interact with Rcf1, a detailed knowledge about the interaction is still lacking. However, based on the reported interacting subunits43–45 and the proposed structure of Rcf143, speculations about the possible location of Rcf1 can be made (Figure 16).

Figure 16: Possible location of Rcf1 relative to CytcO. A possible location of Rcf1 (represented as a light blue shape) relative to CytcO is shown from the membrane plane (A) or the intermembrane space (B). The location is based on major interactions with subunit Cox3 (red) and minor interactions with subunits Cox12 (orange) and Cox13 (light green). Subunit Cox5, which interacts with the bc_1 complex in a supercomplex (grey shape), is marked in blue.

Rcf1 has been shown to physically interact with CytcO core subunit Cox3 already during assembly43. Loss of Rcf1 has been shown to further affect incorporation of the supernumerary subunits Cox12 and Cox13 into CytcO44, however, evidence for direct physical contact with these subunits has not yet been demonstrated. The structure of CytcO allows only one position of Rcf1, assuming
that all the above interactions, including interactions with Cox12 and Cox13, are indeed direct physical interactions and occur simultaneously. This position would be far from the interface between CytcO and the bc_1 complex observed in the structural model of the supercomplex54, questioning the direct and simultaneous interaction of Rcf1 with both complexes. It is, however, possible that Rcf1 has multiple possible positions and interaction sites relative to CytcO, as it appears to have multiple functions within the respiratory chain. High-resolution cryo-EM structures of the CytcO-Rcf1 complex could help resolving this problem. However, the low abundance of the Rcf1 – CytcO complex75 and the possible existence of different forms of the complex with different subunit compositions are major obstacles to be overcome on a way to accomplishing this goal.

As described on page 30, the predicted structure of Rcf1 and the structure determined by solution NMR differ significantly in both the C- and N-terminal regions. The NMR structure of Rcf1 in DPC micelles shows that both regions form TMHs with the C- and N-termini located on opposite sides of the IMM. On the other hand, Strogolova\textit{et al.} showed that in the native membrane, both termini are accessible to proteases after removal of the outer mitochondrial membrane and thus located in the IMS43 (Figure 5). This finding of seemingly conflicting structures might indicate the co-existence of different forms of the protein. In its free form, Rcf1 might exist as a dimer, with the C-terminal region organized in helices spanning the membrane, while contact with the supercomplex might be facilitated by TMHs 4 and 5 flipping out of the membrane and engaging in interactions with cyt. c, the bc_1 complex and CytcO74.

Results from recent experiments show that the modulation of CytcO activity, caused by deletion of Rcf1, can be reversed by co-reconstitution with recombinantly expressed, purified Rcf1 (Figure 17). Sub-mitochondrial particles (SMPs) obtained from $rcf1\Delta$ mitochondria showed wild-type CytcO activity after reconstitution with purified Rcf1, but only in the presence of guanidinium hydrochloride (GuHCl).

Since Rcf1 was expressed in \textit{E. coli} and purified from inclusion bodies, the presence of the chaotropic reagent GuHCl was necessary in the experiments to ensure unfolding and correct refolding of Rcf1 in the presence of CytcO. This finding further supports the scenario suggested above, i.e. that the structure determined by NMR might not be the same as that of Rcf1 in complex with CytcO. It is possible that the NMR structure shows the conformation of Rcf1 as a dimer when not bound to CytcO, while when bound to the enzyme, a different, active conformation is adapted.
Figure 17: Reconstitution of Rcf1 protein into rcf1Δ SMPs in the presence of GuHCl restores wild type activity. Rcf1 was reconstituted into SMPs in the presence or absence of GuHCl. GuHCl is required for restoration of the wild type activity.

In dieser Arbeit wurde die Funktion der Cytochrom c Oxidase in Hefe sowie die Interaktion zwischen dem Enzym und anderen Komponenten der Atmungskette untersucht.

In den Publikationen I und II wurde gezeigt, dass Cytochrom c Oxidase in mehreren verschiedenen Formen existiert, die sich in ihrem Aufbau und der Funktionsweise ihres aktiven Zentrums, sozusagen des Motors der Maschine, unterscheiden. Der relative Anteil dieser verschiedenen Formen wird verändert, wenn man das kleine Protein Rcf1, welches mit Komponenten der Atmungskette interagiert, entfernt. In Publikation II wurde eine dieser veränderten Formen genauer charakterisiert, wobei sich Unterschiede beim Binden von Sauerstoff zeigten. Hefezellen könnten diese Unterschiede nutzen, um sich den wechselnden Wachstumsbedingungen der Umgebung anzupassen.

In Publikation III wurde gezeigt, dass das oben genannte Protein Rcf1 nicht nur den Motor der Cytochrom c Oxidase verändert, sondern auch die Interaktion mit dem Elektronenträger Cytochrom c steigert. Dies könnte eine direkte Übertragung von Elektronen von dem vorherigen Glied der Atmungskette zur Cytochrom c Oxidase ermöglichen.

Populärvetenskaplig sammanfattning

Cellandningen och de enzymer som deltar i processen finns inte bara hos människor och andra djur, utan även i enklare organiser såsom bakterier eller jäst. Både proteiner och reaktionsvägar har stora likheter i aeroba bakterier och i däggdjur. I vanligt jäst är de dessutom mycket lika dem som finns hos t.ex. människor. Denna likhet kan utnyttjas för att studera mekanismer för energiomsättningen eftersom det är mycket lättare att arbeta med jäst än med den mänskliga andningskedjan.

I detta avhandlingsarbete undersöktes funktionen för cytokrom c oxidas från jäst samt för hur detta komplicerade proteins regleras via bindning av andra komponenter i andningskedjan.

I publikationerna I och II visar vi att cytokrom c oxidas finns i olika former vilka skiljer sig åt i sin struktur och funktion. Bland annat visar vi att deras aktiva
centrum, vilket kan liknas vi en maskins motor, har olika egenskaper. Den relativa andelen av dessa olika former förändras genom avlägsnande av det lilla proteinet Rcf1, som binder till komponenter i andningskedjan. I publikation II karakteriserades en av dessa förändrade former mer noggrant och vi kunde observera skillnader i syrebindning. Jästceller kan använda dessa skillnader för att anpassa sig till förändrade förhållanden i miljön.

Resultaten i publikation III har visat att det ovannämnda protein Rcf1 inte bara ändrar motorn av cytokrom c oxidas, men ökar även interaktionen med den lilla elektronbäraren cytokrom c. Detta skulle kunna möjliggöra direkt överföring av elektroner från den tidigare komponenten i andningskedjan till cytokrom c oxidas.

Acknowledgements

Peter, thank you so much for giving me the opportunity to work in this great group. You had the patience to let me develop my ideas and pursue the origin of the mysterious „fast phase“, you gave me input and motivation when needed, and in between, you always found time to talk about travelling, brewing or whatever was on my mind. This makes you not only a great supervisor, but also a fantastic mentor that had and has a great impact on my scientific, but also my personal life.

Pia, thank you for all the great discussions during meetings or just in the corridor, about science, life, postal service and much more.

To all my past and present group members, thank you so much for making this lab what it is. Irina, thank you for sharing so much of your incredible knowledge, even if it sometimes meant telling me how wrong I was. Thank you Markus for your great help, not only with my research, but also with picking the right video games. Johan, you will always be my favorite conference/course roommate. Camilla, I enjoyed so many discussions with you about the Rcf s, the fast phase and funny student reports. Agnes, you were a great help during your internships, collecting so much interesting data and prepping all the oxidase. Linda, thank you for introducing me to the world of cytochrome c oxidases during my first months. Emelie, thank you not only for keeping the order in the lab during your time here, but also for always being so positive, and for sharing this positivity by just being around. Fede, Gustav, Ingrid, Jóhanna, Johannes, Josy, Maria, Max, Nathalie, Olga, Shu, Simone, Tobias and Wataru, it was and is a pleasure to work with you.

To all members of the Martin Ott group, thank you for introducing me to the realms of yeast. Martin, thank you for great scientific discussions.

Everyone at DBB, you are the best people one could wish to work with. Claudio, Dan, Joe, Kiavash, Kirsten, Matt, Patrick, Pascal, Povilas, Riccardo and everyone else, thank you for all the corridor talks, fikas and great PhD pubs during the last five years.
Braulio, thank you for making these five years the best time of my life. You are a great friend since my first day here in Stockholm. From finding me with the help of a green cap to discussing our theses together, there have been so many great moments during this time here. I am happy and proud to have you converted from your strict belief in Weissbier to appreciating IPAs, stouts and more.

All my other friends in Stockholm and around, thank you for spending so much time with me and creating the greatest memories. Caro, Tamara, Andi, Leonie, Kathi, Jörg, Linnea, Melissa, Hannah und Manne, I hope we can stay in contact, wherever life leads us next. Hannah, special thanks to you for creating this great cover picture from my very basic ideas.

Philipp, es war nicht immer einfach für dich, und doch hast du nie aufgegeben, deine Träume zu verfolgen. Deine Kraft und positive Energie motivieren mich jeden Tag, noch ein bisschen mehr zu geben.

Hannah, ohne dich wäre all das nicht möglich gewesen. Du hast mich ermutigt, aus einer Fernbeziehung über 500 km eine über mehr als 1000 km zu machen, wonach wir zusammen nach Stockholm ziehen konnten. Du hast mich in jedem einzelnen Moment unterstützt, hast mich aufgebaut, wenn es mal nicht so gut lief, dich mit mir gefreut, wenn ich Erfolge hatte, mich motiviert, wenn ich es gebraucht habe. Du machst jeden Tag meines Lebens zu einem unvergesslichen Erlebnis.
References

24. Fowler, L. R. & Hatefi, Y. Reconstitution of the electron transport system

50. Schäfer, E., Dencher, N. A., Vonck, J. & Parcej, D. N. Three-Dimensional Structure of the Respiratory Chain Supercomplex I1III2IV1 from Bovine

52. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of Mammalian Respiratory Supercomplex I\(_1\)\(\text{III}_2\)\(\text{IV}_1\). *Cell* **167**, 1598–1609 (2016).

63. Diaz, F., Garcia, S., Padgett, K. R. & Moraes, C. T. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-

75. Garlich, J., Strecker, V., Wittig, I. & Stuart, R. A. Mutational analysis of

88. Tsukihara, T. *et al.* The low-spin heme of cytochrome c oxidase as the

