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Abstract

Human activity recognition (HAR) systems have a large set of potential applications

in healthcare, e.g. fall detection and tracking physical activities. HAR systems based

on wearable sensors have gained the most attraction, due to smartphones having these

sensors embedded in them. This makes them a great candidate for collecting human

activity sensor data. By utilizing the smartphone sensors, no other sensors need to be

supplied and instead only a mobile application needs to be supplied. However, this

comes with a trade-off, sensors embedded in smartphones display specific heterogene-

ity and biases, depending on platform and price range. Normally in such a scenario,

multiple HAR systems have to be built and trained for each device. This is both a time

consuming effort and gives no guarantees that the different systems will have similar

activity recognition accuracy. Therefore, in this thesis, a HAR system is constructed,

where classification methods and filtering techniques are explored and evaluated, in an

effort to give some guidelines for how to construct a HAR system, that can be embed-

ded in multiple platforms.

This study shows that when considering a few common activities, this HAR sys-

tem performs well even when sensor data is collected from multiple sources. Ensemble

method AdaBoost, in combination with decision trees, gives the overall best perfor-

mance. Filtering techniques, such as Butterworth and Chebyshev performs better than

constant- and linear detrending. This is primarily due to their ability to distinguish

between low frequency activities, such as standing and sitting. The best result in this

study was given when combining Chebyshev filtering and AdaBoosted decision trees,

with a F-score of 0.9877.



Sammanfattning

Klassificering av fysika aktiviteter för multipla plattformar

Klassificering av fysiska aktiviteter har många potentiella applikationer inom sjukvårds-

sektorn. Exempelvis kan det användas för att summera fysika aktiviter över en längre

tid, vilket sedan kan utnyttjas till att kartlägga samband mellan fysisk aktivitet och

risk för olika sjukdomar. Klassificeringssystemet av fysiska aktiviteter i den här up-

psatsen använder sig av data från bärbara sensorer. Dessa sensorer har fått ett ökat

intresse framförallt på grund av att de även finns tillgängliga i de flesta mobiltelefoner.

Om man kan använda mobiltelefonernas sensorer skulle inga andra specifika sensoren-

heter behöva tillhandages, utan endast en nedladdningsbar applikation behöver till-

handahållas. Däremot försvåras klassificeringen av att olika plattformar och prisklasser

på telefonerna ger upphov till heterogenitet och andra enhets specifika skillnader i sen-

sordata. Normallt sett i det fallet, har även många olika klassificeringssystem behövt

tränats för enskilda enheter. Det är både tidskrävande att genomföra och ger ingen

garanti att de olika systemens resultat är jämförbara. I den här uppsatsen byggs därför

ett system där ett antal filtrerings tekniker och klassificeringsmetoder utvärderas, för

att ge grundläggande riktlinjer om hur de olika metoderna i systemets subprocesser

påverkar klassificeringsprecisionen, när sensordata kommer från många olika plattfor-

mar.

I den här studien visar vi att när man betraktar ett fåtal vanliga aktiviteter så håller

klassificeringssystemet en hög precision, även när sensordata kommer från olika plat-

tformar och enheter. Bäst resultat gavs med ensemble metoden AdaBoost tillsammans

med beslutsträd. Filtreringsmetoder som Butterworth och Chebyshev ger bättre klassi-

ficering precision än de mer simplistiska filtreringsmetoderna konstant- och linjärtfilter.

Det beror framförallt på systemets förmåga att urskilja på lågfrekvens aktiviteterna,

sitta och stå vid användning av de två förstnämnda filteringsmetoderna. De bästa re-

sultatet för det här klassificeringssystemet gavs med kombinationen av Chebyshev-

filtrering och AdaBoost-klassificeringsmethod, med ett F-värde på 0.9877.



Popular scientific summary

Being physically active helps individuals to stay healthy, so having a way to keep track

of an individual’s physical activity can have many practical applications. For example,

an application that keeps track of physical activity over time, can be used to displaying

graphical summaries and deliver personalized recommendations.

This can be accomplished by training a system to distinguish between different

physical activities, such as running, walking and standing for example. Wearable sen-

sors are attached to the individual, which interprets the acceleration being applied to it

and collects that information. That information is then used by the activity recognition

system, to recognize what activity is being performed.

Nowadays most smartphones have these types of sensors embedded in them, which

makes them both an easy and cheap way of collecting the necessary sensor data needed

to distinguish between physical activities. By using smartphones as a collection method,

also means that no other sensor units needs to be supplied. However, smartphones do

come with other challenges, the sensor readings will differ depending on brand and

price range. That is, during the exact same activity and time period, differences in

sensor readings will occur among devices.

Therefore, different techniques of processing the sensor readings, and methods for

distinguishing between physical activities is evaluated. The results show that when

using proper techniques of processing the sensor readings and methods for recognition,

it is possible to preserve a high accuracy in human activity recognition, even when

sensor readings have been collected from multiple platforms.
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1 Introduction

Physical inactivity has been well documented to be a critical risk factor for various diseases and

disabilities, especially as we grow older [2]. In addition to that, our average life expectancy

have also steadily been increasing and is projected to continue in that same direction [3]. This

will inevitably lead to a growing need for efficient elderly care and health promotion. Therefore

within the healthcare sector, there is an interest in the study of Human Activity Recognition

(HAR) systems as a tool for various applications, such as pedometers, calorie burning estima-

tion, anomaly detection (e.g. fall detection) and activity tracking over time (e.g. summarizing

activity and trend detection). The question this thesis will try to answer, is how to model such

a classification system, that can be embedded in applications across multiple platforms. The rest

of this chapter will give an introduction to HAR systems and the objective and motivation for

modelling one classification system for multiple platforms.

1.1 HAR systems

HAR system is a collection of sequential processes, that in some manner transform and

analyses incoming sensor signals, to distinguish between a set of physical activities.

HAR systems can be categorized into three major types, video based (e.g. [4], [5]),

environmental based (stationary sensors, often in relation to smart home/living setting,

e.g. [6], [7]) or systems that utilizes wearable sensors, which is the type of HAR system

this thesis is based on.

1.2 HAR based on wearable sensors

This type of system has gained the most attraction, due to the increasing quality of

lightweight wearable sensors and the fact that the majority of smartphones now have

such sensors embedded in them. Further argument for smartphones as a data collec-

tion unit is how well integrated they are in our daily lives nowadays. This makes the

data collection not only easily accessible and efficient, but also greatly reduces the cost

of acquiring the sensor data. With smartphones as a data collection unit, no other sen-

sor units need to be supplied to the subjects either, i.e. all necessary data needed to

distinguish between physical activities can be collected with the smartphone’s sensor.

However, lets first ignore smartphones as a data collection unit and only focus on

wearable sensors, whose only objective is to collect sensor readings and nothing else.
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Then there still are some key factors that will impact the sensor readings and can be

summarized with four points:

• Positioning of the sensor in relation to the individual’s body. In most studies so

far people have either tried to determine the impact of changing the position or

trying to determine some optimal position, depending on the physical activities

considered, e.g. [8], [9], [10].

• Number of sensors attached to the individual, e.g. [9], [11].

• Which type of sensor readings and how many types are incorporated in the sys-

tem, e.g. [8], [10]. By for example, determining which type of sensor reading is

the most impactful for distinguishing between activities.

• Individual movement patterns. Previous studies have reported that factors such

as gender, height and weight of an individual will have an effect on the signal

readings, e.g. [8]. From [12] we can see further such arguments and also find

recommendations for collecting sensor data. It should preferably be made from

multiple subjects with a large set of diverse characteristics, to ensure that the sys-

tem can handle a wide set of individuals movement patterns after the system have

been trained and implemented.

In most cases at least some combination of these are considered when building a

HAR system. More over, all these key factors is equally true when adding smartphones

as a collection unit of sensor data. But when collecting sensor data from smartphones,

we also need to add two more considerations. First, there will be variation in sensor

readings, due to hardware differences between different platforms and price range.

Secondly, it is not only hardware that differ among platforms, so does the software and

this can also lead to differences in sensor readings. So by adding smartphones as a

data collection method, we need to add one more key factor that will impact the sensor

readings:

• With both hardware and software differences, we have to expect units to display

both heterogeneity and unit specific biases [13].

2



1.3 Objective & Motivation

In this paper, an experimental HAR system is built to primarily handle two of these

factors, individual movement pattern in combination with sensor readings collected

from multiple platforms. This HAR system is built to distinguish between five physical

activities:

activityset = {Cycling, Running, Sitting, Standing, Walking},

in first hand for the targeted population of elderly persons. Other than age group of the

individuals, no differentiation is being made on factors, such as height, weight, gender

or other individual traits that may ultimately affect the sensor readings. Differences in

sensor reading from these type of individual traits are instead put on the HAR system

to handle and it should be capable of doing so without having them explicitly defined.

The objective here is to fill the gap in research about HAR systems, by evaluating

the proposed system’s ability to distinguishing between physical activities when sensor

data is collected from multiple subjects and platforms. Investigating choices of filter-

ing methods (the second step in the HAR systems workflow Figure 1) and evaluating

three machine learning algorithms for classifying human activity (the fourth step in the

workflow Figure 1). The main motivation for this research, can be summarized with

two key points:

• Extracting sensor readings and storing them can easily be done, but stored data

does not directly translate it to any usable information. These sensors can run and

collect readings over long periods. This gives rise to a quickly increasing size of

stored data, data for which could have been collected from many different plat-

forms and devices. Labeling such sensor reading, when no prior knowledge exist

of what activity was performed, will be riddled with errors. But more impor-

tantly, as the database explodes in size, manually labeling such sensor readings

becomes unfeasible.

• Building a HAR system, that can be embedded across multiple platforms. Nor-

mally when considering multiple platforms and different devices, multiple HAR

systems have to be built and trained independently for each platform and de-

vice. This is not only time consuming, but has no guarantee that they will give

comparable performances to each other. Hence, investigating the possibility for
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cross-platform modelling, would simplify the implementation process.

From this study, some preliminary analysis and guidelines will be presented for

building a HAR system, when setting individual movement pattern and multiple plat-

forms in focus. To accomplish this, data from multiple subjects were collected with

three different devices (Actigraph, Iphone and Android) and together they satisfy the

cross-platform requirements, both in terms of software and hardware specifications.

1.4 Modelling scheme

This HAR system will utilized a sliding window approach, the most widely used seg-

mentation technique in activity recognition [14]. First, the HAR system receives raw

accelerometer data (described in Chapter 2.1) as input, with an input size equal to the

size of the window. In the next step, that raw accelerometer data is filtered to remove

unwanted noise (using one of the four filtering methods described in Chapter 2.5.1).

After the filtering process, features are calculated and extracted (described in Chapter

2.5.2). Finally in the last step, the trained classification methods is used to predict what

physical activity was performed duration that time period, inside the sliding window

(described in Chapter 3).

The workflow of this system is illustrated in Figure 1, where all signal processing,

feature calculations and human activity prediction, is done directly inside the sliding

window. This enables the system to both predict already stored full length sensor se-

quences and has the ability to give in real time predictions when embedded in a mobile

application.

HAR system workflow

Input raw
tri-axial

accelerometer
signals; {x, y, z}

Filter
signals

Extract
features

Apply pre-
trained

predictive
model for

classifictation

Step 1
Step 2 Step 3

Step 4

Figure 1: Workflow for the HAR system. Input raw accelerometer data to the system for
which it filters the tri-axial signals, then calculates and extract features and feed those
values to the predictive model for actvity classification.
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1.5 Rest of this thesis

The rest of this thesis is structured to first give an overview of the sensor data. How the

data was collected, methods for processing the data and features extracted from the raw

sensor data. A brief introduction is given to the algorithmic operations used to train

the models. Then results are evaluated, by comparing classification accuracy between

combinations of filtering- and classification methods in the HAR system. Finally these

results are discussed and compared with some other similar studies.

2 Data

In this chapter a full presentation of the sensor data will be given. First presenting how the

raw sensor data was collected and give an overview of what accelerometer signal data is. Then

describing the signal processing performed to the raw sensor data and the features extracted

from the processed sensor data.

2.1 Accelerometer signal data

There are many different types of sensor data that can be collected from lightweight

wearable sensors, such as gyroscope, accelerometer, magnitude field data and so on. In

this paper the only sensor type considered was accelerometer signal data. The sensor-

framework used to collect the sensor data, uses a tri-axial coordinate system to express

the acceleration and direction for which the device is being pushed. We denote these

three axes as x, y and z. In this framework, the acceleration being applied to the de-

vice is measured in m/s2. For the two smartphones (Android and Iphone device), the

tri-axial coordinate system is defined relative to the screen. That is, the x-axis is hor-

izontally, y-axis vertically and z-axis is pointing in the same direction as the screen.

The same tri-axial coordinate system is also used for the Actigraph device, however the

Actigraph is a sensor device without any screen. These wearable sensors collects all

acceleration being applied to them, this includes the force of gravity. In other words,

when a device in our perspective is motionless, the device reads an acceleration of ap-

proximate g = 9.81m/s2 [15].
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2.2 Data collection

The raw accelerometer data was collected by Healthy Ageing Initiative research group

for behavioral medicine in Umeå Västerbottens län. The data collection was done

through an in-house supervised examinations and during the examination each sub-

ject performed a set of activities, while wearing these sensor devices attached to their

bodies. In total the sensor data sequences consist of raw accelerometer data, collect for

a time period of about 20 min for each subject.

Table 1: Each subject started off by standing still then walked in an increasingly faster
pace, before transition into running. Then sat down and afterwards performed the last
two activities, walking uphill and cycling.

Order Activity Levels

1. Standing

2. Walking (2/3/4 km/h)

3. Running (5/6/7 km/h)

4. Sitting

5. Walking Uphill 3km/h

6. Cycling (20/30 km/h)

During the data collection process, each subject performed the activities in Table 1

and in that order with corresponding levels for the activities where the subjects weren’t

motionless. Some mild deviations from the above mentioned pattern did occur for

various reasons. During the collection process of accelerometer data each subject were

attached with the following three devices:

Notation Brand/Model

Actigraph Actigraph wGT3X-bt

Android Samsung Galaxy S8

Iphone Iphone 5

where the device notation is followed by the actual brand and model. In total, the

accelerometer signal data was collected from 14 subjects. Along side the collection of

accelerometer data, some meta data about device rotation and placement were also
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noted for each device and subject (found in Table 2). In this study, the placement of

devices varied among subjects, where they were either positioned on the subjects left

or right side. Further the devices were either attached to the subjects belt or loose in

their pocket. However the devices were always placed with the same orientation and

screen direction, i.e. facing downwards and inwards towards the subject.

Table 2: Notations of how each device was attached to the subject.

Notation Summary

Position: on the individual, either left or right side

Orientation: facing downwards or upwards

Screen: facing inwards or outwards

Attachment: attached on the belt or loose in a pocket

2.3 Sequence overview

Below in Figures 2 and 3, are full length raw accelerometer sequences from the three

devices and for two different subjects. In each subfigure, the x-axis is on top in green, y-

axis in the middle and red, then on the bottom in blue is the z− axis. From left to right,

the first subfigures represents accelerometer data collected with the Android device,

then Iphone in the middle and on the right Actigraph. Both the Iphone and Actigraph

device had a sampling frequency of 30Hz, while the Android device was set to 50Hz.

This can easily be seen in the figures, where the Android device have significantly more

sampling points for the same time period then the other two devices. In Figure 2, the

Android and Actigraph devices were attached on the subjects left side and belt, while

the Iphone was attached on the right. In the middle section of these sequences during

the sitting interval (interval 3), the device specific noises are quite different between the

devices. Both the Android and Actigraph device, have significantly more irregularities

and noise than Iphone. Even the type of irregularities differs between Android and

Actigraph. Android has recurring sharp spikes during the transition from sitting to

walking uphill (second interval denoted as 5), while the noise for Actigraph is more in

form of a moving trend. This is despite them being attached right next to each other,

on the subjects belt and right side. Another examples of sensor differences occurring

between devices, can be found in Figure 3. In the end of the running interval (interval

2), the x-axis values for the Android device goes from being pushed towards negative
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values to positive values. This is due the device being loose in the subjects pocket and

slightly changed its orientation. These types of differences are important to note, since

they can have a drastic effect on extracted features.

4 5 2 3 5 1 4 5 2 3 5 1 4 5 2 3 5 1

Figure 2: Full length raw accelerometer signals, where each device have been plotted
for one subject. Numerical labels: 1 = Cycling, 2 = Running, 3 = Sitting, 4 = Standing
and 5 = Walking.

4 5 2 3 5 1 4 5 2 3 5 1 4 5 2 3 5 1

Figure 3: Full length raw accelerometer signals, where each device have been plotted
for one subject. Numerical labels: 1 = Cycling, 2 = Running, 3 = Sitting, 4 = Standing
and 5 = Walking.

2.4 Window Size

When utilizing a sliding window approach, the size of the window will affect the over-

all performance and computational time [16]. However, in this paper no personal

testing for different window sizes have been performed, nor the effect of changing

it. The window size was chosen and afterwards considered fixed. First considera-

tion for choosing the window size, were primarily to have a sufficiently large window.

By sufficiently large in this case refers to the fact that the devices have different sam-

pling rates, so the devices with the lowest sampling rate should have enough sampling

points inside the window for stable feature calculations. Besides having a sufficiently
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large window size, results from [14] were used as a guideline for what a good choose

of window size might be. The recommendations are quite wide, depending on activ-

ities and whether one is considering recognition speed or performance. In this thesis,

performance is considered more important then recognition speed. By combining the

need for a sufficiently large window and the relevant window size recommendations,

the window size was set to 2.5 seconds.

2.5 Processing data

The original data was collected and stored as raw accelerometer signals. During the col-

lection process only approximate handwritten notations were made, where they wrote

down the time period and which activity was performed. Therefore, the first step of

processing the raw accelerometer data was to manually adding activity labels to the

data points in the collected data sequences. The different activity intervals of the ac-

celerometer sequence for each subject and device, were labeled into one of the following

classes:

activityset = {Cycling, Running, Sitting, Standing, Walking},

where the two intervals, walking and walking uphill in Table 1, were concatenated

into one common group, walking.

During the activity labeling process of the raw accelerometer data, each sequence

were plotted and checked against the handwritten time notations and the system time

of that device. Parts that matched and had no extreme time deviations between the

notations, were labeled into the corresponding activity. Observations as those made

in Chapter 2.3 regarding Figures 2 and 3, were not removed and is considered to be

perfectly reasonable occurrences. After the data labeling process was completed, the

raw accelerometer signal sequences were segmented into non overlapping windows.

Each segmented window represents a 2.5 second time period, where the subject per-

formed one of the activities. All further signal processing and feature calculations were

performed independently for each segmented window.

2.5.1 Filtering

The raw accelerometer signal data includes acceleration from both the subjects move-

ment and gravity. Besides that, the signals also include other noise, which preferably
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should be segmented from the part that represents the subjects movement. It is impor-

tant to note, that the acceleration from gravity would not have been a problem if devices

can be considered as a fixed object. Under those conditions, gravity could instead be a

helping hand to distinguish between motionless activities, such as sitting and standing.

This can be seen in both Figure 2 and 3, by comparing the intervals marked as 4 (stand-

ing) and 3 (sitting). In interval 4, where the subjects are standing, the acceleration in the

frequency domain is approximately around 0, for both the x-axis and z-axis, while the

acceleration from gravity is picked up by the y-axis. However for both these subject,

during the sitting interval, that acceleration is instead logged under the z-axis. That is,

if the device has a fixed and known orientation and screen direction (as described in

section 2.2), then for any period where the subject is standing, we would expect values

in the frequency domain to be, approximately:

standing =


0, x− axis

−9.81, y− axis

0, z− axis

and during a sitting time period:

sitting =


0, x− axis

0, y− axis

−9.81, z− axis

This would make it exceptionally easy to distinguish between the two activities.

But such rigorous setting for a smartphone is not reasonable in practice and the no-

tion of using that information is predicated on the device being both fixed and known.

Therefore the acceleration from gravity, should also preferably be removed from the ac-

celeration that represents the subjects movement. In this study, four different filtering

methods were considered and evaluated. All filtering of raw accelerometer data is done

directly on the sampling points inside the size of the sliding window, where each axis

in the coordinate system were filtered separately. The four filtering method considered

is denoted and characterized as:

10



Constant- & Linear filtering: Constant filtering of raw accelerometer data, fits a sim-

ple least squares fit, with only the intercept term. That is, it removes only the mean

trend along each axis. Linear filtering, fits a ordinary least squares fit, which also re-

moves any linear trend inside the window.

Chebyshev- & Butterworth filtering [17, pp. 333–342]: This filtering methods do not

only remove any mean trend along the axes, but they also removes low frequency noise.

One high-pass was used to segment signal noise from the body acceleration, with a cut-

off frequency set to 0.2Hz. That is, any frequency response inside the window below

the cut-off, is segmented away from the rest of the accelerometer signal and discarded.

2.5.2 Feature Extraction

After filtering the raw accelerometer signals one time with each filtering method, fea-

tures were calculate and extract from the segmented windows. Extracted features are

presented in Table 3 and where peak based features are illustrated in Figure 4.

Table 3: Summary of features included in the final feature sets with corresponding
calculations and notations.

Feature Calculation Notation summary

Fsma
1

nw

nw

∑
i=1

(|x(i)|+ |y(i)|+ |z(i)|)
Signal magnitude area

where nw is the number of time
points inside the 2.5s window.

Fe
1

nw

nw

∑
i=1
|x(i)|2

Mean energy
inside the window nw

(Same calculations for {y, z}-axis)

Fg
1

nw

nw−1
∑

i=1
|∆x(i+1,i)|

Mean absolute gradient
inside the window nw

(same calculations for {y, z}-axis)

Fcor
cov(x,y)

σxσy

Pairwise correlation
inside the window nw

(same calculations for all pairs {x, y, z})

Besides those features in Table 3, the peak based features were computed in an at-

tempt of capturing the rhythmic differences among the activities. In previous studies of

HAR systems utilizing wearable sensors, other approaches have been tried to capture
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the rhythmic nature of human motion, e.g. those in [8], [18], [19]. In this paper, the

rhythmic features utilizes both the time and frequency domain. Averaging the peak

feature measurements between the closest connected low to high peak and high to low

peak. This is done for all three axes in the coordinate system. An example of high to

low peaks inside a window are marked in the first subfigure in Figure 4, where dots

marks the high and low peaks and a line have been drawn connecting the peaks. The

peak based feature and their corresponding domain can be defined as:

• Time-domain: Average time between low→ high peak, and high→ low peak.

• Frequency-domain: Average frequency response between low → high peak, and

high→ low peak.

• Frequency-domain: The distance between the average frequency of high and low

peaks.

• Both-domains: Average gradient between; low → high peak, and high → low

peak.

Due to devices having varying sampling rate, distances between frames in the time-

domain is not directly comparable to each other, so the average time distance between

peaks have therefore been weighted such that:

average time between peaks =
100
nw

,

where nw is the number of frames inside the window for that specific device. In an

attempt to correct the time measurement and to better represents the same temporal

distance between peaks.

Figure 4: Peak feature calculations are based on the marked high and low peaks. The
accelerometer signal data comes from the android device after Chebyshev filtering in a
2.5 second interval while walking.
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2.6 Final processing of dataframe structure

The final processed data consist of 8808 observations from the non-overlapping seg-

mented windows. Data from the different devices were split into a training, validation

and test set, separately from each other and only afterwards were each set concatenated.

It was done in this manner to ensure that each dataset would contain a similar number

of observations from each device. After all data processing was done, the number of

observations from each devices, activity and in each dataset is summarized in Table 4.

Table 4: In this table the number of observations for each device, the number of obser-
vations for the five activity labels and the number of observations in each dataset are
summarized.

Device Activity class-label Dataset

Device Number of observations Label Number of observations Set Number of observations

Android 3979 Bicycke 1781 Train 4623
Actigraoh 2444 Running 2001 Validation 1541
Iphone 2385 Sitting 845 Test 2644

Standing 1556
Walking 2625

3 Methods

In this chapter an overview of the models and their algorithmic operations used to train and

fit the sesnor data will be given. Describing decision trees, ensemble methods and the basic

structure of neural nets.

3.1 Decision Trees

Let X denote a features space of n observations and p predictor variables, then the

decision tree (DT) classifier is a way of partitioning X into a set of nodes. The process

of growing a tree (Table 5) is done to separate a set of K categorical labels, with the p

predictor variables in the feature space X. A tree is grown recursively, starting with

one single node (the seed), where one splitting rule is determined for each one of the

p predictors. The feature with its corresponding splitting rule, used to split the feature

space into two daughter nodes (regions) is then removed. The tree growing process

is now repeated for the two new nodes, while only considering p − 1 features. This

continues for each new node until they are all either pure (i.e., only one class label
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is represented in that node) or when some stop criterion is meet [20]. To find good

splitting rules, methods such as ”best-split” is usually used. It searches for the splitting

rule that produces the least amount of misclassifications in each recursive step in the

process. The most common choices used to quantify ”best-split”, are gini-index, cross-

entropy and missclassification error [1, pp. 308–310].

By growing a tree very large, we are likely to overfit the training data. Methods such

as cost-complexity pruning is one example of how to counteract the overfitting of our

training data, by pruning the tree back down [1, pp. 307–308]. However the algorithm

used to grow decision trees in this thesis do not have any pruning mechanism built in,

so instead stop criteria such as:

• max depth: maximum depth of the tree before stopping the recursive growth,

• min sample split: minimum number of observations in a node required for splitting

that node,

is two tuning parameters used to control the growth of the decision trees during the

training phase. This algorithm is based on the original CART-algorithm [20] proposed

by Leo Breiman and part of the scikit-learn [21] libraries for machine learning.

Table 5: The recursive steps of growing a single decision tree. Based on the original
CART-algorithm.

CART-algorithm

1. For each feature in X find the best splitting rule.

2. Choose the feature with corresponding splitting rule which minimizes
the error and remove that feature from the set X {according to the
chosen splitting criterion}.

(a) For each of the new daughter nodes (regions) repeat 1 & 2.

3. Stop when some constraint is meet or when all nodes are pure.
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3.2 AdaBoost

The core principle of boosting is to turn a ”weak” classifier that performs just slightly

better than random guessing, into a strong classifier by combining many of them to-

gether. Freund and Schapire [22] showed that their AdaBoost-algorithm, could do just

that for any so called PAC (probably approximate correct) algorithm. The AdaBoost-

algorithm repeatedly calls the weak base classifier many times, the CART-algorithm

(DT classifier) in this thesis. The CART-algorithm grows a DT on the feature space X

(as described in Chapter 3.1) and predicts the outcome, for which the initial DT clas-

sifier will get many cases wrong. The feature space X is then reweighted, to ”force”

the next call to the CART-algorithm to focus more on the observations in X its prede-

cessor got wrong. When a number of consecutive DT classifier (voting member) have

been trained, each voting member gets a weighted vote. Their respective votes are then

summarized and used as the final prediction.

However the original AdaBoost-algorithm do suffer in accuracy when considering

a multi-class problem, i.e. when K > 2, such as in this thesis. This algorithm was

originally designed to solve the multi-class problem, by subdividing them into multiple

two class problems. The SAMME-algorithm [23] addresses this problem directly and

extended on the original AdaBoost-algorithm to solve the multi-class problem, without

having to subdivide them into multiple two class problems.

Now let T(X) denote the DT classifier that assigns (predict) a class label q to each

observation in X and let Q(X) denote the final prediction from the SAMME-algorithm,

then the algorithmic operations for training the AdaBoost classifier can be found in

Table 6. Further note that the function 1(·) in this algorithm is an indicator function,

i.e. if the argument inside is true then the function assigns the value 1 to the ith ob-

servations and otherwise 0. Finally let k denote the ith observations true class label.

To give an example of how the indicator function is used to compute the error of the

mth DT classifier in step 2(b), we multiply the value of the indicator function with the

corresponding weight wi. That is, we are effectively summarizing the weights for all

observations that the mth classifier got wrong and dividing it by the total weight sum.
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Table 6: The SAMME-algorithm and the algorithmic steps of calling a base classifier
and then manipulating data points to force it to address the harder cases in a recursive
manner.

SAMME-algorithm

1. Initialize observation weights wi =
1
n , {i}n

i=1

2. For m = 1 to M:

(a) Call the weak classifier T(m)(X) and fit the training data using
weights wi.

(b) Compute err(m) =

n
∑

i=1
wi1(ki 6=qi)

n
∑

i=1
wi

.

(c) Compute α(m) = log
(

1−err(m)

err(m)

)
+ log(K− 1).

(d) Set wi ← wi ∗ exp
(

α(m) ∗ 1
(

ki 6= qi

))
, i = 1, 2, . . . , n.

(e) Re-normalize wi.

3. Output Q(X) = arg max
q

M
∑

m=1
α(m) ∗ 1

(
T(m)(X) = q

)
.

The SAMME-algorithm follows the same structure as the original AdaBoost-

algorithm with one major difference, their added constant log(K − 1) in step 2(c) in

Table 6, for computing the α coefficient used to update observation weights. The α

coefficient is also used in step 3, as a measurement of how “trustworthy” the mth voting

member’s vote is and weighted accordingly. In the case of binary labels, i.e. when

K = 2, it is easy to see that the SAMME-algorithm is then reduced back to the original

AdaBoost-algorithm.

3.3 Random Forest

Random forest (RF) [24] is another ensemble method, that binds many weak classifiers

together. The RF ensemble method grows a number of DT classifiers (i.e. the same

CART-algorithm as for AdaBoost), thus growing a forest, then we average over all trees

in that forest to improve the overall prediction. The core idea of RF is to improve the

variance reduction of bagging (bootstrap aggregating), by reducing the correlation be-
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tween trees without increasing the variance too much [1, pp. 588]. This can be achieved

by only considering a random subsets of v < p features from the feature space X [1,

pp. 588–589]. That is, for each node when growing a tree, only a subset of v features

is considered when searching for a splitting rule. During the process of growing a for-

est, besides only considering a random subset of the feature space when searching for

splitting rules, we can also grow each tree on a different bootstrap sample X∗ with re-

placement of size n. This method is known as growing a forest on random patches [25],

where the algorithmic operations to grow a forest follows the process in Table 7.

Table 7: The process of growing a forest on random patches for classification[1, pp.
588].

RF-algorithm

1. For m = 1 to M:

(a) Draw a bootstrap sample X∗ of size n from the training data X.

(b) Grow a tree T(m)(X∗) on the bootstrap sample by recursively re-
peating the following steps.

i. Select v =
√

p predictor variables from the p features in X.

ii. Pick the best split among the features in the subset v.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T(m)(X∗)}M
i=1

3. Let C(m)(X) be the assigned (predicted) class label from the mth tree,
then let CRF(X) be the final prediction for each observation i in X, by
setting CRF(X) = majority vote{C(m)(X)}M

m=1.

3.4 Neural Network

All neural network (NN) modeling and training was done under the Keras [26] frame-

work, with tensorflow [27] backend. Keras is a high-level neural network API (Appli-

cation programming interface) written in Python. The basic structure for a NN, can be

represented by the equations:

a(l)
(nl ,1)

= σl(W
(l)
(nl ,p)

x(p,1) + b(l)
(nl ,1)

)
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where x denotes the input vector containing p features, W denotes the weight matrix

for layer l of the size nl neurons and p features. Vector b is the so called bias vector,

containing one weight for each neuron in layer l. Then some user defined activation

function σl(.) (where index l in σl(.) is to denote that the activation function is layer

specific) is applied yielding the hidden layers activation a. This vector is then treated

as the input vector for the next consecutive layer in the network:

o(L)
(K,1) = σl(W

(l+1)
(K,nl)

a(l)
(nl ,1)

+ b(l+1)
(K,1) )

where o is the output vector (often represented in form of softmax probabilities for

multi-class classification problems, such as in this thesis), L denotes the last layer in the

network and K is the total number of distinct class labels. This structure of connected

layers is then used to feed data back and forth between the input vector x and output

vector o, to adjust the weights in the weight matrices W during the training process to

successively improve the predictions. All network weights were trained following the

same procedure found in Table 8.

Table 8: Algorithmic operation used to train a NN in this thesis.

NN weight training algorithm

1. Initialize all weight matrices through simulation from some distribution.

2. For epoch = 1 to Epoch:

(a) Split training set into mini-batches.

(b) For each mini-batch:

i. Feed batch forward through the network.

ii. Calculate training error.

iii. Backpropagate the error and update weights according to some gradient
descent optimization algorithm.

(c) End of each epoch calculate error on validation set.

i. If validation accuracy has not improved in some user defined number
of epochs stop the process and roll back weights corresponding to best
validation accuracy.

3. Output prediction accuracy on test set from the saved network.
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If the reader is interested in a concise overview of what constitute mini-batch train-

ing and examples of gradient descent optimization algorithms, I suggest starting at

[28].

4 Evaluation

In this chapter choices made during the training phase for tuning parameters are presented, for

each classification algorithm. The evaluation is done by comparing combinations of filtering

techniques and classification algorithms used in the consecutive steps in the system, as illus-

trated in Figure 5. The final comparison and evaluation of the system’s activity recognition

accuracy, is done by cross referencing error matrices and F-scores depending on the methods

used, so finally a clarification is given on how they are structured and should be interpreted.

Constant
feature set

Linear
feature set

Chebyshev
feature set

Butterworth
feature set

AdaBoost RF NN

Cross referencing activity recognition accuracy
for filtering- and classification methods

Constant Linear Chebyshev Butterworth

Input: Raw accelerometer data

Figure 5: The process of cross referencing the different filtering- and classification meth-
ods.

4.1 Tuning

All classification algorithms were trained and tuned using the training and validation

sets, with a sample size of 4623 and 1541 respectively. The settings used during the

training phase of the classification algorithms can be found in Table 9, with their cor-

responding grids and range for the tuning parameters. The last value inside the {·}-
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bracket, corresponds to the final settings used to predict the observations in the test set.

That is, these values notes the optimal settings for the tuning parameters, in terms of

validation accuracy during the training phase.

Table 9: The set up and range for tuning parameters during the training process.

AdaBoosted DT RF

Set up

Split criterion (DT): gini-index Split criterion (DT): gini-index

Number of features considered when splitting the feature space into nodes using CART

Features: p Features: v =
√

p

Tuning parameters

Max-depth: [2, 3, . . . , 16], {6} Max-depth: [2, 3, . . . , 16], {9}
Min-sample-split: [2, 3, 4, 5], {2} Min-sample-split: [2, 3, 4, 5], {2}
Number of classifiers [80, 84, . . . , 800], {240} Number of classifiers [80, 84, . . . , 800], {296}

NN Set up

Initial weights: W ∼ N (0, 0.01)
Initial bias: b = 0
Optimization algorithm: Adam
Early stopping (step 2(c)i in Table 8): 20

Tuning parameters

Dropout [29]: [0.25, 0.3, . . . , 0.5] , {0.35}
l2 − regularization: [0, 0.00025, 0.0005] , {0.00025}

4.2 Error matrices

In a multi-class classification problem, it is usually not only of interest to see the overall

accuracy, but also the association between true labels and their classified labels. Error

matrices (or commonly referred to as confusion matrices) will be used to present F-

scores, precision, recall and the association between the predicted and true label. Error

matrices presented in the result chapter, have the following structure:

• Each row is the sum of all observation in class k.

• Each column is the sum of all observation predicted to be in class k.

• The diagonal element are observations that have been correctly classified, de-

noted as true positive (TP).
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• Elements in each row not on the diagonal are predictions denoted as false nega-

tive (FN) for class k.

• Elements in each column not on the diagonal are predictions denoted as false

positive (FP) for class k.

• Last value in each row represents, recall = TP
(TP+FN)

for label k. That is among

the observations in the actual true set of k, what proportion have been correctly

identified.

• Last value in each column represents, precision = TP
(TP+FP) for label k. That is

among the observations predicted to be in class k, what proportion of these have

been correctly classified.

• Last value on the diagonal represents, weighted F− score = 2∗ precisionmean∗recallmean
precisionmean+recallmean

,

where precisionmean = 1
K

K
∑

i=1
preisioni, recallmean = 1

K

K
∑

i=1
recalli and

F− score ∈ [0, 1].

5 Results

In this chapter results is presented in form of the error matrices with an overall F-score and indi-

vidual class accuracy, in form of recall and precision. The tables are structured by classification

method, where each table shows results for the four different filtering methods.

5.1 Error matrices

Error matrices in Tables 10-12, shows that AdaBoosted DT gives the best overall accu-

racy in terms of F-score, for all filtering methods. Likewise, when comparing filtering

methods, Chebyshev filtering gives the best accuracy, for all classification methods.

The two filtering types constant- and linear detrending have similar F-scores, but

where linear detrending have a slightly better classification accuracy than constant

detrending, for all classification methods. Regardless of classification algorithm, the

system have difficulty distinguishing between the motionless activities, when the ac-

celerometer signals have been filtered with these two methods. For Butterworth- and

Chebyshev filtering, the same classification algorithms performs much better, primar-

ily due to the increase in accuracy for the low frequency activities. The majority of
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missclassifications made for the motionless activities is now removed, when the ac-

celerometer signals have been filtered with Butterworth and Chebyshev instead.

Table 10: Confusion matrices for the different filtering methods for AdaBoosted DT.
AdaBoosted Decision Trees

Constant filter Linear filter
True label Prediction True label Prediction

Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall
Cycling 510 0 4 2 9 0.9714 Cycling 512 0 3 3 7 0.9752
Running 0 635 0 0 1 0.9984 Running 0 635 0 0 1 0.9985
Sitting 0 0 187 83 0 0.6880 Sitting 0 0 179 91 0 0.6630
Standing 3 0 27 428 1 0.9325 Standing 3 0 19 435 2 0.9477
Walking 1 0 1 0 752 0.9974 Walking 0 0 2 0 752 0.9974
Precision 0.9922 1 0.8512 0.8343 0.9856 0.9250 Precision 0.9942 1 0.8818 0.8223 0.9869 0.9265

Butterworth filter Chebyshev filter
True label Prediction True label Prediction

Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall
Cycling 512 0 1 0 12 0.9752 Cycling 513 0 1 1 10 0.9771
Running 2 631 0 0 3 0.9921 Running 0 634 0 0 2 0.9969
Sitting 2 0 263 5 0 0.9813 Sitting 2 0 263 6 0 0.9741
Standing 5 0 0 453 1 0.9869 Standing 4 0 1 453 1 0.9869
Walking 2 2 0 0 750 0.9946 Walking 1 2 0 0 751 0.9960
Precision 0.9827 0.9965 0.9962 0.9891 0.9791 0.9874 Precision 0.9865 0.9969 0.9925 0.9869 0.9830 0.9877

Table 11: Confusion matrices for the different filtering methods for RF ensemble
method.

Random Forest
Constant filter Linear filter

True label Prediction True label Prediction
Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall

Cycling 512 0 2 3 8 0.9754 Cycling 515 0 2 1 7 0.9754
Running 0 636 0 0 0 1 Running 0 636 0 0 0 1
Sitting 0 0 180 89 0 0.6692 Sitting 1 0 177 92 0 0.6556
Standing 6 0 21 429 2 0.9367 Standing 5 0 19 433 2 0.9434
Walking 3 2 1 1 747 0.9907 Walking 2 2 2 1 747 0.9907
Precision 0.9828 0.9969 0.8824 0.8218 0.9868 0.9242 Precision 0.9828 0.9969 0.8895 0.8216 0.9881 0.9243

Butterworth filter Chebyshev filter
True label Prediction True label Prediction

Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall
Cycling 505 0 1 1 18 0.9619 Cycling 508 0 1 1 15 0.9676
Running 0 629 0 0 7 0.9889 Running 0 634 0 0 2 0.9969
Sitting 4 0 259 7 0 0.9593 Sitting 4 0 260 6 0 0.9629
Standing 8 0 1 450 0 0.9804 Standing 7 0 1 448 3 0.9760
Walking 17 5 0 0 732 0.9708 Walking 8 5 0 0 741 0.9828
Precision 0.9457 0.9921 0.9423 0.9825 0.9669 0.9691 Precision 0.9639 0.9922 0.9924 0.9846 0.9737 0.9793

Table 12: Confusion matrices for the different filtering methods for NN.
Neural Network

Constant filter Linear filter
True label Prediction True label Prediction

Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall
Cycling 489 0 3 22 11 0.9314 Cycling 488 0 10 17 10 0.9296
Running 0 636 0 0 0 1 Running 1 629 0 0 6 0.9889
Sitting 1 0 51 218 0 0.1889 Sitting 0 0 98 172 0 0.3630
Standing 1 0 31 424 3 0.9237 Standing 1 0 53 402 3 0.8758
Walking 0 0 4 11 739 0.9801 Walking 0 0 12 5 737 0.9775
Precision 0.9960 1 0.5730 0.6282 0.9841 0.8202 Precision 0.9959 1 0.5665 0.6745 0.9749 0.8345

Butterworth filter Chebyshev filter
True label Prediction True label Prediction

Cycling Running Sitting Standing Walking Recall Cycling Running Sitting Standing Walking Recall
Cycling 484 1 8 6 26 0.9214 Cycling 494 1 4 12 14 0.9401
Running 0 635 0 0 1 0.9984 Running 0 636 0 0 0 1
Sitting 3 0 263 4 0 0.9741 Sitting 1 0 257 12 0 0.9519
Standing 7 0 22 429 1 0.9346 Standing 3 0 8 447 1 0.9739
Walking 133 8 0 5 608 0.8064 Walking 30 3 1 8 712 0.9443
Precision 0.7719 0.9860 0.8976 0.9662 0.9560 0.9212 Precision 0.9356 0.9938 0.9519 0.9332 0.9794 0.9604
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6 Discussion

From this thesis, we have shown that it is sufficient to construct and train one HAR

system, that can be embedded in multiple platforms, while also considering it being

used by multiple subjects. That is, at least when considering this set of physical activ-

ities. The best accuracy was given when utilizing Chebyshev filtering (in the second

step of the HAR system) and AdaBoosted DT (the fourth step in the HAR system) with

a F-score of 0.9877. This result can be considered sufficiently good for most general

purposes of any HAR system, such as calorie burning applications, tracking activities

over time, to summarize and spotting changes in an individual’s activity levels.

Table 13: Results compared with other similar studies, for HAR systems when utilizing
a sliding window approach and wearable sensors.

Summary From [30] From [31] From [32] This study

Labels

Sitting,Standing,
Ascending stairs,
Descending stairs,
Walking,Running

Stationary,Walking,
Ascending stairs,
Descending stairs,
Running, Driving

Dancing,Running,
Ascending stairs,
Descending stairs,

Slow-walk,Fast-walk

Cycling,Running,
Sitting, Standing

Walking

Sensors

eWatch sensor
accelerometer

and light sensors
embedded

Accelerometer
and magnitude

sensors embedded
in two Nokia N97

Accelerometer
sensors embedded

in an Android
device

Accelerometer
sensors embedded,

Android, Iphone
Actigraph

Window
Size

4s window buffer
classifying 0.5s increments 1-6s window 1.28s window 2.5s window

Subjects 6 7 4 14

Classification
Method

DT
Naive-Bayes

SVM
with and without
magnitude field

NN
RF

SVM

NN
RF

AdaBoosted DT

Classification
Accuracy

Accelerometer only
DT

Pocket: 85.2%
Belt: 87.0%

Accelerometer only
SVM

window size: 5s
Pocket: 91.5%

Accelerometer only
in pocket

NN: 89.72%
RF: 85.15%

Accelerometer only
pocket or belt

AdaBoosted DT: 98.87%
RF: 97.93%
NN: 96.04%

Some key factors with corresponding classification accuracy from similar studies

are summarized in Table 13. The activity accuracy for this HAR system is surprising

good, when considering that the system handles both individual movement patterns

from 14 different subjects and platform differences. In [31], a HAR system was built

with a generic support vector machine classifier (SVM), where data was collected with

two Nokia N97 from six different pocket placements, two of which were coat pockets.

This resulted in an classification accuracy of 0.915, when only using accelerometer data

and the position of the device was unknown. To give another example of the impact
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between classification accuracy and device placement comes from [8], where they eval-

uated 5 different positions:

positions = {upper arm, hand, jack pocket, trouser pocket, waist},

where data was collected with a MEXZU MX3 (Android device). Their system was

evaluated on five physical activities, ascending- and descending stairs, walking, jog-

ging and jumping. In their study, they used both gyroscope- and accelerometer data.

In the case where their only utilized the accelerometer data, their best result for the

RF classifier was given when the device was placed in the trouser pockets with an ac-

curacy of 71.3%, while for example when being attached to the arm going down to an

accuracy of 60.4%. This give some indication that by extending the number of positions

considered for this HAR system, the activity recognition accuracy will likely drop. For

the same classification method when utilizing both accelerometer data and gyroscope

data, the activity recognition accuracy was increased to 80.9%, for the trouser pocket

placement and increased to 80.4% for the arm placement. This also gives some indi-

cation that incorporating gyroscope sensor data could potentially help to counteract

that drop in activity recognition accuracy when extending to more positions. In my

opinion a HAR system utilizing smartphone sensors, should besides handling individ-

ual movement patterns and platform differences, should also be capable of handling

multiple positions and orientations. The user should not constantly have to remem-

ber to put the smartphone in a certain rotation and placement for the system to work.

Therefore further analysis and investigation is needed for this system, by extending the

number of positions and orientations. More data needs to be collected when including

other common positions, such as in the hand, in a bag and jack-pocket. More activity

data is also need when the devices have other orientations and screen directions.

7 Future Work

In the systems current state the hand-crafted features were only constructed and used

to evaluate the systems accuracy, while their individual importance to distinguish be-

tween the physical activities were not. So in future work, analysis of features impor-

tance and a feature selection will be performed. As mentioned in the discussion, it is

also intended to extend the data collection to include less restrictions in both orientation

and positioning.
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8 Conclusion

The two ensemble methods AdaBoosted DT and RF outperforms NN, i.e. for a HAR

system utilizing a sliding window and the four step process described in Figure 1.

RF and Adaboosted DT have similar performance, but where Adaboosted DT have

a slightly better F-score over RF for all filtering types.

Both Chebyshev- and Butterworth filtering have higher activity recognition accu-

racy than the constant- and linear filtering. It can be seen from the error matrices in

Tables 10-12, that their primary advantage is for low frequency activities. Both these

two filtering methods preserve more information to distinguish between the motion-

less activities, standing and sitting. As in the case with Adaboosted DT, which gave

slightly better F-score than RF, Chebyshev filtering gives a slightly better classification

accuracy over Butterworth filtering.

Finally, in these tables, further similarities can be found in all three of them. In each

table there is a trade-off between a large increase in accuracy for the low frequency

activities and a slight decrease in accuracy for the high frequency activities, cycling,

walking and running, when switching from constant- and linear filtering to Chebyshev

and Butterworth. Both in terms of activity specific precision and recall, linear filter-

ing have comparable or better accuracy, for the three high frequency activities, when

comparing with Chebyshev. This leads to the final recommendation, that if there are

more than one low frequency activities to distinguish between, Chebyshev filtering is

the best option. However, if the system only have high frequency activities, or all low

frequency activities can be classified as one stationary activity, then linear filtering may

be the better option.
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