
 

Certifying an Irreducible 1024-Dimensional Photonic State
Using Refined Dimension Witnesses
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We report on a new class of dimension witnesses, based on quantum random access codes, which are a
function of the recorded statistics and that have different bounds for all possible decompositions of a high-
dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of
identifying whether the high-dimensional system is decomposable in terms of lower dimensional
subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the
generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is
not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol
should find applications in a broad class of modern quantum information experiments addressing the
generation of high-dimensional quantum systems, where quantum tomography may become intractable.
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Introduction.—The dimension d of physical systems is a
fundamental property of any model, and its operational
definition arguably reflects the evolution of physics itself. In
quantum mechanics, it can be seen as a key resource for
information processing since higher dimensional systems
provide advantages in several protocols of quantum com-
putation [1] and quantum communications [2]. In the field of
quantum foundations, a recent proposal suggests that, in
order to understand and create macroscopic quantum states,
it will be necessary to take advantage of high-dimensional
systems [3]. Therefore, it is natural to understand why there
is a growing endeavor to coherently control quantum
systems of large dimensions [4–16]. Nonetheless, such
new technological advances require the simultaneous devel-
opment of practical methods to certify that the sources are
truly producing the required quantum states. In principle,
one can rely on the process of quantum tomography [17–23],
but this approach quickly becomes intractable in higher
dimensions as at least d2 measurements are required [24].
To address this problem, the concept of dimension

witness (DW) was introduced. The original idea was based
on the violation of a particular Bell inequality [25] but was
then extended to the more practical prepare-and-measure
scenario [26]. In general, DWs are defined as linear
functions of a few measurement outcome probabilities
and have classical and quantum bounds defined for each
considered dimension [4,25–30]. Thus, they allow for the

device-independent certification of the minimum dimen-
sion required to describe a given physical system and can
also infer whether it is properly described by a coherent
superposition of logical states. Nevertheless, these tests do
not provide information about the composition of the
system, which is crucial for high-dimensional quantum
information processing. This point has been recently
investigated by W. Cong et al. [31], where they introduced
the concept of an irreducible dimension witness (IDW) to
certify the presence of an irreducible four dimensional
system. Specifically, their IDW distinguishes whether if the
observed data are created by one pair of entangled ququarts,
or two pairs of entangled qubits measured under sequential
adaptive operations and classical communication.
Here, we introduce a new class of DWs, namely gamut

DWs, which certifies the dimension of the system and has
the new distinct feature of identifying whether any high-
dimensional quantum system is irreducible. It is based on
quantum random access codes (QRACs), which is a
communication task defined in a prepare-and-measure
scenario [32]. To demonstrate the practicability of our
new technique, we experimentally certify the generation of
an irreducible 1024-dimensional photonic quantum system
encoded onto the transverse momentum of single photons
transmitted over programmable diffractive optical devices
[5,21–23,33–35]. To our knowledge, our work represents
an increase of about 2 orders of magnitude to any reported

PHYSICAL REVIEW LETTERS 120, 230503 (2018)

0031-9007=18=120(23)=230503(6) 230503-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.230503&domain=pdf&date_stamp=2018-06-06
https://doi.org/10.1103/PhysRevLett.120.230503
https://doi.org/10.1103/PhysRevLett.120.230503
https://doi.org/10.1103/PhysRevLett.120.230503
https://doi.org/10.1103/PhysRevLett.120.230503


experiment using path qudits. From the recorded data, one
observes a violation of the bounds associated with all
possible decompositions of a 1024-dimensional quantum
system, thus, certifying that the generated state is not
encoded using noncoupled different degrees of freedom of
a photon, e.g., polarization and momentum. Nonetheless,
our method is broadly relevant and should also find
applications in multipartite photonic scenarios and new
platforms for the fast-growing field of experimental high-
dimensional quantum information processing.
Gamut dimension witness.—As stated earlier, the protocol

we use in our main theorem is based on QRACs. Thus, first,
we give a brief description (see, e.g., [32] for more details) of
this task (see Fig. 1): one of the parties, Alice, receives two
input dits: x1 and x2 ∈ f1;…; dg. She is then allowed to send
one d-dimensional (quantum) state, ρx1x2 to Bob, depending
on her input. Bob is then given a bit y ∈ f1; 2g and his task is
to guess xy. He does so by performing a quantum measure-
ment My and a classical post-processing function Dy. As a
result, he outputs b ∈ f1;…; dg.
For a single round of the protocol, the success

probability is Pðb ¼ xyjx1; x2; yÞ. As a figure or merit
over many rounds with uniformly random inputs,
we employ the average success probability (ASP): p̄ ¼
ð1=2d2ÞPx1;x2;yPðb ¼ xyjx1; x2; yÞ. Thus, we are looking
for the maximal value of p̄, optimizing over all possible
encoding and decoding strategies. It was proven [36] that,
for classical strategies (i.e., classical states and decoding
functions), the optimal ASP is p̄Cd

¼ 1
2
ð1þ 1=dÞ. In the

quantum case, the optimal strategy is reached by using
mutually unbiased bases (MUBs) for encoding and decod-
ing [37,38], and the ASP is p̄Qd

¼ 1
2
ð1þ 1=

ffiffiffi
d

p Þ.
Now,we estimate theoptimalASPs for composite systems,

for all possible product structures, defined as follows.

Definition 1.—For a fixed d, we define a product
structure by the set fr; fdkg; fαkgg. For a composite
system, d ¼ Q

r
k¼1 dk, where dk is the dimension of each

subsystem and r is the number of subsystems. The state of
the composite system can be written as ρ ¼ ρ1α1 ⊗ ρ2α2 ⊗
� � � ⊗ ρrαr . Here, αk ¼ c and αk ¼ q are used to denote the
“classical” and “quantum” nature of the subsystem, respec-
tively. Then, ρkc ∈ Δdk−1 is a classical state, and ρkq ∈
SðCdkÞ is a quantum state.
Consider a set of measurement and state preparation

settings and fix the total dimension of the physical system
in question. We call a linear function on the measurement
outcome probabilities a gamut dimension witness (GDW) if
its extremal values for all possible product structures are
different. For example, in d ¼ 4, a GDW has different
extremal values for a ququart, two qubits, one qubit and a
bit, and a quart. The main theoretical result of this work is
to demonstrate that d-dimensional QRACs can be used as
GDWs for d-dimensional physical systems. To highlight
this, we set it as a theorem.
Theorem 1.—d-dimensional QRACs serve as gamut

dimension witnesses using the ASP function.
The proof of this theorem and all related lemmas can be

found in the Supplemental Material [39]. Let us now sketch
the main tools for proving the theorem. They help to
understanding the problem, and can be independently used.
Note that the following lemmas apply in more general
QRAC scenarios as well [39].
We assume that Bob’s measurements have the same

product structure as the state generated by Alice. That is,
we exclude that Bob’s state certification would use entan-
gling measurements. The motivation here is to rule out
sequential uses of lower dimensional systems as a way to
simulate higher dimensional statistics, e.g., to discriminate
between n sequential uses of a d-dimensional system, and a
dn-dimensional system. A physical motivation for this
assumption is to think that, if Alice cannot couple a
particular set of degrees of freedom (e.g., polarization
and momentum), then neither can Bob because he has
access to the same equipment as Alice does [43].
Therefore, the most general strategy for decoding the

d-dimensional system ρ ¼ ρ1 ⊗ ρ2 ⊗ � � � ⊗ ρr is as fol-
lows: Bob performs sequential adaptive measures on the
subsystems in the sense of [31]. He starts by measuring
subsystem ρ1 to obtain the outcome b1. Then, his choice of
the measurement to be performed in ρ2 may depend on b1.
Successively, each measurement on ρk can depend on all
the measurement outcomes obtained previously. After
performing all measurements, Bob feeds the obtained
outcomes to a classical post-processing function and out-
puts his final guess on xy, which is b ¼ Dyðb1b2;…; brÞ.
The bounds of the GDW in this general scenario are

extremely hard to obtain. The following results help,
making the analysis easier. First, it is argued in [32] that,

FIG. 1. Our d-dimensional QRACs scenario. Alice receives the
input dits x1 and x2 ∈ f1;…; dg, and prepares the state ρx1x2
which is sent to Bob. He receives the input y ∈ f1; 2g, which
defines the quantum measurement My and the classical post-
processing function Dy to be applied to ρx1x2 . As a result, Bob
outputs b.
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in an optimal strategy, it is enough to use encoded pure
states. Similarly, it has been shown that rank 1 projective
measurements (explicitly: mutually unbiased bases) opti-
mize two-input QRACs [38]. Thus, in the following, we
only deal with pure states for both Alice and Bob.
Additionally, we can eliminate classical post-processing
functions.
Lemma 1.—In QRACs, for optimality of the ASP, there

is no need for classical post-processing functions.
Last, we note that:
Lemma 2.—In QRACs, for optimality of the ASP, there

is no need for sequential adaptive measurements.
Observe that the above lemmas together imply that the

highest ASP for a composite system can be achieved with a
strategy that consists of r QRACs in parallel, one on each
subsystem ρk, independently. In this case, if wewrite Alice’s
inputs as dit strings xy ¼ x1yx2y;…; xry, the success proba-
bility for each round isPðb ¼ xyjx1; x2; yÞ ¼

Q
r
k¼1 Pðbk ¼

xkyjxk1; xk2; yÞ. The optimal p̄ is not necessarily given by the
independent optimal strategies on the individual subspaces.
Therefore, in order to optimize it we introduce the trade-off
function MdðzÞ (see the Supplemental Material [39]),
which provides the optimal probability of guessing dit x2
given a fixed probability of guessing dit x1. Let z ¼
PðBob correctly guessesx1Þ. Then, MdðzÞ in dimension d
is defined byMdðzÞ¼maxfPðBobcorrectlyguessesx2Þjzg,
where the maximization is limited to all encoding-decoding
strategies respecting the condition of guessing x1 with
probability z. Thus, in a general case,

p̄Qd1
;…;Cdr

¼ max
z1;…;zr

1

2
½z1 �� �zrþMq

d1
ðz1Þ���Mc

dr
ðzrÞ�; ð1Þ

where we denote d-dimensional quantum and classical
states by Qd and Cd, respectively. M

q
d and Mc

d are the
corresponding quantum, and classical trade-off functions
[39]. Therefore, p̄ is a function of r real variables, and its
maximum can be found using standard heuristic numerical
search algorithms [44]. We present the ASP optimal values
for some relevant cases of ad ¼ 1024 dimensional system in
Table I. The full list of cases is found in the Supplemental
Material [39]. Note that the gaps between the different ASP
values are large enough to be experimentally observed, as
we demonstrate next.
Experiment.—To demonstrate the practicability of our

technique, we generate a 1024-dimensional photonic state,
encoded into the linear transverse momentum of single-
photons, and use the 1024-dimensional QRAC GDW to
certify that it is an irreducible quantum system. To achieve
this, first, we show that the ASP [Eq. (1)] can be written as a
simple function of the detection events. Then, we observe
that our recorded statistics violate the second highest ASP
bound, Q512Q2, given in Table I, thus, ensuring that it is an
irreducible 1024-dimensional quantum system.
In the 1024-dimensional QRAC GDW, Bob measures

the elements of the two 1024-dimensional MUBs given in

the Supplemental Material [39]. We denote the MUB states
by jmy

ji, where y ¼ 1, 2 defines the measuring base MUB1

or base MUB2, and j ¼ 1;…; 1024 denotes the state of a
given base. Alice’s state is written in terms of the two input
dits x1 and x2 as an equal superposition of the states Bob
would need to guess xy correctly

jΨx1x2i ¼
1

N
ðjm1

x1i þ sgnðhm1
x1 jm2

x2iÞjm2
x2iÞ; ð2Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 1

32
Þ

q
is a normalization factor and sign

is the sign function. The optimality of the encoded states
(2), and the use of MUBs is derived in the Supplemental
Material [39].
For the experimental test, we resort to the setup depicted

in Fig. 2. At the state preparation block, the single-photon
regime is achieved by heavily attenuating optical pulses
with well calibrated attenuators. An acousto-optical modu-
lator (AOM) placed at the output of a continuous-wave
laser operating at 690 nm is used to generate the optical
pulses. The average number of photons per pulse is set to
μ ¼ 0.4. In this case, the probability of having non-null
pulses is Pðn ≥ 1jμ ¼ 0.4Þ ¼ 33%. Pulses containing only
one photon are the majority of the non-null pulses
generated and accounts to 82% of the experimental runs.
Thus, our source is a good approximation to a nondeter-
ministic single-photon source, which is commonly adopted
in quantum communications [2].
The single-photons are then sent through two spatial light

modulators, SLM1 and SLM2, addressing an array of
32 × 32 transmissive squares. The square side is a ¼
96 μm and they are equally separated by δ ¼ 160 μm
[see Fig. 2(b)], thus, effectively creating a 1024-dimensional
quantum state defined in terms of the number of modes
available for the photon transmission over the SLMs [5,21–
23,33,34]. Specifically, the state of the transmitted photon is

given by jΨi ¼ ð1= ffiffiffiffi
C

p ÞPlNc
l¼−lNc

PlNr
v¼−lNr

ffiffiffiffiffi
tlv

p
e−iϕlv jclvi,

where jclvi is the logical state representing the photon
transmitted by the (l, v) square. tlv represents the

TABLE I. Relevant cases for a 1024-dimensional system and
the respective optimal ASPs [Eq. (1)] considering each product
structure. The full table can be found in the Supplemental
Material [39].

Case Optimal p̄

Q1024 0.515 625
Q512Q2 0.500 980
Q512C2 0.500 973
Q32Q32 0.500 521
ðQ2Þ10 0.500 493
Q2C512 0.500 489
C1024 0.500 488
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transmission and ϕlv the phase-shift given by the (l, v)
square. The transmission of each square is controlled by the
SLM1, which is configured for amplitude-only modulation.
The phases ϕlv are controlled by SLM2 working on the
configuration of phase-only modulation [22]. Nc and Nr
represent the number of columns and rows, respectively. For
simplicity, we define lNc

≡ ðNc − 1Þ=2, lNr
≡ ðNr − 1Þ=2,

and C is the normalization factor.
At the measurement block, we use a similar scheme to

the one used in the state preparation block. It consists of a
SLM3, also configured for phase-modulation, and a
“pointlike” avalanche single-photon detector (APD). As
explained in detail in [5,22], by placing the pointlike APD
at the SLM3 far-field (FF) plane, and properly adjusting the
(l, v) square phase shifts, Bob can detect any state jmy

ji
required for the 1024-dimensional QRAC session. The
pointlike APD is composed of a pinhole (aperture of 10 μm
diameter) fixed at the center of the FF plane, followed by
the APD module. In this case, the probability of photon
detection is proportional to the overlap between the
prepared and detected states. For the case of a d-dimen-
sional QRACs implemented with a single-detector scheme,
we show in the Supplemental Material (see [39] and
Refs. [4,5,9,13] therein) that the ASP function can be
written as

p̄ ¼ D1

D1 þD2

: ð3Þ

First, we consider the events with xy ¼ j (again, j ¼
1;…; 1024 denotes the state of a given base) and define
the total number of such events to be X1. Then, we define

D1 as the number of "clicks" recorded in the experiment in
those cases. Likewise, we denote X2 to be the number of
events where xy ≠ j and define D2 to be the clicks in
those cases.
By means of two field-programmable gate array (FPGA)

electronic modules, we are able to automate and actively
control both blocks of the setup. At the state preparation
block, since the state jΨi needs to be randomly selected
from the set of states defined by the 1024-dimensional
QRACs, a random number generator (QRNG-Quantis) is
connected to FPGA1. FPGA1 controls the optical pulse
production rate by the AOM, set at 60 Hz as limited by the
refresh rate of the SLMs. Each attenuated optical pulse
corresponds to an experimental round. At the measurement
block, a second QRNG is connected to FPGA2, providing
an independent and random selection for the projection
jmy

ji at each round. FPGA2 also records whether a
detection event occurs. The overall detection efficiency
is 13%. The protocol is executed as follows: In each round,
FPGA1 reads the dits x1 and x2 produced by its QRNG.
Then, FPGA1 calculates the amplitude and phase of each
(l, v) square of SLM1 and SLM2 to encode the state jΨx1x2i
onto the spatial profile of the single-photon in that
experimental round. Simultaneously, FPGA2, reads from
its QRNG the value of y and j. Similar to what is done in
the state preparation block, FPGA2 also calculates the
phase for each (l, v) square in SLM3 to implement the
chosen projection jmy

ji. The amplitude and relative phase
for each SLM was previously characterized in order to
obtain the modulation curves as a function of its grey level.
In this experiment, this is necessary to dynamically gen-
erate all possible states, as it would be unfeasible to
prerecord predefined masks for the SLMs on the FPGAs
for each one of the 10242 required initial states.
The experiment continuously ran over 316 hours. In this

way, the statistics fluctuations observed forD1 andD2 were
sufficiently small to unambiguously certify the generation
of an irreducible 1024-dimensional quantum system. The

FIG. 2. (a) Experimental setup. We employ a prepare-
and-measure scheme to generate and project spatial qudits,
encoded into the linear transverse momentum of single-photons.
At the state preparation block, the spatial encoding is applied
through two spatial light modulators (SLMs), and the state
projection is likewise performed by a SLM combined with a
pointlike avalanche single-photon detector (APD) at the meas-
urement projection block (see main text for details). (b) The
32 × 32-square mask addressed by the SLMs.

FIG. 3. Experimental results. We experimentally observe
p̄ ¼ 0.515� 0.008, violating the second highest ASP bound
p̄Q512⊗Q2

(see Table I). The error bar is calculated assuming
Poissonian statistics for a photon detection event.
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overall visibility in our system is 97.00� 0.07% and the
corresponding recorded average success probability is
p̄ ¼ 0.515� 0.008. In Fig. 3, we compare it with the
second highest ASP bound shown in Table I, associated
with a composite system of the type Q512Q2. This certifies,
only from the statistics recorded, that the generated state is
not encoded using noncoupled different degrees of freedom
of a photon, for instance polarization and momentum, thus,
ensuring it to be an irreducible 1024-dimensional quantum
system that can provide all the advantages known for high-
dimensional quantum information processing, in the sense
explained in [31].
Conclusion.—Dimension witnesses are practical proto-

cols on the field of quantum information as they allow one to
obtain information regarding unknown quantum states
[25,26]. They are especially appealing while addressing
the generation and characterization of high-dimensional
quantum states, where quantum tomography demands at
leastd2measurements [24]. In general,DWs are functions of
only a fewmeasurement outcome probabilities and allow for
assessments on the dimension required to describe a given
quantum state in a device-independent way [4,25–30]. Here,
we give a step further by introducing a new class of DW,
which certifies the dimension of the system, and has the new
distinct feature of allowing the identification of whether a
high-dimensional system is irreducible. The application of
this new feature is of broad relevance for several new
architectures aiming for high-dimensional quantum infor-
mation processing [4–16], and the understanding of macro-
scopic quantumness [3]. We demonstrate the practicability
of our technique by using it to certify the generation of an
irreducible 1024-dimensional photonic quantum state
encoded into the linear transverse momentum of single-
photons transmitted by programable diffractive apertures
which havebeen used for several high-dimensional quantum
information processing tasks [5,35,45–47].
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