
Original Article

Reducing eutrophication increases spatial extent of communities
supporting commercial fisheries: a model case study

Barbara Bauer1,*, H. E. Markus Meier2,3, Michele Casini4, Ayoe Hoff5, Piotr Margo�nski6,
Alessandro Orio7, Sofia Saraiva3,8, Jeroen Steenbeek9, and Maciej T. Tomczak10

1Stockholm University Baltic Sea Centre, Stockholm, Sweden
2Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
3Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
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In this study we investigate if eutrophication management has the potential to substantially affect which areas are going to be most suitable
for commercial fishing in the future. We use a spatial ecosystem model, forced by a coupled physical-biogeochemical model, to simulate the
spatial distribution of functional groups within a marine ecosystem, which depends on their respective tolerances to abiotic factors, trophic
interactions, and fishing. We simulate the future long-term spatial developments of the community composition and their potential
implications for fisheries under three different nutrient management scenarios and changing climate. The three nutrient management
scenarios result in contrasting developments of bottom oxygen concentrations and phytoplankton abundance, with substantial effects on
fish production. Nutrient load reduction increases the spatial extent of the areas suitable for the commercially most valuable demersal fish
predator and all types of fisheries. This suggests that strategic planning of fishery management strategies could benefit from considering
future changes in species distributions due to changes in eutrophication. We show that combining approaches from climate research, physical
oceanography, biogeochemistry, biogeography, and trophic ecology with economical information provides a strong foundation to produce
scientific knowledge that can support a multisectoral management of ecosystems.
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Introduction
Eutrophication-induced habitat degradation directly affects de-

mersal and demerso-pelagic fish, and may affect the fisheries

exploiting them as well (Stortini et al., 2017; Townhill et al.,

2017). Such fish commonly function as key predators in aquatic

ecosystems. Therefore, changes in their spatial distribution as a
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result of management actions modifying underwater habitat qual-

ity can have large effects on the spatial distribution of their prey

and the whole community. These predators and their prey are in

some cases targeted by different segments of the fishery. Thus,

eutrophication reduction actions may actually have different ef-

fects across the fisheries sectors. To predict such effects it is im-

portant to reliably estimate species distribution changes, which

necessitates to consider not only direct effects of changes in habi-

tat quality on commercial fish but also their biotic interactions

(Godsoe et al., 2017).

Here, we use a modelling framework to investigate the causal

chain between nutrient load management and the spatial distri-

bution of fishing efforts: changing abiotic conditions affecting

species distributions and fish production across space, and

the latter influencing relative suitability of fishing grounds. The

framework consists of a regional climate model, a coupled

physical-biogeochemical model and an ecosystem model incorpo-

rating economic information, parametrized to describe the cen-

tral Baltic Sea ecosystem. Eutrophication is one of the main

pressures on the Baltic Sea ecosystem and the extent of hypoxic

areas increased 10-fold during the past 100 years (Carstensen

et al., 2014). Increased nutrient loading is proposed to have in-

creased production of forage fish (Eero et al., 2016), but reduced

the suitable habitat of the eastern Baltic cod (Gadus morhua)

(Casini et al., 2016) causing a mismatch in the spatial overlap of

cod and its main forage fish species, which might be one of the

reasons of the failed recovery of this cod stock from overfishing

(Eero et al., 2012).

Even though there is a number of models focusing on different

aspects of the Baltic Sea ecosystem, there is a lack of process-

based understanding of the spatial effects of environmental

drivers on the whole food web. Previous studies on species distri-

butions and pressures in the Baltic Sea (Gogina and Zettler, 2010;

Casini et al., 2011, 2014; Voss et al., 2012; Uusitalo et al., 2016;

Bartolino et al., 2017) ignore dynamic feedbacks among ecosys-

tem components. Similarly, spatial process-based models of east-

ern Baltic cod stock and fisheries (Röckmann et al., 2007, 2008;

Kraus et al., 2008; Bastardie et al., 2010a, b, 2017) have not taken

trophic interactions into account so far. Radtke et al. (2013)

model spatial distributions of Baltic fish based on plankton food

availability, omitting direct effects of environmental drivers on

fish and the benthic part of the food web. Models looking at com-

bined effects of environmental drivers and fisheries while repre-

senting food web interactions (Hansson et al., 2007; Österblom

et al., 2007; Niiranen et al., 2013) lack a spatial component, with

the exception of the model developed by Lindegren et al. (2014),

which modelled the central Baltic Sea as three interlinked sub-

basins. Previous studies generally showed a link between high

nutrient loads, pronounced eutrophication and an increase of

sprat abundance, whereas low nutrient loads are generally

thought to lead to decreased eutrophication and an increase in

cod abundance. However, it is an open question how these effects

are going to be realized in space and if there are areas within the

Baltic Sea that are going to especially benefit from the positive

effects of reduced eutrophication.

To answer this question, we use a modelling approach that goes

beyond previous studies by incorporating both information on

abiotic drivers of species distributions, trophic interactions, and

fisheries effects on the food web in space. Ecospace is the spatial-

temporal module of the commonly used Ecopath with Ecosim

(EwE) suite of models (Walters et al., 1999; Pauly et al., 2000).

The newest addition to Ecospace, the habitat capacity model,

combines the strength of Species Distribution Models (Peterson

et al., 2011) with dynamics approaches by incorporating a dy-

namic niche model that considers the responses of functional

groups to any number of (changing) environmental conditions

(Christensen et al., 2014). In the present study we use the habitat

capacity model of Ecospace to identify potential shifts in distribu-

tions of functional groups as a result of changing environmental

conditions under three different nutrient management scenarios

and changing climate. In addition, we are going to investigate to

what extent the suitability of different areas for fishing may change

under these scenarios.

Material and methods
Study system
The area represented in our model is the central Baltic Sea, a large

brackish water body in northern Europe. Weather-driven inflows

from the North Sea and anthropogenic nutrient loads from land

determine oxygen concentrations (Meier et al., 2006; Matthäus

et al., 2008). During the last decades, hypoxic conditions on the

sea bottom have become more widespread (Figure 1), with ad-

verse effects on the reproductive potential and stock production

of demersal spawning fish and on benthic macroinvertebrates

(Karlson et al., 2002; Meier et al., 2012a; Carstensen et al., 2014;

Casini et al., 2016).

The offshore central Baltic Sea contains a highly productive but

low diversity ecosystem with three main commercially important

fish stocks, the Eastern Baltic cod, and two clupeid stocks, sprat

(Sprattus sprattus) and central Baltic herring (Clupea harengus)

(ICES, 2016a). Flounder (Platichthys flesus) is also a relatively

abundant species and caught commercially as well. Even though

the grey seal (Halychoerus grypus) population is steadily increasing,

the number of grey seals is still low (Härkönen et al., 2013), thus,

cod is the main piscivore. Cod, flounder, and to some extent her-

ring, consume benthic preys while herring and sprat are the main

planktivores. Mysids (mainly Mysis mixta, M. relicta, and

Neomysis integer) consume both phyto-and zooplankton as well as

benthic material, thus, they provide an important trophic link

between the benthic and pelagic parts of the food web.

Regional ocean climate model
We use scenario simulation results of the regional ocean climate

model RCO-SCOBI which consists of the physical Rossby Centre

Ocean (RCO) model (Meier et al., 2003) and the Swedish Coastal

and Ocean Biogeochemical (SCOBI) model (Eilola et al., 2009) per-

formed within the project ECOSUPPORT 2009–2011 (Advanced

modeling tool for scenarios of the Baltic Sea ECOsystem to

SUPPORT decision making, see Meier et al., 2014).

The ocean model is coupled to a Hibler-type sea ice model and

the subgrid-scale mixing in the ocean is parametrized using a k-e
turbulence closure scheme with flux boundary conditions (Meier

et al., 2003). A flux-corrected, monotonicity-preserving transport

scheme is embedded without explicit horizontal diffusion. In the

northern Kattegat open lateral boundary conditions are used,

where in case of inflow temperature, salinity, and nutrient values

are nudged toward observed climatological profiles. Horizontal

and vertical resolutions amount to 3.7 km and 3 m, respectively.

SCOBI describes the dynamics of nitrate, ammonium, phos-

phate, oxygen, and hydrogen sulphide concentrations (the latter as

negative oxygen), three phytoplankton species, zooplankton and
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detritus (Eilola et al., 2009). The sediment contains nutrients in the

form of benthic nitrogen and benthic phosphorus. Processes like

assimilation, remineralization, nitrogen fixation, nitrification, deni-

trification, grazing, mortality, excretion, sedimentation, resuspen-

sion, and burial are considered. Resuspension of organic matter is

calculated using a simplified wave model (Almroth-Rosell et al.,

2011).

Downscaling of projected climate change
Atmospheric forcing fields of RCO-SCOBI were calculated applying

a dynamical downscaling approach using a regional coupled

atmosphere-ice-ocean model (Meier et al., 2012b) with lateral

boundary data from a global climate model HadCM3 (Gordon et al.,

2000). For the projections 2001–2098 the greenhouse gas emission

scenario A1B was selected (Naki�cenovi�c et al., 2000). Bias correction

of atmospheric forcing data for the ocean model was not applied,

except that wind speed extremes were improved using simulated

gustiness (Meier et al., 2011). River runoff was calculated from the

net water budget over land (precipitation minus evaporation) using a

statistical model (Meier et al., 2012b). Finally, nutrient loads were de-

rived from the product of river flow and riverine nutrient concentra-

tions. For details of the modeling approach and climate model

results, the reader is referred to Meier et al. (2012b, c).

Food web model
We constructed a food web model describing the environmental

drivers of the functional groups and their trophic interactions in the

offshore central Baltic Sea using the EwE food web modelling ap-

proach (Walters et al., 1997; Christensen and Walters, 2004). The first

component of the suite, Ecopath, describes the average trophic flows

in an ecosystem during one year in our case. The Ecosim model is a

set of differential equations describing the temporal behaviour of the

ecosystem, using the Ecopath model as initial condition. More details

on the EwE approach are included in the Supplementary material.

The capabilities and limitations of the approach have been described

by Christensen and Walters (2004), Plagányi and Butterworth

(2004), and Plagányi (2007).

Ecospace is the spatially explicit component of EwE (Pauly

et al., 2000; Christensen et al., 2014; Romagnoni et al., 2015).

Ecospace is represented by a set of water and land grid cells.

Functional groups and fisheries interact with each other within

the water cells according to modified versions of Ecosim equa-

tions (see Supplementary Appendix S3). The representation of

life histories in Ecospace compared to Ecosim is modified

(Walters et al., 2010) and an effect of habitat capacity on

predator-prey interactions is introduced. Low habitat capacity for

a consumer species is modelled as decreased vulnerability of its

prey to predation (Christensen et al., 2014). Habitat capacity in a

cell for a functional group depends on the values of environmen-

tal drivers in the cell and the group’s response function to these

(Supplementary Appendix S3.1).

To initialize Ecospace simulations, biomasses of functional

groups are distributed based on their respective overall relative

habitat capacity values. These biomass distributions change in the

following time-steps due to food web interactions. These biomass

distributions change in the following time-steps due to the inter-

play of food web interactions, fishing, and species dispersal until

Ecospace reaches spatial equilibrium. Therefore it is necessary to

have a spin-up period under stable conditions in Ecospace, before

introducing spatio-temporal forcing.

Spatial migration among cells is represented by redistributing

the functional groups’ biomasses among cells with a speed de-

pending on their basal migration rate. Overall relative habitat

Figure 1. Study area. Shades show mean depth of the spatial cells used in the Ecopath with Ecosim model (resolution: 0.25 � 0.25 degrees).
Red thick lines show the extent of hypoxic areas (<2 ml/l bottom O2 concentrations) according to the RCO-SCOBI coupled physical-
biogeochemical model outputs (average values 2004–2008, reference scenario, see Methods for details).
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capacity is inversely proportional to the rate of migration out of

grid cells, as organisms are assumed to be less likely to leave

habitats with higher capacity and more likely to migrate out of

habitats with lower capacity (Christensen et al., 2014). Fishing

efforts of fleets are distributed among cells based on the attractive-

ness of each cell for the fleet (eq. 7, Supplementary Appendix S3).

Fishing mortality caused by each fleet on its target species in each

cell is proportional to its fishing effort in that cell.

Model parameterization and calibration
Our Ecopath model describes annual trophic flows in the Baltic

Proper during the early 2000s between 21 functional groups

(composed of developmental stages of fish groups, species or

groups of species) and detritus (Figure 2). Consistency of

Ecopath input parameters with basic ecological principles was

checked using the Prebal procedure (Link, 2010), described in de-

tail in ICES (2016b, Annex 3).

The Ecopath model includes the effects of fisheries on the food

web by defining 10 fishing fleets operating in the region and the

fishing mortality caused by them, calculated based on their land-

ings and discards (Figure 3). We implemented three types of

fleets in the model: (1) active demersal (ACT; mostly otter trawls

and demersal seine) in three size categories:<18 m, 18–24 m,

24–40 m; (2) passive demersal (PAS; gillnets, trammel nets, long-

lines, and pots) in three size categories:<12 m, 12–18 m, 18-40 m;

and (3) pelagic (PEL; pelagic trawl and pelagic seine) in four size

categories:<18 m, 18–24 m, 24–40 m,>40 m. To parameterize

the fisheries we used data made available by the European

Commission’s Joint Research Centre fisheries data collection

website (https://datacollection.jrc.ec.europa.eu/, accessed 15

September 2016), evaluated by the European Commission’s

Scientific, Technical and Economic Committee (STECF), and

from ICES (2015, 2016a). Ecopath model parameters are included

in Supplementary Appendix S1. Biomass of fish groups, landings

and discards by the fishing fleets are representative of the year

2004. For other parameters, data from a period as close as possi-

ble to this year was used.

For this study, the Ecosim model described in ICES (2016b,

Annex 3) was refitted to a number of reference time series using

environmental forcing functions derived from RCO-SCOBI out-

puts, corresponding to the time period 2004–2013 (please see

Supplementary Appendix S2.2 for details of the fitting proce-

dure). The period 2004–2013 was chosen for fitting as 2004 was

the first year when fishing effort (kW days at sea) data from

STECF became available and 2013 the last year when an analytical

stock assessment for the Eastern Baltic cod was performed (at the

time of this study). Both types of information were used during

the model fitting procedure. The procedure was the same as

described in ICES (2016b). During the model fitting process, first

we assessed the sensitivity of the sum of squared deviations

measure (SS) to the number of “vulnerability blocks” (v–s) fitted

using the “Stepwise fitting” plug-in of Ecosim (Christensen et al.,

2008). Second, we set the v values to those maximizing model

fit to time-series using the “Fit to time series” plug-in

(Supplementary Appendix S2.1). As suggested by Heymans et al.

(2016), we did not simply use the v-s resulting in the best fit to

observed time series data, but applied additional tests on stock-

recruitment and fishing mortality-catch relationships (Heymans

et al., 2016; Stäbler et al., 2016) and model stability (Mackinson

and Daskalov, 2007) to test for ecologically credible model

behaviour and modified a few v-s accordingly (Supplementary

Appendix S2.1).

To set up the Ecospace model, driver maps were generated for

each environmental driver (Supplementary Table S5). All envi-

ronmental driver maps we used are derived from the outputs of

the RCO-SCOBI model, with the exception of the depth map.

The latter is based on the Depth Relief Map published by the
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Figure 2. Trophic diagram of the Baltic Proper food-web, boxes representing modelled functional groups and edges main predator-prey
relationships (based on Tomczak et al., 2012). For more details on the definition of functional groups see Supplementary Appendix S1.

Spatial effects of eutrophication on fisheries 1309

Downloaded from https://academic.oup.com/icesjms/article-abstract/75/4/1306/4828189
by guest
on 13 August 2018

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://datacollection.jrc.ec.europa.eu/
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsy003#supplementary-data


HELCOM Map and Data Service (www.helcom.fi). We use yearly

average phytoplankton biomass as relative primary production

map, similarly to Coll et al., (2016). To parametrize environmen-

tal response functions (ERF) in the Ecospace model, we collected

information about the responses of functional groups and species

biomasses to abiotic factors from the species distribution

modelling literature (Supplementary Table S5). We assumed

three types of ERFs, “left-shoulder” (Supplementary Figure S8a),

“trapezoid” (Supplementary Figure S8b), and “right-shoulder”

(Supplementary Figure S8c) shapes. The choice of shape for a

particular group-environmental driver pair does not reflect some

general ecological characteristic of that group, rather it shows

whether the environmental driver in the Baltic Sea have been

described to encompass the entirety of the groups’ preferred

range and values above and below that (trapezoid shape) or

whether the group is only possibly limited by that driver because

of too high (left-shoulder) or too low (right-shoulder) values in

that ecosystem.

In contrast to the Ecosim module, which we fit to non-spatial

time series data, we assessed a fit of the Ecospace output to spa-

tially explicit but temporally static empirical data (maps). There is

no automated fitting procedure available for Ecospace. In the lack

of temporal forcing, our model describes ecosystem behavior ap-

proximately of the year 2004. However, to make the model valida-

tion less sensitive to potential noise in the data and inherent

natural variability in the system, we compared averaged observed

stock biomass, catch and fleet effort distributions from the period

2004–2008 to model outputs. The Ecospace model validation pro-

cess is described in more detail in Supplementary Appendix S3.2.

Sensitivity analysis
We tested the sensitivity of our biomass simulations to key ecolog-

ical assumptions. First, we iteratively tested how excluding ERFs

from the model influenced the correlation with data. This way we

could identify those ERFs that were crucial to reproduce key pat-

terns in observational data (Supplementary Appendix S3.3.1).

We also investigated the sensitivity of model fit to two parame-

ters related to fisheries (Supplementary Appendix S3.3.2): port

placement, which influences spatial distribution of fleets via the

fishing cost map (Supplementary Figure S9), and Effective Power

(1=r in eq. 7, Supplementary Appendix S3). We reran the model

using the same settings as for the validation run, with five

variations of randomly placed ports and with values for Effective

Power¼ 0.5, 1, 5 and 10.

Scenario simulations
First, we simulated three scenarios driven by differing nutrient

loads using the RCO-SCOBI model. We then used environmental

driver maps and temporal forcing derived from that model to

drive distributions of functional groups, and, consequently, fish-

ing efforts in Ecospace. The three scenarios of nutrient concentra-

tions were selected to reflect rather contrasting socio-economic

developments in the Baltic Sea catchment area (Meier et al.,

2012b): (1) land nutrient loads reduced according to the Helsinki

Commission’s Baltic Sea Action Plan (BSAP, see HELCOM,

2007) and 50% reduced atmospheric deposition; (2) Reference

(REF) with current nutrient concentrations in rivers and atmo-

spheric deposition (Eilola et al., 2009); and (3) Business-As-Usual

(BAU) with an assumed exponential growth in agriculture and

current atmospheric deposition.

Model runs of RCO-SCOBI representing the present climate

period 1961–2007 used average riverine nutrient concentrations

that were calculated from observed loads. Then simulations

2008–2098 were run under the three above-mentioned scenarios

based upon nutrient concentration changes relative to the period

1995–2002 (for details of the applied ramp function, see Meier

et al., 2012b). Ecospace simulations were run over the period

2004–2098 after a spin-up period of 75 time steps (years) under

static conditions corresponding to those of 2004. We used annu-

ally averaged maps in EwE as drivers as we focus on the effects of

long-term changes in environmental conditions and not on the

seasonal cycle or extreme events like salt water inflows. The

driver maps were inserted into the running Ecospace model

through the spatial-temporal data framework (Steenbeek et al,

2013). We considered the same warming climate and increasing

seal population in all scenarios, to be able to compare eutrophi-

cation effects in a realistic environmental context. We kept the

total level of fishing efforts per fleet over the whole modelled

area constant at 2013 levels. However, the spatial distribution of

efforts within the area was changing every time-step as a conse-

quence of changes in spatial distributions of the targeted fish.

This means that total fishing mortality caused by each fleet on

the species they catch remained constant over time, but varied in

space according to the simulated effort distribution. Temporal

forcing used in the scenarios is described in Supplementary

Appendix S2.3.

Results
First we compare the ecosystem response among the three mod-

elled nutrient scenarios BSAP, REF, and BAU. Second, we present

the main outcomes of the sensitivity analysis.

Spatial ecosystem structure
In our EwE projections, species or groups sensitive to O2 concen-

trations close to the seafloor generally benefit from reduced nutri-

ent loads. Cod, flounder (Figure 4), and mysids (Figure 5) as well

as all macrobenthos groups (Supplementary Figure S26) have a

larger distribution range under the BSAP scenario due to higher

bottom and below 60 m oxygen concentrations compared to the

other two scenarios (Supplementary Figure S23). Under REF and

BAU, hypoxia-tolerant meiobenthos is profiting from the absence

of macrobenthic fauna and its biomass density increases in the
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deep basins (Supplementary Figure S26). Cod and flounder bio-

mass density is low in the direct proximity of the coast and

south-east from the island of Öland due to low bottom salinity in

all scenarios, and west of Gotland due to low oxygen content

especially in the REF and BAU scenarios. In the BAU and REF

scenarios both species are mostly concentrated in the southern,

and, in the case of flounder, eastern parts of the Baltic. They

(especially flounder) reach high densities along the coasts, just

beyond the shallowest areas, in these two scenarios. Changes in

demersal fish distributions substantially affect the spatial distribu-

tions of some of their prey and top predator species. Besides clu-

peids, both juvenile and adult cod and adult flounder are

important prey for grey seals, and therefore seal concentration is

predicted to shift southwards under both REF and BAU scenarios

compared to BSAP (Supplementary Figure S25). Sprat is present

in all of the modelled area in all scenarios, but under BSAP it is

rather concentrated toward shallower areas (Figure 4). Under

REF and especially BAU sprat has a very high density across the

whole area although it is relatively more concentrated in deep

areas. In both cases, the distribution of sprat is negatively related

to the distribution of cod, most probably due to strong cod pre-

dation on sprat. Compared to other fish, the spatial distribution

of herring is less affected by the nutrient load scenarios, even

though also for this species there is a general increase in density

across the whole area in the REF and BAU scenarios. This is prob-

ably due to various factors affecting its distribution simulta-

neously (predation by cod and seal, benthic food availability,

competition with sprat for zooplankton).

Spatial distributions of the intermediate trophic level predators

(the clupeids) affects the distributions of lower trophic level

groups. Sprat and herring are the most important predators of

the Pseudocalanus spp. and “other zooplankton”’ functional

groups in the model, which therefore benefit from the relatively

low densities of clupeids in the deep sea east of Gotland under

the BSAP scenario (Figure 5). Even though the smaller Acartia

spp. and Temora sp. are also consumed by clupeids, they are sig-

nificantly predated upon by mysids as well. This is probably the

reason why they do not show substantial differences in their dis-

tributions among the scenarios (Supplementary Figure S25).

Differences in the spatial distribution of the primary producer

group among the scenarios are the result of differences in zoo-

plankton predation and nutrient loads. Phytoplankton density

overall is increasingly higher when comparing BSAP, REF, and

BAU scenarios due to an increasing level of nutrients available for

primary production (Figure 5). While in the BSAP scenario phy-

toplankton in the deep offshore area east of Gotland is consumed

by zooplankton, the low densities of Pseudocalanus spp. and the

“other zooplankton” groups under REF and especially BAU result

in an accumulation of phytoplankton biomass in the area.

Distribution of fishing effort
Figure 6 shows the distribution of fishing efforts of three selected

fleet segments (one vessel size per each gear type) under three sce-

narios. Note that socio-economic drivers, such as port placement,

fleet composition, and structure are assumed to be constant in

time. Thus, modelled differences in fishing effort distributions

across scenarios reflect differences in their target species distribu-

tions, higher priced fish having a larger influence. Thus, effort

distributions indicate the relative suitability of fishing grounds

under the three scenarios. Effort distributions of fleets using

active and passive gears strongly reflect the biomass distribution

of cod. Consequently, under the BSAP scenario their efforts are

more evenly distributed over a larger area than in BAU and REF.

This means that while under BSAP there are many similarly suit-

able fishing grounds in the model, increasing nutrient loads lead

to intense fishing in small areas. Comparison of weighted center

points of fishing effort distributions in 2004 to those from 2088

to 2098 shows that under BSAP fishing efforts of the demersal ac-

tive and passive fisheries shift in a north-east direction, especially

in the case of passive fleets. Under the REF and BAU scenarios

weighted center points do not shift in space compared to 2004.

Fleet effort distributions are projected to be very similar among

fleet segments using differently sized vessels. Thus, the effort dis-

tributions shown in Figure 6 for mid-sized demersal trawlers and

small vessels using passive gears are representative for all mod-

elled vessel size categories of demersal trawlers and vessels using

passive gears, respectively.

The fishing effort distribution of the pelagic fleet segment

(Figure 6) reflects herring and sprat distribution in the BSAP sce-

nario (Figure 4). Although this fleet segment mostly targets clu-

peids, it catches cod as well. This explains our projections which

indicate that under the REF and BAU scenarios the location of

the most suitable fishing grounds mirror the changes in clupeids’

distribution at the broad scale and the cod distribution at a finer

scale. For all fleet segments, but especially for the pelagic fleets,

the weighted center points during 2088–2098 are concentrated in

a small area in the BSAP scenario relative to the other two scenar-

ios, where they are more scattered. This means that under BSAP

the year-to-year variability in effort distributions is smaller, indi-

cating less change in the location of the most suitable fishing

grounds between subsequent years. In contrast to the demersal

fleets, effort distribution varied with vessel size in case of the pe-

lagic fleet. In our model, vessels<24 m have a higher share of cod

in their landings and therefore their distributions mostly reflect

that of cod in all scenarios, similarly to demersal fleet segments.

In contrast, landings of vessels>40 m consist almost entirely of

clupeids and therefore their distributions follow that of the

clupeids in all scenarios (Supplementary Figure S28).

Sensitivity analysis
The correlation between the modelled functional groups and the

fleet effort distributions to empirical data and its sensitivity to

model assumptions are described in Appendices S3.2 and S3.3,

respectively. In general, model fit to observations measured by

correlation is similar among biomasses, catches, and efforts

(Supplementary Figure S10, Appendix S3.2). Most variables show

a Kendall’s correlation coefficient of 0.2–0.4, with the exception

of lower correlation coefficients in the case of juvenile and adult

herring biomass of about �0.05–0.1. The correlation was not very

sensitive to the choice of ERFs included in the model because cor-

relation coefficients obtained by including only a subset of ERFs

were similar (Supplementary Figure S20, Appendix S3.3.1). In

contrast, port placement and Effective Power influenced the

model fit (Supplementary Figures S21 and S22, Appendix S3.3.2).

Discussion and conclusions
In this study we present a mechanistic framework to assess

how future nutrient management measures potentially alter the

capacity of different areas of the central Baltic Sea to support

commercial fisheries under climate change. We show that the
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implementation of a strong nutrient reduction policy, such as the

BSAP, would strongly increase the spatial extent of areas that can

support all types of fisheries. On the other hand, a smaller part of

the Baltic Sea may experience increased densities of fish under

scenarios assuming constant or further increasing nutrient loads.

Such increased densities may cause population pressures and re-

sponses that are not included in our modelling framework, such

as increased parasite infection rates and decreased individual

growth (Eero et al., 2015; Casini et al., 2016).

We found large differences among three modelled nutrient

management scenarios in terms of spatial community composi-

tion and, consequently, fishing effort distributions across the

whole modelled area. Although one region, the southeastern

Baltic Sea, remained an important fishing ground in all scenarios,

its relative importance compared to other areas changed dramati-

cally. While in the highest nutrient load scenario it was the only

area which could sustain both demersal and pelagic fisheries, in

the lowest nutrient load scenario other, more northern areas also

became suitable. Therefore, the relative location of most suitable

fishing grounds for demersal fisheries shifted northwards, espe-

cially for the segments using passive gears. An extended potential

range of operations may be particularly important for this

segment as it is considered to be the most vulnerable within the

Baltic fishery (Strehlow, 2010). Not only the spatial distribution

of suitable fishing grounds, but also their interannual variability,

differed among the scenarios. Under the low nutrient loading sce-

nario, larger areas were suitable for fisheries and their location

tended also to be more stable among years. This sort of spatial re-

liability of fish production may facilitate the inclusion of fisheries

into marine spatial planning in the future.

One of the most important outcomes of our study is that the

differences in species distributions among modelled scenarios

were the result of cumulative impacts of several environmental

factors, in agreement with Stortini et al. (2017). While for indi-

vidual groups one or two factors could be pinpointed as impor-

tant drivers, changes in the spatial structure of the community as

a whole were the result of the combined effects of changes in oxy-

gen, salinity, primary productivity, and food web interactions. In

the Baltic Sea, currently cod is the most important top predator

and changes in its abundance potentially cause multilevel trophic

cascades (Casini et al., 2008). Hypoxia-induced habitat compres-

sion of cod and its consequences for the spatial distribution of

intermediate trophic level forage fish in the Baltic Sea are well

documented (Casini et al., 2011, 2016). Our model results

indicate that the habitat compression of cod may be reversed if

nutrient load reduction policies are implemented. While constant

Figure 4. Projected density (t/km2) of adult fish (average values 2088–2098) under three nutrient management scenarios: Baltic Sea Action
Plan (left), Reference (middle) and Business-As-Usual (right column), in the modelled area (see Figure 1). Juvenile fish distributions are very
similar to those of adult ones and therefore not shown. Average distributions 2004–2008 are shown in Supplementary Figures S11 and S12.
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and high nutrient load scenarios had adverse effects on benthic

and demersal groups, abundances of phytoplankton and pelagic

fish were predicted to increase. Similarly to other seas, there

has been a positive link between increased nutrient loads and

(especially forage) fish production in the Baltic (Chassot et al.,

2007; Eero et al., 2016) also supported by our model results.

However, it is questionable whether this relationship will hold in

the future. Some evidence suggests that further increases in the

eutrophication levels compared to today, especially under higher

temperatures and lower abundances of higher trophic level preda-

tors, could contribute to shifts in primary producer composition

to an unfavourable state for consumers. Such shifts include an

increased proportion of smaller-sized organisms (Suikkanen

et al., 2013), a more frequent occurrence of toxic cyanobacterial

blooms (Lehtiniemi et al., 2002; Neumann et al., 2012), and an

increased dominance of filamentous algae in coastal habitats

(Borg et al., 1997).

Our results also point out the environmental dependency of

suitable areas for fisheries and possibly all human activities based

on ecosystem functioning. This means that long-term, adaptive

marine spatial planning needs to take into account changing abi-

otic conditions (Miller et al., 2013). Our modelling study suggests

that the provision of wild-captured fish food, one of the impor-

tant ecosystem services, may have a more even spatial distribution

across the central Baltic Sea when nutrient loads are reduced.

This could have important economic consequences for the fishing

industry as spatial relation to the most productive fishing

grounds is an important determinant of fleet efficiency

(Hutniczak et al., 2015; Bastardie et al., 2017). When fish distri-

bution consists of small pockets of high densities in space, as

predicted under increasing nutrient loads, the risk for overexploi-

tation is higher. Discard issues may also increase if species which

are targeted and those that are caught as bycatch have similar re-

quirements and their distributions become restricted to overlap-

ping areas, such as cod and flounder in our model. Additionally,

fisheries have to share the marine space with other human activi-

ties (Tidd et al., 2015; Yates et al., 2015). For example, in one area

within the Sound (part of the Baltic Sea) a trawling ban has been

in place since 1932 due to intense shipping traffic in the area

(Lindegren et al., 2013). When the extent of areas suitable for

Figure 5. Projected density (t/km2) of selected lower trophic level functional groups (average values 2088–2098) under three nutrient
management scenarios: Baltic Sea Action Plan (left), Reference (middle) and Business-As-Usual (right column), in the modelled area (see
Figure 1). Average distributions 2004–2008 are shown in Supplementary Figure S18.
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fishing operations is decreased, together with the extent of areas

supporting ecosystem functions, managers may face more diffi-

cult trade-offs in allocating marine areas for exploitation, conser-

vation and other uses.

In their recent study, Zurell et al. (2016) have shown that

mechanistic modelling approaches, such as dispersal or popula-

tion dynamics models and Bayesian process-based dynamic range

models, outperform correlative species distribution models in

predicting species range dynamics under climate change. We ar-

gue that the approach presented here is a useful complement to

those evaluated by Zurell et al. (2016), as it simultaneously pro-

vides projections of all functional groups in an ecosystem without

necessarily needing spatio-temporal data on abundances of all

groups. For our ecosystem, the model was also not sensitive to

the number of ERFs included and major patterns in the data

could be reproduced by including a few key functions only (see

Supplementary Appendix 3.3.1). Still, there is a need for the de-

velopment of a consistent methodology for the parameterization

of ERFs that express the responses of functional groups to abiotic

factors. The empirical measurement of such responses is a highly

active research area (e.g. Birnie-Gauvin et al., 2017). In addition,

developing standard methodology to reliably assess the skill of

spatial ecosystem models such as Ecospace is important to have

an insight about the uncertainty of their predictions. Ideally, such

a methodology would be based on a combination of metrics in-

cluding correlation as used here, but also neighbourhood-based

methods as described by Rose et al., (2009) and Stow et al.,

(2009) for oceanographic models.

As Ecospace model parameterization is not based on auto-

mated statistical fitting but on expert judgement and literature

values, it is especially important to explore the sensitivity of the

results to assumptions made during model parameterization.

Romagnoni et al. (2015) conducted an extensive sensitivity analy-

sis of their Ecospace model for the North Sea. We have tested our

model’s sensitivity to some of the same parameters they have

found to be important. Both studies found a reasonably good

agreement between modelled population distributions and spatial

data from scientific surveys and a large effect of the parameter

“Effective Power,” which affects the level of dispersion of mod-

elled fleet efforts around profitable fishing areas. The agreement

between modelled fishing efforts and spatial data from commer-

cial fisheries was better in our Baltic model. In contrast to

Romagnoni et al. (2015), we found an effect of port placement on

fishing fleet distributions. The placement of fishing ports affects

the calculation of a fishing cost map that reflects distance from

ports. The fishing cost map is then used to distribute fishing ef-

fort, evaluating fleet- and cell-specific fishing costs based on the

fleet-specific ratio of sailing- related costs to fixed fishing costs.

The latter ratios were much higher in the case of the Baltic model

which explains the higher sensitivity of our modelled fleets’ to

port placement. Notably, some species distributions were also

sensitive to port placement (see Supplementary Figure S21). The

reason for this is that port placement influenced how fishing

mortality was distributed in space via making areas far away from

ports relatively less attractive for fishing fleets. This underlines

the importance of considering both economic and environmental

factors when making predictions about future species

distributions.

Compared to other modelled populations, our approach

proved to be less successful in reproducing the distribution of

Figure 6. Projected fishing effort (average values 2088–2098) of selected fishing fleets, up to down: mid-sized demersal trawlers, small vessels
using passive gears, and mid-sized pelagic trawlers, under three nutrient management scenarios: Baltic Sea Action Plan (left), Reference
(middle) and Business-As-Usual (right column), in the modelled area (see Figure 1). Values express fishing efforts relative to each fleet’s
average effort over the entire modelled area in the initial year, 2004. Darker shades represent higher values. Brown triangles indicate the
locations of the modelled weighted center points of the effort distributions in each of the last 11 simulated years (2088–2098). Orange circles
show the same from 2004 (initial model state after spin-up period).
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one commercially important group, herring. Some earlier studies

have shown that modelled distributions of species with distinct

environmental preferences, such as cod, generally fit better to

data than those of species with wide tolerances, such as herring

(Somodi et al., 2017). In addition, pelagic species have more

variable distributions than demersal ones which is harder to

reproduce by models (Thorson et al., 2016). These results suggest

that spatial management of such groups inevitably involves more

uncertainty.

Changes in habitat quality due to human impacts are increas-

ingly common across the globe. As species shift their distributions

to adapt to altered environmental conditions, the spatial provi-

sion of ecosystem services changes as well. Here we presented the

projected effects of various nutrient management policies on vari-

ous environmental variables and the cumulative effects of those

factors across the marine food web and on commercial fisheries

in the example of the Baltic Sea. Where data are available, the

same approach could be used to evaluate the potential conse-

quences of various environmental policies in other systems. In

the Baltic Sea, it may provide inspiration for studies more focused

on certain functional groups or areas. Our results indicate the

effectivity of nutrient load reduction policies in recovering

ecosystem function across large areas of the Baltic Sea, which may

motivate environmental managers to further pursue such policies.

Supplementary data
Supplementary material is available at the ICESJMS online

version of the manuscript.
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Härkönen, T., Galatius, A., Bräger, S., Karlsson, O., and Ahola, M.
2013. Population growth rate, abundance and distribution of ma-
rine mammals. HELCOM Core Indicator Report. Online: 1–34.

HELCOM. 2007. Toward a Baltic Sea unaffected by eutrophication.
Background document to Helcom Ministerial Meeting, Krakow,
Poland, Tech. rep., Helsinki Commission, Helsinki, Finland.

Heymans, J. J., Coll, M., Link, J. S., Mackinson, S., Steenbeek, J.,
Walters, C., and Christensen, V. 2016. Best practice in developing,
balancing, fitting and using Ecopath with Ecosim food-web mod-
els for ecosystem-based management. Ecological Modelling, 331:
173–184.

Hutniczak, B., Nieminen, E., Hoffmann, J., and Yletyinen, J. 2015.
Input-efficiency of fishing cod in the Baltic Sea – comparing
Major EU trawler fleets. University of Helsinki Dep. of Economics
and Management Discussion Papers, 68.

ICES. 2015. Report of the Baltic Fisheries Assessment Working
Group (WGBFAS), 14–21 April 2015, ICES HQ, Copenhagen,
Denmark. ICES CM 2015/ACOM: 10. 806 pp.

ICES. 2016a. Report of the Baltic Fisheries Assessment Working
Group (WGBFAS), 12–19 April 2016, ICES HQ, Copenhagen,
Denmark. ICES CM 2016/ACOM: 11. 593 pp.

ICES. 2016b. Report of the Working Group on Multispecies
Assessment Methods (WGSAM), 10–14 October 2016, Reykjavik,
Iceland. ICES CM 2016/SSGEPI: 21. 94 pp.

Karlson, K., Rosenberg, R., and Bonsdorff, E. 2002. Temporal and
spatial large-scale effects of eutrophication and oxygen deficiency
on benthic fauna in Scandinavian and Baltic Waters - a review.
Oceanography and Marine Biology: An Annual Review, 40:
427–489.

Kraus, G., Pelletier, D., Dubreuil, J., Mollmann, C., Hinrichsen, H-
H., Bastardie, F., Vermard, Y. et al. 2008. A model-based evalua-
tion of marine protected areas: the example of eastern Baltic cod
(Gadus morhua callarias L.). ICES Journal of Marine Science, 66:
109–121.

Lehtiniemi, M., Engstrom-Ost, J., Karjalainen, M., Kozlowsky-
Suzuki, B., and Viitasalo, M. 2002. Fate of cyanobacterial toxins
in the pelagic food web: transfer to copepods or to faecel pellets?
Marine Ecology Progress Series, 241: 13–21.

Link, J. S. 2010. Adding rigor to ecological network models by evalu-
ating a set of pre-balance diagnostics: A plea for PREBAL.
Ecological Modelling, 221: 1580–1591.

Lindegren, M., Andersen, K. H., Casini, M., and Neuenfeldt, S. 2014.
A metacommunity perspective on source—sink dynamics and
management: the Baltic Sea as a case study. Ecological
Applications, 24: 1820–1832.

Lindegren, M., Waldo, S., Nilsson, P. A., Svedäng, H., and Persson,
A. 2013. Towards sustainable fisheries of the Öresund cod (Gadus
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