
SICS Technical Report 2018:01

DOIT WP4 Final Report on
Planning and Optimization

Björn Bjurling and Martin Aronsson
RISE SICS AB

January 2018



1 Introduction

This report gives an overview of a selection of state-of-the-art optimization
techniques for applying the Assignment Planning Use Case on a speci�c business
case. The Assignment Planning Use Case was described in a previous DOIT
WP4 report (SICS TR 2017:07). Recall that, in the Assignment Planning Use
Case, the task is to minimize the total cost for a carrier to carry out a set
of transport assignments by �nding an as good as possible matching between
transport assignments, routes, vehicles, and drivers.

The business case is taken from the area of transportation of timber from
stores to factories. The characteristics of the business case is such that �nding
the optimal assignment plan becomes very hard and time consuming. Thus,
the data provides a setting for illustrating the potential in using optimization
techniques in timber transportation and similar cases. The data used for build-
ing the models in this report come from a timber transporting carrier and its
customers. In order to protect potentially sensitive data, we shall not reveal
any speci�c details about the carrier or its customers. We shall also use generic
terms (such `factories' above) and we have altered some aspects of the data in
the modelling process.

The selection of optimization techniques represent commonly used tech-
niques for problems similar to the present timber transportation case. In partic-
ular, we shall focus on three models: Minimal Cost Flow, Constraint Program-

ming, and Set Cover models. The report will discuss the merits of each one of
the modelling approaches.

The goal with this overview is to give insights into the considerations and
the trade-o�s one may encounter when choosing an optimization modelling
paradigm for a problem typical for the transport sector. We shall for exam-
ple see below that including aspects such as restrictions on driving time, which
is both natural and important from an application point of view, excludes min-
imium cost �ow models.

The work reported here is part of the DoIT project funded by FFI/Vinnova
and lead by Scania. The DoIT project has focused on investigating methods for
building and using data-driven cost models for increasing e�ciency in planning
for road-bound transportation. This report illustrates the use of optimization
techniques and in particular what kind of input data that is useful for planning
and mathematical modelling in the area of transportation. We hope that the
report can provide a glimpse into the possibilities with operations research in
the area.

The rest of the report is structured as follows. Section 2 �rst states the
timber transportation problem. The problem is then put into the context of
DOIT by giving an overview of the optimization work in WP4 in terms of
the datasets and the modelling approcahes we have studied. In Section 3 we
analyse the problem in terms of the Vehicle Routing Problem and present two
models of two di�erent kinds (the Minimum Cost Flow model and the Constraint
programming model) for solving the our variant o fthe VRP. The merits of two
approaches are then compared. In Section 4 we present a deeper look into

1



the the use of the Set Cover model for the timber transportation problem. In
particular, as the computational complexity of this approach is as very high,
we pay special attention, in this report, to the heuristics devised in the project
and used for solving a mixed integer program based on the set cover model.
We illustrate how the heuristics has been used and show positive results where
our plans improves on the performance of the carrier based on the real data we
received.

2 The TIMBER Problem

In this section we formulate the problem and relate it to the previous work in
DOIT/WP4.

2.1 The TIMBER Problem Formulation

In the TIMBER problem we have a carrier called TIMBER with 16 vehicles
in its �eet. TIMBER is carrying out timber transport tasks that have been
agreed between forrest owners and factories. The timber is loaded from stores
in the forrest and o�oaded at the factories. Two drivers man the vehicles each
day with a total driving time of 16 hours per day. We assume that each driver
drives 8 hours a day and that they take breaks according to regulations (here
simpli�ed to that no driver may drive for more than 4.5 hour without a rest).
In the beginning of the working day the vehicle drives empty to the �rst store
to pick up timber. In the end of the day, the vehicle returns to base empty after
having o�oaded its last transport task at one of the factories. At the end of
the day, the timber that not have been transported remain at the stores. Such
timber can be picked up on any day after.

Timber that remain overnight at stores deteriorate every day. The quality
of the timber is classi�ed as green, yellow, or red depending on how much it has
deteriorated. We assume that the carrier gets paid according to the quality of
the timber it delivers. We assume that the carrier is penalized when delivering
the lowest quality timber, which is labelled red.

The problem is to �nd sequences of transport task (which shall be called
routes) such that each vehicle can be assigned one route every day and such
that the cost for the carrier is minimized.

Note that the models we describe below may make simplifying assumptions.
For example, while the Set Cover approach can model the problem as it is
formulated here, the Minimal Cost Flow (MCF) formulation cannot take into
account the working hour regulations, at least not in the exact way. On the
other hand the MCF is very fast in �nding a solution.

2.2 TIMBER problem in DOIT/WP4

In WP4, we have studied several datasets and we have aimed for applying a
range of di�erent modelling techniques. Table 1 gives a summary of the datasets

2



Figure 1: Dataset and Modelling approaches. Cells marked with X signify
that the approach (rows) was applied to the data (columns) in successful or
interesting way. Those marked with (X) signify that modelling was performed
but the resulting model was uninteresting.

and the modelling approaches used in WP4. Here follows some remarks on the
datasets and the appraoches.

Task Generation The �rst dataset was based on random generation of tasks
to be performed between randomly generated sources and destinations in
a grid layout. The random distribution was based on the concept of pref-
erential entailment in order to make the synthetic dataset more realistic
(thus for example making some locations more of the character of sources
and others more of destinations). KPI:s such as fuel consumption and
travelling time was based on the Manhattan distance de�ned on the grid.
This dataset was used to for illustrating the use the MCF and CP models.
The dataset was particularly useful while searching for a suitable real case
and dataset that could be shared with us.

Task Detection One approach in DOIT for obtaining transport assignment
data was to devise algorithms for automatic detection of transport assign-
ments based on vehicle operation data. This approach did not succeed
in �nding su�ently many transport assignments and the resulting dataset
became very sparse. The dataset was nevertheless used for illustrating the
interplay between the optimization implementation and the data-driven
fuel and cost models as part of the overall goal of DOIT. In particular,
an implementation of an early version of the Set Cover model was used
on this dataset. However, the optimization task was trivial as the opti-
mal solutions easily could be found by generating all possible routes and
trivially choose the optimal assignments based on that.

Transport-lab A rich set of task data was made available to the project from
Scania's own carrier Transport-lab. The dataset contained all attributes
needed for WP4 to make a contribution to DOIT. However, it turned out
that the tasks in the data were both regular and predictable. After initial
modelling, it was clear that the regularity of the tasks made the scheduling
task easy enough for humans to �nd su�ciently good solutions. In other

3



words, optimization could not improve sign�cantly to the plans that the
humans at Transport-lab already made by hand in Excel.

TIMBER This is the dataset that this report deals with. It is a large set and
problem is severly complex with this data. The set contains a month worth
of timber transports which approximately corresponds to 3000 transport
assignments. We started with two smaller derived sets.

1. TIMBER Partial 1 contains the transport assignments for the �rst
day only (about 600 tasks). The �rst Set Cover model (the one
mentioned above used for the Task Generation Case) was tested on
the data. However, there was no realistic chance that the the model
would produce a solution in a reasonable time frame (not even less
than a day) due to the high computational complexity (the number
of decision variables was in the order of 1 billion).

2. TIMBER Partial 2 contains only the yellow tasks in the dataset. The
yellow tasks are the ones where the timber is close to be consider as
too low-quality and should therefore be prioritized so that the carrier
can avoid being penalized for delivering timber marked as �red� (the
lowest quality). The results of the modelling is presented below.

3. TIMBER Full contains all the entries in the TIMBER set. Be-
ing able to model this set was deemed to be a proof of success of
WP4 in DOIT. Modelling this set required �nding suitable and ef-
�cient heuristics for tackling the computational complexity. By us-
ing heuristics together with the Set Cover formulation, we managed
within 40 minutes to �nd a plan for the whole set with a 7.2 per-
cent improvement over the ground thruth with respect to volume
transported per kilometer. This is described in Section 4.

3 Solution Techniques in DOIT

In this section we shall consider the two techniques Minimum Cost Flow and
Constraint Programming. But �rst let us quickly recall the Vehicle Routing
Problem.

The vehicle routing problem (VRP) formalizes the question "What is the op-
timal set of routes for a �eet of vehicles to traverse in order to deliver goods to
a given set of customers?". Goods are delivered from one or more depots to one
or more customers with requirements on the delivery. In the basic formulation
of the VRP, each depot is home to one or more vehicles. In our formulation,
the vehicles are based at places di�erent from the depots. Given a road network
connecting bases, depots (stores in our case), and customers (factories in our
case), a solution is a set of routes over the road network (one route for each vehi-
cle, beginning and ending at the vehicle's base) such that all goods are delivered
according to the customer requirement and such that the global transportation
cost is minimized. The cost can be in terms of, for example, monetary cost

4



or time. The VRP generalises the Travelling Salesman Problem and �nding a
solution is NP-hard1

3.1 Mixed Integer and Linear Programming

There are several ways to model the Vehicle Routing Problem (VRP). One
classic way is to use a set cover model where tours consisting of atomic trans-
portation tasks are formed. The solution is then found by choosing a subset
of all tours that covers all the transportation tasks. This way of modelling the
VRP, as a set cover, is described in Section 4 in this report. We will now turn
our attention to a special case where a more e�cient method could be used to
model the VRP, to use a Minimum Cost Flow model (MCF).

3.1.1 Minimum cost �ow

A MCF model can be used when there are no restrictions on the tours them-
selves, e.g. no restricion on the length of a tour. We may have simple restrictions
on individual turns between tasks (e.g. some task may not follow after some
other task) or legs in the tour but in MCF we cannot have restrictions that
spans several turns.

The MCF model is powerful in terms of execution e�ciency, but the ex-
pressive power is limited. One important application where the model is really
useful is when all vehicles are of the same kind and there are no restriction on
the length of a tour. Such an example is the construction of tours of vehicles
(but not personnel) in repeated tra�c according to a timetable, e.g. commuter
tra�c, bus services etc.

MCF returns a cyclic schema, i.e the schema and the tours are all cyclic.
If the problem is not to create a cyclic schema, then we can still use the MCF
model by introducing a dummy transport k which should start and end each
tour. Thus, k has an end time that is less than all real transports start time
(i.e. can turn into all other tasks), and a start time that is larger than all real
transports. The dummy task is of course impossible in reality, since it starts long
after it ends. It �takes the resources back in time� in order to make the tours
cyclic. By minimizing the di�erence between start and end time of the dummy
task the schedule becomes the most e�cient one with respect to makespan.

3.1.2 Terminology

The following terminology is used.

k Dummy transport, only in the problem to get the start and of every
tour. There is a possible turn from k to every other real transport
in the problem, and there is a possible turn to k from every real
transport.

1The description of the VRP is based on the entry on Wikipedia https://en.wikipedia.

org/wiki/Vehicle_routing_problem.

5

https://en.wikipedia.org/wiki/Vehicle_routing_problem.
https://en.wikipedia.org/wiki/Vehicle_routing_problem.


i An index that vary over all the transports, including the dummy
transport k at the beginning.

j An index that vary over all outbound transport from a terminal,
including the end transport k.

n The number of transports in the problem

xij Decision variable (binary): If xij = 1 then the arriving vehicle with
transport i is reused in (turned into) transport j. Turns can only
be made if there is enough time between i and j.

xpij Binary variable to measure whether a turn can be performed or not.
xpij is used to "count" the number of possible turns based on the
respective transport's (task's) departure and arrival times, which
can move within their respective earliest and lastest time windows.
Used if the plan should maximize the number of replanning options.

Tij The minimum time it takes to carry out a turn from an inbound
transport to an outbound transport. The time includes lead time
on arrival and departure as well as a possible transit time from one
terminal to another (without payload)

Sk The number of vehicles used for transport k, in this case Sk = 1 for
all k ≥ 1 . The number of vehicles allocated to the dummy transport
S0 determines the number of vehicles needed to solve the allocation
problem.

pi The transport i's destination terminal

qi The transport i's origin terminal

ai The arrvial time of i. Every arrival has an upper bound, the latest
arrival ←−ai

di The departure time of i, Every transport's departure time has a

lower bound, the earliest departure
−→
di .

tti The transport time for i

D The set of terminals, i.e. depos for vehicles, marking the start and
end of a tour

3.1.3 The basic model

The model below describes a model based on the minimal cost �ow model,
MCF. The model can be thought of as a graph, where each node in the network
constitutes a transport and each arc constitutes a turn of a vehicle from an
inbound transport i to an outbound transport j through binding the variable

6



xij = 1. A solution consists of an assignment of all xij such that all transports
Si are supplied with a vehicle and all pick up and delivery times are obeyed.

If there are pick up or delivery restrictions then we need to impose equations
on the turn variables xij if i's arrival time overlaps with j's departure time, since
if the turn is to be made j must depart after i arrive. In such a case xij must
be declared integer (binary) explicitly. If the model contains many such explicit
declarations then this a�ects the performance of the execution of the model
negatively. In a sense, when we have large overlapping domains we have also
introduced the task of ordering the transports into the problem, which slows
down execution.

Figure 2 is the example data called 'Task Generation Data', i.e. data gener-
ated synthetically, which were used in the beginning of the development. This
represents a number of transports having pick up times and delivery times at
di�erent places. An exerpt from the data needed to compute the schedule and
allocation for the vehicles is given in Figure 3. the `Task Generation Data' as
described in Section 2.2.

Figure 2: Graphing the data for MCF

Figure 3: Example data for the MCF

7



In order to get an optimized solution we need some objective function to op-
timize on. A common objective is to minimize the resources needed to perform
all the tasks, especially if the tasks are already scheduled in time. Another com-
mon objective is to optimize on makespan, i.e. the shortest period of time that
the whole set of tasks can be performed, respecting the resource limitations.
We will argue that in many cases, speci�cally when planning with uncertain
information, an important objective is to produce a plan with many re-planning
opportunities. The rationale behind this is that uncertainty means that assump-
tions (that the plan rests on) will change over time. The more opportunities
that the plan has to be replanned, the more `safe' it is. It is often better to
trade a bit of makespan e�ciency in favour of having more replanning oppor-
tunities. The plan then becomes `self-healing' and more robust: This in turn
build con�dence in the plans and that they are useful to work with.

In Section 3.1.4 below, we have formulated these di�erent aspects of opti-
mality as di�erent and alternative objective functions.

3.1.4 Equations

The following equations are used to build up the optimization model. Observe
that not all formulas are used in all problem variants.

0 Objective functions
a) Minimize travelling without payloads.∑
ij Tijxij = DHT where Tij is the time between transport i's ar-

rival time and j's departure time.
DHT is then the total transport time without payload. T dij is 0 if
pi = qj

b) Minimize the number of vehicles used in the problem∑
j xkj = N where N is the number of vehicles used in the solution.

If minimized on, we get the least amount of resources to solve the
problem.

c) Minimize makespan
Makespan is the shortest time all the transports can be made in,
The simplest way to do that is to introduce a special variable MS
which is larger than all real transports end time, and then minimize
that variable
∀k : MS − ak > 0

d) Maximize replanning options
∀ij :

∑
ij xpij = PT where PT is the number of replanning options.

In order to maximize the number of possible turns for each transport,
we introduce a �shadow variable� xpij to the �real� turn variable xij .
This variable is used in the object function to count all possible al-
ternate turns that the solution will have.

8



{
∀ij : dj − ai −M xpij ≥ −M + Setup

∀ij : dj − ai −M xpij ≤ Setup
xpij is 1 if the vehicle

can turn from i's arrival added with Setup to departuring transport
j
The two equations realizes an equivalence relation using two impli-
cations: dj ≥ ai+Setup→ xpij = 1 and dj ≤ ai+Setup→ xpij = 0

1 Flow conservation equations.
∀i :

∑
j xij = Si

∀j :
∑
i xij = Sj

Note that all Si = 1 and Sj = 1 except for the dummy transport
S0which measures the number of vehicles used in the problem.

3 Transport time for all tasks
∀k : ak − dk = ttk
The transportation time for transport k is the arrival time sub-
tracted by the departure time

4 Overlapping turn times
If there is a turn from i to j then de departure of j must be greater
than the arrival of i plus the necessary setup time between the two
transports.
Logically this is expressed as ∀ij : xij = 1 → dj ≥ ai + Setup

provided that −→ai >
←−
dj ∧←−ai ≤

−→
dj .

This is translated into the (linear) equation
dj − ai −M xij ≥ −M + Setup
with the use of the so called big M method, i.e. M is a large constant
that dominates the equation. It is necessary to introduce a binary
declaration on xij here, since xi occurs in other equations than in the
column and row sums in equation 1, and thus destroys the totally
unimodular property (see section 3.1.5).

Note that if −→ai ≤
←−
dj the turn is always possible (with respect to

timing) and we do not need the conditional equation, and if←−ai >
−→
dj

then the turn is always impossible and can thus be removed.
Note also that the setup time may include moving from i's arrival
terminal to j's departure terminal without payload.

5 Work shifts
In order to implement work shifts, we introduce forbidden times to
arrive (analogously for departing). In the model we introduce a new
variable y which is interpreted as the day the transport k arrives in.
ak is restricted to be within 6:00 and 18:00.{

ak − 24 ∗ 60 yk ≤ 18 ∗ 60

ak − 24 ∗ 60 yk ≥ 6 ∗ 60
yk integer

These two equations force ak to start within working time limits,
i.e. after 6:00 and before 18:00. Analogous equations can be formed

9



for the delivery times.

3.1.5 Complexity

The great advantage of the MCF model is that as long as there are no restrictions
on xij there is no need to declare these as integer (binary). A MCF of this type
guarantees integer solutions for all xij as long as the sums Si and Sjare integers
(in this case 1) and no further equations references xij

2. Under these conditions,
the variable matrix is totally unimodular. Since a driving factor for complexity
in MIP problems is the number of integer declarations, this is a real advantage.

Restrictions on xij arise for example if there are overlapping time windows
between transport i and j, as formulated in equation 4 above. We need to
do this for all xij when the choice of how the di�erent transports are placed
in time in their respective time windows will determine if the turn is possible
or not. These xij have to be declared explicitly as binary in the model. The
number of declarations depends on the time window sizes for the transports,
potentially n×n

2
3. This means that the larger the time windows are, more xij

has to be declared binary and hence the complexity an execution time grows to
�nd an optimal solution. The TIMBER case is such an example, where most of
the tasks can be performed in large time windows, leading to possible overlaps
between the task's execution times.

3.1.6 About the execution time to prove an optimal solution

There are cases where the MCF model does not reach a proven optimal result.
In many of those the system has reached an objective value close to optimum,
commonly just a few percent. It is worth noting that in many of those cases the
system is already better than e.g. the CP model, and from a practical point of
view it is su�cient to stop the execution. The uncertainty in input data is often
larger than optimizing the last percent. A typical curve relating the objective
value and the execution time is given below.

Note that the method used (simplex) knows how far from a proven optimal
value it is, since it works with two limits, one is the so far found best solution
and the other limit is the dual value that it cannot be better than. Thus we
always know how far away the current solution is from the proven lower bound,
but it can take long time to prove the the current found solution actually is the
optimal value.

2This is so because this restriction that xij is only used in the summation formulas for
Si and Sj give the problem the totally unimodular property, i.e. that all sub matrixes' have
determinant +1 or -1.

3If we do not have an upper limit on empty cargo between cities, assumed for convenience,
this happens immediately, then the �rst transport that is done may potentially turn into all
others, while the last one in the order can not turn anywhere else than in in our added dummy
transport. Thus, the number of possible turns decreases by 1 for each transport in a vector
arranged for arrival time.

10



Figure 4: To improve the �rst or original solution is often made in short exe-
cution time, but the improvement gets lesser with time. From a practical point
of view we can often stop the execution when we have reached within a few
percent from proven optimal solution.

3.1.7 Applying MCF on the TIMBER Case

For the purpose of comparison, we have used the same datasets for MCF and
for the CP-model in Section 3.2. Actually the two models are completely inter-
changeable, using the same data sets as input. Thus they are fully comparable.
In all cases reported here the MCF model outperforms the CP model regarding
the KPIs we want to measure. We have introduced a time limit on the execution,
since as discussed above the time to actually prove an optimal value can be long,
while the �rst solution delivered by the MCF model almost imediately reach a
better objective value than the CP model. We have limited the execution time
to 10 minutes.

As in the CP model we have concentrated on the stores which have timber
that have begun to detoriate and which are important to get to the mills, i.e.
the logs that are marked as �yellow� in the input data. This is the same input
set as the CP model uses.

3.1.8 Test runs with the MCF model

If we maximize only on replanning possibilities (Fig 5), we get a schedule and
allocation with all the tasks spread out as much as possible, as shown in the
gantt schema below. There are 4934 options to change a turn into another one.
The makespan for this solution is 6.75 days.

This schedule is not a good one regarding the e�ciency, i.e. usage of the
vehicles. We should probably trade the number of replanning options for better
usage of the vehicles. We can do that in two ways, all in one run (i.e. have
both e�ciency and replanning options in the same objective function) or make

11



Figure 5: Maximizing replanning possibilities

separate runs. When doing it as tow runs, we have again two opportunities,
either �rst optimize on replanning options and then minimize the makespan, or
the other way around, �rst minimize makespan and then maximize replanning
options. We have done the latter one since the number of replanning options is
very large.

Fig. 6 shows the balanced solution in one combined run. We get just slightly
less number of possible changed turns, 4763, while the makespan is improved
signi�ciantly, 30 %, to 4.74 days. Note that the solution obeys the fact that no
transports are performed during night.

Figure 6:

By �rst optimize on makespan, which gives us an end limit for the whole
plan, and then do a second run to maximize the replanning options within the
limitted makespan, we get the solution in Fig 7. This is the preferred one,
since makespan is further improved to 3.61 days (gaining 24 % compared to the

12



balanced solution) while the number of replaning options is only decreased to
4658 (i.e. only 2 %). This last schema shows quite good e�ciency, and thus the
two-pass model is what is recommended in this case. It gives good e�ciency
while at the same time have reasonable execution times and good replanning
opportunities.

Figure 7:

3.2 Constraint Programming

This section gives a short introduction to the constraint programming model
developed in the DOIT project. The model is not meant to be a complete
application but rather an example implementation to be compared to the Mini-
mum Cost Flow model, both regarding model structure and e�ciency. We have
used the constraint system embedded within SICStus Prolog4.

3.2.1 What is a Constraint Program

A constraint programming module is often embedded in an existing program-
ming language, which could be C++, Prolog, Java or any other programming
language. The most common type of constraint programs are over �nite do-
mains (FD), but there are other types also, e.g. continous variables. We will in
this presentation restrict ourselves to �nite domains.

The constraint programming language consists of a number of modelling
constructs over a special type of variables. These variables are special in the
sense that they have a domain of possible values associated with them. During
search, that domain is shrunk by deleting values until it only constist of a single
element, which is then assigned to the variable.

The modelling constructs are of two types: simple arithmetic relations and
more complex ones called global constraints. Global constraints have special
algorithms that are encapsulated in the constraints, and typically states some
modelling property to hold between all the variables mentioned in the global

4Mats Carlssn et. al. Swedish Institute of Computer Science. Release 4.3.5 December
2016, https://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf

13



constraint. For example, all_different([X,Y,Z]) states that the variables
X,Y and Z all should be di�erent, whatever value the search procedure will �nd
for them.

A small example of a constraint program is shown below in Figure 8. In the
grey area to the right the resulting domain restrictions are shown after variable
declaration and after posting the constraints to the constraint store.

Figure 8: CP: Simple example of variables and constraints

The constraint store is a graph consisting of the domain variables as nodes
and the constraints as (hyper)arcs between the nodes. Whenever a variable's
domain is shrunk, called pruning, all constraints connected to the variable are
pushed onto a stack for validity checking, a process called propagation. During
this check other variables' domains can be shrunk, and the corresponding con-
straints are also pushed onto the stack. This process is continued until either
the stack is empty (no more constraints to check) or a constraint is found to be
invalid, in which case the the prunings are unwound. This process is referred to
as a �x point algorithm: whenever a variable's domain is shrunk, the pruning
and propagation algorithm starts and continues until no more prunings can be
made.

In order for the constraint system to be able to �nd a value for the variables,
it needs a search procedure. The search procedure is an iterated procedure that
uses the propagation and pruning algorithm in each step. The search consists of
three phases, where all phases are indeterministic (i.e. the choice can be undone
and another path in the search can be taken):

1. Choose a variable not yet bound to a value

2. Make a choice to restrict the domain of that variable, thus kicking the
pruning and propagation algorithm to execute. One of two things can
happen:

(a) If that choice later turns out to lead to failure by the pruning and
propagation algorithm, the search procedure backtracks to the latest
choice point and make a new choice

(b) If the pruning and propoagation algorithm succeed (i.e. a �xpoint is
reached), the search procedure is iterated at step 1 again, but keeping
the choicepoint if further search step should show that there are no
consistent bindings to the variables.

14



3. The search terminates with success if all variables can get a value which
satis�es all constraints, in which case the variables are said to be ground
(have ground values). The search terminates with failure if there are no
choices left and no consistent variable bindings exist.

Continuing the small example above we get a solution during search, which is
dependent on how we search the search tree. Figure 9 illustrates in the gray
area to the right.

Figure 9: Example of search results

The basic prede�ned variable selection strategies and domain restriction poli-
cies commonly found in many constraint systems are described in Figure 10 be-
low. These are combined to con�gure the basic procedure implemented in the
constraint system. Most constraint system also o�er the possibility to imple-
ment own variable selection algorithms and pruning strategies through a special
programming interface.

Figure 10: Strategies for variable selection

The above described algorithm �nds feasible solution but does not perform
any optimization. To get an optimal value another search algorithm is wrapped
around the solution search algorithm. This is done quite simple in the following

15



Figure 11: Policies of for restricting variables

Figure 12: Search domain direction

way. A variable is chosen which should be minimized or maximized. If a so-
lution is reached with the previuosly mentioned search algorithm, the value of
the designated minimzation (maximization) variable is stored as the currently
best bound. All other variables' values are also store. Then the optimization
procedure forces the execution to backtrack thus exploiting the nearest choice-
point which will make the search take another branch in the search tree. If the
search should come upp with a better value for the minimzation (maximization)
variable then the best bound is updated as well as the stored best solution. This
process is repeated until there are no more choicepoints left to explore.

This search for an optimal value performed in this way is quite weak. There
is no built-in guidance that could guide the search to optimality, as there is
in traditional OR algorithms used in linear programming systems. Optimality
search in Constraint Programming is more of a test algorithm, although built
around a quite e�cient search for satis�ability. For example, where the linear
programming algorithm in each iteration �knows� which path that leads most
to optimum and thus performs that step, constraint propagation is �blind� to
which path that can improve the optimal value.

3.2.2 The basic model for the TIMBER example

The basic model is built upon a tutorial made by Philip Kilby 5. The key
component is a global constraint for forming an Hamiltonian circuit. An Hamil-

5Constraint Programming for Vehicle Routing Problems, Philip Kilby, Tutorial held at
CP2013. Slides available at link: http://cp2013.a4cp.org/slides/t3.pdf

16



tonian circuit is a graph where all nodes are visited exactly once, and the graph
is closed forming a circuit. The global constraint is stated as a vector, where
the positions in the vector are the node's identi�cation number, and the value
assigned to the variable in the vector's position is the arc to the next node in
the circuit. The interpretation in our domain is that a vehicle goes from one
task i to the next task j, which is often referred to as �turning the vehicle from
task i to task j�.

3.2.3 Constraints used in the model

In the �gure 13 the hamiltonian circuit is the �rst (upper) vector. In this case
we have 4 vehicles and 10 tasks. Note the two coloured rectangles to the right,
they represent the depo(s) where the vehicles start and end. To model the depos
we introduce 8 dummy tasks, 4 �leaving-depo-tasks� and 4 �end-at-depo-tasks�
which are at the depos. The arcs going from the rightmost rectangles (end-at-
depo-task) to the left one (leaving-depo-task) are more of a technical nature
and does not represent an actual movement of the vehicle. THese technical arcs
make the cycle hamiltonian.

The next vector in �gure 13 states that if there is a turn from one task to the
next in the upper vector, then they must use the same vehicle. There is no global
constraint currently implemented for this so we use the element(I,Vec,Val)

instead, where I is a variable over the positions in the vector Vec, and the value
Val is the value of the I:th position in the vector Vec. We thus have as many
element/3 constraints as there are positions in the vector, since each position
need its own constraint. Mathematically we write V ecI = V al.

The third vector represents the starting times for each task. If there is a
turn from task i to task j, then task j must start after task i's start time plus
task i's duration plus reposition time for the vehicle to get to task j's starting
position. We use the element/3 constraint here too, to build up all necessary
constraints between the di�erernt tasks.

Figure 13: Key global constraints

For the vehicles this su�ces to create valid schedules, but since humans
work in shifts we have to introduce restrictions when the vehicles are allowed to

17



run. TIMBER uses two shifts, and in order to model that we introduce another
global constraint disjoint/2. This constraint is a geometric one, where a set
of rectangles are certain to not overlap inside a large rectangle. The idea is that
the X-axis is the time and the Y-axis represents the vehicles. Thus each row
in the disjoint/2 area is a vehicle number (the same as in the second row in
�gure13). Figure 14 illustrates this idea.

Figure 14: Constraints for work shifts

In the disjoint/2 constraint we add static rectangles for the time periods
where there is no work to take place. We then add all tasks to the disjoint/2
constraint as well. These can move along the X-axis as long as they are inside
their time restrictions and along the Y-axis according to the vehicle they gets
allocated to. The coloured rectangles in the �gure are the no-work hours. Each
task must now start and end within the grey areas and not overlap with the
coloured areas, which is exempli�ed with the blue task in the blown-up part to
the right.

3.2.4 Example set: the TIMBER restricted case

The example test case used in here, as well as in the other tests in this report,
is a dataset collected from TIMBER . The tasks are transportation of timber
from stores in the forrest to paper and saw mills. The timber may be at the
stores for a quite short time before they begin to deteriorate. This means that
the objective is to fetch all the logs before they deteriorate and the quality gets
so low that the mills cannot use the timber any longer.

We have for this example set taken all the timber which are regarded as
being still good for delivery but soon to become too low quality and thus lost,
at a certain point in time (previuosly termed �yellow�). These volumes are then
splitted into vehicle loads. Each such load is a task to be performed, and each
task has an earliest pickup time and a latest pickup time inherited from the
original data and the known detoriation. There are 102 tasks present in our
dataset.

18



3.2.5 Runtime behaviour

The constraint program is heavily dependent on the variable selection algorithm
and how the domain is restricted, described earlier. The search space is huge,
if we consider that time is in fact discretized (compare that with the Minimum
cost �ow presented earlier in this report).

There is also the possibility to program a variable selection algorithm from
scratch, as well as a domain restriction policy. We have not done that but
combined a number of the prede�ned ones. These give di�erent search behaviuor
and quite di�erent results, both regarding the actual plans and regarding search
time. We present the tested ones below.

As can be seen, di�erent search strategies gives rise to quite di�erent layouts
in the gantt schemas. The gantt schemas also reveal that it is just not enough
with the standard search schemas. One would like to allocate the tasks in such
a way that the vehicles are equally used and minimizing the overall ready time.
None of the combinations gives a satisfactory layout of the schema.

Also note that the search space is large already with this small task set.
As a result, for some of the combinations the execution does not end within
reasonable time (in this case, 5 minutes). All of the other ones end within
9 seconds. Note that we only search for the �rst, satisfactory solution here.
Optimization is another and harder task for the system to solve, and we have
not reached a satisfactory result for the optimization case regarding execution
time.

Figure 15: MinEnumDown

The search strategy presented in �guer 15 is based on �rst getting values for
all the turn variables. When this is completed, all other variables are bound
to values in a phase 2. As can bee seen it does not balance the load equally
between the trucks.

As in �gure 15, we have in �gure 16 a two-phase solution procedure where
we �rst �xate the turn variables and then all other variables. We use the forst-
fail-principle for selecting a variable, and change the search direction for the
variable restriction policy to �up�. As can be seen, the schulede is quite di�erent
compared with the previous one.

These two examples shows that it matters quite a lot which direction we
restrict the variable, i.e. if we search it from lowest value and up, or the other

19



Figure 16: �EnumUp

Figure 17: MaxEnumUp vs MaxEnumDown

way around. This schedule is quite di�erent compared to the previous one,
and the only di�erence in search con�guration is the direction the domains are
searched.

Figure 18: �cBisectUp vs �cBisectDown

The only di�erence in search con�guration between the two examples in �g-
ure 18 is the search direction. This shows that the search con�guration could
be quite delicate, and by taking the wrong one we end up with execution inef-
�ciency.

All the examples showed here are just for �nding the �rst solution. When
trying to optimize on e.g. maximum of rerouting possibilities (i.e. shortest
overall comletion time), the execution times increases substantially, and none of
the search con�gurations showed here are able to �nish with an optimal value.
For the best search strategy of the above we get 4256 number of rerouting
possibilities with 10 minutes of execution, which is about 86 % of what the

20



MCF model gets in 10 minutes, and the �rst solution found by the MCF model
is already better than the �nal solution delivered by the CP model after 10
minutes execution. Even with additional 20 minutes we only get an increase
with 0.02 % (i.e. 1 additional rerouting possibility). The reason for this is
almost certainly that the time is discrete as it is modelled as an FD variabel
and thus part of the search (i.e. every time period is a domain in minutes, and
this domain can be quite large). This means that the search space gets large.
The time variables are actually not decision variables, since it is the allocation
order of the tasks to vehicles that is important. But since the pruning of the
time domains are to weak, we have to incorporate the time variables in the
search in order to get a satisfactory binding to the real decision variables, which
results in a too large search space to be solvable. To the contrary, the MCF
model has the advantage that time can still be modelled as a continous variable
and thus reduce the search space.

3.2.6 Pros and cons with the model

Constraint programming is easy to start with, especially for programmers. Fur-
ther the models are close to the problems, meaning that it in general should be
easy to assess the relevans and �t of constraint programs. Also, constraint pro-
gramming is open for de�ning and integrating custom search prcedures. How-
ever, CP is poor at �nding optimal solution, or more generally, in optimization.
CP is mainly geared towards discrete variables and �nite domains, which in
some applications can be too restrictive.

If, however, one could use a propagation and pruning algorithm that are
complete (i.e. the algorithm guarantees that there always exists at least one
ground solution left in the store in each iteration step) then there is a large
advantage in that the constraint programming approach can be used incremen-
tally in time, adding new tasks as the arrive in time. This is however not a
common property of the regular constraint programming systems, most prun-
ing and propagation algorithms are incomplete with respect to this, and thus
we always have to run the search algorithm until we reach a ground solution.

4 A Set Cover Formluation

In this section, we formulate the TIMBER case as a Set Cover (SC) and focus
on �nding a plan for the full TIMBER dataset. The problem is much more
complex than the problem reported on in the �rst WP4 report. Some of the
sources of the complexity in the present case with TIMBER are:

1. From any place where a vehicle is empty (at a base, or at a factory after
having delivered timber), there is a large set of possible stores from where
to begin the next task.

2. tasks can be made in any order

3. there are time windows spanning over several days

21



4. multiple bases and multiple vehicles at every base

5. vehicles must return to base every day

In the rest of this section, we shall �rst brie�y review the solution strategy
and characterize the data. Then we go in Section 4.3 and form a Basic model.
In Sections 4.4 through 4.6 we de�ne heuristics and solve for a solution of the
whole TIMBER dataset. The results and the quality of the solution is discussed
in Section 4.7

4.1 Solution Strategy

In the SC approach, there is a number of tasks (transport assignments) that have
to be covered by a set of tours. We aim at �nding a set of tours S covering the
task such that the cost of performing the tours in S is minimal (with respect to
the cost of all possible covering sets of tours). As is common in SC approaches,
the problem is divided into a tour-generation phase and a solution phase.

The solution phase consists in solving a MIP problem. Among the critical
aspect the solution phase is to keep the number of decision variables low. For
a comparison, with the implementation of the SC model in the DOIT project,
problems as large as 100.000 decision variables can be seen as feasible (ca 10
minutes of computation on a reasonable priced laptop).

In our case, a more critical point is the huge number of possible tours. We will
focus the e�orts on �nding heuristics for restricting the number of feasible tours.
The number of tours directly a�ects both the time it takes for the generation
phase to terminate and the number of decision variables for the MIP model in
the solution phase.

The cost of using heuristics is that we often trade a few percent points
o� the true optimium for better execution e�ciency and solvability. However,
heuristics can be tuned so that we get a solution that is close enough to the
optimal one. This is often acceptable in industrial applications. Tuning and
selection of heuristics is part of the craftmanship in optimization. Another
approach to tackle large sets of tours in the SC formulation, is to use the so-
called column generatation tchnique. We will not cover that in this report.

4.2 Data and concepts

The dataset identi�es places which we categorize as bases, factories, and stores.
The data also identi�es a number of bases and the vehicles that belong to each
of the bases. From the data, we have constructed 3071 tasks where a task is
to transport timber from a store to a factory. The 3071 tasks are unevenly
distributed over 31 days. Next follows basic de�nitions of the concepts found in
the data and used in the modelling.

vehicle A named vehicle in the data

base A pair of coordinates where at least one of the vehicles initially is
located (The pair of coordinates are called location)

22



store A pair of coordinates marked in the data as a store

factory A pair of coordinates marked in the data as a factory where there is a
demand for timber

task A task is de�ned by store location, factory location, a date, timber
type, an the age of the store (which is an indicator of the quality of
the timber).

4.3 Basic Model and Solution

In this section we generate tours and build the MIP model without considering
heuristics. Further below, we will use heuristics to restrict the basic model.

De�nition 1. (Concepts)

1. A place is either a base, a store, or a factory

2. A leg is pair of places (a, b) such that either of a or b, but not both, is a
store. If (a, b) is a leg where a is a store and b is a factory, then (a, b) is
said to be loaded. If a leg is not loaded, it is said to be empty.

3. A pre-route is a sequence r = [(a0, b0), (a1, b1), . . . , (ak, bk)] of legs such
that bi = ai+1 for every i < k, and such that for no j ≤ k, neither of aj
and bj is a base

4. A route is a sequence r = [(a0, b0), (a1, b1), . . . , (ak, bk)] of legs such that
bi = ai+1 for every i < k and such that a0 = bk, a0 is a base, for i > 0, ai
is not a base, and for j < k, bj is not a base. We say that a0 is the base

of r.

5. A tour is a pair (v, r) where v is a vehicle and r is a route. (Henceforth,
we assume that if (v, r) is a tour, then the vehicle v belongs to the base
of r.) �

De�nition 2. (Further concepts and notation)

1. Duration of a leg. The duration of a leg λ = (a, b) is denoted δλ and
de�ned by an estimate of the drivning time between the end points of
the leg. If b is a factory we increase the duration by 30 minutes to model
unloading of timber, and if b is a store, we add 30 minutes to model loading
of timber.

2. Duration of a tour. The duration of a tour t = (v, r) is the sum of the
durations of the legs in the route r. �

23



4.3.1 Feasible tours

In Section 4.4 below we give a formal de�nition of the generation of the feasible
tours taking also heuristics into account. In this section, we give an informal
characteriztion of the set of feasible tours.

Informally, then, if F is the largest set of tours that can formed from the
TIMBER data in accordance with De�nition 1. Then the set T of feasible tours
is the largest subset of F such that whenever t ∈ T :

1. the duration of t does not exceed 16 hours

2. no two consequetive legs in t is of longer duration than 4.5 hours

3. if (a, b) is a leg in t and b is a store, then the store is not empty (vehicles
only drive to stores for loading timber)

The size of the set of feasible tours determines the number of decision vari-
ables in the MIP model de�ned in the next subsection. Note that the set of
feasible tours is huge, as it is more or less all tours possible to generate. Solving
for the optimal solution to the MIP model based on this set would be practi-
cally infeasible. After stating the MIP model, we shall in Section 4.4 construct
a subset of the feasible tours that is small enough to enable �nding a solution
in reasonable time.

4.3.2 MIP Model

Let T = {0, 1, . . . , S − 1} be the set of feasible tours. (Assuming that S is the
size of the set of feasible tours.) Let A be the set of tasks, and assume also that
A is enumerated.

We will use the following notation:

De�nition 3. (Notation)

A = {a0, . . . , an} the set of tasks

V = {v0, . . . , vm} the set of vehicles

T = {0, 1, . . . , S − 1} the set of feasible tours.

xi decision variable for tour i ∈ T for all i < S, such that
xi = 1 if tour i is included in the solution and xi = 0
otherwise

ci cost associated with tour i ∈ T , for all i < S

aj the j-th task.

aji boolean constant which is 0 unless the task aj is covered
by tour i (in which case it takes the value 1)

vji boolean constant which is 0 unless the vehicle vj is asso-
ciated with tour i (in which case it takes the value 1) �

24



De�nition 4. (MIP model)
Objective function

minimize
∑
i<S

cixi

subject to Constraints ∑
i<S

ajixi = 1, aj ∈ A (1)∑
i<S

vjixi ≤ 1, vj ∈ V (2)

xi ∈ {0, 1}, i < S (3)

�

4.4 Heuristics

The VRP is known to be NP-complete. As a consequence, the time for being
guaranteed to �nd an optimal solution is exponential in the number of decision
variables. Thus, reducing the number of decision variables exponentially reduces
the worst case scenario for the time it tkes to �nd the optimal solution. The
heuristics given below aims at reducing the number of decision varaibles in the
MIP problem.

The most important heuristic used in our solution is to ignore equivalent
routes and symmetric tours:

De�nition 5. (Heuristics (1))

1. Let K be a set of (pre-)routes and de�ne a an equivalene relation on K
such that ρ0 and ρ1are equivalent if, and only if, they contain the same
tasks. Then for any set R we write

[ρ] ∈ R

whenever R contains a (pre-)route that is equivalent to ρ

2. If b is a base and V (b) is a set of vehicles belonging to b, then we use one
(1) imaginary vehicle vb to represent any vehicle in V (b). Thus, we replace
(v, ρ) with (vb, ρ) in the generation of the tours and in the solution of the
MIP, whenever v ∈ V (b) and for any (pre-)route ρ �

25



The following heuristics aim at reducing the computation time for generating
tours.

De�nition 6. (Heuristics (2))

1. fan-out f For every factory or base b among the places in the data, de�ne
the set Hf (b) of the f closest stores. The complexity of the problem
can be reduced by lowering the number f of alternative stores to go to
after having unloaded timber at a factory or when leaving the base in the
morning.

2. Duration of a dutyperiod hd The number of alternative ways to compose
a dutyperiod increases exponentially with the length of it. Consequently,
the computation time increases expontentially with the duration of a du-
typeriod. After �ndning a solution with shorter dutyperiods, these can
be combined into full working day durations, as it done here. A more
so�sticated variant is that of rolling planning where the computation for
one short dutyperiod is initialized according a solution for an immediately
preceding dutyperiod.

3. Cap on number of task per dutyperiod ha. In the TIMBER case some of
the tasks were considerably shorter than others. This may lead to �tting
to many tasks into one dutyperiod, resulting in a combinatorial explosion.
Keeping ha low (max 5) reduced computation time considerably, while
however also reducing the quality of the solution.

We shall assume the following are given from the data:

1. the set A of tasks

2. the set V of vehicles

3. the set P of places with the sorts base, store, factory

4. the set L of legs as de�ned in Def. 1

For the following de�nitions, we need some further notation:

De�nition 7. (Notation)

A(ρ) the number of loaded legs in the (pre-)route ρ

ρ(a, b) the (pre-)route obtained from adding the leg (a, b) to the end of the
sequence of legs in ρ. (The notation ρ(a, b)(c, d) means that (c, d) is
added to the (pre)-route ρ(a, b))

(a, b)ρ the (pre-)route obtained from adding the leg (a, b) to the beginning of
the sequence of legs in ρ.

ρ−1 if ρ is a (pre)-route and (a, b) is the last leg in ρ, then ρ−1 is the same
as b (in other words, it is the latest place visited by ρ)

26



δ(ρ) the duration of the (pre)-route ρ, which is the sum of the durations of
the legs in ρ (see Def. 2)

De�nition 8. (Generating pre-routes) Let Hf , ha be heuristics as de�ned in Def.
6. The set Π of pre-routes is de�ned as the smallest set such that, assuming
ρ ∈ Π is a pre-route:

1. any loaded leg belongs to Π (recall that a loaded leg is a leg (a, b) s.t. a
is a store and b is a factory)

2. if (a, b) is a loaded leg, (a, b) 6∈ ρ, then ρ(ρ−1, a)(a, b) ∈ Π

Unless

(a) a 6∈ Hf (ρ−1)

(b) [ρ(ρ−1, a)(a, b)] ∈ Π

(c) A(ρ) > ha

(d) δ(ρ(ρ−1, a)(a, b)) > hd unless δ(ρ) < hd

3. (this is like the previous item, just that the new legs are added to the front
of the (pre)-route)
if (a, b) is a loaded leg, (a, b) 6∈ ρ, then (a, b)(b, ρ0)ρ ∈ Pi

Unless

(a) ρ0 6∈ Hf (b)

(b) [(a, b)(b, ρ0)ρ] ∈ Π

(c) A(ρ) > ha

(d) δ((a, b)(b, ρ0)ρ) > hd unless δ(ρ) < hd

Potentially, the set Π of pre-routes contains a large share of routes that never
will end up in a solution. Before de�ning the MIP model, we should get rid of
those. For that, we de�ne the following heuristics, which are common in the
literature.

Note �rst that the coverage matrix is de�ned as a (m,n)-matrix where m
is the number of task and n is the number of covers (that is, here, pre-routes).
Cell (i, j) in the coverage matrix contains a 1 if the task i is covered by pre-route
j, and 0 otherwise.

De�nition 9. (Heuristics (2))

1. Remove all pre-routes ρ in Π for which there is a ρ′ ∈ Π such that ρ is
either a pre�x or a su�x of ρ′ (In an implementation, this can and should
be done while generating the pre-routes)

27



2. Form the coverage matrix

(a) Use the coverage matrix to detect whether there are tasks that are
not covered by any pre-route (equivelently: �nd an all-zero row). If
so, there is no solution to the problem. End here.

(b) Use the coverage matrix to identify tasks that are covered by a unique
pre-route (rows with a single 1). Remove the task from the problem;
save the corresponding pre-route ρ and remove it from the matrix.
Also remove all pre-routes that cover any task covered by ρ (they
cannot be a part of the solution since ρ is)

(c) Use the coverage matrix to identify dominated routes (columns in
the coverage matrix) and remove them from Π (a pre-route ρ is dom-
inated if there is another pre-route which cover the same tasks as
ρ) �

For exempli�cation, in the TIMBER case, let Π be the set of pre-routes
obtained from a set of 120 tasks from one day in the data. The heuristics
de�ned in 6 and 9 and applied to Π reduce the number of decision variables
from 2.69 millions to merely 14280. That is a factor of 190.6

De�nition 10. (Feasible set of tours) Let Π be a set of pre-routes that has been
reduced by applying the heuristics in 5, 6, and 9. Let V be a set of vehicles.
Then we form the set T of feasible tours by

1. Let B be the smallest set of imaginary vehicles repesenting the bases in
the data

2. for each ρ ∈ Π, de�ne, for each v ∈ B, a route (v, ρ′) ∈ T such that ρ′ is
of the form (β, ρ0)ρ(ρ−1, β) where β is the base represented by v �

Note that the tours by Def. 10 can be shorter in duration than the working
day duration W as they are limited in duration by the heuristics hd (Def. 6).
The idea is that we shall formulate the MIP problem based on T in Def 10 and
then combine the resulting solution into full workdays. We shall also assign
vehicles to the combined full tours. From a complexity point of view this is
welcome. However, we loose a bit in quality of the solution.

Assume therefore now that the MIP resulting from using the tours de�ned
by Def 10 has been solved in accordance with Def. 4. Note that Constraint (2)
in the model must be altered to:∑

i<S

βjixi ≤ hβj
, βj ∈ B

where hβj is the product of W/hd and the number of vehicles at the base rep-
resented by βj .

6Note that the factor depends on using the heuristics in Def. 5. Without those heuristics,
the factor would be much larger.

28



The solution to the MIP thus consists of a number of routes which cover the
tasks as e�ciently as possible. We shall construct the full routes that correspond
to the full working day (16 hours in the TIMBER case) and distribute the full
routes over the set of actual vehicles.

1. combine the routes into groups of W/hd items so that for every group g,
every pre-route in g have the same base (where W is the duration of the
working day, and hd is the heuristically chosen duration of the dutyperiod.
These numbers can be chosen so that W/hd is an integer).

2. For every group g de�ned above, form a sequencce of legs by concatenating
the routes in g

3. for all resulting sequences, form a route by replacing each subsequence
(a, b)(b, c) with (a, c) where a is a factory, b is a base, and c is a store.
(Figure 19 below show the result of joining shorter routes into full working
day routes. Here every line is the concatenation of three shorter routes.
The gray bars are empty legs.)

4. Let G be the set of routes de�ned in the previous item. We claim without
proof that, if W/hd is an integer, then there is a 1-1 mapping γ from the
set of vehicles onto G such that for every v ∈ V , if γ(v) = (β, ρ), then v
belongs to the base represented by β. (The proof is trivial.)

4.5 Notes on the Tasks and the Cost Function

The tasks in the data are labelled green, yellow, or red. Green indicate good
quality, yellow indicates fair quality timber soon to become low quality, and
red indicates poor quality. We deemed that the yellow tasks were more critical
than the green ones, and that the red tasks were the least important to ful�ll7.
The transport capacity for one day (in the particular application at hand) is
limited to circa 100 tasks and often, the number of tasks in the data for one day
exceeded that number.

As an heuristic, we therefore ordered the tasks to ensure that the most
critical tasks would be consideed in the solution. As a second heursitic, we also
put a cap on how many task to consider per day. The more tasks considered,
the better the chance of �nding a good solution. However, the complexity of the
problem grows rapidly with the number of tasks. Choosing the 100 most critcal
tasks led to poor solutions, while increasing the number of tasks considered to
150 led to much better solutions (in terms of the KPI:s as discussed in the next
section).

In the SC formulation, considering more tasks than we can �nd a solution
for, lead to failure (since there are then tasks that cannot be covered). We used
an imaginary extra vehicle to cover the tasks that couldn't be covered by the
vehicles speci�ed in the problem. The cost of that vehicle was set to very high

7This judgement can be customized in the model

29



Figure 19: Result after optimizing for one day of tasks. Gray bars are empty
legs. Vehicle numbers on the y-axis and minutes on the x-axis.

so that its presence wouldn't interfere with �nding the best plan possible for
the actual vehicles. The tasks covered by the imaginary vehicle were considered
un�nished and subject for further optimization.

Recall that the MIP model de�nes the objective function (De�nition 4) in
terms of the cost of the tours. In order to ensure that the yellow tasks become
covered in the solution, we penalized both green and red tours. The red tours
were penalized the hardest (since the timber in that case was of very low quality
and thus of low commercial value). Thus, with the chosen penalty schema, the
optimizer prefers yellow tasks before the green before the red in the solution.
The level of penalties can be customized in the model.

4.6 Finding a Plan for the Full TIMBER Set

The dataset consists of store status data from 31 days. The data has been
transformed into a 3071 tasks (transport assignments). Every task speci�es a
store, a factory, a status (green, yellow, red), volume to be transported, and the
date when the store was created.

It is practically impossible to plan the whole month in one go. Even so, it is
also questionable to do so, since a whole month would not be known in advance

30



by the carrier. Instead we plan one day at a time. Next follows the planning
strategy:

1. Initially, no task is marked 'done'.

2. At any day D, select the 150 most urgent tasks (i.e. the non-red tasks
originating from 150 oldest stores) with a creation date D or prior to D
and not yet marked as 'done'. Genererate a set of feasible tours using
the de�ned heursitics and solve the corresponding MIP. Mark the tasks
covered by the solution as done. Increase by one day the age of the tasks
remaining from day D and any task from days prior to D that haven't
been marked `done'.

3. Repeat (2) until the last day in the data has been processed. End.

4.7 Results

We have succeeded in showing that the SC model can improve the planning
performance at TIMBER by 7.2%, also when simulating the day-by-day plan-
ning process performed. We only had one dataset consisting of one month, but
by planning 31 day instances in a row, feeding the leftover tasks from previous
day, the sequence is of fair length, and there is reasons to believe that if the se-
quence is extended the results would still hold. With further develpment, there
is reason to believe that a 10% increase in e�ciency is achievable.

An equally important result is that the heuristics de�ned for the TIMBER
case helped to reduce the number of decision variables by a factor of around
200. As noted above, for day 2 in the data the number of decision variables
was reduced from 2.69 millions to 14280. This translates into a reduction of
computation time with a factor of k200 for some k > 1 (as a comparison, the
estimated number of atoms in the Universe is bounded from above by 2100.)
The other days in the data showed similar reductions in complexity.

The computation for the whole dataset took 40 minutes on a reasonbly
equipped laptop (16GB RAM, Dual-core i7 28W CPU (Intel Kaby Lake)) using
the open-source MIP-solver CBC8. Generation of tours was made in Python.

For the quality of the solution, we had access to ground truth in terms of

1. number of transports performed (NTP) (circa 2000)

2. total number of kilometers on road

3. total volume transported

4. (derived) volume per kilometer (VPK)

We also counted the number of critical yellow tasks the model managed to cover
(YC). However, we had no access to ground truth for that aspect to compare
with. Table 1 shows the potential in improvment resulting from using heuristics
developed in DOIT for the TIMBER case.

8https://projects.coin-or.org/Cbc

31



KPI | method ground truth SC+heuristics (DOIT)
NTP ca 2000 ca 2000
VPK 26.5 28.4
YC n/a 63%

Table 1: Comparing the quality of the solution with ground truth from the
dataset

5 Summary

In this report we have showed the potiential of optimization techniques for
reducing cost in road bound heavy duty transportation. By modelling data
from a real business case, we have illustrated

1. A Constraint Programming Model which is intuitively easy to use and
which quickly �nds solutions

2. A Minimum Cost Flow Model with very fast performance traded for re-
strictions in expressivity

3. A Set Cover Model with which we were able to improve on the performance
of the real data by 7.2%. De�ning and using heuristics we were able to
�nd a near optimal solution within only 40 minutes on a reasonably priced
laptop with a free MIP-solver, despite the problem's extreme complexity.

The elaborated illustrations of the optimization techniques is relevent for
DOIT in the sense that they clarify and illuminte the type of indata that is crit-
ical for the use of such techniques in reducing cost and improving performance
in the transport area.

32


	Introduction
	The TIMBER Problem
	The TIMBER Problem Formulation
	TIMBER problem in DOIT/WP4

	Solution Techniques in DOIT
	Mixed Integer and Linear Programming
	Minimum cost flow
	Terminology
	The basic model
	Equations
	Complexity
	About the execution time to prove an optimal solution
	Applying MCF on the TIMBER Case
	Test runs with the MCF model

	Constraint Programming
	What is a Constraint Program
	The basic model for the TIMBER example
	Constraints used in the model
	Example set: the TIMBER restricted case
	Runtime behaviour
	Pros and cons with the model


	A Set Cover Formluation
	Solution Strategy
	Data and concepts
	Basic Model and Solution
	Feasible tours
	MIP Model

	Heuristics
	Notes on the Tasks and the Cost Function
	Finding a Plan for the Full TIMBER Set
	Results

	Summary

