
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer Science and Engineering

2018 | LIU-IDA/LITH-EX-A--18/019--SE

Auto-tuning Hybrid CPU-GPU Ex-
ecuࢢon of Algorithmic Skeletons
in SkePU

Tomas Öhberg

Supervisor : August Ernstsson
Examiner : Christoph Kessler

http://www.liu.se

Upphovsrä�

De�a dokument hålls llgängligtࢢ på Internet – eller dess framࢢda ersä�are – under 25 år från pub-
liceringsdatum under förutsä�ning a� inga extraordinära omständigheter uppstår. Tillgång llࢢ doku-
mentet innebär llståndࢢ för var och en a� läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk
och a� använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av
upphovsrä�en vid en senare dpunktࢢ kan inte upphäva de�a .llståndࢢ All annan användning av doku-
mentet kräver upphovsmannens medgivande. För a� garantera äktheten, säkerheten och -llgängࢢ
ligheten finns lösningar av teknisk och administraࢢv art. Upphovsmannens ideella rä� innefa�ar rä�
a� bli nämnd som upphovsman i den omfa�ning som god sed kräver vid användning av dokumentet
på ovan beskrivna sä� samt skyddmot a� dokumentet ändras eller presenteras i sådan form eller i så-
dant sammanhang som är kränkande för upphovsmannens li�erära eller konstnärliga anseende eller
egenart. För y�erligare informaࢢon om Linköping University Electronic Press se förlagets hemsida
h�p://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement – for a
period of 25 years starࢢng from the date of publicaࢢon barring excepࢢonal circumstances. The online
availability of the document implies permanent permission for anyone to read, to download, or to
print out single copies for his/hers own use and to use it unchanged for non-commercial research and
educaࢢonal purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are condiࢢonal upon the consent of the copyright owner. The publisher has taken
technical and administraࢢve measures to assure authenࢢcity, security and accessibility. According to
intellectual property law the author has the right to be menࢢoned when his/her work is accessed
as described above and to be protected against infringement. For addiࢢonal informaࢢon about the
Linköping University Electronic Press and its procedures for publicaࢢon and for assurance of document
integrity, please refer to its www home page: h�p://www.ep.liu.se/.

© Tomas Öhberg

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

The trend in computer architectures has for several years been heterogeneous systems
consisting of a regular CPU and at least one additional, specialized processing unit, such
as a GPU. The different characteristics of the processing units and the requirement of
multiple tools and programming languages makes programming of such systems a chal-
lenging task. Although there exist tools for programming each processing unit, utilizing
the full potential of a heterogeneous computer still requires specialized implementations
involving multiple frameworks and hand-tuning of parameters. To fully exploit the perfor-
mance of heterogeneous systems for a single computation, hybrid execution is needed, i.e.
execution where the workload is distributed between multiple, heterogeneous processing
units, working simultaneously on the computation.

This thesis presents the implementation of a new hybrid execution backend in the
algorithmic skeleton framework SkePU. The skeleton framework already gives program-
mers a user-friendly interface to algorithmic templates, executable on different hardware
using OpenMP, CUDA and OpenCL. With this extension it is now also possible to di-
vide the computational work of the skeletons between multiple processing units, such as
between a CPU and a GPU. The results show an improvement in execution time with
the hybrid execution implementation for all skeletons in SkePU. It is also shown that the
new implementation results in a lower and more predictable execution time compared to
a dynamic scheduling approach based on an earlier implementation of hybrid execution
in SkePU.

Acknowledgments

I would like to thank my supervisor August Ernstsson and my examiner Christoph Kessler
for their guidance and valuable feedback during this thesis project. Also, a big thank you to
Samuel Thibault, University of Bordeaux, for answering my questions on StarPU and for the
assistance with the reintegration.

I would also like to thank NSC1, the National Supercomputer Centre, for providing valuable
accelerator equipped computing resources. Without them this thesis project would not have
been possible to accomplish.

Thank you to my fellow master’s students—especially Eric, Edward and Sara—for your com-
pany and encouragement during the project and for occasionally making me get away from
the office desk. I will always be amazed by how simple a problem can appear after a short break!

Finally, I am grateful to my family for their support and patience throughout my studies. I
would not be where I am today without it.

Tomas Öhberg
Linköping, June 2018

1https://www.nsc.liu.se/

v

https://www.nsc.liu.se/

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Figures ix

List of Tables x

Listings xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 SkePU . 2
1.2 Aim . 2
1.3 Research Questions . 2
1.4 Delimitations . 3
1.5 Report Structure . 3

2 Background 5
2.1 Definitions . 5
2.2 Parallel Computer Architectures . 6

2.2.1 Shared Memory CPU Programming . 6
2.2.2 Accelerator Programming . 7

2.3 Load balancing . 9
2.4 Skeleton Programming . 9
2.5 Parallel Programming Frameworks . 10

2.5.1 OpenMP . 10
2.5.2 TBB . 10
2.5.3 MPI . 11
2.5.4 CUDA . 12
2.5.5 OpenCL . 12
2.5.6 OpenACC . 12
2.5.7 Other Frameworks . 13

3 SkePU 2 17
3.1 Skeletons in SkePU . 18

3.1.1 Map . 18
3.1.2 Reduce . 18
3.1.3 MapReduce . 19
3.1.4 MapOverlap . 20
3.1.5 Scan . 21

vi

3.1.6 Call . 21
3.2 Smart Containers . 22
3.3 Code Example . 22
3.4 User Functions . 22
3.5 Backend Specification and Execution Plans . 23
3.6 Automatic Backend Selection and Tuning . 23
3.7 Hybrid Execution with StarPU in SkePU 1 . 24
3.8 Multi-accelerator Support . 24

4 Related Work 25
4.1 Earlier Implementations of Hybrid Execution . 25
4.2 MapReduce Frameworks . 28
4.3 Linear Algebra Libraries . 29
4.4 Related Frameworks . 29

4.4.1 Marrow . 29
4.4.2 Qilin . 30
4.4.3 Muesli . 30
4.4.4 SkelCL . 30
4.4.5 ImageCL . 30
4.4.6 StarPU . 31
4.4.7 STAPL . 31

5 Design and Implementation 33
5.1 Implementation of the Hybrid Backend . 33
5.2 Workload Partitioning . 34

5.2.1 Partitioning of Map . 36
5.2.2 Partitioning of Reduce . 36
5.2.3 Partitioning of MapReduce . 37
5.2.4 Partitioning of MapOverlap . 38
5.2.5 Partitioning of Scan . 38

5.3 Auto-tuning of Skeletons . 40
5.4 Implementation of Hybrid Backend Tuning . 41

5.4.1 Execution Time Model . 42
5.5 Implementation of the StarPU Backend . 43

6 Evaluation 45
6.1 Evaluation of Correctness . 46
6.2 Evaluation of Single Skeleton Performance . 46
6.3 Evaluation of Generic Application Performance . 47
6.4 Evaluation of Performance Compared to StarPU 47

7 Results 49
7.1 Single Skeleton Performance . 49
7.2 Generic Application Performance . 49
7.3 Comparison to StarPU Performance . 51

8 Discussion 53
8.1 Results . 53

8.1.1 Single Skeleton Performance . 53
8.1.2 Generic Application Performance . 54
8.1.3 Comparison to StarPU Performance . 54

8.2 Method . 56
8.2.1 Design Choices for the Auto-tuning . 56
8.2.2 Interpretation of Number of Threads in the Hybrid Backend 56

vii

8.2.3 Blocking Accelerator Calls . 57
8.3 The Work in a Wider Context . 57

9 Future work 59
9.1 Auto-tuning for Multiple Accelerators . 59
9.2 Hybrid Tuning of Skeletons with Custom Data Property Requirements 59
9.3 Performance Improvements of Subsequent Skeleton Invocation 60
9.4 Improved Tuning of Matrix Skeletons . 61
9.5 Adaptive Tuning . 61

10 Conclusion 63
10.1 Presentation of Results . 64

Bibliography 65

viii

List of Figures

2.1 An outline of a shared memory system with four processor cores. 6
2.2 An outline of a GPU architecture with four Streaming Multiprocessors (SM). . . . 8

3.1 An example of the Map skeleton with two input arrays. 18
3.2 An example of the Reduce skeleton. 19
3.3 An example of the MapReduce skeleton with two input arrays. 19
3.4 An example of the MapOverlap skeleton with a total width of three elements. . . . 20
3.5 An example of the Scan skeleton. 21

5.1 Schematic figure of the partitioning scheme with eight CPU threads and two accel-
erators. 35

5.2 Partitioning of the Map skeleton with three CPU threads. 36
5.3 Partitioning of the Reduce skeleton with two CPU threads. 36
5.4 Partitioning of the MapReduce skeleton with two CPU threads. 37
5.5 Partitioning of the MapOverlap skeleton with three CPU threads. 38
5.6 Partitioning of the Scan skeleton with three CPU threads. 39

7.1 Execution time of individual skeletons. 50
7.2 Speedup comparison of generic applications. 51
7.3 Execution time of repeated invocations of the same skeleton. 52

ix

List of Tables

6.1 Specification of evaluation systems. 45
6.2 List of applications used in the evaluation. 47

x

Listings

2.1 Example of multi-threaded dot product using OpenMP in C++. 11
2.2 Example of recursively computing the n:th Fibonacci number using TBB. 11
2.3 Example of message passing between two nodes using MPI. 12
2.4 Example of Hello World in CUDA. 13
2.5 Example of Hello World in OpenCL. 14
2.6 Example of Jacobi iteration using OpenACC. 15
3.1 Example of dot product using MapReduce in SkePU 2. 22
3.2 Example of defining an execution plan. 23
5.1 Example of using the hybrid backend with manually set partition ratio. 34
5.2 Example of using hybrid backend tuning. 42
8.1 Example of setting optimal number of threads on a eight-core machine. 57
9.1 Example of N-body simulation with custom data property requirements. 60

xi

1 Introduction

This chapter aims at giving the reader an introduction to this thesis project. It starts with a
motivation to the problem in Section 1.1, also providing a brief introduction to the topic. Then
the aim of this thesis is presented in Section 1.2, followed by the research questions in Section
1.3, defining the scope of this thesis. The delimitations are given in Section 1.4, presenting
some topics outside the scope of this thesis. Finally, an overview of the structure for the rest
of the thesis is given in Section 1.5.

1.1 Motivation

For a number of years now, the trend in computer architectures has been to use heterogeneous
multi-processor systems. Today most computers contain at least one additional processing
unit (PU), such as a graphics processor, apart from the CPU (Central Processing Unit) and
research suggests this trend will continue in the future [6, 52]. Looking at the fastest super-
computers in the world, 102 out of the 500 systems on the TOP500 list as of November 2017
are heterogeneous [45]. Although the idea of heterogeneous architectures is not new, we still
face the challenge of implementing efficient algorithms that utilize the full potential of such
systems. The task is not made easier by the variation in number of processing units and their
relative performance in different computers.

One concept that attempts to facilitate parallel programming is skeleton programming.
Skeletons are algorithmic templates—building blocks—specifying the structure of computa-
tions. Programmers select an appropriate skeleton and specialize it with so called user func-
tions, to solve the problem at hand. One example of a skeleton is the Map skeleton. Map
applies a single user function element-wise to the elements of an array, producing a new array
as output. Instantiating the Map skeleton with a user function returning the squared value
of the input argument, would result in a skeleton instance returning a new array containing
the values of the input array squared. The separation between the implementation and the
underlying computational flow enables skeletons to be implemented and optimized for different
parallel architectures by experts, while still being easy and flexible to use for a programmer
not familiar with parallel programming. The programmer is only required to understand what
the skeleton does, not how [7].

1

1. Introduction

1.1.1 SkePU
To support development of applications for heterogeneous architectures, the skeleton pro-
gramming framework SkePU implements its skeletons for several different hardware backends.
Without increasing the burden on the programmer, a skeleton in SkePU can be executed ei-
ther sequentially or in parallel on a CPU, or on an accelerator, such as a GPU (Graphics
Processing Unit) or a MIC (Many Integrated Cores, i.e. Intel’s Xeon Phi co-processors). The
user functions are defined by the programmer as regular C++ functions and are translated
to the supported backends by SkePU’s precompiler. At runtime the programmer can choose
which backend to use when executing the skeleton, or construct an execution plan to let SkePU
automatically switch backend depending on the problem size.

An earlier version of SkePU came in two distributions: one standard variant and one
integrated with the task based runtime scheduler StarPU. Tasks in StarPU can be implemented
to execute on different processing units. By splitting the workload of the SkePU skeletons into
multiple tasks, StarPU could perform load balancing at runtime. StarPU also has support for
running tasks on different PUs simultaneously. This allowed for hybrid execution in SkePU, i.e.
to divide the workload of a single skeleton and simultaneously let the CPU and a GPU work
on the computation. Performance statistics gathered from earlier executions of the skeleton
on the machine was used to make predictions of how to distribute the work between the PUs.
This solution, however, had one major drawback: SkePU needed to perform several warm-up
runs for the runtime system to gather enough execution data on the machine to do accurate
predictions. As a result, the initial executions of a program on a specific machine would be
slow and the performance of an application unreliable [11].

The current version of SkePU supports a limited work partitioning scheme when multiple
accelerators are used to work in parallel on a skeleton. The implementation divides the work
equally between the accelerators and will thus work well when all accelerators are of the same
model, but might result in load imbalance when not. However, the current version of SkePU
lacks support for hybrid execution, meaning that the work of a skeleton cannot be divided
between the CPU and accelerators.

1.2 Aim

Given the increasing need for frameworks with support for heterogeneous computing and
automatic workload distribution, the aim of this thesis was to implement a hybrid execution
backend in the latest version of SkePU. The backend was supposed to partition the work
between a multi-core CPU and any number of GPUs or other accelerators. The benefits of
such an implementation was three-fold. It would (1) result in an easy-to-use framework for
heterogeneous computing, (2) improve performance of already written SkePU-programs and
(3) make SkePU able to fully utilize the potential of modern, heterogeneous computer systems.
An important aspect of the new hybrid execution implementation was to elude the limitations
of the experimental implementation in SkePU 1. This included finding a way to make more
reliable predictions at the first execution of a skeleton instance and thus eliminate the need
for warm-up runs, as well as to reduce the overhead caused by the dynamic scheduling.

1.3 Research Questions

This thesis will discuss and try to answer the following three research questions:

1. How can the workload of the skeletons in SkePU be partitioned for execution on hetero-
geneous processing units?

2. How can the optimal workload partitioning in the new hybrid execution backend be
predicted for different types of processing units?

2

1.4. Delimitations

3. How can the overhead of the hybrid execution implementation be kept low and without
the need for warm-up runs?

1.4 Delimitations

The hybrid execution implementation presented in this thesis only considers execution of indi-
vidual skeleton calls. A more efficient implementation would examine a number of consecutive
skeleton calls, using for instance a data dependency graph. This would give the runtime sys-
tem ability to exploit the extra information on where the data is currently located, to take
the data transfer between CPU memory and other PUs’ memory into account when predict-
ing the partitioning. For example the system could prefer keeping the same partitioning for
consecutive skeleton calls to prevent data transfers between processing units.

A delimitation was also made to the requirements for the automatic partitioning prediction
tuning. As the SkePU framework allows for very complex usage of the skeletons, the tuner
was delimited to only work well for skeleton instances where the execution time was bound by
the size of the element-wise input.

1.5 Report Structure

The rest of this thesis is structured as follows. First the background needed to understand
this thesis is covered by Chapter 2. Chapter 3 introduces the skeleton programming frame-
work SkePU and its available skeletons. In Chapter 4 some related heterogeneous computing
frameworks and libraries are introduced. The implementation of the hybrid backend and the
auto-tuner is presented in Chapter 5. Chapter 6 presents how the new implementation was
evaluated, followed by Chapter 7 where the results of the evaluation are presented. The results
and the method applied by this thesis is then discussed in Chapter 8, followed by Chapter 9
with some topics left for future work. Finally the conclusions are presented in Chapter 10.

3

2 Background

This chapter presents the background required to understand the rest of this thesis. The
chapter first gives some important definitions and terms in Section 2.1 and then gives a brief
introduction to multi-core and accelerator architectures in Section 2.2. Load balancing is then
discussed in Section 2.3. An introduction to skeleton programming is presented in Section
2.4 and finally some of the more common parallel programming frameworks and tools are
presented in Section 2.5.

2.1 Definitions

This section defines some important terms and describes how they should be interpreted in
the context of this thesis.

Accelerator: A processing unit specialized on a specific type of computations is called an
accelerator. Accelerators include GPUs, MICs, ASICs (Application-Specific Integrated
Circuit) and FPGAs (Field-Programmable Gate Array).

Backend: In this thesis a backend is an implementation variant of the (SkePU) skeletons
for specific hardware. Multiple backends based on different programming languages or
frameworks can also target the same hardware. There are for instance two backends in
SkePU supporting NVIDIA GPUs.

Discrete architecture: A discrete architecture is a computer architecture where the CPU
and the accelerator are located on different chips; each with their own memory module.
The memory modules are connected to each other via a bus connection. The opposite
of a discrete architecture is a fused architecture, see below.

Fused architecture: A fused architecture is a computer architecture where the CPU and the
accelerator (typically a GPU) share the same chip and are connected to the same memory.
The work in this thesis will focus on discrete architectures, but fused architectures are
mentioned for completeness.

Heterogeneous computing: The term heterogeneous computing is used as a general term
for computations where multiple, heterogeneous processing units are used in conjunction.

5

2. Background

Hybrid execution: The term hybrid execution means that an algorithm is executed in par-
allel on at least two, heterogeneous processing units at the same time. The term is used
both if the processing units are executing the same instructions on different data and if
they are executing different parts of the algorithm, passing data between each other in
a pipeline fashion.

Many Integrated Cores (MIC): Intel’s name for their Xeon Phi series of accelerators
(sometimes referred to as co-processors), based on the x86 architecture [16].

Processing unit (PU): In this thesis the term processing unit is used as a generic term for
a processor chip, including CPUs, GPUs and other accelerators. This is to avoid the
confusion the term device is causing, as suggested by Mittal and Vetter [35]. Other
equivalent terms used in the literature include computing unit, computing element and
processing element.

Skeleton instance: A skeleton instance is a skeleton specialized with the required user func-
tions.

SkePU: A skeleton programming framework. In this thesis SkePU refers to SkePU 2, the sec-
ond major version of SkePU, unless otherwise stated. See Section 3 for a more thorough
description of SkePU.

2.2 Parallel Computer Architectures

In this section some important architectural differences between CPUs and other accelerators
(in particular GPUs) are presented. The aim of this section is to convince the reader that
different hardware call for vastly different programming approaches and that a broad knowledge
base is required from the programmer to get good performance out of a heterogeneous system.

2.2.1 Shared Memory CPU Programming

Figure 2.1: An outline of a shared memory system with four processor cores.

Today the CPUs in workstations, clusters, laptops and even cell phones have multiple
cores, sharing one single memory module. This type of arrangement where multiple cores
share the same physical memory space is called a shared memory system. Each core can
perform its computations independently of the others, but might communicate through the
common memory module with another core. The processor cores are connected to the memory
module through a bus connection, as shown in Figure 2.1. Because the computation speed of
the processor cores is much higher than the speed and bandwidth of the memory, the memory
bus is usually the bottleneck in modern shared memory systems. To reduce this problem,

6

2.2. Parallel Computer Architectures

smaller, but faster cache memories are used between the main memory and the processor
cores. Caches store partial copies of the main memory for faster access of frequently used
memory parts. The data is stored in, and transferred to the cache as cache lines of a fixed
size. Modern processors have a multiple level cache hierarchy, where some of the caches are
shared among all cores, while others are local to one single core. Memory consistency protocols
are used to keep the local caches synchronized, to ensure a core is not reading locally cached
memory that has been modified by another core.

One major disadvantage of the arrangement with caches is false sharing. It occurs when
multiple cores are frequently accessing adjacent memory cells in main memory; memory cells
that are stored in the same cache line. When a part of a cache line is changed, the entire cache
line is invalidated by the cache consistency protocol. As a result, noticeable performance
overheads will arise when two cores are frequently accessing memory in the same cache line.
Even though the changes are made to distinct memory cells, the local caches must be constantly
updated to be kept consistent with the other core. To fully utilize a multi-core architecture with
caches, the memory access pattern must be carefully considered. Each core should preferably
access memory in order, or make many repeated accesses to a few memory cells to exploit the
fast, already cached parts of the memory. Two separate cores should prevent making frequent
accesses to adjacent memory cells, to prevent false sharing [51]. Apart from a complex cache
hierarchy, modern CPUs use large silicon areas to features giving good performance when
executing irregular programs with a complex control flow, such as programs containing loops
and branches.

2.2.2 Accelerator Programming
Accelerators are PUs specialized at a specific computational task. As the name suggests, an
accelerator is supposed to accelerate the execution of the tasks they are specifically designed
for. Most accelerators are made to perform well at data-parallel tasks, i.e. where each core
of the processor can work independently on its piece of data. Computers with an accelerator
can either be arranged as a discrete or a fused architecture. In the first case, the accelerator is
located on its own chip, detached from the CPU, with its own memory module. The accelerator
memory is connected to the main memory through a bus connection. In the second case, the
accelerator chip is fused with the CPU chip, sharing (a part of) the main memory. As discrete
architecture accelerators are only able to read their own memory, data must be explicitly copied
from main memory to accelerator memory before the computation. When the computation is
done on the accelerator the result must be copied back to main memory. Memory transfers
usually take up a large proportion of the total execution time for accelerator executions. In
fused architectures on the other hand, memory copying is generally not needed as both PUs
can access the main memory.

Programming of accelerators calls for specialized tools and languages. The programs exe-
cuting on an accelerator—called kernels—are generally short functions offloaded to the accel-
erator to take advantage of the parallelism. The kernels are generally launched by a sequential
program running on the CPU. In some cases, the kernels themselves can launch other kernels
to create nested kernel calls. Accelerator kernels are either written by a programmer in spe-
cial programming languages or generated by tools such as compilers. Examples of both are
introduced in Section 2.5.

The most common type of accelerator is the graphical processing unit (GPU). GPUs were
originally designed with a fixed pipeline for drawing graphics on a screen, but have since
evolved to allow general purpose programming. A modern GPU can consist of thousands of
simple processor cores arranged into groups, called Streaming Multiprocessors (SM)1 [9].

GPU kernels are launched as a number of threads. Threads are executed in groups of 32,
called warps2; each warp being executed on a single SM. When a kernel is launched on a GPU,

1Streaming Multiprocessor is CUDA terminology, OpenCL uses the term Compute Units.
2Warp is CUDA terminology, no equivalent term exists in OpenCL.

7

2. Background

Figure 2.2: An outline of a GPU architecture with four Streaming Multiprocessors (SM).

the host CPU schedules a number of blocks of threads3 to be executed on the GPU. All blocks
are distributed between the SMs. When an SM receives a block it partitions the threads of
the block into warps to be executed by the cores in the SM. The number of warps that can be
executed simultaneously by an SM varies between GPU models. GPUs make use of massive
thread parallelism to hide memory latencies. When a warp of threads is stuck waiting for
resources such as memory in an SM, another warp of waiting threads will be swapped in and
executed in the meantime. Thread switching is performed in hardware with no performance
overhead. Hence, to fully utilize a GPU, a kernel should launch many more threads than
there are cores. This is the opposite of the case in CPUs where thread switching is usually an
expensive operation, implemented in software [9].

All cores executing a warp must execute the same instruction of the kernel simultaneously.
In case of a branch in the kernel code taken by at least one thread, all other threads in the
warp must still follow the instruction flow of the branch. Threads not actually taking the
branch are marked as inactive and the corresponding cores in the SM will thus go idle and
waste performance potential until the branch is passed. This feature of the hardware will make
GPUs lose performance on kernels with a high number of branches and irregular loops. If a
warp of threads hits a branch in the program, the entire warp must follow, even if only as little
as one thread might actually do some work. The same thing applies for loops: even if some
threads will break out of the loop, the entire warp must keep following the loop instruction flow
until all threads in the warp are done with their iterations. Best utilization of the hardware is
achieved if kernels have few or regular branches, and loops with the same number of iterations
for all threads [9].

GPUs have multiple memory types. The two most important ones are the global and shared
memories. Data moved to and from the CPU is stored in the largest memory module, the global
memory. This memory is accessible by all SMs. Each SM also has a smaller and faster memory
called shared memory,4 accessible only by the SM. Shared memory is not automatically used to
speed up memory accesses as in the case of caches. Instead, the programmer is responsible for
making use of it. A simplified GPU architecture with the global and shared memory modules
are shown in Figure 2.2. The illustration shows four SMs, each containing 32 cores (i.e. one
single warp can be executed simultaneously on each SM), colored orange in the illustration. To
speed up global memory accesses, GPUs make use of a feature called coalesced memory access.
When consecutive threads in a warp access consecutive memory cells, the memory management
system utilizes the wide bandwidth to let the threads share a single memory transaction, which
saves transfer time. This is the opposite of CPUs where this memory access pattern would
result in false sharing [9].

3Blocks and threads are CUDA terminology, OpenCL uses the terms work-group and work-item, respectively.
4Shared memory is CUDA terminology, OpenCL uses the term local memory.

8

2.3. Load balancing

It is apparent that GPU programming, and accelerator programming in general, requires
a different approach compared to regular CPU programming. To fully utilize an accelerator
equipped system, expert knowledge for the particular accelerator type is needed.

2.3 Load balancing

To take advantage of multiple computational resources, the workload must be distributed
between them in some way. For the shortest possible execution time of an algorithm, the
optimal distribution is when all units finish their partition of the work at the same time. The
workload is then well balanced between the units.

Load balancing strategies are divided into static and dynamic ones. Static strategies only
make use of the earlier collected performance statistics to predict the best work distribution
and then keep this distribution throughout the execution of the algorithm. Dynamic strategies
take the current state of the machine into consideration and can adapt to changes during
the execution by actively redistributing the remaining workload. Static strategies have the
advantage of simplicity and low overhead, but cannot adapt to changes in the workload caused
by e.g. other processes running on the same hardware [54].

Load balancing can be applied on different hardware levels. For multi-core machines, where
the workload is distributed between CPU cores, it can be discussed on a core level. In computer
clusters load balancing can be implemented on node level, between the nodes in the cluster. In
this thesis, however, the load balancing will be considered on PU level, within a single compute
node, where the workload is distributed between a CPU and an accelerator.

The goal of load balancing is to find the optimal workload distribution between the units to
get a shorter execution time. If the load balancing algorithm makes a misprediction some of the
units will go idle while others are finishing their part of the workload, thus wasting potential
performance improvements. When performing load balancing on PU level additional things
must be considered. One major point is the data transfer times for the workload executed on
an accelerator. These times can take up a large proportion of the overall execution time for
that PU. However, in the case of the data already residing and being up-to-date in accelerator
memory, no data transfers are needed and the overall execution time of the accelerator will be
reduced. In addition to this, two algorithms will perform very differently on a PU depending
on how well the algorithm fits the computation model of it. Some algorithms will run faster
on the CPU compared to the accelerator, while other algorithms will execute faster on the
accelerator. In core level load balancing this is not a problem, as the execution time is generally
the same on all cores of the CPU.

2.4 Skeleton Programming

Several parallel programming models have been proposed over the years, with the intention
to more or less hide the complexity of the underlying parallelism and to facilitate for the
programmer. In 1989, Cole [7] suggested to use higher-order functions from the functional
programming paradigm as a parallel programming model. A higher-order function is a function
taking other functions as arguments. The argument functions are then applied by the higher-
order function, usually to some sequential data. Cole introduced the idea that parallelizable
higher-order functions could be used as algorithmic skeletons. Thus, the skeletons provide
templates of the computational structure, and let the programmer apply the templates to
solve the problem at hand. At the same time the skeletons can internally be implemented and
optimized for some parallel architecture. The programmer must not only choose an appropriate
skeleton, but also instantiate it with the correct argument functions. In skeleton programming
these function arguments are usually called user functions.

From the skeleton programmer’s perspective, a skeleton can be seen as a sequential compu-
tation, but it may in fact hide a complex parallel implementation underneath. This separates

9

2. Background

the computational structure from the actual implementation. The parallelization can be im-
plemented in an efficient way by a system expert, while the users of the skeleton do not need to
know anything about parallelism to use it. The only requirement is to understand the general
structure of computation provided by the skeleton.

Algorithmic skeletons can be further divided into task-parallel and data-parallel skeletons.
The data-parallel skeletons are higher-order functions consisting of many independent com-
putations, in general applied to the elements of an array. Typical examples of data-parallel
skeletons are Map, which applies the user function element-wise to a number of input arrays to
produce an new array, and Scan, which produces an array of the prefix sums of an input array.
Both these skeletons are included in SkePU and are described in detail in Section 3.1. As
the computations of data-parallel skeletons are independent, synchronization is generally not
needed between processing cores when this type of skeletons are implemented. Data-parallel
skeletons are therefore well suited to be distributed over multiple PUs, as there is generally no
need for expensive inter-PU communication [31].

In contrast, there are dependencies between computations in task-parallel skeletons. Two
examples of task-parallel skeletons are Pipeline and Farm. A Pipeline connects a number of
computation stages. Each stage will process a work item and pass the result to the next stage.
This means that a stage cannot start processing a work item before the computation in the
previous stage is done, creating a dependency between the stages. The other task-parallel
skeleton, Farm, can be used as a load balancing scheduler. A farmer accepts a queue of tasks
that need to be processed. The tasks are then distributed to a number of workers (processor
cores). Task-parallel skeletons can encapsulate data-parallelism. As an example, the stages in
the Pipeline skeleton could internally be data-parallel [30].

2.5 Parallel Programming Frameworks

There are several programming languages, libraries and other tools to aid programmers in
implementation of parallel programs. Some of them are specialized on a specific type of
architecture or brand of hardware, while some of them are more general. The most widely
adopted ones are presented in this section.

2.5.1 OpenMP
OpenMP (Open Multi-Processing) is an API (Application Programming Interface) available
for C/C++ and Fortran, which defines a simple, yet flexible, way of writing parallel applica-
tions. For C/C++ this is accomplished by the use of #pragma preprocessor directives. The
programmer uses these #pragma directives to tell the compiler which parts of the program to
parallelize. Setting up threads and partitioning the workload is taken care of by the compiler.
Well written OpenMP annotated code has the advantage that compilers not supporting the
OpenMP standard will automatically ignore the #pragma directives and compile a working, se-
quential program. In OpenMP version 4.0 support for offloading computations to accelerators
were introduced. However, this feature of OpenMP has not been used in SkePU [40].

An example of calculating the dot product by loop parallelizing and reduction using
OpenMP is shown in Listing 2.1.

2.5.2 TBB
TBB (Threading Building Blocks) is a multi-core programming library developed by Intel. The
library provides a number of parallelized C++ building blocks and synchronizations primitives.
Some of the building blocks resembles algorithmic skeletons. TBB also includes support for
building dependency and data flow graphs and execute them using a scheduler with multiple
scheduling strategies [28].

10

2.5. Parallel Programming Frameworks

1 #include <vector>
2 #include <omp.h>
3
4 const int NUM_THREADS = 4;
5
6 float dot_product(std::vector<float> in1, std::vector<float> in2) {
7 int size = std::min(in1.size(), in2.size());
8 std::vector<float> tmp(size);
9

10 #pragma omp parallel for num_threads(NUM_THREADS)
11 for(int i = 0; i < size; ++i) {
12 tmp[i] = in1[i] * in2[i];
13 }
14
15 float res = 0;
16 #pragma omp parallel for num_threads(NUM_THREADS) reduction(+:res)
17 for(int i = 0; i < size; ++i) {
18 res += tmp[i];
19 }
20
21 return res;
22 }

Listing 2.1: Example of multi-threaded dot product using OpenMP in C++.

1 #include "tbb/task_group.h"
2
3 using namespace tbb;
4
5 int Fib(int n) {
6 if(n < 2) {
7 return n;
8 } else {
9 int x, y;

10 task_group g;
11 g.run([&]{ x = Fib(n-1); }); // spawn a task
12 g.run([&]{ y = Fib(n-2); }); // spawn another task
13 g.wait(); // wait for both tasks to complete
14 return x + y;
15 }
16 }

Listing 2.2: Example of recursively computing the n:th Fibonacci number using TBB [28].

An example of computing the n:th Fibonacci number by using the task scheduler in TBB
is shown in Listing 2.2.

2.5.3 MPI
MPI (Message Passing Interface) is a message-passing library interface specification with sev-
eral implementations. Language bindings to C and Fortran are part of the standard. The
specification’s main purpose is to provide an API for message-passing between processes with
different address spaces. This is typically used for communication between nodes in distributed
memory systems, such as computer clusters, but can also be used for interprocess communi-
cation in a single CPU [36].

An example of passing a message from one node to another using C and MPI is shown in
Listing 2.3. The same program is launched on several nodes by MPI and each process is given
an identifier called rank.

11

2. Background

1 #include "mpi.h"
2
3 int main(int argc, char *argv[])
4 {
5 char message[20];
6 int myrank;
7 MPI_Status status;
8 MPI_Init(&argc, &argv);
9 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

10 if (myrank == 0) /* code for process zero */
11 {
12 strcpy(message,"Hello, there");
13 MPI_Send(message, strlen(message)+1, MPI_CHAR , 1, 99, MPI_COMM_WORLD);
14 }
15 else if (myrank == 1) /* code for process one */
16 {
17 MPI_Recv(message, 20, MPI_CHAR , 0, 99, MPI_COMM_WORLD , &status);
18 printf("received :%s:\n", message);
19 }
20 MPI_Finalize();
21 return 0;
22 }

Listing 2.3: Example of message passing between two nodes using MPI [36].

2.5.4 CUDA
CUDA is NVIDIA’s general purpose GPU computing platform and toolkit. It allows program-
mers to implement computation kernels in a C++ based language and execute them on the
GPU. CUDA is only supported on NVIDIA GPUs, reducing its portability, although there
exist tools to transform CUDA programs to the more portable language OpenCL [24]. The
CUDA toolkit also includes a number of GPU-accelerated libraries with algorithms from areas
such as deep learning, linear algebra and signal processing [37]. An example CUDA program
is shown in Listing 2.4, printing Hello World by making a nested CUDA kernel call. The
__global__ keywords indicate kernel functions, to be executed on a CUDA enabled GPU.

2.5.5 OpenCL
OpenCL (Open Compute Language) is an open standard for parallel processing that is main-
tained by the Khronos Group. Programs using OpenCL define a computation kernel in the
OpenCL programming language, a subset of C++. In contrast to CUDA where kernels are
in-lined in regular C/C++ code, kernels in OpenCL are written as strings and compiled by the
hardware drivers on the target machine at run-time. OpenCL is supported on a wide verity
of PUs, including Intel and AMD CPUs; Intel, AMD and NVIDIA GPUs and Intel Xeon Phi
MICs [23].

An example C++ program using OpenCL is shown in Listing 2.5. The program prints
Hello World from a single kernel running on a GPU. Note that the kernel function is written
as a string literal.

2.5.6 OpenACC
OpenACC (Open Accelerators) is a high-level programming model aimed at parallelizing code
for accelerator equipped systems. OpenACC resembles OpenMP in style, as it uses #pragma
directives and compiler support to generate code for different hardwares. The standard sup-
ports multiple types of hardware, including CPUs, GPUs and MICs [48]. However, some
research suggests the raised abstraction level comes with a price of lower performance com-
pared to manually written and optimized GPU code [26, 34]. An example of Jacobi iteration
in OpenACC is shown in Listing 2.6.

12

2.5. Parallel Programming Frameworks

1 #include <stdio.h>
2
3 __global__ void childKernel() {
4 printf("Hello ");
5 }
6
7 __global__ void parentKernel() {
8 // launch child
9 childKernel <<<1,1>>>();

10 if (cudaSuccess != cudaGetLastError()) {
11 return;
12 }
13 // wait for child to complete
14 if (cudaSuccess != cudaDeviceSynchronize()) {
15 return;
16 }
17 printf("World!\n");
18 }
19
20 int main(int argc, char *argv[]) {
21 // launch parent
22 parentKernel <<<1,1>>>();
23 if (cudaSuccess != cudaGetLastError()) {
24 return 1;
25 }
26 // wait for parent to complete
27 if (cudaSuccess != cudaDeviceSynchronize()) {
28 return 2;
29 }
30 return 0;
31 }

Listing 2.4: Example of Hello World in CUDA [9].

2.5.7 Other Frameworks
There exist many other libraries and tools for parallel programming. Some of them worth to
mention are:

• OpenHMPP (Open Hybrid Multi-core Parallel Programming) [15], a programming model
for heterogeneous systems using #pragma directives, similar to OpenMP and OpenACC.

• Cilk5, a family of C/C++ based languages for multi-thread computations on the CPU,
developed by Intel.

• C++ AMP (Accelerated Massive Parallelism)6, a programming model by Microsoft with
skeleton-like constructs to offload C++ code to data-parallel accelerators.

• SYCL (pronounced ”sickle”) is a C++ abstraction layer that tightly integrates OpenCL
code in regular C++ programs, to provide better type support and ease of use for
heterogeneous programming [47].

• The recent C++ standard C++17, which adds experimental support for parallel imple-
mentations of standard library algorithms, including Map and Reduce skeletons [29].

• Compute shaders, high-level, graphics oriented GPU-programming languages available
through APIs such as OpenGL, Vulkan and DirectX.

5Cilk: https://www.cilkplus.org/cilk-history
6C++ AMP: https://msdn.microsoft.com/en-us/library/hh265136.aspx

13

https://www.cilkplus.org/cilk-history
https://msdn.microsoft.com/en-us/library/hh265136.aspx

2. Background

1 #include <CL/cl.hpp>
2 #include <vector>
3 #include <iostream >
4
5 const std::string kernelSrc = "\n" \
6 "__kernel void helloKernel() { \n" \
7 " printf(\"Hello World\"); \n" \
8 "} \n" \
9 "\n";

10
11
12 int main(void) {
13 std::vector<cl::Platform > platforms;
14 std::vector<cl::Device> gpus;
15
16 // Find a GPU to execute on
17 cl::Platform::get(&platforms);
18 platforms[0].getDevices(CL_DEVICE_TYPE_GPU , &gpus);
19 cl::Context context(gpus[0]);
20
21 // Create a OpenCL program from the source code
22 cl::Program::Sources sources(1, std::make_pair(kernelSrc.c_str(), kernelSrc.

length()+1));
23 cl::Program program(context, sources);
24
25 // Compile the OpenCL kernel
26 cl_int err = program.build();
27 cl::Kernel kernel(program, "helloKernel", &err);
28 if(err != CL_SUCCESS) {
29 std::cout << "A error occured." << std::endl;
30 return 1;
31 }
32
33 // Enqueue the kernel launch to the command queue of the GPU
34 cl::CommandQueue queue(context, gpus[0]);
35 queue.enqueueTask(kernel);
36
37 return 0;
38 }

Listing 2.5: Example of Hello World in OpenCL.

14

2.5. Parallel Programming Frameworks

1 while(error > tol && iter < iter_max)
2 {
3 error = 0.0;
4 #pragma acc parallel loop reduction(max:error)
5 for(int j = 1; j < n-1; j++)
6 {
7 #pragma acc loop reduction(max:error)
8 for(int i = 1; i < m-1; i++)
9 {

10 A[j][i] = 0.25 * (Anew[j][i+1] + Anew[j][i-1]
11 + Anew[j-1][i] + Anew[j+1][i]);
12 error = fmax(error, fabs(A[j][i] - Anew[j][i]));
13 }
14 }
15 #pragma acc parallel loop
16 for(int j = 1; j < n-1; j++)
17 {
18 #pragma acc loop
19 for (int i = 1; i < m-1; i++)
20 {
21 A[j][i] = Anew[j][i];
22 }
23 }
24 if(iter % 100 == 0)
25 printf("%5d, %0.6f\n", iter, error);
26 iter++;
27 }

Listing 2.6: Example of Jacobi iteration using OpenACC [39].

15

3 SkePU 2

The skeleton programing framework SkePU (Skeleton Processing Unit)1 is an open source
research project, developed at Linköping University. SkePU was first presented in 2010 by
Enmyren and Kessler [17, 18] as a macro based skeleton library written in C++. By imple-
menting the skeletons for different backends support for a variety of hardware are enabled,
including execution on multi-core CPUs and GPUs. SkePU has been used to parallelize multi-
ple industry-class applications, including computational fluid dynamics flow solver EDGE [42]
and an underwater acoustics simulation tool [46].

The initial implementation of SkePU had several limitations to its design. Some of the
skeletons had constraints to the number of input arguments, as every combination of input
arguments required a separate macro. This led to code duplication and a high maintenance
overhead. The use of preprocessor macros also made the implementation lack type-safety,
resulting in many type errors only being detected during run-time.

SkePU was redesigned in 2016 by Ernstsson [20] to take advantage of modern C++11
features and become type-safe. The new version is called SkePU 2 and the rest of this thesis
refers to this version unless otherwise stated. The new version of SkePU makes use of template
meta-programming to reduce code duplication and to make the library more general. SkePU 2
allows any number of input arguments to the skeletons for example. The original skeletons were
redesigned and generalized. The current version of SkePU includes five data-parallel skeletons
and one task-parallel. Some of the skeletons have variants for one and two-dimensional data.
All skeletons are described in detail in Section 3.1.

SkePU has since its first version supported multiple heterogeneous architectures by imple-
menting all skeleton types for four different backends. These include two backends for CPU (a
sequential one and a parallelized implementation using OpenMP), a CUDA backend available
for NVIDIA GPUs and an OpenCL backend for any supported accelerator2, including GPUs
from AMD and NVIDIA, and MICs (i.e. Intel’s Xeon Phi).

As a replacement for the preprocessor macros, SkePU 2 makes use of a precompiler to
perform source-to-source translation of the user functions for the different backends. The
precompiler identifies all user functions and expands them to a C++ struct, containing the
implementations for the different backends. The user can during this precompilation step

1SkePU http://www.ida.liu.se/labs/pelab/skepu/
2OpenCL can also execute on CPUs, but SkePU’s OpenCL backend is optimized for accelerators.

17

http://www.ida.liu.se/labs/pelab/skepu/

3. SkePU 2

choose which backends to generate implementations for. The result of the precompilation step
is a new source file which can be fed to a regular compiler. SkePU 2 is also designed to compile
a valid sequential program in case the precompiler is not invoked on the input files first, similar
to how OpenMP produces a sequential program if compiled using a compiler without OpenMP
support.

3.1 Skeletons in SkePU

This section describes the six skeletons available in SkePU 2 in detail. These are Map, Reduce,
MapReduce, MapOverlap, Scan and Call.

3.1.1 Map

Figure 3.1: An example of the Map skeleton with two input arrays.

The skeleton Map applies the user function element-wise to all elements of an array, to
produce a new array. The most simple example would be scaling all elements of an array by
a constant factor. In that case, the user function provided to the Map skeleton would be a
function with a single input argument, returning that argument multiplied by the constant
factor. In SkePU the Map skeleton can also be used with any number of input arrays, including
no input arrays. As an output array must always be provided, this array determines the number
of element-wise operations in case the skeleton instance takes no input arrays. The argument
count of the user function must always match the number of input arrays and all input arrays
must be of equal size. More formally, element i of the output array is the result of a call to
the user function with element i of each input array as arguments. In some literature Map
is defined as a skeleton with a single input array while Map with two input arrays is referred
to as Zip. In SkePU the Map skeleton also supports matrices. The Map skeleton is a good
candidate for parallel implementation, as all computations (i.e. all computed elements in the
result array) are independent of one another [7].

An example of the Map skeleton is shown in Figure 3.1, where a binary user function,
denoted ⊗, is applied element-wise to two arrays to produce a result array.

3.1.2 Reduce
The skeleton Reduce uses a binary user function to aggregate the elements of one array. Usually
this is seen as a sequential computation where the binary user function is first applied to the
two foremost elements of the array, then to the result of the first computation and the third
element, and so on. To take advantage of parallel processing, the operations must be reordered,
usually as a symmetric reduction tree. The reordering of computations assumes that the binary
user function is commutative and associative. A typical example usage of reduce would be

18

3.1. Skeletons in SkePU

Figure 3.2: An example of the Reduce skeleton.

to sum up the numbers of an array, in which case the user function would be an addition
function.

Reduce is available in two variations: one-dimensional and two-dimensional. The one-
dimensional variant takes either an array or a matrix as input and reduces it in one dimension.
The result is a scalar or an array respectively. When a matrix is used, the reduction direction
can be specified as either row-wise or column-wise. Two-dimensional reduction can be seen
as two one-dimensional reductions applied after one another. Only matrices can be used as
input. The reduction is first performed in one direction and results in an array. The array is
then reduced to produce the final scalar. In two-dimensional Reduce, the direction of the first
reduction can be specified and different user functions might be used for the two directions.
It is also possible to set an initial value of the reduction.

An example of a one-dimensional Reduce on an array is shown in Figure 3.2, where a
binary user function, denoted ⊗, reduces the array to a single value. The figure shows Reduce
implemented as a symmetric reduction tree.

3.1.3 MapReduce

Figure 3.3: An example of the MapReduce skeleton with two input arrays.

19

3. SkePU 2

The Map and Reduce skeletons are often combined into one skeleton called MapReduce. The
skeleton resembles the more general MapReduce programming model [14] used by e.g. Google
and Apache Hadoop. The programming model MapReduce is a highly scalable framework for
processing large data sets on computer clusters, usable in many different areas of computer
science, such as data mining and machine learning. The skeleton MapReduce lacks some of the
features of the programming model, such as the sorting step performed after the Map step to
redistribute the data between the nodes of the cluster. The skeleton is therefore less scalable,
but nevertheless highly parallelizable.

The MapReduce skeleton accepts two user functions, one for the Map part and one for
the Reduce part. In the first step, Map is performed on a number of input arrays using the
Map user function, producing a temporary array. In the second step, Reduce is performed on
the temporary array using the Reduce user function, resulting in a single value. In practice
the Map and Reduce steps are performed interleaved to avoid the need to allocate the extra
intermediate array.

An example of the MapReduce skeleton is shown in Figure 3.3. The two user functions are
denoted ⊗M and ⊗R in the figure. In the example two arrays are combined in the Map step
by applying the user function ⊗M . The result of this operation is then reduced in the Reduce
step using the user function ⊗R.

In contrast to the Reduce skeleton, MapReduce in SkePU only accepts one-dimensional
arrays as arguments.

3.1.4 MapOverlap

Figure 3.4: An example of the MapOverlap skeleton with a total width of three elements.

The MapOverlap skeleton is a stencil operation and can be seen as a generalized variant
of the Map skeleton. The skeleton takes either an array or a matrix as input and produces a
output container of the same type and dimensions. The difference to the Map skeleton is that
the user function in MapOverlap has access to a region of elements. In SkePU the region is
called overlap, but it is often referred to as the window in signal processing. The overlap defines
how may elements are accessible on each side of the center element in the input data structure.
The skeleton has one- and two-dimensional variants, the former working on either arrays or
matrices, the latter working only on matrices. Two-dimensional MapOverlap currently only
supports separable filters (i.e. a two-dimensional filter composed of two one-dimensional filters
applied one after the other), but the programmer can choose if the first pass should be row-
wise or column-wise. In the two-dimensional case, MapOverlap can use different overlap radii
for the row and the column direction of the matrix.

For the first and last elements of the computed array, the overlap will need access to
elements that are out-of-bounds. This overlap area around the edges of the containers can be
handled in three different ways. The edge handling scheme can either be set to pad, whereby

20

3.1. Skeletons in SkePU

a value supplied by the programmer will be used; or to cyclic, to cycle back to the values in
the other end of the data container; or to duplicate, to repeat the closest edge value.

An example of the MapOverlap skeleton for one-dimensional data is shown in Figure 3.4.
The skeleton works like the Map skeleton, but the user function, denoted ⊗, has access to
neighboring elements of the computed element. In this example the user function has access
to one element on each side of the center element, as illustrated by the yellow color.

3.1.5 Scan

Figure 3.5: An example of the Scan skeleton.

The Scan skeleton is a generalized variant of prefix sum. Scan takes a single array as input.
The output is an array of the same length as the input array, where the reduction of the first
i elements of the input array is written to element i of the result array. In the case of regular
prefix sum, the user function would be the addition operator, and element i of the result array
would contain the sum of the first i elements of the input array. Computations might be
reordered in the Scan skeleton, just as in the case of Reduce, requiring the user function to
be a commutative and associative binary function. Scan can be either inclusive or exclusive.
Inclusive Scan will include element i in value i of the result array, exclusive Scan will not.
Exclusive Scan therefore needs an initial value, which will be the first element of the result
array.

An example of the inclusive Scan skeleton is shown in Figure 3.5. Here the user function
⊗ is applied sequentially to the elements of an array. The partial result for each index of the
input array is written to the same index of the output array. Note that the example shows
a sequential implementation of the Scan skeleton, where the computations create a chain of
dependencies. Parallel implementations of Scan require the operations to be reordered.

3.1.6 Call
The Call skeleton is a bit special, as it does not provide a specific structure of computation.
Instead it allows for implementation of so-called multi-variant components[13], by letting the
programmer provide CPU, OpenMP and accelerator implementations of the computational
structure. Call is used to implement custom algorithms, not implementable using the existing
skeletons. The advantage of using Call compared to making the implementation separate
from SkePU, is that Call can use SkePU’s smart containers and backend selection features. A
typical usage example of Call is sorting. Sorting does not fit into the computational structure
of any other skeleton in SkePU, but can be implemented with Call. This allows for different
sorting algorithms to be used for different backends. Because the computational structure is
not defined for Call, the programmer is also responsible for the implementation of a hybrid

21

3. SkePU 2

1 #include <skepu2.hpp>
2
3
4 float add(float a, float b) {
5 return a + b;
6 }
7
8 float mult(float a, float b) {
9 return a * b;

10 }
11
12 float dot_product(skepu2::Vector<float> &v1, skepu2::Vector<float> &v2) {
13 // Create an instance of the MapReduce skeleton
14 auto dotprod = skepu2::MapReduce <2>(mult, add);
15 // Call the instance with two vectors
16 return dotprod(v1, v2);
17 }

Listing 3.1: Example of dot product using MapReduce in SkePU 2.

execution variant. For this reason the Call skeleton is not discussed more in this thesis.
How the Call interface should be extended to let the programmers provide hybrid execution
implementations is left for future work.

3.2 Smart Containers

To hide the complexity of memory management on multi-PU systems, SkePU implements so
called smart container types. The types are as of today, Vector and Matrix. Experimental
support for Sparse Matrix also exists. The smart containers provide interfaces resembling
the interfaces of the C++ standard library containers. In addition to that, they take care of
memory management to move and synchronize the containers between multiple heterogeneous
PUs. Any subsection of the smart containers’ memory can be copied to accelerator memory
for use in skeleton computations. At the same time the container implementations keep track
of which accelerators have partial copies of the data and which parts of the data in CPU
and accelerator memory are valid. Unnecessary copying of data is avoided by the use of
lazy memory copying, where the data reside in accelerator memory until needed elsewhere.
Consecutive skeleton calls to accelerators are sped up this way, as the container does not need
to be copied back to the CPU memory between the calls [10].

3.3 Code Example

A small example of using the MapReduce skeleton in SkePU 2 for a dot product computation
can be seen in Listing 3.1. Two functions (add and mult) are defined and included as user
functions when creating an instance of the MapReduce skeleton. The compiler will translate
the add and mult functions together with the MapReduce skeleton instance into the supported
backend languages. Note how the parallelism is completely hidden by the use of a skeleton in
comparison to the OpenMP implementation of dot product presented in Listing 2.1.

3.4 User Functions

SkePU 2 lets the programmer define user functions both as lambda expressions and as free
functions3. Because skeletons and their user functions must be able to execute on different
backends, there are some limitations as to what is allowed in the user functions. OpenMP and

3A free function is function that is not a member function of a class or struct.

22

3.5. Backend Specification and Execution Plans

1 skepu2::ExecPlan plan;
2
3 // Up to 2000 elements, use sequential implementation:
4 plan.add(1, 2000, skepu2::Backend::Type::CPU);
5 // Then, up to 200000 elements , use OpenMP with 8 CPU threads:
6 plan.add(2001, 200000, skepu2::Backend::Type::OpenMP, 8);
7 // Then use OpenCL with max 65535 threads and max 512 blocks:
8 plan.add(200001, INFINITY , skepu2::Backend::Type::OpenCL, 65535, 512);
9

10 skeleton_instance.setExecPlan(plan);

Listing 3.2: Example of defining an execution plan.

CUDA are both able to use C++ features, but because OpenCL is based on C, the syntax
of the user functions must follow the C standards. C-style structs are allowed, but the user
function must not allocate any new memory. Only a small subset of the standard library
functions are available, such as pow, abs and sqrt [20].

Three types of arguments are passed to the user function in the skeleton call: element-wise
arguments, random access arguments and uniform arguments. Element-wise arguments are
containers where only one element from the container is passed to each user function call.
These arguments typically determine the input size of the problem. Random access arguments
are containers where the user function can access any element at any time. Uniform arguments
are constant arguments passed directly to the user function, having the same value in every
user function call. All skeletons do not have support for all types of arguments.

3.5 Backend Specification and Execution Plans

The programmer can explicitly specify on which processing unit to execute a skeleton call by
setting the backend specification. This specification also includes parameters to the backend,
such as number of threads or number of accelerators to use. In the case of a program pre-
compiled without support for the selected backend, the runtime system will automatically fall
back to an available backend.

Another way to specify which PUs to use is to define an execution plan. The plan specifies
which backend to use for a specified input data size interval. An example of how to set up
such an execution plan is shown in Listing 3.2. In this example a plan is created where the
sequential backend is used for small input sizes, the multi-core OpenMP backend is used for
medium sized input and the OpenCL backend is used for large input sizes.

3.6 Automatic Backend Selection and Tuning

Execution plans can be built by SkePU through an automatic tuning process. Once the
tuning is invoked by the user, it can produce an execution plan with the fastest backend for
each input size range. The backend selection tuner samples a number of input sizes for the
skeleton instance and then benchmarks each available backend. The fastest backend for each
range is then added to the execution plan.

The tuning mechanism was more evolved in the first version of SkePU, where also param-
eters to the backends were tuned, not only which backend to use. Adaptive tuning algorithms
were used to only make performance samples where necessary to speed up training time. Prun-
ing techniques were also employed to reduce the search space. Examples of backend specific
parameters that could be tuned is the max thread-per-block and the max blocks-per-grid pa-
rameters to the CUDA and OpenCL backends as well as the number of threads in the OpenMP
backend [12, 32].

23

3. SkePU 2

3.7 Hybrid Execution with StarPU in SkePU 1

SkePU 1 was available in two distributions: one standard edition and one with experimental
support for hybrid execution of skeletons. To provide support for asynchronous and hybrid
execution and dynamic load balancing, the latter version of SkePU was integrated with the
task-parallel runtime scheduling system StarPU4. The implementation divided the workload
of a skeleton into smaller tasks for StarPU to schedule on the available workers. By provid-
ing StarPU with implementations both for CPU and CUDA, the workload could be divided
between CPU cores and GPUs, thus enabling hybrid execution [11].

The StarPU framework includes several dynamic scheduling policies, e.g. the greedy policy,
where the tasks are assigned to the first available worker; or the work stealing policy, where
workers can steal tasks from other workers when their own task queue is empty. To provide
a more sophisticated scheduling policy for heterogeneous architectures, StarPU also includes
a HEFT (Heterogeneous Earliest Finish Time) [50] scheduler. In this scheduler performance
models for the different PUs are used to predict how new tasks should be scheduled to minimize
the finish time, taking predicted execution time of already scheduled tasks on the PU into
consideration [2].

In order to use the StarPU runtime system, the skeleton calls in SkePU had to be decom-
posed into a number of tasks. The number of tasks to divide each skeleton invocation into
was decided by the programmer, adding another parameter to tune or manually configure.
More tasks are desirable for large input sizes, as it facilitates load balancing. For small input
sizes however, too many tasks will reduce performance because of the increased scheduling
overhead. Several of the HEFT based schedulers in StarPU were tested with SkePU, but they
all had one major drawback: the need for warm-up runs. The HEFT schedulers will eventually
lead to good performance, but the skeletons in SkePU 1 had to be executed several for the
performance models to gather enough execution data to produce accurate predictions for the
scheduler [11].

3.8 Multi-accelerator Support

The CUDA and OpenCL backends are internally implemented in two ways: a single device
implementation capable of executing the skeleton on a single accelerator, and a multi-device
implementation where the workload of the skeleton is distributed between an arbitrary number
of accelerators. How many accelerators should be used to execute a skeleton can be set at run-
time per skeleton invocation. The multi-accelerator implementation uses a trivial workload
partitioning scheme, that splits the input data into equally sized partitions. This works well
when all accelerators are of the same type, or at least have similar performance. When that
is not the case the slowest accelerator will become a bottleneck.

4StarPU website: http://starpu.gforge.inria.fr/

24

http://starpu.gforge.inria.fr/

4 Related Work

In this chapter earlier work on what has been done in the field of heterogeneous computing
will be presented, as well as some frameworks similar to SkePU.

Heterogeneous computing has been an active research area over the last couple of years.
Mittal and Vetter [35] present an extensive survey of heterogeneous computing techniques
where CPU(s) and GPU(s) are used in parallel. In their survey they conclude that a ma-
jority of the techniques studied need some manual tweaking from the programmer to work.
Typically by manually setting up the partition sizes of the workload or by measuring the
relative performance of the PUs. They call for new frameworks that can perform these tasks
automatically.

4.1 Earlier Implementations of Hybrid Execution

Grewe and O’Boyle [22] present a static task partitioning scheme for OpenCL programs on het-
erogeneous architectures. They show that different applications have different characteristics
and group application executions into three categories based on how the best performance was
achieved: CPU-only execution, GPU-only execution or using hybrid execution. This is done
by executing the applications with 11 different partition ratios, from 100% on the GPU, via
90% on GPU and 10% on CPU and so on, to 100% on the CPU. They report that it is vital to
classify instances which belong to the GPU-only category correctly. These applications tend
to have a significantly higher performance when using GPU-only execution, compared to if the
work is partitioned. The CPU-only category shows a similar behavior, but the performance
drop in case of a misprediction is not as significant as in the GPU-only case. In the hybrid
execution category on the other hand, the performance of the second best partitioning is closer
to the best one, meaning that a misprediction here would not be as severe as for the other two
categories.

In their paper, they present a partitioning scheme that uses static analysis on the OpenCL
computation kernels and a hierarchical classification mechanism to predict the best parti-
tioning. Their solution extracts 12 code features from the OpenCL computation kernel at
compilation time, including the number of integer and floating point operations, the number
of memory accesses and the data size to transfer. These features are then supplemented with
an additional feature, the input data size, at run-time. The feature set is then used in a
two-layer predictor to predict the optimal partitioning. The first layer consists of two binary

25

4. Related Work

predictors that classify if the application is either a CPU- or GPU-only problem. If the first
layer cannot decide if the problem is in the CPU- or GPU-only category, the problem is con-
sidered a hybrid execution problem and sent to the second layer. In the second layer another
predictor is used to predict which of the 11 partition ratio classes (including CPU-only or
GPU-only) the problem belongs to.

They evaluate their system on 47 different benchmarks executed with a number of different
input data sizes. A total of 220 unique program-input pairs are tested. Their predictor imple-
mentation is compared to four different scheduling strategies: two simple baseline strategies,
always choosing CPU-only or GPU-only execution; an oracle, always choosing the optimal
partitioning from the 11 classes as an upper bound; and a dynamic mapping scheme perform-
ing load balancing during run-time. The dynamic mapping scheme divides the work into a
number of blocks, and the blocks are then sent to the CPU or the GPU, whenever they finish
their previous block.

They report that their static approach gives an average speedup of 1.57 over the dynamic
approach, an average speedup of 3.02 over the CPU-only approach and a speedup of 1.55 over
the GPU-only approach. Their two-level predictor manages to classify a GPU-only problem
correctly in 91% of the cases. The CPU-only problem category is predicted correctly in 95%
of the cases. The last group of instances where hybrid execution gives the best performance
has a lower result, due to it being a harder classification problem. However, the authors state
that the resulting performance is within 80% of the optimal performance in 65% of the cases.

Their evaluation is performed on a machine using two quad-core Intel Xeon E5530 CPUs
and an AMD Radeon HD 5970 GPU.

In a paper from 2016, Contassot-Vivier and Vialle [8] present a way to implement Jacobi
relaxation on systems equipped with three different processing units, namely a CPU, a GPU
and a MIC. Jacobi relaxation is an iterative process that can be used for modeling heat transfer
or electrical potential diffusion in a regular grid. The objective of the relaxation is to eventually
reach a stable state for the grid given some condition. In the paper they use a fixed number
of iterations as the termination condition. For each iteration, the new value of a grid point is
calculated as the average of the old values of that point and its four closest neighboring grid
points.

Their solution is implemented in three versions: one parallelized using OpenMP for the
multi-core CPU, one using offloaded OpenMP for the MIC and one using CUDA for the GPU.
All implementations use device dependent optimizations and take the different memory models
of the PUs into consideration. The grid is divided into three slices, one slice for each PU with
the CPU slice in the middle. The entire grid is kept in CPU memory, while the MIC and the
GPU only keep a copy of their slice of the grid, plus one extra line from the neighboring PU
(in both cases, the CPU). In each iteration step of the Jacobi relaxation, the PUs update their
part of the grid. When an iteration is done, the CPU fetches the boundary rows in the MIC’s
and the GPU’s memories and overwrites the corresponding rows in main memory. Then its
own boundary rows are uploaded to each PU before the next iteration begins.

They evaluate their implementation on two machines. The first one with two hexa-core
Intel Xeon E5-2620 CPUs, an Intel Xeon Phi 3120 MIC and a NVIDIA GTX Titan Black
GPU, the other one with two octa-core Intel E5-2640 CPUs, an Intel Xeon Phi 5100 MIC and
a NVIDIA Tesla K40m GPU.

To find the best partitioning they first evaluate the performance of the individual PUs to
find a relative computation performance. Partitioning of the work is done manually, according
to this relative performance. They report that this scheme results in the optimal performance
for one of the evaluation systems, but that the optimal partitioning of the other system is
slightly different than their theoretically optimal partitioning.

Shen et al. [41] present a way to partition workloads on heterogeneous platforms. To cate-
gorize heterogeneous platforms they suggest two metrics: first the relative hardware capability,

26

4.1. Earlier Implementations of Hybrid Execution

i.e. the relative throughput of the GPU and the CPU; and secondly the GPU computation
to data transfer gap, the GPU throughput to data-transfer bandwidth ratio. They measure
overall execution time per PU, for the GPU split into data transfer and kernel execution time.
Their decision algorithm is split into three steps. In the first step a model of the optimal
partition ratio is built. The optimal partitioning is a partitioning such that TC = TG +TD, i.e.
the execution time of the CPU part (denoted TC) is equal to that of the GPU part (denoted
TG) including the its data transfer time, TD. They then find models for TC , TG and TD, all
dependent on the partitioning point, β based on two metrics: relative hardware capability and
computation to data transfer gap. Their model also handles three types of applications: those
where no data transfer to GPU is needed, those with data transfer size proportional to the
GPU partition size and those with a fixed data transfer size.

In the second step, the model is used to predict the optimal partitioning, by calculating
β in the model from the first step. This is done by profiling the application, using different
input sizes to measure execution and data transfer time. These measurements are used in the
model to calculate β. Two types of training are implemented. The first type is online training,
where the application is executed with the given problem size once for each PU to measure the
execution times. The other type is offline training, where linear regression models are built for
the execution and data transfer times, with the input size as a parameter. In online training
the training cost grows with the number of problem sizes to train for, and is thus best suited
when a few, specific input sizes executed many times in a row. Offline training has a fixed
overhead and is better suited when many different, unknown input sizes are expected. In the
offline training model the memory hierarchy is also taken into consideration by splitting the
range of input sizes into six smaller intervals. The intervals are divided according to memory
hierarchy details, such as size of the different cache levels and the maximum size of the GPU
memory. They assume the execution/data transfer time can be estimated as a linear function
inside each of these six intervals and together the intervals form a model over the entire data
size range.

In the last step, the optimal β is predicted and used to actually partition the workload.
Lower bounds are used for the CPU and the GPU parts, to ensure the workload is not dis-
tributed in a way such that hardware computing power would be wasted. For example that
the size of one PUs partition is smaller than the number of cores on that PU. In such cases, all
workload is moved to the other PU. In case both partition parts are above the lower bounds,
both the CPU and the GPU will be used. The GPU size is rounded up, to ensure that a mul-
tiple of the warp size (the number of threads that are executed simultaneously as one group)
is used, as this results in better performance. The rest of the input data is scheduled on the
CPU.

They also extend their work to multi-GPU systems with identical as well as non-identical
GPUs. In the case of identical GPUs, they treat the GPUs as a single device and divide the
workload evenly between them. For non-identical GPUs, they extend their model built in the
first step to produce partition sizes for all PUs. They argue that their solution can be used to
handle any number and types of accelerators, as they only base their models on the execution
and data transfer time, not architectural details.

Evaluation is performed using 13 OpenCL applications, each executed with six different
input sizes, where each input size falls into one of the intervals used by the offline trainer.
They compare their solution to a CPU-only and a GPU-only scheduling policy, as well as
an oracle, which finds the optimal β by the means of binary search. They report that their
solution is within a relative performance difference of 10% compared to the oracle in most
cases. Their work is evaluated on six different platforms, four of them with a single GPU and
two of them with multiple GPUs. For their main evaluation a hexa-core (12 threads using
hyper threading) Intel Xeon E5-2620 CPU and a NVIDIA Tesla K20 GPU is used. For the
multi-GPU experiments they use one machine with two identical GPUs, two NVIDIA GTX
560 and one with two non-identical GPUs, a NVIDIA Tesla C2050 and a Quadro 600.

27

4. Related Work

Luk, Hong and Kim [33] present an adaptive mapping technique to perform dynamic load
balancing in their heterogeneous programming framework called Qilin. The framework sup-
ports two different APIs. The first of them is the Stream-API which uses common data-parallel
operations on arrays, similar to skeletons in skeleton programming, to solve a problem. Qilin
uses a data dependency graph and dynamic compilation to translate the Stream-API operations
into computation kernels for the CPU and the GPU. Larger kernels are made by optimizing
and merging operations in the data dependency graph to minimize the kernel launch overhead.

The second alternative is to use the Threading-API, where the programmer can implement
custom computational kernels with support for the CPU using Intel’s Threading Building
Blocks library and for the GPU using NVIDIA’s CUDA language.

Qilin supports hybrid execution by splitting the work between the CPU and a GPU. For
operations where the result of the CPU and the GPU part of the execution needs to be merged,
Qilin automatically identifies this and creates the necessary kernels to merge the results into
one.

The runtime system uses an adaptive mapping technique to partition the work between
the CPU and the GPU. Qilin first makes test executions of the kernels on the CPU and the
GPU with different input sizes to gather execution time data. The execution time of each
kernel is approximated by two linear curves, one for the CPU and one for the GPU. The
theoretically optimal partitioning can be found by calculating the intersection point of the two
curves. By storing the curves in a database, they can be reused between multiple executions
of the applications, without the need to retrain the kernels.

Similar to Grewe and O’Boyle they evaluate their system by comparing their adaptive
mapping solution to GPU-only and CPU-only execution. They also compare to an oracle,
always picking the best partition ratio out of 11 tested, in steps of 10 percentage points. In
the evaluation of the adaptive model, they first train the model once and then execute the
program as many times as possible within one hour. The average execution time per iteration
is then calculated by dividing the number of complete iterations by the total time. This way
they amortize the training time and the dynamic compilation overhead, as the authors assumes
the real world use of such a system would be many consecutive executions of the same kernels.

On eight benchmarks from different domains, they find that their adaptive mapping tech-
nique performs better than both the CPU-only and the GPU-only scheme. They also report
that the result of their adaptive mapping is within 94% of the optimal execution time as given
by the oracle. For some benchmarks the performance of their adaptive mapping is even better
than the oracle, due to the finer granularity in the partitioning ratio for the adaptive mapping
technique. They evaluate Qilin on a system consisting of two quad-core Intel Core 2 CPUs
and a NVIDIA 8800 GTX GPU. They also demonstrate their technique’s ability to adapt to
software and hardware changes by replacing the CPU and the GPU, as well as change the
compiler.

4.2 MapReduce Frameworks

Hong et al. [25] present a framework for MapReduce that will allow the programmer to write
the code once and run it on either a CPU or CUDA enabled GPUs. In their research they
also try hybrid execution with both a CPU and a GPU at the same time, but report that
the performance improvements is never above 10% and sometimes even slower than executing
on a single processing unit. According to the paper the reason for this behavior is the fact
that GPUs are many times faster than CPUs. Offloading some of the work to the CPU
will therefore not make much of a difference. The other thing they identify as a bottleneck
is a major scheduling overhead for hybrid execution, especially when transferring non-array
data between processing units. Their results are evaluated on eight applications with typical
MapReduce problems from different research fields. Their experiments are performed on a

28

4.3. Linear Algebra Libraries

machine with a NVIDIA GTX280 GPU equipped with 240 cores and 1 GB of video memory
and a Intel quad-core CPU clocked at 2.4 GHz.

Chen, Hou and Agrawal [5] show a way to implement MapReduce with hybrid execution
scheduling on fused CPU-GPU architectures, where the GPU is integrated on the same chip
as the CPU. On these architectures the CPU and the GPU share a part of the same physical
memory, resulting in no latency for copying data from one processing unit to the other, which
is exploited to get a low scheduling overhead. They propose two scheduling solutions. In
the first one, called the map-dividing scheme, one CPU thread works as a scheduler and the
rest of the CPU and GPU threads are considered workers. The input data is divided into
a large number of blocks. The scheduler assigns blocks to the workers, which performs the
map and reduce functions. When all individual blocks are reduced, the last reduction steps
are performed by the GPU. The scheduler thread communicates with the workers using an
array of structs called worker info, located in the zero copy buffer (the part of the memory
that is shared between the CPU and the GPU). Each worker info contains a has_task flag,
together with the current block offset and size. When a worker is done with its task, it sets
the has_task flag to 0. The scheduler thread on the CPU loops over the worker info structs
and assigns a new block to the workers that are done with their last block. This solution
takes advantage of the fused architecture with the shared memory between the CPU and the
GPU to perform a low overhead scheduling and load balancing. The second solution is called
the pipelining scheme and implements a producer-consumer model. In this scheme all map
operations are performed by either the CPU or the GPU, while the reduce operations are
performed by the other processing unit. This solution is implemented in two ways. First
using a dynamic scheduling approach, similar to that in the map-dividing scheme, but also
using static scheduling. They argue that, since all map operations are performed on the
same processing unit where all worker threads have the same processing speed, there is not
really a need for load balancing. This also means that the scheduler thread on the CPU can
be used as a worker thread, potentially leading to higher performance. Their results show
that the map-dividing scheme performs best on average. The pipelining scheme also works
well when the GPU is used for the map part and the CPU for the reduce part, especially with
static scheduling. In their experiments they evaluate their result using five typical MapReduce
benchmark problems. They use a AMD Fusion A8-3850 chip, consisting of a quad-core CPU
and a Radeon HD 6550D GPU programmed using OpenCL.

4.3 Linear Algebra Libraries

Some attempts at implementing linear algebra libraries for heterogeneous CPU/GPU systems
have been made, for example by Humphrey et al. [27] and Tomov, Dongarra and Baboulin
[49]. They present different ways to implement factorization algorithms using hybrid execution
on heterogeneous systems. Both papers suggest that in heterogeneous systems, the processing
units should be used for what it does more naturally: the CPU should take care of irregular
and serial sequences of the programs, while massively parallel sequences should be offloaded
to the GPU.

4.4 Related Frameworks

This section will introduce a number of frameworks similar to SkePU, targeting heterogeneous
or multi-accelerator architectures.

4.4.1 Marrow
Marrow is a C++, algorithmic skeleton framework with both data and task-parallel skele-
tons. Marrow includes skeletons Pipeline, Loop, For, Map and MapReduce. The skeletons are

29

4. Related Work

executed on GPUs using OpenCL. The framework has support for partitioning of the work-
load between multiple, heterogeneous GPUs, based on performance benchmarks. Marrow uses
skeleton nesting, where multiple skeletons are combined into one compound computation to
reduce runtime overhead and speed up the computations [1].

Since lately, Marrow also supports multi-core CPU execution as well as hybrid execution
with a CPU and multiple GPUs [43].

4.4.2 Qilin
Qilin is an experimental heterogeneous programing API written in C++. It has support
for a number of skeleton-like operations, similar to Reduce and Map with predefined user
functions. More complex operations can be built manually, by specifying the CPU and GPU
implementations using Intel Threading Building Blocks (TBB) for the CPU and CUDA for
the GPU. Qilin uses lazy, dynamic compilation of the API calls to be able to adapt to changes
in the runtime environment. By merging multiple small, element-wise operations into one
large operation, the scheduling overhead can be reduced, similar to how Marrow can merge
skeletons. The system supports hybrid execution on a CPU and a GPU and uses training
runs to build linear execution time models for the CPU and the GPU. The models are only
calculated once per kernel, as they are stored in a database for later reuse [33].

4.4.3 Muesli
Muesli (Muenster Skeleton Library) is a C++ skeleton library for heterogeneous systems.
The library contains data-parallel skeletons Map Zip, Fold (i.e. Reduce) and MapStencil and
task-parallel skeletons Farm, Pipeline, Divide and Conquer, and Branch and Bound. In their
implementation Map is unary Map taking a single element-wise array, and Zip is a binary Map
implementation taking two input arrays and a binary user function. The library currently
supports multi-accelerator and hybrid execution of the data-parallel skeletons using OpenMP
and CUDA. The partitioning has to be set up manually by the programmer, as no tuning
mechanism is implemented yet [53].

The library also supports Intel Xeon Phi MICs and distribution of work between compute
nodes in a cluster [19].

4.4.4 SkelCL
SkelCL is a OpenCL based skeleton programing library for multi-GPU systems. It includes
seven data-parallel skeletons: Map, Zip, Reduce, Scan, MapOverlap, Allpairs and Stencil. The
skeletons in SkelCL are less flexible than in SkePU, e.g. there is only support for unary and
binary Map, the latter being Zip. Just like in SkePU, the library implements its own vector and
matrix containers to hide the multi-PU memory management from the user. The containers
automatically move data between CPU and GPU memory when needed. The user functions
are defined as plain strings in SkelCL, just as in OpenCL. This means there is no compile-time
syntax or type checking, as there is in SkePU 2. Skeletons i SkelCL can be executed only
on GPUs. The framework supports both single and multi-GPU execution, but not hybrid
execution on both CPU and GPU simultaneously [3, 44].

4.4.5 ImageCL
ImageCL is a domain-specific language with a source-to-source compiler that translates Im-
ageCL kernels to OpenCL code. The language is specialized at image filter operations, but
also supports general stencil operations, resembling the MapOverlap skeleton in SkePU. Im-
ageCL has support for hybrid execution on multi-core and multi-accelerator systems by using
OpenCL. Hardware dependent optimizations are also performed by letting the source-to-source
translator generate a number of candidate implementations and use machine learning to pick

30

4.4. Related Frameworks

the best implementation for each device. In contrast to SkePU, ImageCL also has support
for running the stencil operations on multiple computer nodes in a cluster, where each node
internally might use hybrid execution by dividing the work between the CPU and any number
of accelerators [21].

4.4.6 StarPU
StarPU is a task-based runtime scheduling system written in C, with optional #pragma
compiler-directives. The system provides a platform for development of task-based applica-
tions for heterogeneous architectures and has support for hybrid execution. The most central
structure in StarPU is called codelet. A codelet defines a computational task and can provide
several implementation variants, including variants for accelerators or CPUs exploiting various
vector instruction sets. Tasks are formed by attaching data containers to a codelet and are
submitted to StarPU’s runtime scheduler. The scheduler can then decide where to execute
the task depending on available hardware resources and which implementation variants are
provided by the codelet. StarPU features a generic framework for scheduling and includes
several scheduling policies. Examples include greedy scheduling and work stealing. Custom
policies can also be defined by the programmer. Just as SkePU, StarPU implements a custom
data management system to hide and optimize data movements between PUs [2].

4.4.7 STAPL
The parallel programming framework STAPL (Standard Template Adaptive Parallel Library)
is a parallelized extension to C++ standard library, written using modern meta-programming
features. The framework contains distributed data structures and provides parallel imple-
mentations of the algorithms in the standard library as well as some additional algorithms.
Custom data structures and algorithms can be provided by the programmer to further extend
the framework. The data structures are accessed through interfaces called views. Views allow
the algorithms to see the same data container in different ways. For example, the same matrix
can be seen as a row-major or column-major order matrix, or even as the underlying sequential
array. Algorithms can be executed on multi-core, multi-node computer clusters by the use of
OpenMP and MPI. STAPL automatically adapts to the execution environment by selecting
the most appropriate algorithm variation and by tuning the communication scheme between
the cores. The framework does not have support for hybrid execution of algorithms [4].

31

5 Design and Implementation

The implementation work in the thesis was divided into three steps. The first step was to
design and implement a new hybrid execution backend with workload partitioning for all the
skeletons in SkePU. This step is described closer in Sections 5.1 and 5.2. The result of this
step would allow the user to run any skeleton in SkePU with hybrid execution by manually
deciding how the workload should be partitioned between the CPU and accelerators. The
second step was to design and implement a tuner to make SkePU predict the optimal workload
partitioning automatically, based on execution time benchmarking. This step is described in
Sections 5.3 and 5.4. Finally, to have something to compare the new implementation to, the
runtime scheduler from SkePU 1 based on the StarPU library was ported to SkePU 2. The
reimplementation of it is described in Section 5.5.

5.1 Implementation of the Hybrid Backend

The new hybrid execution backend is implemented with support for five of the skeletons in
SkePU, namely: Map, Reduce, MapReduce, MapOverlap and Scan. No hybrid execution
implementation was made for the Call skeleton, as the definition of the skeleton requires the
programmer to provide hybrid execution variants for each skeleton instance. How the API of
the Call skeleton should be extended to allow such hybrid execution implementation variants
is left for future work.

The implementation of a new hybrid execution backend was made in two steps: first the
implementation of workload partitioning for each skeleton and then implementation of an
auto-tuner, capable of predicting how to optimally partition the work between the PUs. The
hybrid backend is designed to partition the workload of a skeleton invocation into two pieces:
one for the CPU and one for the accelerators. The hybrid backend is designed to support any
number of CPU cores and any number of accelerators, as long as the accelerators are using
the same implementation (CUDA or OpenCL).

As hybrid execution only ought to be of interest when at least one accelerator and multiple
CPU cores work together, compilation of the new hybrid execution backend is automatically
activated if the program is precompiled with OpenMP and at least one of the accelerator
backends (CUDA and OpenCL). SkePU will automatically choose an available accelerator
implementation and if both are available, the choice might be overruled by the programmer’s
preference. To actually use the hybrid backend, it must be selected for each skeleton invocation.

33

5. Design and Implementation

1 skepu2::BackendSpec spec(skepu2::Backend::Type::Hybrid);
2 spec.setDevices(2);
3 spec.setCPUThreads(16);
4 spec.setCPUPartitionRatio(0.2);
5 skeleton_instance.setBackend(spec);
6
7 // Invoke skeleton with some data
8 skepu2::Vector<int> in, out;
9 skeleton_instance(out, in);

Listing 5.1: Example of using the hybrid backend with manually set partition ratio.

This is done in the same way as for the already existing SkePU backends, leaving full control
to the user to choose whether or not to use hybrid execution. Just as for the other backends,
a fall-back mechanism ensures that another backend will be selected if the hybrid execution
backend is selected by the user’s program, but not included in the precompilation. An example
of how to set up an backend specification to use the hybrid backend is presented in Listing 5.1.
In the example a backend specification is created with the hybrid execution backend configured
for two accelerators and 16 CPU threads, where 20% of the work will be executed by the CPU
threads and the rest by the two accelerators.

The user has, just as for the other backends, three ways to specify how to use the hybrid
backend. Either to (1) always use the hybrid backend by explicitly selecting it, as shown in
Listing 5.1; or to (2) manually configure an execution plan, including the hybrid backend for
one of the input data size intervals; or to (3) let the automatic backend selection tuning create
an execution plan, where the hybrid backend might be included.

A design choice was made to keep the workload partitioning and the hybrid backend im-
plementation and the hybrid tuner separated. This allows the partitioning to be optimized in
the future without any need to change the tuner. Likewise could the tuner be improved, ex-
changed or even made selectable in the future without making changes to the hybrid backend
and the partitioning.

The implementation was based on the latest release of SkePU at the time this thesis was
written, which was version 2.

5.2 Workload Partitioning

In the first step of the implementation a new hybrid execution backend with workload parti-
tioning for all skeletons was implemented. To keep a coherent interface between the skeletons,
the workload partitioning was designed to only use one parameter to decide the partitioning:
the partition ratio. This ratio defines the proportion of the work that should be computed on
the CPU; the rest of the work is computed on an accelerator backend. The CPU partition is
then further divided into blocks, one for each CPU thread. The accelerator backend also has
the opportunity to further divide the work between multiple accelerators, possibly accelerators
of different types. As just a single partition ratio parameter is used, the same auto-tuning
implementation can be used to tune all skeletons, without requiring any deeper knowledge of
how the work is actually partitioned. The implementation assumes that no workload balanc-
ing is needed between the CPU cores. The same assumption is already made in the OpenMP
backend and holds for most data-parallel problems.

One important aspect of the implementation of each skeleton was to make sure that the
execution times of the CPU and the accelerator partitions of the hybrid backend would match
the execution time of the already existing OpenMP and CUDA/OpenCL backends respectively.
In case the hybrid backend is executed with N input elements and a partition ratio of 50%,
the execution time of the CPU and accelerator partitions should match the execution time of
the OpenMP and CUDA/OpenCL backends respectively, with N/2 input elements. This is

34

5.2. Workload Partitioning

of importance as the already existing backends are used to benchmark and build performance
models for the auto-tuner. If the performance differs much, the tuner will make bad predictions.

This was partly realized by calling the already existing accelerator backend implementa-
tions. Several positive consequences follows from this: code duplication is avoided and future
optimizations to the accelerator backends will automatically be included in the hybrid back-
end. Some changes to the internal interfaces of the accelerator backends were needed in order
to make them general enough to accept skeleton computations on partial containers. For the
OpenMP part of the hybrid backend it was not possible to call the already existing OpenMP
backend, as some memory management code and synchronization between the CPU and the
accelerator partitions was needed. Nevertheless, most of the actual skeleton execution part
of the OpenMP backend was copied to the hybrid backend implementation to ensure the
performance would match as closely as possible.

The skeleton implementations in the hybrid backend spawns a number of OpenMP threads,
chosen by the programmer in the same way as in the OpenMP backend. One of the threads
is responsible for the accelerator backend, while the rest of the threads will work on the
CPU partition of the problem. The already existing accelerator backends are implemented as
blocking calls, i.e. calls where the executing thread will not return until the computation on
the accelerators is finished. Unfortunately, this means that the thread making the call will
go idle once the data is uploaded to the accelerator and it is busy computing, thus wasting
CPU performance. Some tests were conducted to see if the operating system scheduler could
manage to fill this idle time by using one more CPU thread than number of CPU cores
(where one thread managed the accelerator backend). However, these tests showed a significant
performance drop for most skeletons compared to using the same number of threads as CPU
cores, probably due to scheduling overheads and less efficient cache usage.

Figure 5.1: Schematic figure of the partitioning scheme with eight CPU threads and two
accelerators.

During the implementation of the hybrid backend a constant execution time increase was
noticed for the CUDA partition, compared to running the CUDA backend directly with the
same problem size as the partition. It was found that this was caused by the fact that the
CUDA backend was called from the last thread in the OpenMP thread group. Calling CUDA
from a non-main thread forces the CUDA runtime to copy its context in order to safely support
multi-threaded use of the runtime system. By instead letting the first OpenMP thread handle
the accelerator backends the problem was solved, as the first thread in the group of OpenMP
threads is usually the main thread, which already has a CUDA context.

A schematic image of the workload partitioning with eight CPU threads and two acceler-
ators is shown in Figure 5.1.

Each skeleton ensures that the workload of the CPU and accelerator partitions are large
enough to actually use hybrid execution. When a skeleton is invoked with a too small or
too large partition ratio, causing the number of work items for one of the partitions to be

35

5. Design and Implementation

too small, all workload is put on the other partition. When one of the partitions is empty,
the hybrid backend falls back to the already existing OpenMP and CUDA/OpenCL backend
implementations in order to minimize the overhead caused by the hybrid backend. Generally
the hybrid backend falls back to CPU-only or accelerator-only execution, if there is not enough
work items to occupy all CPU threads, or if the GPU does not have enough work items to fill
a warp.

Details on how the workload was distributed for each skeleton type is presented below.

5.2.1 Partitioning of Map

Figure 5.2: Partitioning of the Map skeleton with three CPU threads.

Due to the parallel properties of the Map skeleton, the partitioning scheme follows naturally.
In this skeleton the partition ratio decides the number of output elements to compute on the
CPU and how many to compute on an accelerator backend. The element-wise arrays are
divided into two parts, where the second part is calculated on the accelerator backend and the
first part is further divided into blocks, one block for each CPU thread to process.

An outline of the partitioning scheme for the Map skeleton, executed with three CPU
threads is shown in Figure 5.2.

5.2.2 Partitioning of Reduce

Figure 5.3: Partitioning of the Reduce skeleton with two CPU threads.

36

5.2. Workload Partitioning

The SkePU Reduce skeleton has three different implementations, one for arrays with a
scalar as output and two for matrices, where the output is either an array (i.e. one-dimensional
reduction) or a scalar (i.e. two-dimensional reduction).

In the case of an array as input, the input data is partitioned between the CPU and the
accelerator backend according to the partition ratio. The CPU partition is then divided equally
between the CPU threads. Each CPU thread and the accelerator backend perform reduction
on its part of the input and all partial reductions are collected in a temporary array. The
reduction of the entire array is then computed by a single CPU thread reducing the temporary
array down to a single scalar.

For the matrix reductions, the input matrix is divided horizontally according to the par-
tition ratio. The rows of the CPU partition are evenly divided between the threads and the
rest of the rows are computed by the accelerator backend. In the one-dimensional reduction
case, the results can be directly written to the result vector by the PUs. In the case of two-
dimensional reduction, each CPU thread and the accelerator backend perform first a row-wise
reduction and then a column-wise reduction on its part of the matrix. The resulting scalar
values from each CPU thread and from the accelerator backend are collected in a temporary
array. These values are then reduced down to a scalar value by a single CPU thread.

The horizontal partitioning of the matrices is coarse-grained and works best for matrices
with a high number of rows, as too few rows can be hard to partition evenly according to the
partition ratio. More complex partitioning schemes could result in better results, but this one
was chosen to minimize the need for inter-PU communication and synchronization.

An outline of the partitioning scheme for the Reduce skeleton on vectors, executed with
two CPU threads is shown in Figure 5.3.

5.2.3 Partitioning of MapReduce

Figure 5.4: Partitioning of the MapReduce skeleton with two CPU threads.

Due to the similarities between MapReduce and the Reduce skeleton, the implementation
of the former is done in a similar way. The partition ratio divides the input arrays into one
partition for the CPU and one partition for the accelerator backend. The CPU partition is then
evenly divided into blocks, one for each CPU thread. Each CPU thread and the accelerator
backend then execute the Map step and reduce their block of the input to a single scalar value.

37

5. Design and Implementation

All these values are collected in a temporary array and a single CPU thread reduces them
down to the global result.

An outline of the partitioning scheme for the MapReduce skeleton, executed with two CPU
threads is shown in Figure 5.4.

5.2.4 Partitioning of MapOverlap

Figure 5.5: Partitioning of the MapOverlap skeleton with three CPU threads.

The MapOverlap skeleton comes in three variations: one for vectors, and two for matrices.
For matrices there exist different implementations for row-wise and column-wise MapOverlap.
Partitioning of MapOverlap for vectors is done in the same way as the regular Map skeleton,
by dividing the output array into a CPU partition and an accelerator partition. The CPU
partition is further divided between the CPU threads. To be able to work on parts of a vector,
the accelerator backends needed some generalizations to their internal interfaces.

Row-wise MapOverlap needed similar work on the accelerator backends to work on partial
matrices. Here, as in the Reduce implementation, the matrix is divided horizontally into a
CPU partition and an accelerator partition, where each CPU thread and the accelerators are
assigned a number of rows to work on.

The accelerator backend implementation of column-wise matrix Reduce proved to be hard
to generalize for partial matrices without a significant amount of work. Due to time constraints
this variant of MapOverlap was not considered for hybridization.

An outline of the MapOverlap partitioning scheme with three CPU threads is shown in
Figure 5.5.

5.2.5 Partitioning of Scan
Scan contains more complicated dependencies between the output values that must be taken
into consideration to get an effective implementation. Like before, the input array is divided
into one CPU partition and one accelerator partition and the CPU part is then further divided
into one block for each thread. The execution is performed in two steps. In the first step each
CPU thread and the accelerator backend perform a local Scan on their block of the input
array, then in the second step the local Scans are combined with the missing offset values from
the proceeding blocks; forming the global Scan result.

After the first step with the local Scan, the element of each block lacks the sum1 of all the
elements in the proceeding blocks. The sum of each block is already calculated: it is the last
element of the local Scan of the block. An array of the missing values that must be added to

1Note that the words add/sum is used in this section, as if the Scan was a prefix sum, but other binary
operations can also be used.

38

5.2. Workload Partitioning

each block is produced by letting each CPU block copy its last calculated value to a temporary
array and by letting a single CPU thread perform a Scan on that array. The temporary array
then contains the missing values for each block. All CPU threads are synchronized before the
single thread performs a Scan on the temporary array to make sure the local Scan of each CPU
thread is finished. In the second step, the accelerator thread and each CPU thread (except
for the first thread, which has no preceding blocks) add the missing value from the temporary
array to all elements in their block. When this is done, global Scan has been produced. An

Figure 5.6: Partitioning of the Scan skeleton with three CPU threads.

outline of the partitioning of the Scan skeleton executed with three CPU threads can be seen
in Figure 5.6.

Two things are important to notice here. The first thing is that nothing depends on
the result of the last Scan block, i.e. that of the accelerator. The second thing is that the
computation time of the two steps are quite different on a CPU and an accelerator (in particular
a GPU). For a CPU the first and the second step take approximately the same amount of time
to execute, as they perform the same number of computations (as many operations as the
number of elements in the block). But for the GPU the first step takes much more time than
the second step. The first step, with the local Scan, contains data dependencies between the
computations, but in the second step all operations are independent. Due to the embarrassingly
parallel nature and memory access pattern of the second step, a GPU can execute this very
fast by using coalesced memory access.

In case the accelerator thread is included in the synchronization before the second step
starts achieving good speedups can be hard. Because, if the partition ratio chosen to make the
local Scan complete at the same time for the CPU and the accelerators, the accelerators will
finish their second step quickly and go idle for a long time before the CPU threads are done
with their second step. This will waste a lot of performance potential. As the accelerators
are taking care of the last block, they do not need to be included in the synchronization.

39

5. Design and Implementation

Instead, the CPU threads synchronize themselves and start the second step when they have
produced the temporary array without waiting for the accelerators. When the accelerators are
finished with the first step, they will check that the CPU threads have produced the array of
missing elements and then quickly finish their second step. This way it is possible to balance
the partition ratio so that the CPU threads finish their second step at the same time as the
accelerator, without wasting performance by having one PU wait for the other in the middle
of the computation.

An alternative would be to redistribute the work in the second step with a different partition
ratio, allowing both steps to be evenly balanced between CPU and accelerator. This would also
allow the first CPU thread to participate in the work of the second step. However, this solution
was not chosen as the Scan skeleton would not have the same interface with a single partition
ratio as the other skeletons. The code complexity would also increase, as the missing values
that should be added are not tied to one CPU thread/accelerator anymore. The speedup
achieved by using all CPU threads would probably not be significant anyway, as the CPU
threads would not be able to utilize the cached data from the first step, due to the new offset
of the memory access pattern in the second step.

5.3 Auto-tuning of Skeletons

Because the hybrid backend is implemented on the same abstraction level as the other backends
and not on a higher level, all features of the other backends are also applicable for the hybrid
backend. This includes the already implemented optimal backend selection tuning. The hybrid
backend, however, adds one new level of tuning: tuning of the partition ratio.

The tuning of a skeleton instance is intended to work in three steps:

1. Machine specific tuning. First the machine specific backend parameters are tuned.
This includes for example maximum number of threads and blocks for the GPU. This type
of tuning is implemented in SkePU 1, but not yet ported to SkePU 2. Most parameters
tuned by this step are global for the machine, and not skeleton specific.

2. Hybrid backend tuning. The hybrid backend for the skeleton instance is tuned by
building a model for prediction of the optimal partition ratio. This tuning step is imple-
mented as a part of this thesis and is described in Section 5.4.

3. Backend selection tuning. Finally the backend selection tuning finds the best backend
for different input sizes. The result of this tuning step is an execution plan. In most
cases the optimal execution plan will use CPU for small, OpenMP for medium and
CUDA/OpenCL for large input sizes. The backends evaluated in this step will also
include the hybrid backend, which will likely be the best option for even larger input
sizes. This type of tuning has an experimental implementation in SkePU 2.

Note that the hybrid backend tuning step (2), and the backend selection tuning step (3),
have some overlap. The hybrid backend will, beyond tuning the optimal partitioning be-
tween the CPU and the accelerators for different input sizes, also fall back to the OpenMP
or CUDA/OpenCL backends, if they are considered faster than hybrid execution. This will
however come with a small performance overhead compared to running the OpenMP or CU-
DA/OpenCL backend directly, as the hybrid backend must first figure out which is faster:
CPU-only, accelerator-only or hybrid execution. For example, if the hybrid backend finds that
falling back to CPU-only execution with OpenMP is faster than using hybrid execution, the
backend selection tuning will make benchmarks of two backends (the hybrid and the OpenMP
backends), executing the same OpenMP implementation. These would thus result in simi-
lar execution times. However, running the OpenMP backend directly would presumably be
a little faster, as it does not have the overhead of the hybrid backend. In these cases, the

40

5.4. Implementation of Hybrid Backend Tuning

backend selection tuning can help to slightly improve the performance compared to just using
the hybrid backend and relying on its fall-back mechanisms.

The user might choose to always use the hybrid backend, tuned with hybrid backend tuning
and rely on it to fall back to OpenMP or CUDA/OpenCL for smaller input sizes. But one
advantage of also using the backend selection tuning is that it includes the sequential CPU
backend. This backend is likely optimal for really small input sizes. So by having both the
hybrid tuning and the backend selection tuning, the hybrid backend and its tuning can be
optimized for larger input sizes, while the backend selection tuning takes care of switching to
a better backend for the really small problem sizes.

5.4 Implementation of Hybrid Backend Tuning

To let SkePU automatically predict the optimal partition ratio based on the input size a
hybrid backend tuner was implemented. The tuner builds two execution time models, one
for the CPU and one for the accelerator backend. These models are then used to predict the
optimal partition ratio for a specific input data size.

Several solutions to the problem of partitioning a workload between heterogeneous PUs
has been proposed over the years, including solutions based on theoretical performance [22],
empirical performance [33, 41] and a mix of both [1]. The solution implemented in this thesis
is based on empirical performance and resembles the implementation made by Luk et al. [33]
in their parallel programing framework Qilin.

Because of how general the SkePU framework is, an auto-tuner that works perfectly in every
case is almost impossible to implement. The execution time of a skeleton could for instance
be bound by the size of the random access containers, or even of the values in the input data.
Finding such relations would require either manual input from the user or very sophisticated
machine learning algorithms with long training times, neither of which is desirable. Instead
the hybrid tuner was implemented to work well for common cases where the execution time
is bound by the size of the element-wise arrays. In other cases, the partition ratio can be
manually tweaked by the user.

The hybrid tuner solution implemented in this thesis is based on empirical performance; it
invokes the skeleton with different input sizes. Each skeleton instance is tuned once and the
model built from that tuning can then be reused for all succeeding invocations of the skeleton
instance. The hybrid tuner takes as parameters the upper and lower limit to tune for, as
well as the number of input sizes to benchmark. The parameters also include the number
of CPU threads to use and the number of accelerators to tune for. The specified number of
sizes to benchmark are evenly distributed between the given input size limits. Benchmarks
are made using the OpenMP backend and the OpenCL/CUDA backend. To avoid temporary
fluctuations, five executions are made for each input size and backend and the median execution
time is added to the execution time model.

One hybrid backend tuning will only be valid for a specific number of CPU threads and
accelerators as measurements are done on the backends and not on individual PUs. The tuning
also includes data transfer time for the accelerator backend, but does not separate it from the
computation time. The tuner will thus underestimate the accelerator performance in cases
where the data is already residing in accelerator memory. In those cases the total execution
time of the accelerator will be shorter than the one measured during the tuning, as it only
includes computation time and not data transfer time.

Listing 5.2 shows how to use the hybrid backend tuning to tune a skeleton instance with
16 threads and one accelerator. In the example the minimum and maximum limits to tune
between as well as the number of tuning steps are defined. Compared to the example of how
to use the hybrid backend with a manually set partition ratio seen in Listing 5.1, not much
changes are required to let SkePU automatically find the best partition ratio.

41

5. Design and Implementation

1 const int NUM_CPU_THREADS = 16;
2 const int NUM_ACCELERATORS = 1;
3 const int MIN_SIZE = 1000;
4 const int MAX_SIZE = 1000000;
5 const int STEPS = 10;
6
7 // Tune
8 skepu2::backend::tuner::hybridTune(skeleton_instance , NUM_CPU_THREADS ,
9 NUM_ACCELERATORS , MIN_SIZE, MAX_SIZE , STEPS);

10
11 // Use auto-tuning
12 skepu2::Vector<int> in, out;
13 skeleton_instance(out, in);

Listing 5.2: Example of using hybrid backend tuning.

The OpenMP backend is benchmarked with one less CPU thread specified in the call to
the hybrid tuner, as one thread will be used to manage the accelerator backend.

5.4.1 Execution Time Model
The execution time is modeled as two linear curves: one for the CPU and one for the accel-
erator. The curves are built from the execution time samples taken by the hybrid tuner by
using least-squares fitting. The result is two linear equations of the form:

t = ax + b (5.1)

where t is the approximated execution time, x is the input data size in number of elements
and a and b are the parameters found by least-squares fitting.

Let N be the problem size and R denote the (CPU) partition ratio, i.e. the fraction of
work computed by the CPU. The partition size of the CPU is then NR and the partition size
of the accelerator will thus be N(1 − R). The predicted execution time curves can then be
written as:

tcpu = acpuNR + bcpu (5.2)

tacc = aaccN(1 −R) + bacc (5.3)

where the first equation is the predicted execution time of the CPU and the second equation
is the predicted execution time of the accelerator. The workload is perfectly balanced between
the CPU and the accelerators when tcpu = tacc. The optimal partition ratio can therefore be
calculated by solving the following equation, formed by Equations (5.2) and (5.3):

acpuNR + bcpu = aaccN(1 −R) + bacc (5.4)

Solving for the optimal partition ratio R results in the equation:

R =
aaccN + bacc − bcpu
N(acpu + aacc)

(5.5)

Solving this equation is equivalent to finding the intersection point between Equations
(5.2) and (5.3). In practice the calculated optimal partition ratio R might lie above 100% or
below 0%. This indicates that the performance of either the CPU or the accelerator backend
receptively is superior to the other, and that the entire workload should be offloaded to that
PU. The prediction calculation will limit the value of R between 0 and 1, and let the hybrid
backend implementation automatically fall back on the OpenMP or CUDA/OpenCL backend
if one of the partitions is empty. Three kinds of predictions are possible: accelerator-only if

42

5.5. Implementation of the StarPU Backend

R = 0, CPU-only if R = 1 and hybrid execution if 0 < R < 1. Falling back will come with
a small performance overhead compared to using the OpenMP or CUDA/OpenCL backends
directly, as the partition ratio must be predicted first. However, for non-trivial problem sizes,
this overhead is negligible.

5.5 Implementation of the StarPU Backend

To give a fair comparison between the new hybrid backend and the old StarPU based hybrid
execution implementation in SkePU 1, the StarPU library was re-integrated into SkePU 2.
The new integration is based on the old version to give a similar performance, but with the
more generic SkePU 2 API.

StarPU uses its own data management system, just like SkePU does. To keep SkePU’s
smart container API intact, the vector and matrix implementations in SkePU automatically
transfer the control to the StarPU data management system whenever a data container is used
in a skeleton with the StarPU backend. The control is taken back by SkePU once a container
is used in a skeleton with one of the other backends. The memory management code of SkePU
has not changed much with SkePU 2, allowing the StarPU integration in the vector and matrix
containers to be more or less reused from the old integration. The backend implementation of
the skeletons, on the other hand had to be rewritten to fit the more flexible meta-programming
based interface of SkePU 2. The StarPU implementation was added as a separate backend in
SkePU 2, just like the hybrid backend. In conjunction with the automatic data management,
this allows the already existing backends to be used alongside the StarPU backend.

The abstraction gap between SkePU and StarPU is something that was already noticed
during the integration of StarPU into SkePU 1 [11]. It has since grown even more in SkePU
2 with the increased use of meta-programing and other high-level C++ features. StarPU is
implemented in C and uses raw pointers and run-time type casting to pass arguments. In
the C++-based SkePU 2 on the other hand, argument lists are built at compile-time using
variadic templates and parameter packs. However, thanks to the flexibility of both StarPU
and SkePU 2 it was possible to re-integrate them, without making any changes to their APIs.

StarPU defines computational tasks using a structure called codelet. A codelet encapsulates
multiple implementations variants of a single function. All different implementation variants in
a codelet should produce the same result, but might be targeting different architectures or be
optimized for certain hardware. Each skeleton in the StarPU backend of SkePU has at least
one codelet with two implementation variants: one for multi-core CPU implemented using
OpenMP and one for GPU implemented in CUDA. Some skeletons have multiple codelets
for different variations of the skeleton (e.g. different codelets for one-dimensional and two-
dimensional Reduce). When a skeleton is invoked with the StarPU backend selected, the
workload is partitioned into a number of equally sized chunks. All chunks are then submitted as
tasks to the StarPU runtime system to be scheduled and executed on a PU. As implementation
variants for both CPU and GPU are given, the work can be executed simultaneously on
multiple PUs, thus enabling hybrid execution. Because the StarPU library is implemented
in C and enforces the use of void pointers to pass the data to a codelet, it was not possible
to reuse the already existing OpenMP and CUDA backend implementations of the skeletons.
Neither could the old SkePU 1 implementation variants for StarPU be reused because of the
redesigns and generalizations made in SkePU 2. Instead new implementation variants had to
be made as static member functions, relying on compile-time meta-programming to handle
input containers of arbitrary number.

Because the CPU implementation variants of the codelets use OpenMP to form so called
parallel tasks (i.e. a task encapsulating data parallelism), the regular HEFT schedulers could
not be used. Instead the PHEFT (Parallel Heterogeneous Earliest Finish Time) scheduler
was used. Each skeleton instance is assigned their own StarPU performance model to predict
the performance of a task on different PUs. For the evaluation made in this thesis, StarPU’s

43

5. Design and Implementation

history based performance model was used. This performance model uses earlier execution
time measurements of the same task size to predict the performance. An assumption is thus
made that a few problem sizes are executed many times, as the same problem size must have
been executed earlier for the model to actually be able to do a prediction. This might not
always be the case for SkePU skeletons, but it fits the execution scheme used in the evaluation
well, see Section 6.4. The history based performance model can easily be exchanged for
any of StarPU’s regression based performance models. Similar to the execution time model
implemented in this thesis for the hybrid backend, the regression based models fit curves from
measured execution times on the different PUs. These models will thus be better suited for
applications where the input sizes to the skeletons varies, as they can predict the execution
time of a task size it has never encountered.

Due to time constraints only some of the skeletons were implemented for the StarPU
backend, namely Map, Reduce and MapReduce. Some variants of the skeletons (such as
Reduce for matrices) and special features have not been implemented in the StarPU backend
yet. Focus was put on skeletons and features that are frequently used in the SkePU example
programs, as this would be enough for a comparison between StarPU and the new hybrid
backend in the evaluation. The evaluation uses StarPU version 1.2.4; the latest version of
StarPU at the time this thesis was written.

44

6 Evaluation

After the implementation phase, the new hybrid execution backend was evaluated. First, the
correctness was evaluated to ensure that the new implementation of all skeletons gave the same
results as the other backends. This evaluation step is described in Section 6.1.

Then, the performance of the new implementation was evaluated, to ensure that it resulted
in shorter execution times. The performance of the new hybrid backend was examined on two
levels. First on skeleton type level, where a single skeleton was considered at a time, described
in Section 6.2. Then on generic applications consisting of one or multiple skeletons solving
real world problems, described in Section 6.3. Finally, the new hybrid execution backend was
compared to the ported StarPU backend, which is described in Section 6.4.

In the performance evaluations, the SkePU Timer class was used. The timing includes
upload and download time to accelerators, but does not include the time it takes to allocate
SkePU containers in main memory. In repeated benchmarks, new containers were allocated
for each benchmark to minimize the impact of cached data.

CPU 2x Intel Xeon E5-2660
CPU base frequency 2.2 GHz
CPU total cores 16
CPU memory 64 GB
GPU NVIDIA Tesla K20Xm
GPU cores 2688
GPU memory 6 GB
C++ compiler GCC 4.9.2
CUDA compiler nvcc 7.5.17

Table 6.1: Specification of evaluation systems.

The evaluation system is described by Table 6.1. The evaluation system consisted of two
identical CPUs, working as a single CPU, and a GPU connected to the system via a PCIe
(Peripheral Component Interconnect Express) bus connection.

45

6. Evaluation

6.1 Evaluation of Correctness

The first step of the evaluation was to verify the correctness of the new hybrid execution
scheduling implementation. SkePU already features a sequential implementation of all skele-
tons to do this. Evaluation was done by comparing the output of the sequential backend and
the new hybrid backend implementation for each skeleton type. A test framework was created
with tests for each skeleton type. Skeletons with multiple variants for vectors and matrices
had separate tests for the variants. Containers filled with randomized input data were used
in the tests and for each skeleton to be tested the sequential and hybrid backends were called
with these input containers. The hybrid backend was called with a fixed partition ratio to
ensure hybrid execution was actually used. By comparing the result of the sequential and the
hybrid backend, verifying the same result was produces by both backends, the correctness of
the implementation could be ensured for general cases. In addition to this, multiple corner
cases were tested to ensure that the fall-back mechanisms worked, as well as special skeleton
specific features, such as different edge handling schemes in the MapOverlap skeleton. Once
all skeletons had passed the correctness test, the performance of the hybrid backend could be
evaluated.

6.2 Evaluation of Single Skeleton Performance

The performance of the hybrid execution implementations was first evaluated for single skeleton
calls. One test program was created for each skeleton type, using a typical user function for
that skeleton. The skeletons were tested with the OpenMP backend, the CUDA backend and
the new hybrid execution backend. The hybrid backend used the hybrid auto-tuner to predict
the optimal partition ratio. Tuning was performed at startup of the test program, and the
same execution time model was then used for all invocations of the skeleton instance. The
execution time of each skeleton and backend was recorded for a number of input sizes, ranging
from 100,000 to 4,000,000 in increments of 100,000. To minimize the impact of temporary
variations in execution time due to other programs, each input size and backend was executed
seven times and the median execution time was recorded.

The user functions (denoted f) used to instantiate the skeletons in this evaluation are
presented below.

Map The Map skeleton calculated the sum of squares of two input arrays, with the user
function: f(a, b) = a2 + b2.

Reduce The Reduce skeleton found the maximum odd number in the input array with the

user function: f(a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max(a, b) if odd(a) ∧ odd(b)
a if odd(a) ∧ even(b)
b if even(a) ∧ odd(b)
0 if even(a) ∧ even(b)

.

MapReduce The MapReduce skeleton was implemented as a dot product, i.e. with the Map
function: fM(a, b) = ab and the Reduce function: fR(a, b) = a + b.

MapOverlap The MapOverlap skeleton calculated the sum of the elements inside the overlap
area. If A denotes the set of values inside the overlap area, the user function can be
written as: f(A) = ∑

a∈A
a. The overlap size was set to 5 (i.e. with a total of 11 elements

available to the user function). The out-of-bounds edge handling scheme was set to
duplicate, using the closest value in the array for all out-of-bounds accesses.

Scan The Scan skeleton was implemented as a prefix sum, i.e. with the plus operator user
function: f(a, b) = a + b.

For Reduce and MapOverlap, only the vector implementations were tested.

46

6.3. Evaluation of Generic Application Performance

Application Algorithm Skeletons
CMA Cumulative moving average Map<1>, Scan
Dotproduct Dot product MapReduce<2>
Gaussian One-dimensional Gaussian filter MapOverlap
Mandelbrot Mandelbrot fractal Map<0>
PPMCC Pearson product-moment correlation coefficient Reduce, MapReduce<1>, MapReduce<2>
PSNR Peak signal to noise ratio Map<2>, MapReduce<2>
Taylor Taylor series expansion of log(1 + x) MapReduce<0>

Table 6.2: List of applications used in the evaluation.

6.3 Evaluation of Generic Application Performance

To evaluate performance in a more realistic context, an application evaluation was performed.
In this evaluation seven different test applications, most of them available through the SkePU
website 1, was used. These applications included a Mandelbrot fractal generator and Taylor
expansion. The full list of example applications used in the evaluation is presented in Table
6.2. In the skeleton column, the number within <> denotes the arity of the skeleton instance,
i.e. how many element-wise accessed input containers are used. The Gaussian filter application
was executed with an overlap of 5 elements on each side of the center element.

Each application was executed with five configurations: four different backends and an
oracle. As a baseline for speedup calculation, the applications were first executed with the
sequential CPU backend. The applications were then executed with the OpenMP, CUDA
and hybrid backends, and the speedups over the sequential CPU backend were calculated for
each of these backends. Each skeleton instance was tuned with the hybrid auto-tuner and the
optimal partition ratio was predicted for each skeleton instance by the models. Finally, as
an upper bound for the performance of the hybrid backend, the applications were executed
with an oracle. By executing the hybrid backend with an optimally chosen partition ratio, the
oracle shows the highest possible speedup achievable with the hybrid backend implementation.
This method has been used in several papers to show the upper bound of hybrid execution
implementations [22, 33, 41]. The oracle executed the hybrid backend with manually set
partition ratios, ranging from 0% to 100% in steps of 5 percentage points for each skeleton
instance in the application. This results in 21k cases per application, where k is the number
of skeleton instances used in the application. The best execution time out of these tested was
saved as the resulting execution time of the oracle, i.e. an approximation of the best possible
execution time of the hybrid backend. This result gives a hint of the maximum possible
performance of the hybrid backend including its partitioning, but might miss the true optimal
ratio due to its discretization of the tested ratios.

To reduce the impact of temporary execution time fluctuations, each benchmark, including
all partition ratio benchmarks tested for the oracle, was executed seven times and the median
execution time was used.

6.4 Evaluation of Performance Compared to StarPU

Lastly an evaluation of the performance compared to the dynamic hybrid execution scheduling
provided by the StarPU backed was made. Because StarPU uses runtime schedulers that learn
over time, a fair comparison should let the StarPU performance models have a chance to train
and improve their predictions. To do this, the same skeleton instances were invoked 30 times
in a row, giving StarPU a chance to improve and stabilize its performance. The OpenMP and
CUDA backends were included in the evaluation as a comparison of single PU performance.
The hybrid backend was tuned a single time in the beginning and that execution time model
was then used for all repeated invocations. All backends were invoked 30 times in a row and

1http://www.ida.liu.se/labs/pelab/skepu/#applications

47

http://www.ida.liu.se/labs/pelab/skepu/#applications

6. Evaluation

the execution time was measured each time. No filtering of temporary fluctuations was made
as in the other performance evaluations. The performance of the StarPU backend is highly
dependent on the number of tasks each skeleton call is divided into. The task size was therefore
manually chosen for each tested skeleton instance, to give the best possible performance from
this backend. StarPU saves the performance models for each skeleton instance on disk for reuse
between runs. These were discarded before the test programs were executed to make sure that
the performance models were built from scratch and not reused from earlier executions. For
each benchmark new containers were allocated to minimize the influence of caches. The same
user functions were used as in the single skeleton evaluation, see Section 6.2.

48

7 Results

In this chapter the results of the performance evaluations are presented. First the single
skeleton and generic application results are presented in Sections 7.1 and 7.2 respectively,
then the results of the comparison to the StarPU-backend reimplementation are presented in
Section 7.3.

The execution times include data transfer time to the accelerators, but do not include time
for allocation of data containers in CPU memory. Neither do they include the tuning time for
the skeletons.

7.1 Single Skeleton Performance

The results of the single skeleton performance evaluation are presented in Figure 7.1. In the
graphs the Hybrid line is the new hybrid backend, tuned with the auto-tuner, using the CUDA
backend for the accelerator partition. The OpenMP and CUDA lines show the execution time
of these backends with 16 CPU threads and one GPU respectively. The predicted partition
ratio for all problem sizes is also shown as a separate line. For most skeletons this line shows
that the hybrid backend falls back to CPU-only execution for small problem sizes (partition
ratio at 100%) and offloads more and more of the computation to the GPU with an increased
problem size.

In the graphs we can see that hybrid execution can improve the execution time for all
skeletons, at least for larger problem sizes. Among these five tested skeleton instances we can
see that hybridization works best for Map, MapReduce and MapOverlap, while the gains are
smaller for Reduce and Scan.

7.2 Generic Application Performance

The result of the generic application evaluation is presented in Figure 7.2. The bars show the
speedup of the tested backends compared to the sequential CPU implementation. Here Hybrid
is the hybrid backend tuned with the auto-tuner, using the CUDA backend for the accelerator
partition. The Oracle bar shows the speedup of the hybrid backend (with the CUDA backend
for the accelerator partition), executed with the optimal combination of the 21 partition ratios
that were tested per skeleton instance. The OpenMP and CUDA bars show the execution time
of these backends with 16 CPU threads and one GPU respectively.

49

7. Results

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
o
n
T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
a
rt
it
io
n
ra
ti
o
[%

]

(a) Map skeleton

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
o
n
T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
a
rt
it
io
n
ra
ti
o
[%

]

(b) Reduce skeleton

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

(c) MapReduce skeleton

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

(d) MapOverlap skeleton

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
x
ec
u
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

(e) Scan skeleton

OpenMP
CUDA
Hybrid

(CPU) Partition ratio

Figure 7.1: Execution time of individual skeletons.

In the diagram we can see that the hybrid backend improves upon, or at least matches the
performance of the OpenMP and CUDA backends in all cases except for the PSNR application.
The oracle confirms that the overhead of the hybrid backend is negligible in cases when the
backend falls back to CPU-only or GPU-only execution, something that can be clearly seen in
the bars for the PSNR and Taylor applications.

50

7.3. Comparison to StarPU Performance

C
M
A

D
ot
pr
od
uc
t

G
au
ss
ia
n

M
an
de
lb
ro
t

PS
N
R

PP
M
C
C

Ta
yl
or

0

10

20

30

S
p
ee
d
u
p
ov
er

se
q
u
en
ti
al

C
P
U

OpenMP
CUDA
Oracle
Hybrid

Figure 7.2: Speedup comparison of generic applications.

7.3 Comparison to StarPU Performance

The results of the comparison between the new hybrid backend and the StarPU backend are
presented in Figure 7.3. The graphs show the execution time of the four tested backends
after repeated invocations of the same skeleton instance with the same input size. Both the
hybrid backend and the StarPU backend divides the work between the CPU and the GPU.
The optimal number of tasks to divide the skeleton workload into for the StarPU backend
was manually found for each skeleton instance and was: 6 for Map, 3 for Reduce and 14 for
MapReduce.

In the graphs the OpenMP, CUDA as well as the new hybrid backend show an even
execution time for repeated invocations. The StarPU line however, shows more variation
between invocations, although the execution time improves and stabilizes somewhat with time.
Hybrid execution with StarPU does not pay off until after five or ten repeated executions in
some of the tests.

51

7. Results

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
x
ec
u
ti
on

T
im

e
[m

s]

(a) Map skeleton, 20 ⋅ 106 elements.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
x
ec
u
ti
on

T
im

e
[m

s]

(b) Reduce skeleton, 90 ⋅ 106 elements.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
x
ec
u
ti
on

T
im

e
[m

s]

(c) MapReduce skeleton, 20 ⋅ 106 elements.

OpenMP
CUDA
Hybrid

StarPU (CPU+GPU)

Figure 7.3: Execution time of repeated invocations of the same skeleton.

52

8 Discussion

This chapter discusses the findings of the thesis, as well as the methodology that was used.
The chapter is divided as follows: the results of the evaluations are discussed in Section 8.1,
then the methodology is analyzed in Section 8.2 and finally the work is discussed from a wider
perspective in Section 8.3.

8.1 Results

During the development and correctness testing of the hybrid backend, many bugs and incon-
sistencies were found in the already existing backends. Bugs are expected as the SkePU version
this work was based on is in a preview state after an extensive code refactoring. Bug reports
and fixes were submitted to the SkePU project and most of these bugs will be fixed in the next
public release of SkePU. The majority of bugs were found in the MapOverlap implementation
and is the result of the many corner cases of this skeleton. An exhaustive regression test suite
for SkePU is hard to create due to all implementation variants, all possible user functions
and their flexibility with input arguments, but many of the bugs encountered could have been
found by common test cases.

A small test framework for the hybrid backend was created and the hybrid implementation
passed all tests. Some tests failed, however, when a specific accelerator backend with a specific
number of devices was executed, due to a few bugs still residing in the CUDA/OpenCL multi-
device implementations.

8.1.1 Single Skeleton Performance
From the single skeleton performance evaluation it is apparent that performance can be gained
by using hybrid execution. Hybrid execution proves to have better performance than the
OpenMP and CUDA backends for all five skeletons, at least for larger input sizes. For smaller
input sizes the kernel launch overhead and memory copying time of the GPU makes up a larger
fraction of the execution time, reducing the gains. For most skeletons the hybrid backend even
manages to match the performance of the fastest of the OpenMP and CUDA backends for
small input sizes, by automatically switching to CPU-only or GPU-only execution. For the
Scan skeleton however, the hybrid curve takes a leap and becomes slower than the OpenMP
and CUDA curves, as the prediction algorithm overestimates the GPU performance. This

53

8. Discussion

is likely due to the differences in the OpenMP/CUDA and hybrid implementations of Scan,
causing the performance of the individual backends and the performance of the partitions in
the hybrid backend to differ slightly. In particular the accelerator part of the hybrid backend
where the division of the computation into two steps leads to an increased overhead.

Hybrid execution seems to work better for embarrassingly parallel problems, such as the
Map skeleton, than for skeletons with more dependencies, like the Reduce and the Scan skele-
tons.

8.1.2 Generic Application Performance
The result of the generic application evaluation shows that hybrid execution gives a speedup
over the performance of the OpenMP and CUDA backends for most of the applications. PSNR
and Taylor are the only exceptions where hybrid execution does not gain any performance (at
least not for the problem sizes that were tested).

By comparing the upper bound of the oracle to the hybrid backend bar we can see that the
auto-tuning manages to find good partition ratios, but there is still some room for improvement
when comparing to the oracle.

For the Mandelbrot application the speedup of the OpenMP backend is low (in the opti-
mal case it should be equal to the number of CPU cores, that is 16) compared to the other
applications. This is because the application was executed with a relatively small input size,
where the overhead of multi-core execution of the OpenMP backend can be noticed. Mandel-
brot is a very GPU-friendly application due to the high workload per user function invocation
and because no input data is required. Increasing the problem size would result in massive
speedups for the GPU, around 100 to 1000 times faster than the sequential execution. In
these cases using hybrid execution will not make much of a difference in performance due to
the limited speedup of the OpenMP backend. Therefore a smaller problem size was used in
the experiment, showing that performance can be gained with hybridization, even for smaller
input sizes.

In the applications PSNR and Taylor either CPU-only or GPU-only execution is the fastest,
according to the oracle. For the Taylor application, the hybrid backend finds CPU-only execu-
tion to be the fastest and therefore matches the performance of the top performing single PU
backend. However, for the PSNR application the speedup of the hybrid backend is lower than
for the fastest single PU backend—the CUDA backend. In this case the hybrid tuning predicts
that the optimal partition ratio is close to 40% for the Map skeleton used the application, and
100% for the MapReduce skeleton. While this might be the optimal choice for the individual
skeletons, it is not the optimal solution when both skeletons are executed consecutively. The
oracle proves this. It choses the same partition ratio (0%, GPU-only execution) for both skele-
tons, as this will make the data partition sizes equal and removes the need for the data transfer
between the skeleton invocations. As the data transfer time takes up a large proportion of the
overall execution time, this leads to a better result when the two skeletons are executed after
one another.

8.1.3 Comparison to StarPU Performance
The comparison to the StarPU backend reveals the problem reported with StarPU from the
SkePU 1 implementation: the performance is unreliable. For the Map and MapReduce skele-
tons, the StarPU backend improves over the performance of the OpenMP and CUDA backends.
The StarPU backend is never faster than the hybrid backend, although a few executions of the
StarPU backend are very close the the execution time of the hybrid backend. For the Reduce
skeleton, the StarPU backend only manages to match the performance of the OpenMP back-
end, but not improve upon it. The Reduce skeleton runs much faster on CPU than on GPU,
which makes the possible speedups of hybrid execution small, as can be seen for the hybrid

54

8.1. Results

backend. The overhead of the scheduling in StarPU makes it even harder for this backend to
gain any performance by hybrid execution.

It is expected that the StarPU backend should have a higher execution time than the
hybrid backend, as the runtime scheduler in StarPU comes with a substantial overhead. In
the case of Map, the execution time of the OpenMP and CUDA backends are almost equal,
indicating that the optimal partition ratio for the hybrid backend is close to 50%. The shortest
execution time that can be expected when dividing the workload between two PUs is half the
execution time of a single PU. As the execution time of the hybrid backend is close to half
the execution time of the single PU, the speedup of the hybrid backend is close to the highest
possible speedup with hybrid execution using two PUs in this case. The StarPU backend
should not be able to improve upon this execution time for this skeleton instance.

The graphs show to some extent the mentioned need for warm-up runs; the StarPU perfor-
mance is very bad at the first few invocations and then improves. But the execution time is not
stable even after 30 repeated executions. The reason for this might be due to the performance
models not being trained enough yet, but is more likely because of the task size. Since the
manually chosen number of tasks to divide the skeleton invocations into (chosen as the one
that minimized the best execution time) is quite low—only between 3 and 14—the workload
of each task is relatively large. If the scheduler makes a single misprediction the result might
be a significant load imbalance, where one PU goes idle for a long time at the end of the
computation. A higher number of tasks should to some extent give better execution times,
but when tried, it proved to increase overheads and give longer execution times instead. The
number of tasks is remarkably small for the Reduce skeleton, something that might explain the
spikes in execution time for this skeleton. Increasing the number of tasks from three to four
results in a much slower execution time. There might still be details in the implementation of
the StarPU backend for this skeleton that can be improved.

The performance of the StarPU backend might gain from even larger problem sizes than
the ones used in the evaluation, as the scheduling time would be reduced in relation to the
computation time. In that case, more tasks per skeleton could be used to make the scheduling
easier and minimize the risk of one PU going idle for a long time at the end of the computation.
It should also be noted that these skeleton instances are well suited for the hybrid backend
because the workload of the user function is identical for each user function invocation. In cases
where the computational work of the user function differs between each invocation, a dynamic
scheduling approach might be preferable as it can better adapt to the uneven workload. In
these cases the StarPU backend might still be an interesting option, as long as the input size
is large enough to hide the overhead of the dynamic scheduling.

The performance of the StarPU backend is highly dependent on finding the best number
of tasks to divide the skeleton invocation into; a bad choice results in drastic performance
drops. This need for hand-tuning parameters is a major drawback of the StarPU backend in
comparison with the new hybrid backend. Hand tuning of the number of tasks is far more
time consuming than the implementation of the application.

Some variations in execution time of the other backends can be seen, especially for the
OpenMP and hybrid backends. The performance of the GPU is more even, suggesting that
the variations come from other operating system processes running on the CPU. A slightly
higher execution time can be seen for the first measurement of the CUDA backend. This is
because the CUDA runtime uses lazy initialization and starts initializing the runtime at the first
CUDA call. This overhead is relatively small and will be negligible for even larger problem
sizes. In the single skeleton evaluation this effect is filtered out from the other evaluations
because of the use of median execution time. One can also notice that the first few execution
time measurements of the StarPU backend are especially high, at least for some skeletons.
This is because StarPU as a default does not use the PHEFT scheduler until the performance
model has been stabilized. For the history based performance model used in this integration,
this requires at least 10 measurements on a particular input size to call the prediction for
that input size reliable. For the Map skeleton a significant improvement can be seen after 10

55

8. Discussion

invocations when StarPU switches to the PHEFT scheduler. Before the performance model
has been stabilized, the much less sophisticated eager scheduler is used. The eager scheduler
is a greedy type of scheduler where each task is assigned to a worker as soon as the worker is
done with its last task.

8.2 Method

The hybrid backend is implemented using static partitioning and static scheduling. This was
chosen as many related frameworks have proven it to be a well working choice and because the
old StarPU integration with its dynamic task based approach had problems with its overheads.
A static workload partitioning scheme works well as long as the execution time of each user
function call is approximately the same. When more work is required for some calls, the
auto-tuning will result in load imbalance between the CPU and the accelerator. However, in
cases where the imbalanced workload of each user function call is already known at compile
time, the programmer can manually set a good partition ratio as long as the problem size is
constant.

No changes were required in the data management code, as it already had support for
making copies of subsections of containers. However, the implementation has one limitation
that could not be easily solved: when hybrid execution is used, writing to random access
containers will result in undefined behavior as the write operations can not be synchronized
between the PUs. The elements written by the CPU will be overwritten in these cases by the
elements written by the accelerator (or vice versa), as the smart containers can not check the
validity of single data elements. In reality this is not a big problem, as the write order can not
be guaranteed even for single PU execution. However, skeleton instances can be implemented
such that each element of a random access container is only written to (at most) once. To
guarantee correctness in these cases, the programmer must use single PU execution instead of
hybrid execution.

8.2.1 Design Choices for the Auto-tuning
For the auto-tuning implementation linear execution time models were used. As all data-
parallel skeletons in SkePU scales linearly with the element-wise input size (assuming an O(1)
user function), this was deemed sufficient. The execution time curves seen in Figure 7.1
further confirms that this is a good approximation. The tuner does not distinguish between
computation time and data transfer time for the accelerator backend. This might lead to
underutilization of the accelerators in cases where data transfer is not needed. The tuner might
be extended with this in the future while still using the same partitioning implementation.

8.2.2 Interpretation of Number of Threads in the Hybrid Backend
One design choice made in the hybrid backend was how to interpret the number of CPU
threads the programmer explicitly requests. As one CPU thread will be used for the accelerator
backend, there are two possible interpretations of using the hybrid backend with N threads.
This could ether be including the accelerator thread, meaning that N threads are actually
used and N is generally chosen to be the same as the number of processor cores. This will—
somewhat counterintuitive—result in that only N − 1 threads are used for the CPU partition
of the workload. The other choice, to exclude the accelerator thread, means that N requested
threads gives N threads for the CPU partition of the workload plus one extra thread for the
accelerator partition. This means that if the user requests the same number of threads as
the number of processor cores, the hybrid backend will actually use one more thread than
the number of cores, resulting in decreased performance. In the end, the first alternative was
chosen as it was more coherent with the OpenMP backend. The best performing number of
threads for the OpenMP and hybrid backends will then be the same, i.e. the same as the

56

8.3. The Work in a Wider Context

1 // Setup for OpenMP backend
2 skepu2::BackendSpec specCPU(skepu2::Backend::Type::OpenMP);
3 specCPU.setCPUThreads(8); // Uses eight CPU threads
4 skeleton_instance.setBackend(specCPU);
5
6 // Setup for hybrid backend
7 skepu2::BackendSpec specHy(skepu2::Backend::Type::Hybrid);
8 specHy.setDevices(1);
9 specHy.setCPUThreads(8); // Uses eight CPU threads, one for accelerator partition ,

seven for CPU partition
10 skeleton_instance.setBackend(specHy);

Listing 8.1: Example of setting optimal number of threads on a eight-core machine.

number of processor cores. This also means that the number of threads does not need to be
updated when changing backend from OpenMP to hybrid or vice versa. Listing 8.1 shows that
the optimal choice for computation on a eight-core machine is coherent between the OpenMP
and hybrid backends, as eight threads is specified for both backends.

8.2.3 Blocking Accelerator Calls
As discussed earlier in this thesis, the skeleton calls in the CUDA and OpenCL backends are
made as blocking calls, locking one CPU thread to handle the accelerator backend until its
computation is done. Performance could have been increased somewhat if the accelerator
backends had been rewritten to use asynchronous calls, allowing the CPU thread to be used in
the computation of the CPU partition once the data was uploaded to the accelerator memory
and it was busy working. However, this would create a load balancing problem on the CPU
side, as this extra thread would not have as much time to do computations as the other CPU
threads. Performing load balancing can easily be activated with OpenMP, but in the end the
performance gains would probably not be significant anyway, especially for CPUs with many
cores.

8.3 The Work in a Wider Context

Heterogeneous computing is essential for the future in high performance computation and the
parallel programming frameworks must therefore have better support for it. With the hybrid
execution support in SkePU, programmers will have a user friendly framework for developing
applications on heterogeneous architectures. The framework hides the details of accelerator
programming and workload partitioning, and the automatic tuning takes care of all system
specific settings. This lets the programmer focus on the application rather than the optimiza-
tions for a specific hardware. It also lets the programmer view the application as a simple
sequential program, rather than a complex parallel program with hybrid execution featuring
different kinds of hardware. Hiding the complex parts of the applications will reduce the
risk of hard-to-find bugs and errors. The raised abstraction bar will also make heterogeneous
computing open for many more programmers, without really requiring any prior knowledge in
accelerator or multi-core programming.

The main goal of this thesis is to reduce the execution time and improve usage of the
available hardware in SkePU. Apart from the obvious gains of shorter computation times and
the possibility of running larger computations within the same time constraints, this might also
result in lower power usage for the same computation due to better hardware utilization. More
efficient algorithms and better utilization of the hardware can reduce the need for hardware
upgrades and extend the lifetime of the computer’s components. But one must also consider
that more efficient solutions might lead to the opposite effect; in our case, that more people
wants to do more large scale computations, as they can be done in shorter time. This will in

57

8. Discussion

turn lead to a higher demand of new hardware. Although, if that hardware will have a longer
lifetime, the gains might still be better in the long run.

58

9 Future work

Although this work has made a significant contribution to the SkePU project, there are many
things that can still be improved upon. Some topics left for future work is presented in this
chapter.

9.1 Auto-tuning for Multiple Accelerators

Despite not being shown in this thesis, there is already working support for hybrid execution
with multiple accelerators because the CUDA/OpenCL backends are reused by the hybrid
backend. But the workload partitioning in these backends is still very limited. Workload is
divided evenly between the accelerators assuming they are of the same model or at least have
similar performance. This is not always the case. The tuning ought to be extended to support
tuning of multiple accelerators to find the optimal partitioning between them. The multi-
accelerator tuning should preferably be done in a new tuning step before the hybrid tuning
step. This new multi-accelerator tuning step could find the optimal partition ratio between
the accelerators, and let this optimal partitioning between the accelerators to be used in the
hybrid tuning step to tune between the CPU and the accelerator backend, just as it is done
now. This way, the hybrid tuner would not need to be changed and would not need to know
about the actual number of accelerators, as they are treated as one.

9.2 Hybrid Tuning of Skeletons with Custom Data Property
Requirements

The hybrid tuning implemented in this thesis does not support tuning of skeleton instances
where the data in the containers must fulfill certain properties. Containers used during the
tuning are always instantiated with randomized data. Skeletons could, however, assume that
the values of the input arrays are always within a specific range. Skeleton invocations where
the input data fails to fulfill these properties result in undefined behavior and in the worst
case the application will crash during tuning.

Even more problematic are skeletons with custom defined structs as input data. Structs
are not randomized at construction in SkePU, but rather default initialized. If the struct
does not provide its own default constructor, the struct members will contain the data that

59

9. Future work

1 struct Particle {
2 float x, y, z;
3 float vx, vy, vz;
4 float mass;
5 };
6
7 constexpr float G [[skepu::userconstant]] = 6.674e-11;
8
9 // User function for updating a single particle

10 Particle update(Index1D index, Particle p1, const Vec<Particle > particles) {
11 for(size_t j = 0; j < particles.size; ++j) {
12 Particle p2 = particles[j];
13
14 float dist = calculateDist(p1, p2);
15
16 float force = G * p1.mass * p2.mass / (dist*dist); // Assumes dist != 0
17 float accel = force / p1.mass; // Assumes p1.mass != 0
18 ...
19 }
20 ...
21 }

Listing 9.1: Example of N-body simulation with custom data property requirements.

happened to reside in that memory cell, which is likely to be a zero. In physical computing this
is a problem as many computations assume some values to be non-zero. A typical example is
N-body simulation. A small example of this is shown in Listing 9.1, adapted from the example
implementation provided with the SkePU 2 source code. In this example, two assumptions are
made about the input data. First that no two particles share the exact same position, causing
the distance between them to be zero. A zero distance might result in a crash due to a division
by zero. Using randomized input data this is highly unlikely, but for default initialized data
this is a problem as some particles are likely to be positioned in origin where x = y = z = 0. The
second assumption is that the mass is non-zero, which is also unlikely for randomized input,
but a problem for default initialized structs where a zero value is likely. In addition to this,
the skeleton could have even more hard-to-meet requirements. For example that the initial
kinematic energy should be at a certain level, putting a requirement not only on the members
of every individual struct, but on all structs together.

In the future, the programmer should be given the opportunity to provide custom bench-
marking functions to set up the containers and execute a skeleton instance, to allow for tuning
of skeletons with custom data property requirements.

9.3 Performance Improvements of Subsequent Skeleton Invocation

The data management implementation of SkePU lacks some functionality, as it was not in-
tended to be used for hybrid execution at its initial implementation. The major point is the
performance of sequential invocations. When the hybrid backend starts the execution of a
skeleton, the containers used in the skeleton must be updated in the CPU memory by calling
the updateHost() member function. This function forces the entire container to be updated
in the CPU memory, even the part of the container that will only be accessed by the accelera-
tor. Sequential invocations of a skeleton result in performance penalties due to this behavior.
For example: consider the case when two skeletons are used and the output data of the first
skeleton is used as input to the second skeleton. If the partition ratio is 50% for both skele-
tons, there should be no need to synchronize the data as the half of the output produced by
the accelerator in the first skeleton is already in the accelerator memory before execution of
the second skeleton. But since the updateHost() member function cannot define an interval
to update, the entire container must first be updated in CPU memory, invalidating the half

60

9.4. Improved Tuning of Matrix Skeletons

residing in accelerator memory. When execution of the second skeleton starts, half of the
container must be re-uploaded to the accelerator even if its content has not been changed in
CPU memory. Optimally, only the part needed for the CPU should be updated, causing no
memory transfers in this example. The reduced performance of this extra and unnecessary
data copying can be noticed in the PSNR application in the evaluation.

9.4 Improved Tuning of Matrix Skeletons

Auto-tuning of skeletons with matrices as input can be improved upon. The auto-tuning
implementation for matrices is limited today as it only trains on square matrices using the
total size of the matrix as the problem size. In reality tuning of matrices is a two-dimensional
problem, as matrices can have any height-width ratio. This would require a hyperplane to
describe the execution time, which complicates the execution time model considerably. The
current solution works well for the Map skeleton, as it uses the same implementation for
vectors and matrices (and because matrices are internally implemented as a sequential array
of elements). The workload can be split mid-row between the CPU and the accelerator. This
means that the skeleton will have the same execution time for a M ×N matrix as for a N ×M
matrix when the same partition ratio is used, because the partitions in the hybrid backend will
be of the same sizes for both matrices. For the MapReduce and MapOverlap skeletons this is
not the case, as they split the workload row-wise between the CPU and the accelerators. For
performance reasons they only operate on whole rows. In that case the performance will be
very different for a M ×N and a N ×M matrix when using the same partition ratio. Optimally,
in the future this should be taken into consideration somehow by the auto-tuner.

9.5 Adaptive Tuning

Auto-tuning of the hybrid backend uses the OpenMP and CUDA/OpenCL backends for bench-
marking. This might not give the best predictions of the partition ratio, as the performance
of the partitions in the hybrid backend not always matches the performance of the individual
backends. This is especially the case for the Scan skeleton, as it required a different parti-
tioning approach compared to the other backends. One way to improve this would be to let
each execution of the hybrid backend take timing measurements of the CPU and accelerator
partitions and update the execution time model with those real execution times. The tuning
would thus create an initial model that would be further refined the more times the skeleton
was invoked. One might have to be careful not to over-fit the model in the case of many
executions of the same input size.

61

10 Conclusion

In this thesis a new hybrid execution backend for the skeleton programming framework SkePU
2 is presented. The backend is capable of dividing the workload of a SkePU skeleton between
any number of CPU cores and any number of accelerators to let them simultaneously execute
the skeleton. A new auto-tuner is implemented to predict how to partition a skeleton workload
between the processing units by benchmarking the skeleton instance. Gains in execution time
is shown for all skeletons, proving the usability of hybrid execution in SkePU. This thesis also
compares the new hybrid backend to the old, experimental hybrid execution implementation
from SkePU 1 that was based on the StarPU runtime system. It is shown that the new hybrid
backend is superior to the old one, due to its lower overhead and a more stable and predictable
execution time.

Even if the auto-tuner presented in this thesis has some drawbacks, this work still serves
as a good foundation for future experiments with hybrid execution in SkePU. This thesis has
proven that the workload partitioning implementations work well for all skeletons and future
improvements to the auto-tuning can thus keep using the same partitioning schemes that were
implemented in this thesis.

We can now revisit and answer the research questions formulated in Section 1.3.

1. How can the workload of the skeletons in SkePU be partitioned for execution on hetero-
geneous processing units?
Partitioning of the workload is done according to a single parameter: the partition ra-
tio. It defines how large proportion of the workload should be computed by the CPU
with the rest being computed by the accelerators. The work is executed simultaneously
on heterogeneous processing units by letting one CPU thread compute the accelerator
partition using the already existing CUDA/OpenCL backends and letting the rest of the
CPU threads work on the CPU partition. The details of the workload partitioning is
further discussed in Sections 5.1 and 5.2.

2. How can the optimal workload partitioning in the new hybrid execution backend be pre-
dicted for different types of processing units?
The optimal partitioning is predicted for a skeleton instance by measuring the execution
time of the CPU and the accelerators using the already implemented backends on ran-
domized input data of different input sizes. During this tuning, two linear performance

63

10. Conclusion

models are built that are used to find the theoretically optimal partitioning between the
CPU and the accelerators. This estimation works as the implementation of the hybrid
backend reuses the CUDA/OpenCL backends and borrows from the OpenMP backend
implementation. The tuning is further discussed in Section 5.3.

3. How can the overhead of the hybrid execution implementation be kept low and without
the need for warm-up runs?
The overhead is kept low by using a static load balancing approach with a minimal set
of partitioning parameters. The warm-up runs are exchanged for an explicit, one-time
auto-tuning per skeleton instance, where the performance of the PUs are measured. The
advantages of this are clearly shown in the comparison against the StarPU backend, see
Section 7.3.

10.1 Presentation of Results

The new implementation of hybrid execution in SkePU 2, including the hybrid backend and the
hybrid auto-tuning presented in this thesis, will be released as open source in the upcoming
version of SkePU. The release is planned to a couple of weeks after the publication of this
thesis. The StarPU reintegration will be handed over to the SkePU development team to be
completed and released in some forthcoming version of SkePU.

A paper on the implementation of the new hybrid backend and the auto-tuner has been
accepted for HLPP 2018 (11th International Symposium on High-Level Parallel Programming
and Applications) and will be presented in Orléans, France 13th July 2018 [38].

64

Bibliography

[1] Fernando Alexandre, Ricardo Marques, and Hervé Paulino. “On the support of task-
parallel algorithmic skeletons for multi-GPU computing”. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. ACM. 2014, pp. 880–885.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
“StarPU: a unified platform for task scheduling on heterogeneous multicore architec-
tures”. In: Concurrency and Computation: Practice and Experience 23.2 (2011), pp. 187–
198.

[3] Stefan Breuer, Michel Steuwer, and Sergei Gorlatch. “Extending the SkelCL skeleton
library for stencil computations on multi-GPU systems”. In: Proceedings of the 1st In-
ternational Workshop on High-Performance Stencil Computations. 2014, pp. 15–21.

[4] Antal Buss, Ioannis Papadopoulos, Olga Pearce, Timmie Smith, Gabriel Tanase, Nathan
Thomas, Xiabing Xu, Mauro Bianco, Nancy M. Amato, Lawrence Rauchwerger, et al.
“STAPL: Standard Template Adaptive Parallel Library”. In: Proceedings of the 3rd An-
nual Haifa Experimental Systems Conference. ACM. 2010, p. 14.

[5] Linchuan Chen, Xin Huo, and Gagan Agrawal. “Accelerating MapReduce on a coupled
CPU-GPU architecture”. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis. IEEE Computer Society Press.
2012, p. 25.

[6] Eric S. Chung, Peter A. Milder, James C Hoe, and Ken Mai. “Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs?” In: Proceed-
ings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society. 2010, pp. 225–236.

[7] Murray Cole. Algorithmic skeletons: structured management of parallel computation.
Pitman London, 1989.

[8] Sylvain Contassot-Vivier and Stéphane Vialle. “Algorithmic scheme for hybrid com-
puting with CPU, Xeon-Phi/MIC and GPU devices on a single machine”. In: Parallel
Computing: On the Road to Exascale 27 (2016), p. 25.

[9] CUDA C Programming Guide. Version 9.1. NVIDIA. Mar. 2018, pp. 8, 70–84, 172.
[10] Usman Dastgeer and Christoph Kessler. “Smart containers and skeleton programming

for GPU-based systems”. In: International journal of parallel programming 44.3 (2016),
pp. 506–530.

65

Bibliography

[11] Usman Dastgeer, Christoph Kessler, and Samuel Thibault. “Flexible Runtime Support
for Efficient Skeleton Programming on Heterogeneous GPU-based Systems.” In: PARCO.
2011, pp. 159–166.

[12] Usman Dastgeer, Lu Li, and Christoph Kessler. “Adaptive implementation selection
in the SkePU skeleton programming library”. In: International Workshop on Advanced
Parallel Processing Technologies. Springer. 2013, pp. 170–183.

[13] Usman Dastgeer, Lu Li, and Christoph Kessler. “The PEPPHER composition tool:
performance-aware composition for GPU-based systems”. In: Computing 96.12 (2014),
pp. 1195–1211.

[14] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[15] Romain Dolbeau, Stéphane Bihan, and François Bodin. “HMPP: A hybrid multi-core
parallel programming environment”. In: Workshop on General Purpose Processing on
Graphics Processing Units (GPGPU 2007). Vol. 28. 2007.

[16] Alejandro Duran and Michael Klemm. “The Intel® many integrated core architecture”.
In: High Performance Computing and Simulation (HPCS), 2012 International Confer-
ence on. IEEE. 2012, pp. 365–366.

[17] Johan Enmyren. “A Skeleton Programming Library for Multicore CPU and Multi-GPU
Systems”. LIU-IDA/LITH-EX-A–10/037–SE. MA thesis. Linköping, Sweden: Linköping
University, 2010.

[18] Johan Enmyren and Christoph Kessler. “SkePU: a multi-backend skeleton programming
library for multi-GPU systems”. In: Proceedings of the fourth international workshop on
High-level parallel programming and applications. ACM. 2010, pp. 5–14.

[19] Steffen Ernsting and Herbert Kuchen. “Data parallel algorithmic skeletons with acceler-
ator support”. In: International Journal of Parallel Programming 45.2 (2017), pp. 283–
299.

[20] August Ernstsson. “SkePU 2: Language Embedding and Compiler Support for Flexible
and Type-Safe Skeleton Programming”. LIU-IDA/LITH-EX-A–16/026–SE. MA thesis.
Linköping, Sweden: Linköping University, 2016.

[21] Thomas L. Falch and Anne C. Elster. “ImageCL: Language and source-to-source compiler
for performance portability, load balancing, and scalability prediction on heterogeneous
systems”. In: Concurrency and Computation: Practice and Experience (2017).

[22] Dominik Grewe and Michael O’Boyle. “A static task partitioning approach for hetero-
geneous systems using OpenCL”. In: Compiler Construction. Springer. 2011, pp. 286–
305.

[23] Khronos Group. OpenCL Overview. https://www.khronos.org/opencl/. Accessed:
2018-05-28.

[24] Matt J. Harvey and Gianni De Fabritiis. “Swan: A tool for porting CUDA programs to
OpenCL”. In: Computer Physics Communications 182.4 (2011), pp. 1093–1099.

[25] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. “MapCG:
writing parallel program portable between CPU and GPU”. In: Proceedings of the 19th
international conference on Parallel architectures and compilation techniques. ACM.
2010, pp. 217–226.

[26] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. “CUDA vs
OpenACC: Performance case studies with kernel benchmarks and a memory-bound CFD
application”. In: Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on. IEEE. 2013, pp. 136–143.

66

https://www.khronos.org/opencl/

Bibliography

[27] John R. Humphrey, Daniel K. Price, Kyle E. Spagnoli, Aaron L. Paolini, and Eric J.
Kelmelis. “CULA: hybrid GPU accelerated linear algebra routines”. In: SPIE Defense
and Security Symposium (DSS). Vol. 7705. 2010.

[28] Intel. Thread Building Blocks. https://www.threadingbuildingblocks.org/intel-
tbb-tutorial. Accessed: 2018-05-28.

[29] Programming Languages – Technical Specification for C++ Extensions for Parallelism.
Standard. International Organization for Standardization, ISO/IEC JTC1/SC22, Dec.
2015.

[30] Herbert Kuchen. “A skeleton library”. In: European Conference on Parallel Processing.
Springer. 2002, pp. 620–629.

[31] Herbert Kuchen and Murray Cole. “The integration of task and data parallel skeletons”.
In: Parallel Processing Letters 12.02 (2002), pp. 141–155.

[32] Lu Li, Usman Dastgeer, and Christoph Kessler. “Pruning strategies in adaptive off-line
tuning for optimized composition of components on heterogeneous systems”. In: Parallel
Computing 51 (2016), pp. 37–45.

[33] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping”. In: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM. 2009, pp. 45–55.

[34] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. “Bench-
marking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, perfor-
mance, and energy consumption”. In: Proceedings of the 2017 Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing. ACM. 2017, pp. 1–6.

[35] Sparsh Mittal and Jeffrey S. Vetter. “A survey of CPU-GPU heterogeneous computing
techniques”. In: ACM Computing Surveys (CSUR) 47.4 (2015), p. 69.

[36] MPI: A Message-Passing Interface Standard. Version 3.1. Message Passing Interface
Forum. June 2015, p. 1.

[37] NVIDIA. CUDA Zone. https://developer.nvidia.com/cuda-zone. Accessed: 2018-
05-28.

[38] Tomas Öhberg, August Ernstsson, and Christoph Kessler. Hybrid CPU-GPU execution
support in the skeleton programming framework SkePU. Accepted for 11th International
Symposium on High-Level Parallel Programming and Applications (HLPP 2018), Or-
léans, France 12-13 July 2018.

[39] OpenACC Programming and Best Practices Guide. openacc-standard.org. June 2015,
pp. 20–21.

[40] OpenMP Application Programming Interface. Version 4.5. OpenMP Architecture Review
Board. Nov. 2015, pp. 14–27.

[41] Jie Shen, Ana Lucia Varbanescu, Yutong Lu, Peng Zou, and Henk Sips. “Workload parti-
tioning for accelerating applications on heterogeneous platforms”. In: IEEE Transactions
on Parallel and Distributed Systems 27.9 (2016), pp. 2766–2780.

[42] Oskar Sjöström. “Parallelizing the Edge application for GPU-based systems using the
SkePU skeleton programming library”. LIU-IDA/LITH-EX-A–15/001–SE. MA thesis.
Linköping, Sweden: Linköping University, 2015.

[43] Fábio Soldado, Fernando Alexandre, and Hervé Paulino. “Execution of compound multi-
kernel OpenCL computations in multi-CPU/multi-GPU environments”. In: Concurrency
and Computation: Practice and Experience 28.3 (2016), pp. 768–787.

[44] Michel Steuwer and Sergei Gorlatch. “SkelCL: Enhancing OpenCL for high-level pro-
gramming of multi-GPU systems”. In: International Conference on Parallel Computing
Technologies. Springer. 2013, pp. 258–272.

67

https://www.threadingbuildingblocks.org/intel-tbb-tutorial
https://www.threadingbuildingblocks.org/intel-tbb-tutorial
https://developer.nvidia.com/cuda-zone

Bibliography

[45] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Top 500 List -
November 2017. https://www.top500.org/list/2017/11/. Nov. 2017.

[46] Patricia Sundin. “Adaptation of algorithms for underwater sonar data processing to
GPU-based systems”. LIU-IDA/LITH-EX-A–13/029–SE. MA thesis. Linköping, Sweden:
Linköping University, 2013.

[47] SYCL Specification. Version 1.2.1. Khronos OpenCL Working Group — SYCL subgroup.
Dec. 2017, pp. 15–16.

[48] The OpenACC Application Programming Interface. Version 2.6. OpenACC-Standard.org.
Nov. 2017, pp. 7–17.

[49] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear algebra
for hybrid GPU accelerated manycore systems”. In: Parallel Computing 36.5 (2010),
pp. 232–240.

[50] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. “Performance-effective and low-
complexity task scheduling for heterogeneous computing”. In: IEEE transactions on
parallel and distributed systems 13.3 (2002), pp. 260–274.

[51] Josep Torrellas, Monica S. Lam, and John L. Hennessy. “False sharing and spatial locality
in multiprocessor caches”. In: IEEE Transactions on Computers 43.6 (1994), pp. 651–
663.

[52] Mario Vestias and Horácio Neto. “Trends of CPU, GPU and FPGA for high-performance
computing”. In: Field Programmable Logic and Applications (FPL), 2014 24th Interna-
tional Conference on. IEEE. 2014, pp. 1–6.

[53] Fabian Wrede and Steffen Ernsting. “Simultaneous CPU–GPU execution of data parallel
algorithmic skeletons”. In: International Journal of Parallel Programming 46.1 (2018),
pp. 42–61.

[54] Yongbing Zhang, Hisau Kameda, and Sheung-Lun Hung. “Comparison of dynamic
and static load-balancing strategies in heterogeneous distributed systems”. In: IEE
Proceedings-Computers and Digital Techniques 144.2 (1997), pp. 100–106.

68

https://www.top500.org/list/2017/11/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	SkePU

	Aim
	Research Questions
	Delimitations
	Report Structure

	Background
	Definitions
	Parallel Computer Architectures
	Shared Memory CPU Programming
	Accelerator Programming

	Load balancing
	Skeleton Programming
	Parallel Programming Frameworks
	OpenMP
	TBB
	MPI
	CUDA
	OpenCL
	OpenACC
	Other Frameworks

	SkePU 2
	Skeletons in SkePU
	Map
	Reduce
	MapReduce
	MapOverlap
	Scan
	Call

	Smart Containers
	Code Example
	User Functions
	Backend Specification and Execution Plans
	Automatic Backend Selection and Tuning
	Hybrid Execution with StarPU in SkePU 1
	Multi-accelerator Support

	Related Work
	Earlier Implementations of Hybrid Execution
	MapReduce Frameworks
	Linear Algebra Libraries
	Related Frameworks
	Marrow
	Qilin
	Muesli
	SkelCL
	ImageCL
	StarPU
	STAPL

	Design and Implementation
	Implementation of the Hybrid Backend
	Workload Partitioning
	Partitioning of Map
	Partitioning of Reduce
	Partitioning of MapReduce
	Partitioning of MapOverlap
	Partitioning of Scan

	Auto-tuning of Skeletons
	Implementation of Hybrid Backend Tuning
	Execution Time Model

	Implementation of the StarPU Backend

	Evaluation
	Evaluation of Correctness
	Evaluation of Single Skeleton Performance
	Evaluation of Generic Application Performance
	Evaluation of Performance Compared to StarPU

	Results
	Single Skeleton Performance
	Generic Application Performance
	Comparison to StarPU Performance

	Discussion
	Results
	Single Skeleton Performance
	Generic Application Performance
	Comparison to StarPU Performance

	Method
	Design Choices for the Auto-tuning
	Interpretation of Number of Threads in the Hybrid Backend
	Blocking Accelerator Calls

	The Work in a Wider Context

	Future work
	Auto-tuning for Multiple Accelerators
	Hybrid Tuning of Skeletons with Custom Data Property Requirements
	Performance Improvements of Subsequent Skeleton Invocation
	Improved Tuning of Matrix Skeletons
	Adaptive Tuning

	Conclusion
	Presentation of Results

	Bibliography

