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Abstract 

Work-related musculoskeletal disorders constitutes a substantial burden for society, generating 
individual suffering and financial costs. Quantifying the musculoskeletal stress and establishing 
exposure-response relationships is an important step in facing this problem.    

Observational methods for assessing exposure in the field of ergonomics have shown poor 
results, and the technical measurement methods that exists are often complicated to use which 
limits their scope to scientific purposes.  

This work describes the development of a prototype measurement system aimed to simplify 
ambulatory measurements of musculoskeletal load, specifically aimed at the wrist and hand. 
Wearable sensors including Inertial Measurement Units (IMU:s) and Electromyography (EMG) 
were connected to a smartphone and used for measuring wrist movement and forearm muscle 
activity. Data sampled in the smartphone was stored online in a cloud database, and a web-
application was developed to visualize work-load exposure.  

Testing under controlled conditions indicated that muscular rest can be measured and classified 
according to suggested risk thresholds. Accurate angular measurements were difficult to 
implement because of lacking inter-sensor alignment in the horizontal plane, as well as 
uncertainties in the Bluetooth protocol.  

Future work should focus on the IMU:s and look to further develop a method of correcting the 

relative angle error, as well as investigating accurate time synchronization of the two sensors. 

Alternatively, deriving angular velocities directly from the IMU gyroscopes could be investigated. 

Keywords: Wrist, Work-related musculoskeletal disorders, WRMD, Inertial Measurement Unit, 
IMU, Electromyography, EMG, Goniometer  
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“The scientific man does not aim at an immediate result. He does not 

expect that his advanced ideas will be readily taken up. His work is 

like that of the planter — for the future. His duty is to lay the 

foundation for those who are to come, and point the way.” 

 

Nikola Tesla 
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1.  Introduction 
Sustaining healthy and ergonomic working environments can be a crucial step in maintaining 

employee wellbeing and efficiency. Work-related injuries and sickness can otherwise create a 

continuous expense in the form of worker absence, healthcare costs and most importantly human 

suffering. In the UK alone, 137 million working days were reported lost in 2016 due to injuries 

and sickness, among which, Work-Related Musculoskeletal Disorders (WRMD:s) were the most 

common causes [1]. 

WRMDs are defined as disorders concerning muscles, nerves, tendons, ligaments, and joints. 

Studies have classified wrist and hand injuries internationally as one of the most prominent 

WRMDs [1] [2] [3], raising awareness and need for preventive actions. However, this requires us 

to first comprehend the extent in which wrists and hands are used in various occupations and 

working environments. 

1.1. Background 
Observational methods used by ergonomists can produce low-reliability and inaccurate 

estimates [4] especially for the wrist and hand [5]. The technological methods available and used 

in studies have shown to produce reliable results [6], however, often at the expense of restraining 

the movement of subjects. This is due to bulky and wired-based sensor systems [7] [8] that anchor 

or constrict subjects to a limited amount of motions during measurements, as seen in figure 1.1. 

Furthermore, the methods are often complicated to use, which limits the use of technological 

measurement methods to mostly research purposes. Commercially available wearable sensors 

including electromyography (EMG) and wireless Inertial Measurement Units (IMU:s) could simplify 

technical measurements for ergonomists and reduce motion restriction. 

Studies have demonstrated wrist angle, angular velocities and muscular load in the forearm as 

useful parameters when investigating wrist-related WRMDs [9]. Action limits for increased risk 

of wrist-related WRMD:s has recently been suggested in a report from Occupational and 

Environmental Medicine (Lund),  based on angular velocity and muscular load. Velocities of 20°/s 

maintained 50% of a working day have been suggested as a threshold for wrist movement. For 

muscular load, thresholds of 30%MVE  maintained 10% of a working day, 10%MVE  maintained 50% 

of a working day and < 0.05%MVE maintained 5% of a working day have been proposed [10].  

    
Figure 1.1: Measurement technology used in ergonomics.  

Right: Electro goniometer and datalogger currently used by KI IMM 
Left: Logger setup used with EMG on a subject during earlier research [11] (left). 
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1.2. Purpose and Goals 
This thesis was a part of the project FORTE [12] at KI IMM (Karolinska Institute, Institute of 

Environmental Medicine) and consisted of developing a portable and simplified prototype system 

for measuring wrist activity and forearm load.  

The main building blocks of the prototype would be comprised of: 

• Acquiring Inertial Measurement Unit (IMU) sensor data on an Android device 

• Acquiring Electromyography (EMG) sensor data on an Android device 

• Processing sensor data to produce angles, angular velocities and muscular load 

• Analyzing and visualizing information intuitively for exposure measurements in a web 

application. 
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2.  Materials and Method 
Hardware and software used during the development as well as tests performed are described in 

chapters 2.1 - 2.3. Table 2.1 presents a summary of the development and associated testing. All 

data processing outside of the applications were performed using Matlab 2018a (The MathWorks, 

Inc., Natick, United States).  

Table 2.1: Development overview 

Part/test Purpose Result 

IMU 
2.1.2 Motion Generated Drift Assessment of angle drift generated from biased motions w/wo. 

magnetometer correction 
3.1.1 

2.1.3 Magnetic Field Environment Test Assessment of angle drift from indoor movement w/wo 
magnetometer  correction 

3.1.2 

2.1.4 Static Angles Test Determination of angular accuracies during static conditions 3.1.3 

2.1.5 Dynamic Angles Test Determination of angular accuracies during dynamic conditions 3.1.4 

EMG 
2.2.2 EMG Signal Processing Evaluation of different signal processing approaches 3.2.1 

2.2.3 EMG Amplitude Test Evaluation of EMG signals and physical contractions  3.2.2 

2.2.4 Re-alignment Algorithm Implementation of re-alignment algorithm using system sensors 3.2.3 

Visualization 
2.3.1 Android application Android Application 3.3.1 

2.3.3 Data Visualization Visualizing sensor data through web- and mobile-application  3.3.2 

 

2.1. IMU 

2.1.1.   System Description  
IMU:s of the model LPMS-B2 (LP research, Tokyo, Japan) were used for the development, see 

Appendix B for additional sensor specifications. Sensors data was sampled at 400 Hz and then 

resampled to 25 Hz [13] before being transmitted wirelessly (Bluetooth 2.1). To avoid the 

problem of gimbal-lock (Appendix A, 1.5), orientations were calculated in quaternions [14] 

provided by an extended Kalman Filter in the IMU firmware [15] [16].   

 

Bluetooth transmitted IMU data was collected using an existing Android application developed at 

KI IMM and KTH [17] with modifications made using Android Studio v.3.1.0. Sensor rotations 

represented in figure 2.1 were derived from orientational data sampled from two separate IMU:s 

using equation 1. 
 

                𝑞∆  =  𝑞∗
1

⊗  𝑞 
2

 (equation 1) 

Equation 1: Calculation of the relative quaternion qΔ from two quaternions  q1, q2.  

S1 S2 

𝑞1  =   (ω1, ux1, uy1, 𝑢𝑧1) 𝑞2  =   (ω2, ux2, uy2, 𝑢𝑧2) 

Sensor Z (yaw)  axis 
Sensor Y (pitch) axis 
Sensor X (roll)  axis 

Figure 2.1: Rotations as quaternions. 
The orientation of the two frames S1 and S2 can be described by their rotation-quaternions q1 and q2 
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The system clock on the smartphone running the application was used as a global timeframe. A 

joint timestamp between the sensors was calculated using equation 2, by pairing Android 

generated arrival-times from the individual sensors. Paired samples were determined by 

associating the latest timestamp from one sensor, 𝑡𝑖1 ,with the most recent timestamp from the 

remaining sensor, 𝑡𝑖2. Relative rotations were then derived from the associated quaternions of the 

timestamps, see equation 2. 

                𝑡𝑝𝑎𝑖𝑟  =
(𝑡𝑖2−𝑡 

𝑖1)

2
  (equation 2) 

Equation 2: Calculation of the joint timestamp between two paired samples. 
 𝑡𝑖2 is the later sampled timestamp and 𝑡𝑖1 is the earlier sampled timestamp.  

 

2.1.2.   Motion Drift 
Studies have demonstrated the appearance of angular drift with the use of gyroscopes [18]. To 

quantify the problem, a test was constructed where two IMUs were configured to measure 

rotations with and without magnetometers included in their Kalman filters. They were fixed and 

aligned along a rotatable protractor with equal distance from the surfaces center. The setup was 

performed in an environment with low magnetic interference, this was measured using the 

magnetometers in the IMU:s. From this setup two different tests were performed, exposing the 

IMU to either biased (clockwise) or unbiased (clockwise and counter-clockwise) rotations. The 

gyroscopes and magnetometers were calibrated prior to both tests. 

In the test with biased rotations, the protractor was rotated 5° clockwise in rapid successions 

every second until a total relative angle of 90° was reached. The IMU was then rotated back to the 

zero position in a significantly lower velocity to minimize the occurrence of motional drift. This 

motion was repeated 20 times. The test with unbiased rotations was performed using the same 

protocol, but with the previous rotations also performed counter-clockwise after returning to the 

starting position. Both test were performed 5 times and their respective results are presented in 

3.1.1 (fig 3.1).  

2.1.3.   Magnetic Field Environment Test 
The effect of movement in a large volume of space was also investigated. Two IMUs were attached 

to a ruler and aligned by their pitch-axis, simulating a “rigid” hand without any movement in the 

wrist (see fig. 2.2). Both orientation and magnetometers  in each IMU was calibrated in the initial 

position. The ruler with the sensors attached was carried inside an office space in a predefined 

track (about 200 meters) with 10-sec pauses at predetermined stationary positions (4 horizontal, 

1 vertical, see Appendix D5). This session was repeated 5 times without any additional calibration 

during the session. Result 3.1.2 (fig. 3.2 and 3.3) show the results from this test.  

Figure 2.2: Magnetic field environment test setup. 
Setup used for the field environmental test. Sensor axes indicated with red, green and blue. 

Sensor Z (yaw)     axis 
Sensor Y (pitch)  axis 
Sensor X (roll)    axis 
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2.1.4.   Static Angles Test 

For testing of the IMU’s accuracy, a biaxial flexible goniometer (model SG75, Biometrics Ltd. UK, 

England [19]) and a datalogger (model Mobi8, TMSI B.V. Oldenzaal, NL) was used (see fig. 1.1). 

The two bodies of the goniometer were stacked and attached on top of each respective IMU. One 

IMU was then attached to a fixed horizontal plane while the other one was attached to the 

adjustable surface of a digital protractor (model GAM 220 MF, Bosch GmbH, Stuttgart, DE), with 

an accuracy of 0.1°. The protractor was rotated to 20 random angles in the vertical plane (range 

0:90°) followed by rotations in the horizontal plane (range -30:30°). See result 3.1.3 (fig. 3.4, fig. 

3.5) for Bland-Altman plots comparing pitch and yaw estimates from the goniometer and the IMU. 

 

2.1.5.   Dynamic Angle Test 
Additional testing was performed to assess the performance of the IMU:s during dynamic 

conditions. Two IMU:s were placed over the third metacarpal bone of the hand (distally) and 

along the forearm (proximally) respectively, with the two bodies of the goniometer attached on 

top of the IMU:s, see figure 2.3  The zero-angle for both sensors was taken from a reference 

position with the subject resting the forearm on the table with 90° elbow flexion, as used in [20]. 

The subject performed near-maximum wrist- flexion/extension synchronized to a metronome 

signal (30, 60, 120 & 180 BPM) while keeping the forearm stationary. Each pace was performed 

for approximately 15 seconds. The signals were lowpass-filtered with a 31-point FIR filter (see 

appendix D4) with cutoff frequency 5.0 Hz [13], aligned in time and digitally resampled to 100 Hz 

to calculate the sample-to-sample error. Absolute angular velocities were calculated for both the 

goniometer and the IMU (both filtered with the FIR-filter described above) using a 3-point 

discrete difference vi=(anglei+1-anglei-1)/(Ti+1-Ti-1) [13]. Root-mean-square-error (RMSE) was 

calculated (equation 3) for both angles and angular velocities. Two repetitions of the same test 

setup was performed. The second repetition included separate sampling and offline interpolation 

and alignment of the IMU signals using the sensors internal timestamps (not using equation 2), 

to evaluate the effect of synchronization errors. See result 3.1.4 (fig. 3.6 & tables 2.5-2.6) for data 

from the second repetition, and appendix B3-4 for additional data.    

𝑅𝑀𝑆𝐸 =  √∑
(𝑌𝑔𝑜𝑛𝑖𝑜𝑚𝑒𝑡𝑒𝑟 [𝑖] − 𝑌𝐼𝑀𝑈[𝑖])2

𝑛
𝑛
𝑖=1   (equation 3) 

Equation 3: RMSE, Y[i] represent either angle or angle velocity for sample i. 

 

 
Figure 2.3: Test-setup for simulated screw-sorting task. 

Goniometer (green) stacked on top of IMU:s (blue) 
The same sensor placement was used for all tests described in 2.1.5 
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A second test using the previous sensor setup was then constructed to simulate a practical 

working task of longer duration. The test consisted of manually sorting screws and bolts using 

one hand (see fig. 2.3). The first repetition lasted a total of 1h 16 min, the second repetition lasted 

1h 2 min including five 2 min pauses. Result 3.1.4 (fig. 3.6 & 3.7) shows the distributions of 

velocities above/below 20°/s and velocity-bins of 5 °/s in the range 5–100°. Significance testing 

(α = 0.05) of the velocity classification (20°/s) for the IMU and Goniometer was performed using 

a two-sided paired t-test, with the null hypothesis being no significance difference.  

2.2. EMG 

2.2.1.   System Description 
A wearable EMG-sensor (model Shimmer3, Shimmer Sensing, Dublin, IE) with configurable 

sampling frequency was used for measurement of the forearm muscle activity, see Appendix C for 

additional sensor specifications. Ag/AgCl-electrodes with dimensions 30x20 mm were used 

during all measurements. A Java/Android library provided by Shimmer [21] was used to modify 

the Android application implemented in 2.1.1,  to interface both EMG and IMU:s over Bluetooth. 

See fig. 2.4 for EMG and IMU:s placement and size. 

2.2.2.   EMG Signal Processing 
The common frequency for sampling surface EMG for ergonomic applications is 1024 Hz [22] 

[23]. The effect of using a lower sampling frequency of 512 Hz was experimentally investigated. 

A seated test subject performed 2 maximal reference contractions followed by 3 repetitions of 5 

second static contractions (50 % max) and finally 3 repetitions of 5 second dynamic contractions 

(50 % max). Between each contraction, the subject rested for 1 minute. Surface EMG (see 2.2.3 

for details) was sampled at 1024 Hz and then digitally resampled to 512 Hz. Two digital 

Butterworth filters were designed by convolving lower order filters to a combined 10th order 

filter [24]. See table 2.2 for filter specifications.  

Table 2.2: EMG-filters and coefficients. 

Filters and Matlab commands used to generate coefficients. 
Filter 512 Hz filter 1024 Hz filter 

Bandpass butter(2, [30/256 200/256]); 

 

butter(2, [30/512 400/512]); 

 

50 Hz Notch butter(1, [49/256, 51/256], 'stop'); 

 

butter(1, [49/512 51/512], 'stop'); 

 

100 Hz Notch butter(1, [99/256 101/256], 'stop'); 

 

butter(1, [99/512 101/512], 'stop'); 

 

150 Hz Notch butter(1, [149/256 151/256], 'stop'); 

 

butter(1, [149/512 151/512], 'stop'); 

 

 

   rms-EMG (n) [mV]  =   
√𝑥𝑛−𝑇

2  + 𝑥𝑛−(𝑇−1)
2  + ...+𝑥𝑛

2 

𝑇
     (equation 4) 

Equation 4: rms-EMG in millivolt, with a moving-window of length T = 64 samples. xn is the filtered EMG output. 

 

rms-EMG (n) [%MVE]  =  
rms-EMG (n) [mV]

max {rms-EMG [mV]}
       (equation 5) 

Equation 5: rms-EMG in percent of maximal voluntary electrical activation. 

 

Both signals (588 sec total length) were filtered, and a 125 ms rms-EMG [9] was calculated 

(equation 4) and MVE-scaled (equation 5). The 1024 Hz data was filtered with the forward-

backward filtering using the Matlab filtfilt-function [25]. Result 3.2.1 (fig. 3.9) shows the 

distribution of samples using the two signal processing approaches. The 512 Hz alternative was 

chosen and implemented as a real-time filter and moving-window processing (equation 4 & 5) in 

the Android application.  
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2.2.3.   EMG Amplitude Test 

Two IMU:s were attached to the arm and hand as described previously (see 2.1.5). A pair of EMG 

electrodes were then attached to the muscle belly of m. extensor carpi radialis, approximately one 

third of the forearm length down the elbow and with an electrode center-to-center spacing of 2 

cm [26] [22]. A reference electrode was placed over the olecranon [27]. Skin was prepared with 

sandpaper and disinfectant (alcohol) at the electrode site.  

 
Figure 2.4: EMG and IMU:s. 

A: EMG-electrode and IMU placement for test.  
B: Top: EMG-circuit (Shimmer Sensing, Ireland), bottom: IMU:s (LP Research, Japan). 

 

The test started with the subject resting the forearm measured on an armrest with approximately 

90° elbow flexion. Three maximum contractions were performed using a hand dynamometer 

(Baseline, Irvington NY, US). This was followed by 4 submaximal 5 second static contractions 

(50% max) and 4 submaximal contractions (50% max) combined with wrist flexion/extension 

performed during 5 seconds at 40 bpm. Flexion/extension was also performed in the same 

manner without any load. Each session (4 static contractions 4 dynamic contractions and 4 zero-

load flexions/extension) was performed with 30 - 60 second rest in between. A total of 4 sessions 

were performed with, 1-minute rest in between. See 3.2.2 for the EMG signal and amplitude 

analysis from the test (fig. 3.10-3.12). 

2.2.4.   Re-alignment Algorithm 
Earlier results (see 3.1.1 and 3.1.2) indicated that the relative angle in the horizontal plane is 

subjected to a significant drift during movement in a large volume and/or from biased rotations. 

To this end a re-alignment algorithm was developed and implemented in the android device. The 

algorithm was based on the idea of correcting the angular drift between the two sensors by 

combining sensor data from both IMU:s and EMG. Through the combined data, assumptions were 

made regarding the position of the joint in certain situations.  

Table 2.3: Parameters in re-alignment algorithm. 

Parameter Unit Description 

q1, q2 [quaternion] Orientation output from sensor 1 and sensor 2  

qcorr [quaternion] “Error-rotation” between the two systems 

q1,C [quaternion] Re-aligned output from sensor 1 

qΔ [quaternion] Relative angle after correction 

Gyr1 [deg/s] Gyroscope component around sensor 1  yaw-axis  

Acc2 [m/s2] Accelerometer component along sensor 2  (negative) yaw-axis 

rms-EMG [%MVE] RMS output from the EMG measurements of the forearm extensors 

T [sec] Length of time window  

A B 
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Figure 2.5: Flowchart of the re-alignment algorithm. 
The four major steps are: (1) initializing the correction to zero, (2) checking the alignment-criteria, 

(3) updating the correction and (4) calculating the corrected output. 

 
The algorithm aims to detect periods when the forearm is in a horizontal resting position and 

assumes that an ulnar/radial angle is typically in a neutral (0°) position during this time. The 

accelerometer-, gyroscope- and rms-EMG signal are not subjected to drift on a short time-scale 

(as opposed to the relative angle) and are therefore used to correct the latter. If a resting period 

is detected the relative angle in the horizontal plane is assumed to be an error and used for 

correction of subsequent samples. Fig. 2.5 describes the algorithm, table 2.3 lists the algorithm 

parameters.  
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Table 2.4: Parameter-limits used for re-alignment test. 

Parameter Unit Limit 

Gyr1 [deg/s] [2, -2] 

Acc2 [m/s2] [-1.25, -0.75] 

rms-EMG [%MVE]  < 2 

T [sec] 1.7 

 
A test was conducted to evaluate the realignment-algorithm. Table 2.4 lists parameter-limits 
used. Two mock-up “work-tasks” were constructed: the first being  rapid flipping through a 
notebook (task 1). The second task consisted of connecting dots arranged horizontally on a 
computer screen at a fixed pace (30 BPM) using a mouse with a stationary forearm (task 2). Four 
repetitions were performed, each including task 1 and task 2 performed in a sequence. The test-
subject rested the forearm horizontally for 5 seconds when switching between tasks.  Figure 2.6 
shows the resting position between the tasks with sensor placement (A) and the test-person view 
during task 2 (B). See result 3.2.3 (fig. 3.13) for the result of the test.  
 
 

 

 
Figure 2.6: Re-alignment algorithm test setup. 

A: Resting position with location of EMG-electrodes, goniometer and IMUs.  
B: Test person view during task 2. 

A 

EMG Electrodes 

IMU 1 

Goniometer 

IMU 2 

B 
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2.3. Data storage and visualization   
Data from sensorsFor online storage and visualization of the sensor data a cloud-database was 

used, and a web-application was developed.   

2.3.1. Database and Data Modelling 
The data sampled by the Android application was transferred as 15-second-long JSON-data 

packages using the MQTT-protocol. The Eclipse Paho Android Service library1 and a public 

message broker provided by HiveMQ2 was used. The sensor data was stored using the open-

source document-database MongoDB provided online as a database as a service3. To avoid 

overreaching the MongoDB document-size limit [28] and balancing the tradeoffs of updating vs 

inserting new documents [29] [30], 1-minute nested-documents was used. A data-model 

combining referencing and embedding was implemented. One collection (measurements) holds 

documents with information related to a single measurement (id, date, duration) and the number 

of associated data documents. Documents in the data-collection holds the sensor data (angles, 

EMG, timestamps) stored under separate document fields. See fig 2.8.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.7: Modeling sensor data in MongoDB  
Each document in the measurements collection is associated to a set of data documents. 

2.3.2.   Data Visualization  
A web-application was developed using the flow-based development tool Node-RED and 

deployed to IBM:s cloud platform Bluemix. The application acts as an interface to the database, 

both implementing the data model and allowing a user to load and visualize a measurement 

through a web-browser (see fig. 3.15). The main structure of the program is built using JavaScript, 

combined with a Node.js driver for MongoDB and UI-components based on angular.js (provided 

through the Node-RED environment). Measurements are queried from the database by searching 

for an id. An initial query is made to the measurements-collection. Given a match, the number of 

documents in the data-collection associated to the measurement is passed back to the application. 

A processing-sequence is then performed during which all data-documents for the id are queried, 

loaded into the application memory, processed and analyzed in series. Parallel to the web-based 

visualization, direct feedback of IMU and EMG data was implemented in the Android application 

(see fig. 3.14). This included feedback from EMG calibrations.   

                                                        
1 https://www.eclipse.org/paho/clients/android/ 
2 https://www.hivemq.com/try-out/ 
3 https://www.mongodb.com/cloud/atlas 

Measurements-collection 

_id: ”test_one” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ”test_two” 
nr_of_docs: 1 
date: 2018-03-26 

 

_id: ”test_three” 
nr_of_docs: 5 
date: 2018-02-26 

 

Data-collection 

_id: ”test_one_2” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ”test_one_1” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ”test_one_0” 
 

[ Data ] 

 

_id: ”test_two_0” 
 

[ Data ] 

 

_id: ” test_three_4” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ” test_three_3” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ” test_three_2” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ” test_three_1” 
nr_of_docs: 3 
date: 2018-04-26 

 

_id: ”test_three_0” 
 

[ Data ] 
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3. Results 
Results from testing and development are presented in chapters 3.1-3.3  

3.1. IMU 

3.1.1.   Motion drift 
Figure 2.1 shows the accumulated drift between each repetition.  Biased motion is seen to 

generate larger amounts of drift. 

 
Figure 3.1: Motion generated drift. 

Angular error from biased rotations (left) and unbiased rotations (right). 
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3.1.2.   Magnetic Field Environment Test 
The appearance of drift from the magnetic field environment tests in the three sensor axes (top) 
and the total error (bottom) can be seen in figures 3.2 and 3.3 respectively. Both IMU 

configurations (w/o magnetometer) generates substantial angle error. 

 

Figure 3.2: Environmental test, with magnetometer.  
Error built up in individual 3-dimensional axes (top graph). Sum of total error for each position (bottom graph)  

 

 
Figure 3.3 Environmental test, without magnetometer.  

Error built up in individual 3-dimensional axes (top graph). Sum of total error for each position (bottom graph) 
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3.1.3. Static Angles Test 
The comparison of goniometer and IMU performance from the static angle test are shown in 

figures 3.4 and 3.5 in the form of Bland-Altman plots. The pitch and yaw estimations from both 

systems are separately compared in respective figures. IMU:s measured pitch with higher 

accuracy than goniometers, however, for yaw goniometer showed higher accuracies. 
 
 

 
Figure 3.4: Bland-Altman plot, pitch rotation. 

Static angle test (vertical plane) with pitch-rotations using Goniometer (left) and IMU (right). 
 
 
 
 

 
Figure 3.5. Bland-Altman plot, yaw rotation. 

Static angle test (horizontal plane) with yaw-rotations using Goniometer (left) and IMU (right). 
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3.1.4.   Dynamic Angles Test 
Figure 3.6 shows the angular estimations of the IMU and goniometer from the 120 BPM part of 
the second repetition. RMSE for angles and angular velocities for the four paces are presented in 

tables 2.5 & 2.6. See Appendix D1 for remaining results of the first repetition and Appendix D2 

for results from the second repetition. Drops in sampling frequency (fig. 3.6, bottom) coincide 

with periodic distortions in the angular signal (fig. 3.6, top). Table 2.5 and 2.6 show RMSE of 

angles and angular velocities. 

 
 

Figure 3.6: Wrist extension/flexion at 120 BPM. 
TOP: IMU angle from Android app (blue), IMU from off-line processing (red) and goniometer (black).   

BOTTOM: Periodic drops in the sampling rate of the IMU:s in the Android application (blue, bottom) distorts the IMU 
signal (blue, top).  

 

Table 2.5: RMSE of angles from dynamic angle test. 

Test sequence RMSE (angles) [ ° ] 

Android Offline processing 
30 BPM 4 4 
60 BPM 6 4 

120 BPM 10 6 
180 BPM 11 6 

 
Table 2.6: RMSE of angular velocities from dynamic angle test. 

Test sequence RMSE (angular velocity) [ °/sec ] 

Android Offline processing 
30 BPM 15 8 
60 BPM 36 15 

120 BPM 70 38 
180 BPM 112 47 
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The results from the first and second repetition of the one-hour screw-sorting tasks are seen in 

figures 3.7 and 3.8 respectively. Absolute angular velocity’s in 5°/sec-bins in the interval [5,100] 

°/s (left) and above/below 20°/s (right) for both goniometer (red) and IMU (blue) are shown. 

Tables 2.7 and 2.8 presents the same velocities in percentiles, a format commonly used in 

ergonomic research [9].  

 

Figures 3.7 and 3.8 (left) suggested that the IMU:s tended to underestimate velocities above 20°/s 

and overestimate velocities below 20°/s. However, the 2.8% and 4.1% classification differences 

(fig. 3.7 and 3.8, right) were not found to be statistically significant.  
 

 
Figure 3.7:  Angular velocity distribution (first repetition) 

Velocities distributed in 5 °/s wide blocks(left). Velocities distributed in two blocks, below and above 20 °/s(right)  

Table 2.7: Angular velocity in percentiles (first repetition). 

Percentiles angular velocity [ °/s ] 

IMU Goniometer 
10th 0.6 0.6 
50th  10.0 12.8 
90th  50.0 53.8 

 

 
Figure 3.8: Angular velocity distribution (second repetition)  

Velocities distributed in 5 °/s wide blocks(left). Velocities distributed in two blocks, below and above 20 °/s (right) 

  



 
 

16 
 

Table 2.8: Angular velocity in percentiles (second repetition). 

Percentiles angular velocity [ °/s ] 

IMU Goniometer 
10th 0.2 0.1 
50th  12.7 14.4 
90th  67.6 70.0 

 

3.2. EMG 

3.2.1.   EMG Signal Processing 
Figure 3.9 shows the distribution of the rms-EMG signal (588 sec total length) according to action 

limits (Lund). Signals sampled at 1024 Hz and 512 Hz are compared.   

 
Figure 3.9. EMG signal-processing sample distributions. 

Relative distribution of rms-EMG samples from the same measurements analyzed with 1024 Hz (blue) and 512 Hz 
(red) processing steps.  

3.2.2.   EMG Amplitude Test 
Results from the EMG amplitude tests can be seen in figure 3.10 - 3.12. Figure 3.10 and 3.11 shows 

EMG amplitudes during static contractions (top), dynamic contrations (middle) and unloaded 

flexion/extension (bottom). Figure 3.12 demonstrates the apperance of muscular rest (0.5 < 

%MVC, green blocks) togheter with wrist flexion/extension and rms-EMG.  
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Figure 3.10: EMG-amplitudes from contraction test. 

Static contractions (blue) extension/flexion during static load (red) and extension/flexion without load (purple).  

 
Figure 3.11: EMG-amplitudes from contraction test, last repetition seen in figure 3.10. 
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Figure 3.12: Wrist and muscular activity during loaded flexion/extension. 
 The first three loaded extension/flexions Bottom: Sections of minimum 300 ms continous muscular rest (green, <0.5 

%MVE) of rms-EMG (red) Top: The same rest-periods (green) with the angular signal from the IMUs (blue). 
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3.2.3.   Re-alignment Algorithm 
Figure 3.13 show the radial/ulnar angle during 4 sequential repetitions of task 2. A gradual build-

up of  angular drift occurs between each sequence in the uncorrected IMU angle (red) compared 

to the goniometer (yellow) reaching over 40° for the last sequence. This drift is eliminated using 

the re-alignment algorithm (blue). 
 

Figure 3.13. Re-alignment algorithm test. 
Ulnar/radial deviation angle measured with the goniometer (yellow), IMU without corrective algorithm applied(red) 

and IMU with the correction algorithm (blue) for the first four repetitions of task 2. 
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3.3.  Data storage and visualization 
Real-time feedback is provided in the Android application during a measurement (3.3.1), and 

whole measurements are processed and visualized in the web-application (3.3.2). 

3.3.1.   Android application 
Real-time feedback of the IMU and EMG data was provided on the Android application as 
presented in figure 3.14.  Additional functions in the application included a offset function for the 
relative angle and and a controlled reference measurement for MVE normalization of the EMG 
signal. The automatic re-alignmet algortihm described in 2.2.4 and 3.2.3 runs in real-time in the 
application. 
 

 
Figure 3.14. Interface for the Android application. 

Top: Flexion/extension and deviation angles. Bottom: Forearm rms-EMG amplitude 

 

3.3.2.  Web application 
Figure 3.15 shows meassurements from part 2.1.5 viewed through the web-application using a 
web browser. Distribution of angular velocity for wrist flexion/extension (top middle) and rms-
EMG (lower middle) and action-limits suggested by Lund, as well time-averaged signals (right) 
are presented. Meassurements are loaded from the database using a search function (top left).  
Note the increased time in muscular rest (0 vs 5 %) as well as decreased time at high angular 
velocitys (41 vs 48 %) for the task with scheduled pauses (B) as oppose to the one without any 
rest (A).  
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Figure 3.15: Interface for the web application.  
A: 1 hour and 8 minutes of continuous work, without any rest. Minute 56 loaded in detail view.   

B: 1 hour of the same task with periodic rests, giving an increased muscle recovery time (15 vs 0 %).    

 

 
 

B 

A 

Time-average 

rms-EMG 

Time-average 

angular velocity 

Database 

search field 

 

Angular velocity and rms-EMG distributions 

1-minute data plot of angle 

and truncated rms-EMG 
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4. Discussion  
Result 3.1.1 indicated that the difference in angular drift from both biased and unbiased rotations 
remained small when using magnetometer correction (fig. 3.1 right). Not using the magnetometer 
correction (fig. 3.1 left) caused larger error during biased movement.  This was expected as 
relying solely on the integrated gyroscope signal exposed the measurements to integration errors 
[31]. Smaller error for unbiased movements also agreed with findings by [32] where unilateral 
rotations was found to give larger errors than multi-axis rotations (albeit with different sensors 
and protocol at higher velocities). It is likely that the error is proportional to both direction of 

movement and velocity, and that evenly distributed movements of opposite direction partly 
reduces this error. The magnetometers were calibrated in the stationary position before the start 
of the test. This likely improved its performance (see 3.1.2). 

 
Part 2.1.3 investigated the effect of movement in a large indoor volume. The total angle error grew 
large both with (max 22°, fig. 3.2 bottom) and without (max 29°, fig. 3.3 bottom) the 
magnetometer. The error was typically confined to the horizontal axes (fig 3.2 & 3.3 top) which 
agrees with previous methods using differential measurements with a pair of IMU:s [33]. The 
rapid build-up of error when using the magnetometer compared to relying solely on the 
gyroscope could be an effect of the changing magnetic field when moving between two positions. 
IMU angular errors from inhomogeneous indoor magnetic fields have been reported to be 16° 
(indoor track with test objects) and 29° (movement in a motion lab) [34], reaching up to 35° in 
the vicinity of metallic objects [35]. This seems to be within range of what we found, however 
differences in test-protocol, sensor model and duration makes exact comparison difficult. This 
result indicates that magnetometer is of limited use for indoor measurements, and that an error 
in the relative angle will build up over time regardless of its use. However, only a single indoor 
environment was investigated, also because we were limited to one sensor model (and decided 
to use the sensor fusion algorithm embedded on the device) the effect of other IMU models and/or 
alternative sensor-fusion and magnetic compensation algorithms was not investigated. The IMU’s 
sensitivity to both biased movements (which could occur during e.g. hammering) and error build-
up from indoor movement (even at “normal” environments, see Appendix D5) was used as the 
rationale for developing the re-alignment algorithm described in 2.2.4.     
 
In 3.1.3. the pitch estimation from the IMUs in stationary angles demonstrated a 1.96 standard 
deviation from -1.7 to 1.1°. The estimation of the corresponding goniometer, however, exhibited 
a range from -7.1 to 7.3°. The smaller uncertainty of the IMU may indicate that when properly 
corrected by accelerometers, the sensor tracks stationary angles with satisfying accuracies. 
Similar results are also presented in studies, demonstrating accuracies of accelerometers and 
gyroscopes to below 3° [6] [36]. Without any sensor correction, the yaw estimation of the IMU 
demonstrated instead a 1.96 standard deviation range from -3.5 to 5.3 °. Compared to the 
goniometers range of -1.4 to 3.1°. The test confirmed prior established characteristics of the 
gyroscopes in 3.1.1, however, the drift exhibited in the horizontal axis may accumulate 
indefinitely with continuous biased rotations in the horizontal axis.  
  
While we used goniometry as a reference method, it is not the golden standard of the field [8], 
due to “cross-talk” and zero-drift [37]. Goniometers have been shown to measure angles with 
mean uncertainties of 8° in flexion/extension and up to 21° in deviation [8] [37]. These errors can 
be reduced to < 1° with compensating methods, using for example torsiometers [38]. However, 
large scale studies have used goniometers for establishing risk-exposure relationships without 
these modifications [6]. This suggests that errors from IMU:s (under static conditions) may lie 
within the limits of acceptance.  
 
Results 3.1.4 showed that RMSE of the IMU angles ranged from 4° (30 BPM) to 11° for (180 BPM). 
The corresponding RMSE for angular velocity ranged from 15°/s to 120°/s. A second repetition 
of the same protocol (Appendix D1, table D1.1), similarly showed errors proportional to velocity, 
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with an RMSE for angles of 8° (30 BPM) to 21° (180 BPM) and corresponding velocity errors from 
29°/s to 180 °/s. The angular errors were comparable to previous findings of the same model of 
IMU [17]. Using an Optical Motion Capturing (a golden standard), angle RMSE was found to be 
between 3.6° to 7.5°. The smaller errors in this study are likely a result of our method for sensor 
pairing (see below), IMU and goniometer signal misalignment [39], but possibly also due to the 
higher velocities, alternative reference methods and movements (wrist- flexion/extension ≥ 30 
BPM vs. trunk flexion/extension at 20 BPM). 
 
Manual inspection of the signals (figure 3.6) indicated that errors may have been a result of 
reoccurring signal distortions related to irregular IMU sampling. Bluetooth communication has 
demonstrated restrictions such as delay and packages loss [40] [41], a phenomenon detected in 
the IMU:s used in the thesis (figure D3, Appendix D). The timestamp paring (equation 2) did not 
consider these factors and instead used the arrival times of Bluetooth packages as timestamps. 
Independent sampling and offline-synchronization (using the sensors generated timestamps) 
gave increased accuracy for both angles (table 2.5) and angular velocities (table 2.6). This 
indicated that the combination of Bluetooth issues and choice of synchronization contributed to 
the error. Alternative offline timestamp identification and pairing such as the ones used in 
MATLAB should be investigated, as well as methods for real-time sensor time synchronization in 
the Android application, which have been described in the literature [41] [42].  
 
In the work-task test, both repetitions were presented in absolute distributions and percentiles, 
to resemble formats used in exposure studies [9]. The IMU and goniometer differences (2.8% & 
4.1%) in velocity classifications at 20°/s were not found to be statistically significant. However, 
this was based on only two repetitions, making the statistical power questionable and the risk of 
type-II errors non-negligible [43]. Furthermore, both repetitions were performed under semi-
controlled conditions under limited time-periods. This limits any certain conclusions to be drawn 
regarding the classification accuracy. Additionally, velocity estimations will be affected by the 
inaccuracies shown in the dynamic accuracy testing (3.1.4) even though this test featured angular 
velocities mainly above the 20°/s cut-off limit. Furthermore, accuracy under long-term 
measurements (and situations with biased motions) could be dependent on successfully handling 
the relative angle error (as discussed in 2.2.4). For long term measurements, a solution to the 
accumulating errors may be to derive angular velocity directly from the gyroscopes. 
 
Result 3.2.1 (fig. 3.9) indicated that the effect of the alternative 512 Hz sampling and processing 
of the EMG was small when classified according to suggested amplitude categories (Lund). This 
result agrees with earlier findings that lowering the sampling rate to 512 Hz has little impact on 
amplitude analysis of smoothed EMG waveforms [44],  however  this study used a 5-ms moving 
average filter as opposed to our 125ms-RMS. Also, our measurement was limited to ten minutes 
and only included a few contractions/movements, longer tests should be performed to further 
investigate this effect. This approach has the benefit of enabling real-time processing and 
presentation of the rms-EMG in the Android application (useful as feedback during e.g. a 
calibration procedure), and also reduces the volume of the data. The downside is the increased 
battery drain and possibly performance issues when running on different hardware4 [45].  
 
The concept of an automatic re-alignment method to compensate for poor horizontal IMU 
estimation has been described in literature for both elbow [46] and knee joints [18] [47] [48]. 
While this problem could also be addressed by investigating alternative algorithms for handling 
magnetic field disturbances, these typically require detailed knowledge of the sensors, filters and 
are complicated to implement [49] [50]. More so, focusing on optimizing individual sensor 
performance when a pair of IMU:s are used for differential angle measurement is probably futile, 
due to the unavoidable inter-sensor differences (including experienced inputs and fabrication 
effects). Anticipating, detecting and adjusting the error provides a more general solution. Results 

                                                        
4  Application tested on Huawei Honor8, Samsung Galaxy Tab A & Samsung Galaxy A3 2017 
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presented in 3.2.3 demonstrated one implementation of a generic re-realignment algorithm, 
using both IMU and EMG data. The test was however limited, using artificial tasks and controlled 
rests. Further tests on blinded subjects are required to determine additional resting-postures and 
to generate more strict realignment parameters.  
 
Regarding the database, the presented data-model (fig. 2.7) has benefits in terms of performance 
(avoiding frequent inserts and reads/updates of large documents) and has been suggested for 
storing sensor data in MongoDB [29]. Furthermore, it naturally supports rapid querying and 
block-processing of the data during readout (required by the limited free-trial runtime memory 
in the web application). However, it is also complicated to implement in the case of non-uniformly 
sampled signals where accurate document-splitting must consider a varying sample-rate, 
potentially making querying specific time periods from long measurements difficult. Other noSQL 
databases without the 16 MB BSON document size limitation [51] or traditional SQL-databases 
with more flexible queries [52] could also be investigated.   

 
The web-application presents the forearm load both in terms of time-trend signals as well as 
amplitude distributions and calculated action limits. Regarding the EMG, result 3.2.2 (fig. 3.12) 
suggest that rms-EMG can be classified according to the Lund action-limit for rest, and in 3.3.1 we 
show how this can be used in the web-application for visualizing 1h measurements (3.15 A), and 
the effect of periodic pauses (fig 3.15 B) on the muscular load classification. However, these 
results were obtained under controlled conditions of limited duration using simulated tasks. 
Factors including successful reference contractions, electrode placement [53], movement 
artefacts [54] and environmental noise [55] encountered during real-life ambulatory field-
measurements will affect the measurements to a great extent. This could require additional 
processing and filtering steps to be implemented prior to amplitude classification. Also, specific 
physiological phenomena like increased EMG amplitudes seen during fatigue makes the very 
concept of EMG-amplitude as a measure of muscle activation non-trivial [56]. For the angular 
velocity, because of the inaccuracy of the velocity classification (result 3.1.4) the presented 
distributions and action-limits are not accurate, even though the trend is correct and periods of 
high/low wrist movement can be grasped in a qualitative sense (fig. 3.15 A&B).  Also, the block-
processing of the data means 2% of the signal will be subjected to underestimation due to the 
settling time of the angular filter (see 2.1.5), this could however be improved by modifying the 
data-model to use documents of longer time-span. Given improvements in measurement 
accuracy, this type of application could serve as a practical quick-assessment tool for analysing 
measurements, not requiring technical expertise in engineering or signal processing. However, 
while this work focused on on-line data-visualization, access to the raw data for local analysis 
and/or more advanced processing should be considered in the future to accommodate the 
requirements of realistic measurements of longer duration. 

 

4.1. Limitations 
Limitations were established prior to development. These consisted of developing the prototype 

system using a pre-determined set of sensors models as described in 2.1.1 and 2.2.1 (see 

Appendix B & C for additional specifications). No large or quantitative validations were either to 

be performed. Lastly, for the online cloud storage services, freely-available services were used. 
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5. Conclusion 
A prototype system for measuring and visualizing forearm load using a smartphone, wearable 

sensors and IoT technology was developed in this work. Testing under controlled conditions 

indicated that muscular rest can be measured and classified according to suggested risk 

thresholds. The method of angular measurement was difficult to implement because of lacking 

inter-sensor alignment in the horizontal plane, as well as uncertainties in the Bluetooth protocol.  

Future work should focus on the IMU:s and look to further develop a method of correcting the 

relative angle error, as well as investigating accurate time synchronization of the two sensors. 

Alternatively, deriving angular velocities directly from the IMU gyroscopes could be investigated. 

With further work including improved accuracy and extended testing, the system could provide 

an easy-to-use measurement method in the field of ergonomics. This could make exposure 

quantification in the working environment more available, thereby lowering the risk for WRMD, 

reduce the associated financial cost, and above all, prevent individual suffering. 
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1.1. Introduction 
Sustaining healthy and ergonomical working environments can be a crucial step in 

maintaining employee wellbeing and efficiency. Work-related injuries and sickness can 

otherwise create continuous expense in the form worker absence and healthcare costs. In 

the UK alone, 137.3 million working days were reported lost in 2016 due to sickness or 

injury [1]. The figure is however, a part of a declining trend which was at its peak in 1995-

1999 with 180 million days lost per year [1]. To further prevent the expenses and 

discomfort generated by work-related sickness and injuries an understanding of its 

causes is necessary. A leading cause of worker absence is due to musculoskeletal 

disorders [1, 2, 3, 4, 5]. Work-related Musculoskeletal Disorders or WRMDs, can be 

defined as disorders concerning muscles, nerves, tendons, ligaments, joints, cartilage, blood 

vessels, or spinal disks in the neck, shoulder, elbow, forearm, wrist, hand, abdomen (hernia 

only), back, knee, ankle, and foot associated with exposure to risk factors” [2].  

During the year of 2016, a total of 30.8 million working days were lost in the UK due to 

WRMDs, which stands for 18 % of the total reports. Similar values can also be seen 

internationally [3, 5, 4], where in countries such as the US, WRMDs stood for 31% of the 

reports in 2015 [5]. Looking at the globally reported WRMDs, wrist and hand related 

reports are among the most prominent [3, 4]. In the US, wrist and hand disorders are the 

third most reported WRMDs [5], while in the UK they stand as the second most prominent 

[2]. With this high global prevalence of hand and wrist related WRMDs, awareness of the 

matter and its preventions is being raised. Preventing these disorders would lower the 

damages and costs that come from harmful working environments. However, due the 

wide variety of occupations and working environments, a better understanding of how 

wrists and hands are used is required.   

1.2. Wrist Ergonomics 

By following studies of wrist related complications in working environments, flexion and 

extension of the wrist has been shown to correlate with documented wrist related 

complaints [6]. The two actions are seen as a risk factors and are analyzed by ergonomists 

and researchers when investigating WRMD [6]. The human wrist is composed of proximal 

and distal carpal bones (carpals) that with carpal ligaments connect the radial and ulnar 

bones to the meta carpals (see figure 1). Muscular forces are perpetuated through 

muscular tendons alongside the median nerve inside of the carpal tunnel (see figure 2). 

Flexion and extension of the hand relative to the forearm is typically possible in the range 

of 100-140 degrees while abduction and adduction is typically possible in the range of 50-

60 degrees. Wrist-angle analysis is typically performed using a simplified model where 

the 3rd metacarpal bone (see figure 1) is set as the center of a coordinate system 

representing the hand as a rigid mass moving with respect to the forearm [7]. 
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Figure 1. Skeletal anatomy of the wrist [57] 

Repetitive movements in combination with high force have in addition to absolute wrist-

angles been shown to increase the risk of developing WRMD. The majority of repetitive 

motion injuries of the upper limb affect either the wrist or hand [6, 9]. Repetitive tasks 

have been described as a general risk factor for WRMD, even at light loads. [10]. 

Separating the effect of repetition and force is not trivial. However, there is agreement 

that the combination of high force and repetition carries an especially increased risk of 

WRMD [9, 10, 11].  Carpal tunnel syndrome is a specific disorder of the hand where the 

median nerve is compressed by increased pressure on the carpal tunnel (see figure 2).  

Substantial evidence suggests that repetitive flexion or extension together with a forceful 

grip are risk factors for developing carpal tunnel syndrome [12]. 

Forceful gripping has also been associated to WRMD of wrist and hand. Increased 

pressure on the carpal tunnel from heavy palmar loads have been demonstrated in 

cadaver studies, suggesting a possible cause [13]. Because grip force generally increases 

with external weight, it is therefore likely that higher external gripping loads could 

increase the risk factor for WRMD [10]. Much like griping actions, carpal tunnel syndrome 

as well as medial and lateral epicondylitis (Tennis Elbow), have also been associated with 

wrist flexion and extension [6, 10]. Ulnar and radial deviations of the wrist have been 

linked to carpal tunnel syndrome, tenosynovitis of the thumb abductors and lateral 

epicondylitis [10] and musculoskeletal disorders of the wrist in general [14]. Further 

developments include neurovascular disorders like reflex sympathetic dystrophy and 

Raynaud’s syndrome. The resulting symptoms may include muscular spasms and 

cramping of the forearm and hand [9]. There are also a number of non-specific conditions 

characterized by pain, discomfort and fatigue [9, 15]. 
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Figure 2. Strain exhibited on the median nerve during carpal tunnel syndrome [58]. 

Among the recent studies done on wrist ergonomics, a concern in the wrist angular 

velocities of workers have appeared. The studies demonstrate how angular velocities 

could be a reliable parameter for assigning risk groups [11]. Similar studies have shown 

that the velocity may even be a more reliable method compared to absolute angles, 

demonstrating a stronger correlation to WRMD. [6]. The combination of angular velocity, 

force and repetitiveness could be important parameters to investigate as they all correlate 

with the occurrence of wrist disorders. 

Among the different risk factors related to WRMDs in the wrist, an important factor to be 

taken into consideration is rest. Opposite to the previously mentioned correlation 

between WRMD and angle, velocity or force, increased muscular rest has demonstrated 

to decrease wrist related disorders [17].  When investigating the development of WRDMs, 

the amount of rest could therefore be included to further understand working 

environments. 

1.3. Quantifying Exposure 

Field methods used for quantifying exposures in ergonomics include questionnaires, 

video analysis and direct measurements [18]. Observational assessments are often 

performed without a systematic method which produce low-reliability and inaccurate 

estimates [19] causing ergonomists to often rate the same exposure differently among 

themselves and others [20]. For the wrist and hand specifically, observatory 

measurements are especially inaccurate [21] and direct measurement of force and 

velocity generally provides the most accurate method of quantifying exposure [18]. 

It was with the implementation of electronic measurement systems that consistent 

methods were developed [22]. In the current stage of development, electronic 

goniometers are generally used as the golden standard when measuring wrist motion 

[23]. Goniometers are devices mounted along the joint of interest which converts the 

mechanical bending to an electrical signal [24]. They allow wrist data to be sampled over 

an extended period of time, which can later be used in biomechanical models to estimate 

more complex measures like joint torques [10] and angular velocities [6].  
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However, limitations presented by the current electronic goniometer exists due to their 

size and weight [25]. This might affect the behavior of the subject being measured. Also, 

the device cost and the associated complexity of dataloggers and dedicated software have 

limited their use to research applications. There is a need for alternative measurement 

methods with small and wireless sensors, that are cheap and easy to use. 

Alternative methods for joint-angle measurements are optical systems that use visual 

markers placed on the body that are then tracked with cameras [26, 27]. The method 

accurately measures angles and movements with limited obstruction. However, the 

method restricts the subject to remain in the visual range of the cameras, and the visual 

markers must not be covered during movement [27]. Applying visual trackers in working 

environments could cause significant restrictions in working environments. Further 

alternatives such as inclinometers [28] or accelerometers [29] provide with wireless and 

small systems that measures the gravitational force of the earth. By positioning 3 

accelerometers orthogonal to each other, the sensors may detect pitch and roll rotations, 

represented in figure 3. These rotations are inclinations parallel to the gravitational field. 

However, rotations along the horizontal plane of the earth or yaw-rotations will remain 

undetected [30]. This limits the sensors use in places such as office environments with 

computer-related tasks requiring frequent rotations along a horizontal surface.  

 

By expanding the idea of accelerometers, Inertial Measuring Units(IMUs) that combine 

sensor data from several complementary sensors provide with a more versatile tracking 

option. Studies have demonstrated the accuracy of its use in joint angle measurements 

[31]. And with the implementation of MEMS (Micro-Electro-Mechanical Systems) sensors, 

the size of the units may also remain minimal, resulting in less movement restrictions on 

subjects [31, 32].  

 

Figure 3. Representations of possible rotations in a 3D plane [59]. 

 

1.4. Inertial Measurement Unit 

In an IMU, accelerometers, gyroscopes and magnetometers are integrated into one 

measuring system [34]. However, each individual sensor exhibit restrictions and become 
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unreliable in certain situations. The rotation of an IMU can be calculated by integrating 

the angular velocities generated from the gyroscopes [30]. However, with the use 

gyroscopes, a source of errors is included. Undesired shifts in the integration may produce 

a drift that builds up with prolonged use [35]. By including accelerometers that rely on a 

relatively constant parameter, the drift in pitch and roll generated by the gyroscopes can 

be corrected [34]. Yaw drift can be corrected by magnetometers that utilizes the magnetic 

flux from earth’s magnetic field. To properly correct the yaw drift of the gyroscope a static 

reference frame must be determined from the magnetic field [35]. However, unlike 

gravitational forces measured by accelerometers, the magnetic fields measured by 

magnetometers can be inconsistent [34]. This can be caused by being in proximity to 

certain materials and electrical equipment, and becomes especially problematic indoors 

[36].  

To correctly track rotations from IMU-data, the limitations of all sensors has to be 

considered. When forming the sensory information into orientations, inconsistent or 

contradicting readings may appear from the different sensors [34]. The fusion requires 

appropriate filters to be implemented to maintain a consistent and reliable output. 

Kalman filters are commonly implemented for this purpose [37]. These are recursive 

algorithms that can estimate the orientation based on a stochastic model, with the data 

from the IMU sensors as the input [36].   

Flexion-extension of a body joint can be estimated with a pair of IMUs located on each side 

of the joint [32]. To retrieve the angle between the sensors, one approach is to simply find 

the difference of the integrated angular rates of the two sensors. Other methods rely on 

estimates of the absolute orientation of the two sensors with respect to their reference 

frames. With known reference systems to both sensors, these orientations can then be 

transformed into a common reference system and the relative angle between them can be 

calculated [32]. The same methods could possibly be extended to movement in other 

anatomical planes, i.e. abduction/adduction and inversion/eversion. [32]. Similar 

methods have been used for 2-dimensional movements incorporating both 

flexion/extension and pronation/supination of the elbow joint were compensation 

mechanisms for magnetic field disturbances and sensor placements is incorporated [38].  

Additional studies  demonstrate the capabilities of Joint-angle measurements using 

several IMUs on the knee joint [39, 40] 

. 

1.5. Rotations in R3 

The sensory fusion in IMUs aim to provide estimates of the orientation of the device in 

3D-space. Three-dimensional orientations and rotations can be represented in different 

models [41]. Euler angles is a conceptually easy model to understand and represents 

complex rotations as a sequence of three elementary rotations [42]. However, Euler 

angles are of limited use when measuring unconstrained rotations. A mathematical 

singularity can occur in certain orientations leading to a loss of one degree of freedom 

[42]. This phenomenon is more commonly known as gimbal lock [43, 44]. In these cases 
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where Euler angles are insufficient, quaternions can be used instead. Quaternions avoid 

gimbal-lock by representing rotations using a four-dimensional parametrization [43]. 

Quaternions can be described as a generalization of the complex numbers, and can be 

expressed in the form [41]: 

q = q1 + (q2 i + q3 j + q4 k) 

where q1 is called the real- [45] or scalar-part [41] and (q2 I + q3 j +  q4 k ) is called the 

imaginary- [45] or vector-part [41]. Quaternions with a scalar-part equal to zero are 

called vector- [41] or pure-quaternions [42] and represent vectors in the R3-space made 

up by the complex numbers i, j and k [41].  
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Figure 2. R3-rotations can be described by Euler-angles(left) [60] as well as axis-angle representation (right) [61]. 

 

Euler’s rotation theorem states that any rotation can be described with an angle (𝜔) and 

a respective axis of rotation (see figure 4b).  With this, a given quaternion q = cos(
𝜔

2
)+ a 

sin(
𝜔

2
), where ||a|| = 1, the rotation of a vector x ∈ R3 to a vector x’∈ R3 is described by the 

operation: 

 

x’= q ⨂ x ⨂ q* 

where ⨂ describes quaternion-multiplication and q* is the conjugate of q [62]. This 

operation is equivalent to axis-angle representation of rotation R (𝜔, 𝒂) describing a 

rotation 𝜔 along the rotation-axis a [45]. Using the same formalism, composite rotations 

can be described by [42]: 

𝒒𝐴
𝐶  = 𝒒𝐵

𝐶   ⨂  𝒒𝐴
𝐵  

where 𝑞𝐴
𝐶  denotes the rotation from A to C.  

In summary, quaternions are a set of four-dimensional numbers and associated 

operations that provide a singularity free, computationally efficient and accurate [41] way 

of representing arbitrary rotations in 3D space. 

1.6. Electromyography 

To estimate the force experienced by the body electromyography (EMG) can be used. EMG 

measures the electric activity of muscles and have been used in the field of ergonomics 

for over 50 years [48]. 

Force is believed to be a risk factors in developing WRMD, and has been estimated using 

various techniques including dynamometers, direct measurement of weight of objects [9], 

strain gauges and even thermography [10]. Muscle activity measured with EMG has both 

been suggested as a relevant measure on its own [11] but has also been used as estimation 

of force to due to the correlation between the two parameters [18]. The information from 

the EMG can thus be interpreted both from a biomechanical- (forces and torques) or 

physiological (activation and fatigue) point of view, both of which are relevant in 

ergonomics [48].  
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When force is the desired parameter a calibration curve must be established between the 

signal amplitude and a known force, a procedure which involves several sources of error 

[48]. The relationship between the EMG-amplitude and the generated force is also 

influenced by a number of different factors including limb position, posture and working 

techniques  [11, 49]. 

 

Needle EMG pinpointing specific muscle is practically challenging, and so surface-

electrode EMG is used instead. Using surface-electrodes has some possible sources of 

error including electrode positioning relative to the muscle of interest, and skin stretching 

[11].  

Muscle activity is commonly represented by the Root-Mean-Square amplitude of the EMG-

waveform (rms-EMG), typically using time-windows in the range 100-400 milliseconds 

[14, 18, 48]. Spectral parameters can also be derived for analysis in the frequency domain 

[48]. 

Unlike orientations retrieved from IMU sensors, the readings from the EMG are not 

normalized and the signal amplitude can vary considerably. A normalization procedure is 

necessary. Percent of Maximum Voluntary Contraction (% MVC) is often used in as a 

reference for EMG-data for an individual [14, 18]. For example, rms-EMG at 15 %MVC 

have been used as the mean acceptable contraction intensity for work during extended 

time [11] and muscular rest has been defined as rms-EMG signals below 0.5 % of MVC [6]. 

This rest-measure has been applied to EMG-signals from the forearm extensor muscles to 

quantify wrist stress in many different occupations [6, 50]. 

 

1.7. Cloud computing 

The National Institute of Standards and Technology (NIST) defines cloud computing as:  

“…a model for enabling ubiquitous, convenient, on-demand network access to a shared pool 

of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction” [51]. 

The concept of cloud computing can be further divided into the three different service 

models Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-

a-Service (IaaS) [51, 52]. The SaaS-model provide access to pre-built online applications 

and or databases, typical examples are public applications like email or social networks 

[53], whereas the IaaS-model only provides the hardware resources (network, storage 

etc.) with all software development and configuration left to the customer [52]. IaaS is 

provided by companies like Amazon, IBM and Microsoft [53].  

The PaaS-model offers a computing platform and tools for clients to develop their own 

applications while the management of the underlying platform and infrastructure is 
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maintained by the provider. Using cloud-computing and a PaaS for application 

development can be beneficial in terms of reduced costs and complexity from not having 

to manage the underlying IT-structure [54, 55]. Also, using readily available software 

components provided by the PaaS allows faster construction of new applications [52].  

1.8. Internet of Things 

The Internet of Things (IoT) is a rapidly emerging paradigm in information technology 

describing the connection of physical and virtual things to global networks [48] and 

communication among smart objects [49]. The use IoT technology in healthcare will likely 

have substantial effect on society [50], and opens up the possibility of things like 

continuous pervasive monitoring using networks of sensors connected to the cloud [51]. 

The general architecture of sensor-based IoT systems can be described by four layers. The 

sensing layers consist of sensors and wearable devices for collecting data. The network 

layer is responsible for sensor interconnectivity and collection and transmission of the 

data. The processing layer handles computation of the collected data and the application 

layer provides the service and interface to the end user. [48]. An IoT platform combining 

wearable technologies, data analytics and ergonomics could promote a healthy working 

life by allowing pervasive monitoring, early detection and warnings as well as risk 

assessments and self-management by the individual employee [52].  

1.9. IoT Communication 

Traditional communication protocols typically do not adhere to the constrained 

requirements on IoT devices including small computational capabilities, low power 

consumption [53] and large-systems with decentralized communication and a high 

degree of scalability [49]. IoT protocols typically support a publish-subscribe pattern 

were a sender publishes messages to a server, which forwards messages to a receiver 

subscribing to the server. This is in contrast to the request-response pattern often used 

for communication on the web [54]. There are a number of different protocols used for 

IoT communication, with three of the most popular ones being COAP, MQTT and AMQP 

[53, 54]. MQTT is a lightweight opensource protocol built on top of the standard internet 

protocol TCP [55] designed to be simple and easy to implement [56]. It uses the publish-

subscribe model and supports different levels of quality of service for choosing the 

transmission-reliability. MQTT have found extensive use in IoT application and is used 

and is supported and used by a large number of organizations [63].  

JavaScript Object Notation (JSON) is a popular data format used on the web [65]. JSON has 

largely replaced XML on the web because of the smaller overhead and the fact that it is 

natively supported by the JavaScript language used by web-browsers [66]. JSON stores 

data as simple key-value pairs which can be a number of different types including 

numbers, strings arrays and other JSON-documents. This format makes JSON easily 

readable by both machines and humans [65]. 
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Figure 3. Example of JSON-formatted data. A key-value pair (name), 

a String-array (hobbies) and a document (vehicles) with subdocuments. 

 

1.10. Data Storage 

With the development of the IoT technologies discussed above the need for storing large 

amounts of varying data increase rapidly [67]. Data has traditionally been stored in 

relational databases. These are characterized by well-structured data and fixed storing 

schema, based on data-models originally developed in the 1970’s [68]. Relational 

databases typically store data as a set of tables of rows and columns and allows access 

and manipulation of data using Structured Query Language (SQL) [57]. However, because 

of the underlying design principle of many relational databases, favoring consistency and 

availability over partitioning of data [58], they are often restricted in achieving efficient 

processing, parallelization and scalability needed in facing the challenges of massive and 

diverse amounts of data associated with modern IoT applications. [59, 60].  

NoSQL is a term applied to a type of database of growing popularity, trying to solve some 

of these problems [58]. NoSQL databases are generally unstructured in the sense that they 

do not have a or enforce a fixed schema [59, 61]. NoSQL databases are characterized by 

their good ability to scale horizontally, meaning that capacity can be increased through 

addition of additional nodes instead of increasing the resources of a single node [62]. This 

is implemented using techniques like sharding were data is divided into individual 

partitions and replication were the same data is available on several servers in order to 

achieve increased throughput and availability [61]. Horizontal scaling make NoSQL 

databases well suited for IoT and cloud computing applications [60] although it should be 

pointed out that are some relational databases how also support these features [61]. 

Furthermore the flexible data schema, good performance [60] ease of use without the 

need to learn SQL [59], fast and easy deployment to a cluster [61] and absence of 

requirements of predefining relational model or datatypes [63] makes NoSQL databases 

a good alternative for prototyping IoT applications.  

{ 
“name”: “Axel”, 
 
“hobbies”: [“Fishing”, “running”, “reading”], 
 
“vehicles”:{ 
        “bicycle”:{ 
            “Tires”: 2, 
            “frame”: “26 inch”
                           }, 
        “boat:{ 
            “sails”: 2, 

“length”: 30 
                   }        
} 
} 
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Figure 4. Simplified example of a different database types. 

Left: A Relational database with two different tables. Right: A document database with one collection. 

A document in a NoSQL database can be considered equivalent to a row in a relational database [66]. 

 

NoSQL databases can be divided into the four main groups including key-value-, column-

, graph and document databases [59, 61]. Document databases offer the most general 

model of storage [62]. Documents are typically JSON-formatted sets of data of arbitrary 

complexity and content [60]. A document can contain single values, lists and sub-

documents, and the type of data and schema can be changed dynamically. Documents of 

similar content are grouped into collections [62]. MongoDB is one example of an open-

source NoSQL document-databases that stores data in the form of key-value pairs using 

BSON-format (binary-JSON) [58].  

  

Students Table 

Key Name Age School Grades 

123 Axel 25 KTH * 

456 Danie 23 KTH * 

 

Grades Table 

Key Course A Course B Course C 

123 5 5 5 

456 1 3 1 

 

Student collection 

Key value 

 123 Name: Axel 

Age: 25 

School: KTH 

Grades:   

    Course A: 5 

    Course B: 5 

    Course C: 5  

456 Name: Daniel 

Age: 23 

School: KTH 

Grades:   

    Course A: 1 

    Course B: 3 

    Course C: 1 
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Appendix B: LPMS-B2 Datasheet 
 

 

  

 

 

 



  

 

 
 

 

 

 

 

 

 

 



  

 

Appendix C: Shimmer3 Datasheet 
 

 

  



  

 

 

 

 

 

 

 

 



  

 

Appendix D: Additional test data 
D1: First repetition of IMU dynamic test  

Additional results from the first repetition of IMU dynamic test performed in 30, 60 120 and 180 BPM. 

 

Figure D1.1: Flexion-extension angles measured with IMU:s (blue) and goniometers (red)  
for 30  BPM.  Angle error in black. 

 
Figure D1.2: Flexion-extension angles measured with IMU:s (blue) and goniometers (red)  

for 60  BPM.  Angle error in black. 
 

  
Figure D1.3: Flexion-extension angles measured with IMU:s (blue) and goniometers (red)  

for 120 BPM. Angle error in black. 
 

  
Figure D1.4: Flexion-extension angles measured with IMU:s (blue) and goniometers (red)  

for 180 BPM. Angle error in  black.  

 

 

 

 



  

 

Table D1.1: RMSE for angles and angular velocity’s, compared to goniometer.  
 

 
Test sequence 

RMSE 

Angle [°] Angular velocity [°/sec] 

30 BPM 8° 29 

60 BPM 12° 55 

120 BPM 17° 125 

180 BPM 21° 180  

 

 
D2: Second repetition of IMU dynamic test 

Additional results from the second repetition of IMU dynamic test performed in 30, 60 120 and 180 BPM. 

 
 

Figure D2.1: Flexion-extension angles measured with IMU:s (blue). 
Separate sampling and post-processing of IMU:s (red) and goniometer (black) for 30 BPM.  

 

 

Figure D2.2: Flexion-extension angles measured with IMU:s (blue), 
separate sampling and post-processing of IMU:s (red) and goniometer (black) for 60 BPM. 

 

 

Figure D2.3: Flexion-extension angles measured with IMU:s (blue),  
separate sampling and post-processing of IMU:s (red) and goniometer (black) for 120 BPM. 

  



  

 

  
Figure D2.4: Flexion-extension angles measured with IMU:s (blue),  

separate sampling and post-processing of IMU:s (red) and goniometer (black) for 180 BPM. 
 
 

D3: Bluetooth sample loss 

 
 

Figure D3: Bluetooth packet-losses. 
Sampling frequency from the sample-pairing (blue) and independent sampling of  the sensors (red). 

Drops from 25-Hz line suggests Bluetooth-packages are lost .  
  



  

 

D4: FIR-filter for angles 

 
function y = Lpass(x) 

%HPASS Filters input x and returns output y. 

  

% MATLAB Code 

% Generated by MATLAB(R) 9.2 and the DSP System Toolbox 9.4. 

% Generated on: 05-Mar-2018 15:18:02 

  

%#codegen 

  

% To generate C/C++ code from this function use the codegen command. Type 

% 'help codegen' for more information. 

  

persistent Hd; 

  

if isempty(Hd) 

     

    % The following code was used to design the filter coefficients: 

    % % FIR Window Lowpass filter designed using the FIR1 function. 

    % 

    % % All frequency values are in Hz. 

    % Fs = 20;  % Sampling Frequency 

    % 

    % N    = 31;       % Order 

    % Fc   = 5;        % Cutoff Frequency 

    % flag = 'scale';  % Sampling Flag 

    % 

    % % Create the window vector for the design algorithm. 

    % win = blackman(N+1); 

    % 

    % % Calculate the coefficients using the FIR1 function. 

    % b  = fir1(N, Fc/(Fs/2), 'low', win, flag); 

     

    Hd = dsp.FIRFilter( ... 

        'Numerator', [0 -5.82333046693299e-05 0.000260721291797632 ... 

        0.000673456519917491 -0.00139865239852817 -0.00257836311618485 ... 

        0.00439825403035122 0.00709511628134253 -0.0109754397743494 ... 

        -0.0164604929940812 0.0241940942482038 0.0353109415298182 ... 

        -0.0521835368043016 -0.0809791405480785 0.144454205113808 ... 

        0.448247069924954 0.448247069924954 0.144454205113808 ... 

        -0.0809791405480785 -0.0521835368043016 0.0353109415298182 ... 

        0.0241940942482038 -0.0164604929940812 -0.0109754397743494 ... 

        0.00709511628134253 0.00439825403035122 -0.00257836311618485 ... 

        -0.00139865239852817 0.000673456519917491 0.000260721291797632 ... 

        -5.82333046693299e-05 0]); 

end 

  

y = step(Hd,double(x)); 

 



  

 

D5: Magnetometer field environment test – Positions 

Static positions used for test 2.1.3, result shown in part 3.1.2 (fig. 3.2 & 3.3) 

 

    

  

 

Position 1: Horizontal on table 
Position 2: Horizontal in bookshelf 
Position 3: Horizontal on countertop 
Position 4: Vertical (again seat back) 
Position 5: Horizontal in chair 

2 

4 

5 

1 

3 
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