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REPRESENSIBILITY OF CONES OF MONOTONE FUNCTIONS

IN WEIGHTED LEBESGUE SPACES AND EXTRAPOLATION

OF OPERATORS ON THESE CONES

E. I. BEREZHNOĬ AND L. MALIGRANDA

Abstract. It is shown that a sublinear operator is bounded on the cone of monotone
functions if and only if a certain new operator related to the one mentioned above is
bounded on a certain ideal space defined constructively. This construction is used to
provide new extrapolation theorems for operators on the cone in weighted Lebesgue
spaces.

§1. Introduction

The role of sharp estimates for classical operators in harmonic analysis and related
fields is well known. In the recent time, in connection with new analytic problems, it
has become fashionable to estimate such operators on certain cones in a given space
rather than on the entire space (see, e.g., [1, 4, 17, 20, 27, 28, 36, 38, 40, 41]). Next, for
operators with positive kernels the Schur extrapolation theorem is also well known (see,
e.g., [25]), saying that an integral operator Tx(t) =

∫
k(t, s)x(s) ds, k(t, s) ≥ 0 is bounded

on Lp if and only if there exists a positive function u(t) finite a.e. and such that the
operator is bounded in the couples T : L∞

u → L∞
u and T : L1

v → L1
v, where v = u1/p−1.

Since various problems of analysis have resulted in a gradually increasing interest to
extrapolation theorems, see [5, 7–9], it seems to be natural to pass from spaces to cones
in the extrapolation theory for Lp.

The present work was planned as early as in the beginning of the 2000s. A short
summary of the main results was given in [10]. The central result of the paper consists of
the verification of the fact that, basically, the cone K(↓) ∩ Lp

v in the Lebesgue space Lp
v

is generated by the linear operator Qx(t) =
∫∞
t

x(s) ds of integration. For the operators
T in the class Sub(α, β, γ, ↓) (which is described below and contains all subadditive
operators), this makes it possible to prove the equivalence T : K(↓) ∩ Lp

v → X ⇔
TQ : Lp

sv → X. Here the weight sv is defined constructively in terms of the weight function
v (see Theorem 1). This approach distinguishes our paper from the well-known paper [16],
which is devoted to estimates of classical operators in the couple (K(↓)∩Lp

v, L
p
w) implied

by certain estimates in couples of weighted Lebesgue spaces.
Our approach allows us to apply the entire technique of sharp estimates on weighted

Lebesgue spaces to the derivation of sharp estimates of operators on cones. In particular,
these constructions have led us to a new extrapolation theorem for operators in the class
Sub(α, β, γ, ↓) that are defined on cones included in K(↓) ∩ Lp

v in a weighted Lebesgue
space. This extrapolation theorem is new even for the Hardy classical operator.
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§2. Preliminaries

Let S(μ) = S(R+,Σ, μ) (R+ = (0,+∞)) denote the space of measurable functions
x : R+ → R, let χ(D) stand for the characteristic function of a set D, and let ‖x |X‖
be the norm of an element x in X. Recall that a Banach space X = (X, ‖ · |X‖) of
measurable functions is called an ideal space (see [24,26]) if x ∈ X and ‖x |X‖ ≤ ‖y |X‖
whenever x is measurable and |x(t)| ≤ |y(t)| a.e. on R+ for some y ∈ X. As usual,
the symbol Lp (1 ≤ p ≤ ∞) denotes the Lebesgue space, and the exponent conjugate to
p ∈ [1,∞] is denoted by p′: 1

p + 1
p′ = 1.

Let v : R+ → R+ be a positive function (a weight). If X is an ideal space, we denote
by Xv the new ideal space whose norm is defined as follows: ‖x |Xv‖ = ‖vx |X‖. In
particular, the norm in Lp

v (1 ≤ p < ∞) has the form

‖x |Lp
v‖ =

(∫ ∞

0

|x(t)v(t)|p dt
)1/p

,

which differs somewhat from the variant usually adopted (the latter presumes the incor-
poration of the weight in the measure).

For every ideal space X, the dual space X ′ is well defined. It consists of bounded
linear functionals on X representable by integrals; the norm of every such functional is
defined by ‖y |X ′‖ = sup

{ ∫
R
y(t)x(t) dt : ‖x |X‖ ≤ 1

}
. If v is a weight and X is an

ideal space, it can easily be verified that

(1) (Xv)
′ = (X ′)1/v.

Let X be an ideal space in S(μ), and K a cone in S(μ). The symbol K ∩X denotes
the intersection of K with X+.

Definition 1. We denote byK(↓) the cone in S(μ) consisting of monotone nonincreasing
functions x : R+ → R+, i.e., x(t+ h) ≤ x(t) for h ≥ 0. Similarly, K(↑) denotes the cone
of monotone nondecreasing functions in S(μ).

Now, we describe the classes of operators to be treated in the paper.
We denote by Sub(+) the class of sublinear operators T defined on an ideal space X

or on S(μ) and taking values in S(μ). For T ∈ Sub(+), the adjoint operator may fail
to exist, but its role can be played by the associated operator T ′ ∈ Sub(+) defined as
follows.

For T ∈ Sub(+), an operator T ′ ∈ Sub(+) is said to be associated with T in the scale
Lp if for all 1 ≤ p ≤ ∞ and all weight functions u, the operator T : Lp

u → Lp
u is bounded

if and only if T ′ : Lp′

1/u → Lp′

1/u is also bounded and, moreover,

C−1‖T |Lp
u → Lp

u‖ ≤ ‖T ′ |Lp′

1/u → Lp′

1/u‖ ≤ C‖T |Lp
u → Lp

u‖

with some constant C > 0 independent of p and u.
An associated operator is not uniquely determined. If T is linear, we may take the

adjoint T ∗ for the role of an associated operator T ′. Next, for a linear operator T , the
operator x �−→ |Tx| is sublinear and possesses no adjoint, but the operator T ′x = |T ∗x|
is associated with it. If T ∈ Sub(+) and a linear operator T1 is given, then the role of
operators associated with the compositions TT1 and T1T can be played by (T1)

∗T ′ and
T ′(T1)

∗. Thus, the set T, T ′ ∈ Sub(+) is a two-sided ideal with respect to composition
with bounded linear operators.

Now, we extend the class Sub(+).

Definition 2. We say that an operator T : X ∩ K(↓) → Y belongs to the class
Sub(α, β, γ, ↓), (α ≥ 1, β > 0, γ > 0) if
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a) for every x, y ∈ X ∩K(↓) we have

‖T (y + x) |Y ‖ ≤ α(‖Ty |Y ‖+ ‖Tx |Y ‖);
b) for every x ∈ X ∩K(↓) and every λ ∈ R we have

‖T (λx) |Y ‖ = |λ|‖Tx |Y ‖;
c) for every x ∈ X ∩K(↓) we have

inf
{
‖Ty |Y ‖ : y(t) ≥ βx(t) : y ∈ X ∩K(↓)

}
≥ γ‖Tx |Y ‖.

It is straightforward from the definition that every operator belonging to Sub(+)
belongs also to Sub(↓). To see this, it suffices to put α = 1, choose a positive number β
arbitrarily, and define γ by γ = max{1, 1

β }.
For T ∈ Sub(α, β, γ, ↓), we can define an operator T ′ associated with it in the scale

Lp by analogy with the case of T ∈ Sub(+).
The proof of the following lemma is an easy consequences of the definitions.

Lemma 1. (a) Suppose that T ∈ Sub(α, β, γ, ↓) and δ ∈ (0,∞). Then
(a) if δ > 1, then T ∈ Sub(α, δβ, γ, ↓);
(b) if δ < 1, then T ∈ Sub(α, δβ, 1δγ, ↓).

Since precise values of the constants are irrelevant in the present paper, we introduce
the notation Sub(↓) for the following class of operators:

Sub(↓) =
⋃

β,γ>0

( ⋃
α≥1

Sub(α, β, γ, ↓)
)
.

We present an example showing that Sub(↓) is much wider than Sub(+).
Fix a monotone increasing sequence {ki}∞1 of positive integers; let k1 > 4. We intro-

duce a function w : [0,∞) → R+. On each interval [i, i+ 1) it is given by

w(t) =

{
1, for t ∈ [i− 1, i− 1

ki
),

−ki

4 , for t ∈ [i− 1
ki
, i),

i = 1, 2, . . .

Now, we define a functional f by the formula

f(x) =

∫ ∞

0

w(s)x(s) ds.

Then for every x ∈ K(↓) we have∫ i

i−1

w(s)x(s) ds =

∫ i− 1
ki

i−1

w(s)x(s) ds+

∫ i

i− 1
ki

w(s)x(s) ds

≥
∫ i− 1

ki

i−1

x(s) ds− ki
1

4ki
x
(
i− 1

ki

)

≥
∫ i− 1

2

i−1

x(s) ds ≥ 1

2

∫ i

i−1

x(s) ds.

This inequality shows that∫ ∞

0

x(s) ds ≥
∫ ∞

0

w(s)x(s) ds = f(x) =

∞∑
i=1

∫ i

i−1

w(s)x(s) ds

≥ 1

2

∞∑
i=1

∫ i

i−1

x(s) ds =
1

2

∫ ∞

0

x(s) ds
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for every x ∈ K(↓). But now, if y ∈ K(↓) and y(t) ≥ βx(t) for a.e. t, then, applying the
last inequality, we obtain

f(x) ≤
∫ ∞

0

x(s) ds ≤ 1

β

∫ ∞

0

y(s) ds ≤ 2

β
f(y).

Thus, the functional f constructed above belongs to Sub(1, β, 2
β , ↓). On the other hand,

since limi→∞ ki = ∞, we see that there is no nonnegative function w0 having the property
that the functionals

f(x) =

∫ ∞

0

w(s)x(s) ds, f0(x) =

∫ ∞

0

w0(s)x(s) ds

are equivalent on the cone of nonnegative functions. Thus, the functional f is not equiv-
alent to any functional f0 belonging to Sub(+).

Below we shall often use the classical integral operators given by the following formulas
on their natural domains:

Px(t) =

∫ t

0

x(s) ds, Qx(t) =

∫ ∞

t

x(s) ds.

The next result about the boundedness of these operators in weighted (Lp−Lq)-spaces
is well known (see [28, 35] and [27]).

Lemma 2. (a) Let 1 ≤ p ≤ q ≤ ∞. Then the operator P : Lp
v → Lq

w is bounded if and
only if

(2) sup
t>0

∥∥∥∥1vχ[0,t] |Lp′
∥∥∥∥‖wχ[t,∞) |Lq‖ < ∞.

The operator Q : Lp
v → Lq

w is bounded if and only if

(3) sup
t>0

∥∥∥∥1vχ[t,∞) |Lp′
∥∥∥∥‖wχ[0,t] |Lq‖ < ∞.

(b) Let 1 < q < p < ∞, 1
r = 1

q −
1
p . Then the operator P : Lp

v → Lq
w is bounded if and

only if

(4)

(∫ ∞

0

(∥∥∥∥1vχ[0,t] |Lp′
∥∥∥∥
p′/q′

‖wχ[t,∞) |Lq‖
)r

v(t)−p′
dt

)1/r

< ∞.

The operator Q : Lp
v → Lq

w is bounded if and only if

(5)

(∫ ∞

0

(∥∥∥∥1vχ[t,∞) |Lp′
∥∥∥∥
p′/q′

‖wχ[0,t] |Lq‖
)r

v(t)−p′
dt

)1/r

< ∞.

(c) If 1 = q < p < ∞, we have r = p′. Therefore, formula (4) should be understood in
the following way:

(6)

(∫ ∞

0

‖wχ[t,∞) |L1‖p′
v(t)−p′

dt

)1/p′

< ∞.

Similarly, a limit passage in (5) yields

(7)

(∫ ∞

0

‖wχ[0,t] |L1‖p′
v(t)−p′

dt

)1/p′

< ∞.

(d) If 1 ≤ q < p = ∞, formula (4) becomes

(8)

(∫ ∞

0

(
w(t)

∥∥∥∥1vχ[0,t] |L1

∥∥∥∥
)q

dt

)1/q

< ∞,
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and inequality (5) transforms to

(9)

(∫ ∞

0

(
w(t)

∥∥∥∥1vχ[t,∞) |L1

∥∥∥∥
)q

dt

)1/q

< ∞.

§3. Representation of cones in weighted Lp
-spaces

We begin with the statements of two main results (Theorems 1 and 2), which constitute
a principal tool for the study of operators belonging to Sub(↓) on cones. We begin with
the case where 1 ≤ p < ∞.

Theorem 1. Fix a number 1 ≤ p < ∞ and a weight function v such that

(10)

∫ t

0

v(s)p ds < ∞

for every t ∈ R+ and

(11)

∫ ∞

0

v(s)p ds = ∞.

We introduce a new weight function sv, putting

(12) ‖vχ[0,t] |Lp‖
∥∥∥∥1

sv
χ[t,∞) |Lp′

∥∥∥∥ ≡ 1.

Then
(a) Q((Lp

sv)+) ⊂ K(↓) ∩ Lp
v and, moreover, for every x ∈ (Lp

sv)+ we have

‖Qx |Lp
v‖ ≤ ‖x |Lp

sv‖;
(b) for every x ∈ K(↓) ∩ (Lp

v)+ and every ε > 0 there exists xε ∈ (Lp
sv)+ such that

(13) ‖xε |Lp
sv‖ ≤ 16(1 + ε)‖x |Lp

v‖
and

(14) Q(xε)(t) ≥
1

8
x(t)

for a.e. t > 0.

The proof of Theorem 1 will be given in the last section of the paper. Here we comment
on its assumptions and show some applications.

The assumption (10) says that for every t > 0 the characteristic function χ[0,t) sat-
isfies the condition χ[0,t) ∈ K(↓) ∩ Lp

v, i.e., the cone K(↓) ∩ Lp
v is nondegenerate. The

assumption (11) says that every x ∈ K(↓) ∩ Lp
v satisfies limt→∞ x(t) = 0. It should be

noted that if
∫∞
0

v(s)p ds < ∞, then for p ∈ [1,∞) relation (12) must fail as t → +0 or
as t → ∞.

Relation (12) for sv can be expanded as follows:

(15) sv(t) =
(p− 1)1/p

′

v(t)p−1

∫ t

0

v(s)p ds, p > 1, sv(t) =

∫ t

0

v(s) ds for p = 1.

Now we present a series of corollaries to Theorem 1.

Corollary 1. Let 1 ≤ p ≤ q ≤ ∞ (p �= ∞), and let the weight function v satisfy
conditions (10), (11). Then the embedding K(↓) ∩ (Lp

v)+ ⊂ (Lq
w)+ (equivalently, the

inequality

(16) ‖x |Lq
w‖ ≤ C1‖x |Lp

v‖
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550 E. I. BEREZHNOĬ AND L. MALIGRANDA

for every x ∈ K(↓) ∩ (Lp
v)+) occurs if and only if

(17) sup
t>0

‖wχ[0,t] |Lq‖
‖vχ[0,t] |Lp‖ = C2 < ∞.

Proof. The necessity of condition (17) follows because χ[0,t] ∈ K(↓) ∩ (Lp
v)+. To prove

sufficiency, we use Theorem 1: condition (16) is fulfilled if and only if

(18) ‖Qx |Lq
w‖ ≤ C3‖x |Lp

sv‖
for every x ∈ (Lp

sv)+, where the weight function sv is defined in (12). Applying (17) and
(12), we obtain

∞ > C2 = sup
t>0

‖wχ[0,t] |Lq‖
‖vχ[0,t] |Lp‖ = sup

t>0
‖wχ[0,t] |Lq‖

∥∥∥∥1
sv
χ[t,∞) |Lp′

∥∥∥∥.
The last inequality and Lemma 2 yield (18). �

Proofs of Corollary 1 based on different ideas can be found in the papers by Sawyer
(see [36, Remark (i), p. 148]), Stepanov (see [41, Proposition 1(a)]), Carrro and Soria
(see [14, Corollary 2.7]), and Heinig and Maligranda (see [20, Proposition 2.5(a)]). The
structure of the cone K(↓)∩Lp

v considered in the Lorentz quasi-Banach space Λp,vp was
also treated in [22].

Corollary 2. Let 1 ≤ q < p < ∞, 1
r = 1

q − 1
p , and let a weight function v satisfy

conditions (10) and (11). Then the embedding

(19) K(↓) ∩ (Lp
v)+ ⊂ (Lq

w)+

or, equivalently, the relation

‖x |Lq
w‖ ≤ C1‖x |Lp

v‖ for every x ∈ K(↓) ∩ (Lp
v)+,

occurs if and only if

(20) C4 :=

(∫ ∞

0

(
‖wχ[0,t] |Lq‖

)r‖vχ[0,t] |Lp‖−pr/qvp(t) dt

)1/r

< ∞.

Proof. Condition (19) is fulfilled if and only if the identity operator I maps boundedly
the cone K(↓) ∩ Lp

v to the cone (Lq
w)+. We show that the latter is equivalent to the

following relation for Q:

(21) ‖Q |Lp
sv → Lq

w‖ < ∞.

To see that (21) suffices, we apply (13) and (14):

sup
{
‖x |Lq

w‖ : x ∈ K(↓) ∩ Lp
v & ‖x |Lp

v‖ ≤ 1
}

≤ 8 sup
{
‖x |Lq

w‖ : x ≤ Qxε & ‖xε |Lp
sv‖ ≤ 16(1 + ε)

}
.

The necessity of (21) follows from (12)–(14):

‖Q |Lp
sv → Lq

w‖ = ‖I(Q) |Lp
sv → Lq

w‖ ≤ ‖Q |Lp
sv → Lp

v‖ ‖I |K(↓) ∩ Lp
v → Lq

w‖.
By (5), condition (21) is equivalent to the inequality(∫ ∞

0

(∥∥∥∥1
sv
χ[t,∞) |Lp′‖p′/q′‖wχ[0,t] |Lq

∥∥∥∥
)r

sv(t)−p′
dt

)1/r

< ∞

or

(22)

(∫ ∞

0

(
‖wχ[0,t] |Lq‖ ‖vχ[0,t] |Lp‖−p′/q′

)r(− d

dt
‖vχ[0,t] |Lp‖−p′

)
dt

)1/r

< ∞.
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Since

− d

dt
‖vχ[0,t] |Lp‖−p′

= − d

dt

(∫ t

0

vp(s) ds

)(1−p′)

= (p′ − 1)

(∫ t

0

vp(s) ds

)−p′

vp(t) = (p′ − 1)‖vχ[0,t] |Lp‖−pp′
vp(t),

we see that (22) is a consequence of the relations(∫ ∞

0

(
‖wχ[0,t] |Lq‖ ‖vχ[0,t] |Lp‖−p′/q′

)r(− d

dt
‖vχ[0,t] |Lp‖−p′

)
dt

)1/r

=

(
(p′ − 1)

∫ ∞

0

‖wχ[0,t] |Lq‖r‖vχ[0,t] |Lp‖−(p′p+ p′r
q′ )

vp(t) dt

)1/r

=

(
(p′ − 1)

∫ ∞

0

‖wχ[0,t] |Lq‖r‖vχ[0,t] |Lp‖−pr/qvp(t) dt

)1/r

= (p′ − 1)1/r · C4. �

Other proofs of Corollary 2 can be found in the papers by Sawyer (see [36, Remark (i),
p. 148]) and Stepanov (see [41, Proposition 1(b)].

Corollary 3. Let 1 ≤ q < p < ∞, 1
r = 1

q − 1
p , and suppose that a weight function v

satisfies conditions (10), (11) for p and a weight function w satisfies conditions (10),
(11) for q. Then

K(↓) ∩ (Lp
v)+ �= K(↓) ∩ (Lq

w)+,

that is, for every v, w with (10) and (11) these two cones do not coincide.

Proof. Suppose the contrary, i.e., let

K(↓) ∩ (Lp
v)+ = K(↓) ∩ (Lq

w)+.

Then, by Corollary 2, the embedding K(↓)∩(Lp
v)+ ⊂ (Lq

w)+ is equivalent to (21) or (22):

(23)

(∫ ∞

0

(
‖wχ[0,t] |Lq‖ ‖vχ[0,t] |Lp‖−p′/q′

)r(− d

dt
‖vχ[0,t] |Lp‖−p′

)
dt

)1/r

< ∞.

Next, by Corollary 1, the embedding K(↓) ∩ (Lp
w)+ ⊂ (Lq

v)+ is equivalent to (17):

(24) sup
t>0

‖vχ[0,t] |Lp‖
‖wχ[0,t] |Lq‖ = C2 < ∞.

Then, using (23) and (24), we obtain

∞ >

(∫ ∞

0

(
‖wχ[0,t] |Lq‖ ‖vχ[0,t] |Lp‖−p′/q′

)r(− d

dt
‖vχ[0,t] |Lp‖−p′

)
dt

)1/r

≥ 1

C2

(∫ ∞

0

(
‖vχ[0,t] |Lp‖ ‖vχ[0,t] |Lp‖−p′/q′

)r(− d

dt
‖vχ[0,t] |Lp‖−p′

)
dt

)1/r

.

Recalling that
(
1 − p′

q′

)
r = p

p−1 = p′ and substituting τ = ‖vχ[0,t] |Lp‖−p′
, which is

possible because

lim
t→0

‖vχ[0,t] |Lp‖p′
= 0, lim

t→∞
‖vχ[0,t] |Lp‖p′

= ∞,

we arrive at

∞ >
1

C2

(∫ 0

∞

1

τ
(−dτ )

)1/r

=
1

C2

(∫ ∞

0

1

τ
dτ

)1/r

= ∞.
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This contradiction shows that the cones do not coincide. �
Now, we present a result about norm estimates for operators in Sub(↓).

Theorem 2. Fix a number p ∈ [1,∞), take a weight function v satisfying (10), (11),
and construct the function sv as in Theorem 1. Let X be an ideal space.

An operator T ∈ Sub(↓) acts boundedly from K(↓) ∩ Lp
v to X, i.e.,

(25) ‖Tx |X‖ ≤ C5‖x |Lp
v‖

for every x ∈ K(↓) ∩ (Lp
v)+, if and only if the composition operator TQ acts boundedly

from Lp
sv to X, i.e.,

(26) ‖TQx |X‖ ≤ C6‖x |Lp
sv‖

for every x ∈ (Lp
sv)+.

Proof. First, we show that (26) =⇒ (25). By Theorem 1, for every x ∈ K(↓) ∩ (Lp
v)+

there exists xε ∈ (Lp
sv)+ such that

‖xε |Lp
sv‖ ≤ 16(1 + ε)‖x |Lp

v‖ and Q(xε)(t) ≥
1

8
x(t) for all t > 0.

The definition of the set Sub(↓) and Lemma 1 imply the existence of constants α ≥ 1
and γ > 0 with T ∈ Sub(α, 1

8 , γ; ↓). Therefore,
‖Tx |X‖ ≤ γ‖TQ(xε) |X‖ ≤ γC6‖xε |Lp

sv‖ ≤ 16(1 + ε)γC6‖x |Lp
v‖,

which proves the implication (26) =⇒ (25).
Now, we verify the reverse implication: (25) =⇒ (26). The mapping Q takes any

nonnegative function to a monotone nonincreasing function, i.e., Qx ∈ K(↓) ∩ (Lp
v)+ for

every x ∈ (Lp
sv)+. Next, by the definition (12) of sv, the operator Q is bounded when

treated as an operator Q : Lp
sv → Lp

v. Therefore, we have

‖TQx |X‖ ≤ C5‖Qx |Lp
v‖ ≤ C5‖Q |Lp

sv → Lp
v‖ ‖x |L

p
sv‖. �

Using the techniques of estimating operators L : Lp
w → X (see, e.g., [3, 4, 6, 27, 28]),

on the basis of Theorem 2 it is possible to deduce various estimates for operators on the
cone of monotone functions in Lebesgue spaces. We illustrate this by several classical
examples.

First, with the help of a new approach, we shall prove the theorem of Sawyer (see
[36]), which, in combination with a result by Ariño and Muckenhoupt (see [1]), resolved
an important problem of harmonic analysis, namely, the boundedness problem for the
Hardy operator on weighted Lorentz spaces. Furthermore, that theorem gave rise to a
wide range of new problems, which remain fashionable still.

Theorem 3. Let p, v, and sv be the same as in Theorem 1. Consider a measurable
function g : R+ → R+. Then

1

C8

∥∥∥∥
∫ t

0

g(s) ds |Lp′

1
sv

∥∥∥∥ ≤ sup

{∫ ∞

0

y(t)g(t) dt : y ∈ K(↓) ∩ Lp
v, ‖y |Lp

v‖ ≤ 1

}

≤ C8

∥∥∥∥
∫ t

0

g(s) ds |Lp′

1
sv

∥∥∥∥,
(27)

where the constant C8 > 0 does not depend on g.

Proof. We define a functional F : K(↓) ∩ Lp
v → R by Fy(t) =

∫∞
0

y(t)g(t) dt. Since
this functional is quasilinear and nonnegative, we may apply Theorem 2 to deduce the
existence of a constant c > 0 such that

1

c
‖FQ |Lp

sv → R‖ ≤ ‖F |K(↓) ∩ Lp
v → R‖ ≤ c‖FQ |Lp

sv → R‖.
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Integrating by parts, we arrive at

(28)

∫ ∞

0

g(t)Qy(t) dt =

∫ ∞

t

y(s) ds

∫ t

0

g(s) ds
∣∣∣∞
0

+

∫ ∞

0

(∫ t

0

g(s)ds

)
y(t) dt.

Suppose first that

(29) lim
t→0

1

‖χ[0,t)v |Lp‖ ·
∫ t

0

g(s) ds = 0, lim
t→∞

1

‖χ[0,t)v |Lp‖ ·
∫ t

0

g(s) ds = 0.

Then, whenever y ∈ K(↓) ∩ Lp
v satisfies ‖y |K(↓) ∩ Lp

v‖ ≤ 1, by (1) we can estimate
the integrated term as follows:∣∣∣∣

∫ ∞

t

y(s) ds

∫ t

0

g(s) ds

∣∣∣∣ ≤
∥∥∥χ[t,∞)

1

sv
|Lp′

∥∥∥ ·
∫ t

0

g(s) ds =
1

‖χ[0,t)v |Lp‖ ·
∫ t

0

g(s) ds.

Now, (27) is a consequence of (28), the last inequality, (29), and the definition of the
dual norm.

The assumption (29) can be lifted in the following way.
For a nonnegative function g and arbitrary n ∈ N , put gn(t) ≡ χ(n−1,n)(t)g(t). Then

gn satisfies (29), whence we obtain (27). We can easily pass to the limit here with the
help of the B. Levy classical theorem (see, e.g., [24]). �

Note that, tracing the behavior of the constant in Theorem 3, it is possible to estimate
the constant in (27).

Now we consider one of the most important operators in analysis, namely, the Hardy
operator. On its natural domain, it is defined by the formula

Hx(t) =
1

t

∫ t

0

x(s) ds.

Theorem 4. Suppose that 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and functions v and sv satisfy the
assumptions of Theorem 1. For the Hardy operator to be bounded in the sense that

(30) H : K(↓) ∩ Lp
v → Lq

w,

it is necessary and sufficient that the following conditions be fulfilled:
a) if 1 ≤ p ≤ q ≤ ∞, 1

p + 1
p′ = 1, then

(31) sup
t>0

‖χ(0,t)w(s) |Lq‖
‖χ(0,t)v(s) |Lp‖ < ∞; sup

t>0

1

t

∥∥∥χ(0,t)
s

sv(s)
|Lp′

∥∥∥ · ‖χ(t,∞)w(s) |Lq‖ < ∞;

b) if 1 ≤ q < p < ∞, 1
r = 1

q − 1
p , then(∫ ∞

0

(‖χ(0,t)w(s) |Lq‖
‖χ(0,t)v(s) |Lp‖

)r (
− d

dt

( 1

‖χ(t,∞)v(s) |Lp‖
)p′)

dt

)1/r

< ∞;(32)

(∫ ∞

0

(∥∥∥χ(0,t)
s

sv(s)
|Lp′

∥∥∥ · ‖χ(t,∞)w(s) |Lq‖
)r(

− d

dt

( 1

‖χ(t,∞)v(s) |Lp‖
)p′)

dt

)1/r

< ∞.

(33)

Proof. By Theorem 2, relation (30) is fulfilled if and only if the operator HQ acts bound-
edly in the couple

HQ : Lp
sv → Lq

w.

Since HQ is positive, it suffices to verify its boundedness on nonnegative functions. Let
x(t) ≥ 0 a.e. Using the Fubini theorem (see, e.g., [24]) for nonnegative functions, we
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obtain

HQx(t) =
1

t

∫ t

0

(∫ ∞

s

x(τ ) dτ

)
ds

=
1

t

(∫ t

0

[ ∫ t

s

x(τ ) dτ +

∫ ∞

t

x(τ ) dτ

]
ds

)

=
1

t

(∫ t

0

[ ∫ τ

0

ds

]
x(τ ) dτ + t

∫ ∞

t

x(τ ) dτ

)

=
1

t

∫ t

0

τx(τ ) dτ +

∫ ∞

t

x(τ ) dτ.

The proof can be finished by application of Lemma 2 to each summand in the last
identity. �

Now we pass to the cone K(↓) ∩ L∞
v . Note that the situation will differ much from

the case of p < ∞ considered above.
Our goal is to present certain analogs of the statements formulated above for the cone

K(↓)∩L∞
v . Despite the relative ease of proofs, the central results of this subsections are

Theorems 5 and 6.

Theorem 5. Fixing p = ∞ and a weight function v : [0,∞) → R+, we define a new
function rv by the formula

(34) rv(t) = ess sup
0<τ<t

v(τ ).

Then rv is monotone nondecreasing, and the cones K(↓) ∩ L∞
v and K(↓) ∩ L∞

rv coincide.
Moreover, for every x ∈ K(↓) ∩ L∞

v we have

(35) ‖x |L∞
v ‖ = ‖x |L∞

rv ‖.

Proof. The definition (34) readily implies that the function rv is monotonic.
We verify (35). Directly from the definition (34), it follows that for a.e. t ∈ [0,∞) we

have rv(t) ≥ v(t). Consequently, for every x ∈ K(↓) ∩ L∞
v we obtain the norm inequality

(36) ‖x |L∞
rv ‖ ≥ ‖x |L∞

v ‖.
Now, let x ∈ K(↓). Then

rv(t)x(t) ≤ ess sup
0<s≤t

v(s)x(s) ≤ ess sup
s>0

v(s)x(s) = ‖x |L∞
v ‖

for a.e. t ∈ R+. Thus,

(37) ‖x |L∞
rv ‖ ≤ ‖x |L∞

v ‖.
By (36)–(37), identity (35) follows. �

Corollary 4. Let p = ∞, q ∈ [1,∞]. Then the embedding K(↓) ∩ (L∞
v )+ ⊂ (Lq

w)+ or,
equivalently, the inequality

(38) ‖x |Lq
w‖ ≤ C1‖x |L∞

v ‖
for every x ∈ K(↓) ∩ (L∞

v )+, occur if and only if

(39)
∥∥∥1

rv
w |Lq

∥∥∥ = C1 < ∞.

Proof. Theorem 5 shows that the cones K(↓) ∩ L∞
v and K(↓) ∩ L∞

rv coincide. The func-
tion 1

rv , which belongs to the intersection of K(↓) and the unit ball of L∞
rv , is a pointwise

majorant for all functions in K(↓)∩L∞
rv with unit norm. Thus, conditions (38) and (39)

are equivalent. �
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Corollary 5. Let p = ∞.
If q �= ∞, then

K(↓) ∩ (L∞
v )+ �= K(↓) ∩ (Lq

w)+,

i.e., these two cones do not coincide for any weights v, w.
If q = ∞, then the identity

K(↓) ∩ (L∞
v )+ = K(↓) ∩ (L∞

w )+

is fulfilled if and only if

(40) sup
t>0

rw(t)

rv(t)
< ∞, sup

t>0

rv(t)

rw(t)
< ∞.

Proof. Theorem 5 shows that the cones K(↓) ∩ L∞
v and K(↓) ∩ L∞

rv coincide.
First, let q < ∞. Then for all τ ∈ R+ the function χ[0,τ ]

1
rv(t) belongs to K(↓), and for

its norm we have

(41)
∥∥∥χ[0,τ ]

1

rv
|L∞

rv

∥∥∥ = 1,
∥∥∥χ[0,τ ]

1

rv
|Lq

w

∥∥∥ =

(∫ τ

0

(w(t)
rv(t)

)q

dt

)1/q

.

Letting τ tend to zero, we deduce from (41) that the norms ‖ · |L∞
rv ‖ and ‖ · |Lq

w‖ cannot
be equivalent on the cone K(↓).

Now, let q = ∞. Applying Theorem 5 once again, we see that the cones K(↓) ∩ L∞
w

and K(↓) ∩ L∞
rw coincide.

The biggest function in K(↓) whose norm in L∞
rv equals 1 is the function 1

rv , and the

biggest function in K(↓) whose norm in L∞
rw equals 1 is the function 1

rw . Conditions (40)

precisely ensure the inclusions 1
rv ∈ L∞

rw and 1
rw ∈ L∞

rv . �

An analog of the Sawyer theorem in the case where p = ∞ looks like this.

Corollary 6. Let p = ∞, and suppose we are given a measurable function g : R+ → R+.
Then

sup

{∫ ∞

0

x(t)g(t) dt : x ∈ K(↓) ∩ L∞
v , ‖x |L∞

v ‖ ≤ 1

}
=

∫ ∞

0

1

rv(s)
g(s) ds.

Proof. Theorem 5 shows that the cones K(↓) ∩ L∞
v and K(↓) ∩ L∞

rv coincide. To finish
the proof, it suffices to observe that the biggest function in K(↓) whose norm in L∞

rv

equals 1 is the function 1
rv . �

Corollary 7. Let p = ∞, 1 ≤ q ≤ ∞. Then the Hardy operator is bounded as an
operator

H : K(↓) ∩ L∞
v → Lq

w

if and only if ∥∥∥wH(1
rv

)
|Lq

∥∥∥ < ∞.

Theorem 6. Fix p = ∞, and let X be a Banach ideal space in S(μ). For T ∈ Sub(↓)
to act boundedly as an operator T : K(↓) ∩ L∞

v → X, it is necessary and sufficient that∥∥∥T(1
rv

)
|X

∥∥∥ < ∞.

The two statements above are proved by much the same arguments as Corollary 6.
Now, we pass to an analog of Theorem 1 for the cone K(↓) ∩ L∞

v . For this, some
prerequisites are needed.

To begin with, we observe that for a weight function v : [0,∞) → R+ the condition

(42) lim sup
t→∞

v(t) = ∞
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is equivalent to the relation

(43) lim
t→∞

rv(t) = ∞.

Note that condition (42) or the equivalent condition (43) are quite natural, because
any function representable in the form y(t) = Qx(t) with x ∈

⋃
n∈N L1( 1n ,∞) satisfies

the relation

(44) lim
t→∞

y(t) = 0.

At the same time, precisely condition (43) is necessary and sufficient for an arbitrary
function x ∈ K(↓) ∩ L∞

v to satisfy limt→∞ x(t) = 0.

Theorem 7. Fix a weight function v satisfying (42) and use (34) to define a function rv.
Let there exist an absolutely continuous function rvac ∈ K(↓) ∩ L∞

v such that for some
constant c > 0 we have

(45)
1

c
rvac(t) ≤ rv(t) ≤ crvac(t)

for all t ∈ R+.
Put

(46)
1

sv(t)
= − d

dt

1

rvac(t)
.

Then
(a) Q((L∞

sv )+) ⊂ K(↓) ∩ L∞
v , i.e., for every x ∈ (L∞

sv )+ we have

(47) ‖Qx |L∞
v ‖ ≤ C‖x |L∞

sv ‖;
(b) for every x ∈ K(↓) ∩ (L∞

v )+ there exists xε ∈ (L∞
sv )+ such that

‖xε |L∞
sv ‖ = ‖x |L∞

v ‖ and Q(xε)(t) ≥
1

8
x(t) for a.e. t > 0.

The proof of Theorem 7 will be given in the last section of the paper. Also in that
section, in Lemma 7, we shall indicate conditions on rv necessary and sufficient for the
existence of rvac ∈ K(↓) ∩ L∞

v satisfying (45). Essentially, rvac ∈ K(↓) ∩ L∞
v exists if and

only if rv satisfies a Δ2-condition at the discontinuity points.
Theorems 1 and 7 justify the following definition.

Definition 3. Suppose we are given two ideal spacesX0, X1, two conesK0∩X0, K1∩X1,
and a sublinear operator T : K0∩X0 → K1∩X1. The pair {K0∩X0, T} is said to generate
the cone K1 ∩X1 if the following conditions are fulfilled:

a) there is a constant c0 > 0 with the property that ‖Tx |X1‖ ≤ c0‖x |X0‖ for every
x ∈ K0 ∩X0;

b) there is a constant c1 > 0 with the property that for every y ∈ K1 ∩ X1 there
exists xy ∈ K0 ∩ X0 such that the norm inequality ‖y |X1‖ ≤ c1‖xy |X0‖ and the a.e.
inequality y(t) ≤ c1Txy(t) both hold true.

Theorem 8. Suppose that 1 ≤ p < ∞ and a weight function v satisfying (10) is given.
Define sv by (12).

Then the pair ((Lp
w)+, Q) generates the cone K(↓) ∩ Lp

v if and only if the following
conditions are fulfilled:

a) the weight v satisfies (11);
b) for every t > 0 we have

(48) C−1
7 ≤ ‖vχ[0,t] |Lp‖ ·

∥∥∥∥ 1

w
χ[t,∞) |Lp′

∥∥∥∥ ≤ C7

with a constant C7 > 0 independent of t;
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c) for every t > 0 we have

(49) C−1
8

∥∥∥∥1
sv
χ[t,∞) |Lp′

∥∥∥∥ ≤
∥∥∥∥ 1

w
χ[t,∞) |Lp′

∥∥∥∥ ≤ C8

∥∥∥∥1
sv
χ[t,∞) |Lp′

∥∥∥∥
with a constant C8 > 0 independent of t.

Proof. First, we observe that conditions (48) and (49) are equivalent by (12).
We check the “only if” part. Suppose that the pair ((Lp

w)+, Q) generates the cone
K(↓) ∩ Lp

v. This implies immediately that the function x(t) ∈ K(↓) ∩ Lp
v satisfies the

condition

(50) lim
t→∞

x(t) = 0.

For the nondegenerate cone K(↓) ∩ Lp
v, condition (12) is equivalent to the statement

that the characteristic function of the entire half-line R+ does not belong to K(↓) ∩ Lp
v.

Therefore, (50) implies the necessity of (12).
We show the necessity of (48), (49). Since the pair ((Lp

w)+, Q) generates the cone
K(↓) ∩ Lp

v, we see that for every t > 0 the inequalities

(51)
1

c0
‖χ(0,t) |Lp

v‖ ≤ inf

{
‖y |Lp

w‖ : 1 ≤
∫ ∞

t

y(s) ds

}
≤ c0‖χ(0,t) |Lp

v‖.

must be true with a constant c0 > 0 independent of t.
By duality and formula (1), we obtain

1 ≤
∫ ∞

t

y(s) ds ≤ ‖yχ(t,∞) |Lp
w‖

∥∥∥∥χ(t,∞)
1

w
|Lp′

∥∥∥∥,
or

(52) ‖yχ(t,∞) |Lp
w‖ ≥ 1

‖χ(t,∞)
1
w |Lp′‖

.

The definition of the dual space shows that we can choose a sequence yn of functions in
the unit sphere of Lp

w such that

‖ynχ(t,∞) |Lp
w‖

∥∥∥χ(t,∞)
1

w
|Lp′

∥∥∥
≥

∫ ∞

t

yn(s) ds ≥ ‖ynχ(t,∞) |Lp
w‖

∥∥∥χ(t,∞)
1

w
|Lp′

∥∥∥− 1

n

=
∥∥∥χ(t,∞)

1

w
|Lp′

∥∥∥− 1

n
.

Now, we define a sequence of functions zn as follows:

zn(t) =
yn(t)∫∞

t
yn(s) ds

.

Then

(53)

∫ ∞

t

zn(s) ds = 1 and ‖znχ(t,∞) |Lp
w‖ ≤ 1

‖χ(t,∞)
1
w |Lp′‖ − 1

n

.

From (52)–(53) we deduce that

(54) inf

{
‖y |Lp

w‖ : 1 ≤
∫ ∞

t

y(s) ds

}
=

1

‖χ(t,∞)
1
w |Lp′‖

.

Conditions (51) and (54) proof the necessity of (48)–(49).
To prove that (a), (b), and (c) suffice, we may repeat the proof of Theorem 1 word-

for-word. �
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Theorem 9. Suppose p = ∞ and we are given a weight function w. Define a function rw
by (34).

Then the pair ((L∞
u )+, Q) generates the cone K(↓) ∩ L∞

w if and only if the following
relations are fulfilled:

(a) for w, we have

(55) lim sup
t→∞

w(t) = ∞;

(b) there exists an absolutely continuous function rwac ∈ K(↓) ∩ L∞
w such that, with

some constant C, we have

(56)
1

c
rwac(t) ≤ rw(t) ≤ c rwac(t)

for all t ∈ R+;
(c) for every t > 0 we have

(57) C−1
7

1

rw(t)
≤

∫ ∞

t

1

u(s)
ds ≤ C7

1

rw(t)

with a constant C7 > 0 independent of t.

Proof. Theorem 5 shows that the cones K(↓) ∩ L∞
w and K(↓) ∩ L∞

rw coincide.
We check the “only if” part. Suppose that the pair ((L∞

u )+, Q) generates the cone
K(↓) ∩ L∞

rw . This readily implies that every function x(t) in K(↓) ∩ L∞
rw satisfies the

condition limt→∞ x(t) = 0. The last is equivalent to

(58) lim
t→∞

rw(t) = ∞,

and, as it was indicated in the proof of the equivalence of (42) and (43), condition (58)
is equivalent to (55).

Next, since the pair ((L∞
u )+, Q) generates the coneK(↓)∩L∞

rw , we see that the function
1
rw ∈ K(↓) ∩ L∞

rw satisfies the inequality

(59)
1

rw(t)
≤ C10

∫ ∞

t

1

u(s)
ds

with a constant C10 independent of t. However, by Lemma 2, the boundedness condition
for the operator Q : L∞

u → L∞
rw looks like this:

(60) sup
t∈R+

rw(t)

∫ ∞

t

1

u(s)
ds ≤ C11 < ∞.

Relations (59)–(60) prove the necessity of (b) and (c).
To prove that (a), (b), and (c) suffice, we may repeat the proof of Theorem 7 word-

for-word. �

§4. Extrapolation theorems for cones

In the theory of integral operators with positive kernel, a special role is played by the
so-called Schur theorem or Schur test (see [25, p. 37] and [42, p. 42]), which says that an
integral operator Kx(t) =

∫
k(t, s)x(s) ds with positive kernel k(t, s) ≥ 0 is bounded in

Lp for 1 < p < ∞ if and only if there exists a positive function u such that

Kup′
(t) ≤ Cup′

(t) and K ′up(t) ≤ Cup(t),

here K ′ is the formally adjoint operator and 1/p′ + 1/p = 1. This statement can be
regarded as a factorization or extrapolation theorem: there exists a positive function u
(a weight function u) such that K is bounded in the following couples of spaces:

K : L∞
u−p′ → L∞

u−p′ , K : L1
up → L1

up .
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We start with a reformulation of the Schur extrapolation theorem in modern terms,
see [9, Corollary 7].

Proposition 1 (Schur test). Suppose that T, T ′ ∈ Sub(+), 1 < p < ∞, and we are given
two weight functions v, w. The following conditions are equivalent:

(a) the operator T : Lp
v → Lp

w is bounded;
(b) there exist four weight functions v0, v1, w0, w1 such that

(61) v(t) = v0(t)
1/pv1(t)

1−1/p, w(t) = w0(t)
1/pw1(t)

1−1/p

for all t ∈ R+, and the operator T acts boundedly in the following couples:

(62) T : L1
v0 → L1

w0
, T : L∞

v1 → L∞
w1

.

The implication (b) =⇒ (a) follows from interpolation theorems for positive opera-

tors for the Calderón–Lozanovskĭı construction Xθ
0 X1−θ

1 (see [2, 26, 30, 37], [31, Theo-
rem 15.13]) and the relations

(L1
v0)

1/p(L∞
v1)

1−1/p = Lp

v
1/p
0 v

1−1/p
1

= Lp
v,

(L1
w0

)1/p(L∞
w1

)1−1/p = Lp

w
1/p
0 w

1−1/p
1

= Lp
w.

The reverse implication (a) =⇒ (b), which is the essence of theorems like the Schur
test, was proved in [9, Corollary 7] (see also [5, p. 728], [8, Theorem 1], [7, p. 18]).

In this section we pass to extrapolation theorems for operators on cones. We begin
with a general version of extrapolation theorems for operators on the cone K(↓).
Theorem 10. Suppose that T, T ′ ∈ Sub, 1 < p < ∞, and we are given a weight function
v satisfying (10), (11). Define a new function sv by (12).

Put θ = 1/p. Then the following conditions are equivalent:
a) T is bounded as an operator in the following couple:

T : K(↓) ∩ Lp
v → Lp

u;

b) there exist functions v0, v1, u0, u1 satisfying

(63) vθ0(t) · v1−θ
1 (t) ≡ sv(t), uθ

0(t) · u1−θ
1 (t) ≡ u(t)

and such that TQ acts boundedly in the couples

(64) TQ : L1
v0 → L1

u0
, TQ : L∞

v1 → L∞
u1
.

Proof. Suppose a) is fulfilled. Then Theorem 4 shows that this statement is equivalent
to the boundedness of TQ in the couple TQ : Lp

sv → Lp
u. Since TQ and (TQ)′ belong to

Sub(+), we may apply the Schur test to the operator TQ : Lp
sv → Lp

u. This yields the
conditions of item b).

Suppose b) is fulfilled. Then, by the interpolation theorem for the operator TQ, we
see that TQ is bounded as indicated below:

TQ :
(
L1
v0

)θ(
L∞
v1

)1−θ →
(
L1
u0

)θ(
L∞
u1

)1−θ
.

The well-known identity (
L1
w0

)θ(
L∞
w1

)1−θ
= Lp

w,

where wθ(t) ≡ wθ
0(t)w

1−θ
1 (t), combined with (67) implies that TQ is bounded also in the

following way:
TQ : Lp

vθ
→ Lp

uθ
,

where vθ(t) ≡ vθ0(t)v
1−θ
1 (t) and uθ(t) ≡ uθ

0(t)u
1−θ
1 (t). Since vθ(t) ≡ sv(t) and uθ(t) ≡ u(t),

relation (65) is equivalent to the boundedness of TQ in the following couple:

TQ : Lp
sv → Lp

u.
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But T ∈ Sub(+), and, by Theorem 8, the pair ((Lp
sv)+, Q) generates the cone K(↓)∩Lp

v;
therefore, the last relation implies a). �

Theorem 10 has an important drawback. It would be desirable to replace conditions
(63) and (64) by the following more natural conditions:

there exist functions v0, v1, u0, u1 satisfying

(65) vθ0(t) · v1−θ
1 (t) ≡ v(t), uθ

0(t) · u1−θ
1 (t) ≡ u(t)

and such that T acts boundedly in the following couples:

(66) T : K(↓) ∩ L1
v0 → L1

u0
, T : K(↓) ∩ L∞

v1 → L∞
u1
.

We are going to obtain an analog of Theorem 10 with conditions (63), (64) replaced
by (65), (66) in one important particular case. Some preliminaries are required for this.

Let X0, X1 be two ideal spaces with X0, X1 ⊂ S(μ). Fix 0 < θ < 1. The new ideal

spaceXθ
0X

1−θ
1 (the Calderón–Lozanovskĭı construction) consists of all x ∈ S(μ) for which

the following norm is finite:

‖x |Xθ
0 X1−θ

1 ‖ = inf
{
λ > 0 : |x(t)| ≤ λ · |x0(t)|θ|x1(t)|1−θ∀t ∈ [0,∞);

‖x0 |X0‖ ≤ 1, ‖x1 |X1‖ ≤ 1
}
.

(67)

The space Xθ
0 X1−θ

1 was introduced by Calderón in [13] for the study of the complex
interpolation method.

Definition 4. A cone K is said to be canonical if for every pair x, y of functions in K
and every number θ ∈ (0, 1) the function xθ · y1−θ again belongs to K.

We observe that the cones of monotonic functions are canonical.
If K is a canonical cone in S(μ), then by analogy with the space Xθ

0 X1−θ
1 we can

introduce the new cone (K ∩ X0)
θ(K ∩ X1)

1−θ, admitting in (67) only decompositions
that involve elements of the cone.

Remark 1. It is easily seen that for a canonical cone and θ ∈ (0, 1) we always have a
continuous embedding

(K ∩X0)
θ(K ∩X1)

1−θ ⊆ K ∩Xθ
0 X1−θ

1 .

On the other hand, as it usually happens in interpolation theory, for an arbitrary canon-
ical cone K the relation

(K ∩X0)
θ(K ∩X1)

1−θ = K ∩Xθ
0 X1−θ

1

may fail. Even for the best studied cone K(↓), no sharp conditions are known that ensure
this relation in the scale of Lebesgue spaces.

The next theorem is of interpolation nature. It is well known for the cone consisting
of nonnegative functions (see, e.g., [2, 30, 31]).

Theorem 11. Suppose that T is a positive operator and K0,K1 are two canonical cones
in S(μ)+. Consider four Banach ideal spaces X0, X1, Y0, Y1 in S(μ) and suppose that T
acts boundedly as indicated: T : K0 ∩Xi → K1 ∩ Yi, (i = 0, 1). Fix θ ∈ (0, 1). Then for
every x0 ∈ K0 ∩X0, x1 ∩X1 ∈ K1 we have the pointwise inequality

(68) T (x0
θ · x1

1−θ)(t) ≤ (Tx0(t))
θ · (Tx1(t))

1−θ,

and T acts boundedly when regarded as an operator T : (K0 ∩ X0)
θ(K0 ∩ X1)

1−θ →
(K1 ∩ Y0)

θ(K1 ∩ Y1)
1−θ.
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REPRESENSIBILITY OF CONES OF MONOTONE FUNCTIONS 561

Proof. Take x0 ∈ K0 ∩ X0, x1 ∈ K0 ∩ X1 and construct the element x0
θ · x1

1−θ

∈ (K ∩X0)
θ(K ∩X1)

1−θ. The numerical identity

(69) aθ · b1−θ = inf
ε>0

{
εθa+ ε−

θ
1−θ (1− θ)b

}
,

valid for all a > 0, b > 0, implies the inequality

T (x0
θ · x1

1−θ)(t) ≤ T (εθx0(t) + ε−
θ

1−θ (1− θ)x1(t))

≤ εθTx0(t) + ε−
θ

1−θ (1− θ)Tx1(t).
(70)

Minimizing the right-hand side in (70) over ε > 0 for each fixed t and taking (69) into
account, we arrive at (68).

The boundedness of T in the required sense,

T : (K0 ∩X0)
θ(K0 ∩X1)

1−θ → (K1 ∩ Y0)
θ(K1 ∩ Y1)

1−θ,

is immediate from (68). �
Lemma 3. Fix θ ∈ (0, 1). In the spaces L1

w0
, L∞

w1
, and L1

u0
, consider the cones

K(↓) ∩ L1
w0

, K(↓) ∩ L∞
w1

, and K(↓) ∩ L1
u0

for which we have a continuous embedding

(K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ ⊆ (K(↓) ∩ L1
u0
)θ(K(↓) ∩ L∞

w1
)1−θ.

Then we have a continuous embedding

K(↓) ∩ L1
w0

⊆ K(↓) ∩ L1
u0
.

Proof. Lemma 8 in the last section shows that for every z of unit norm in (K(↓) ∩ L1
w0

)θ

(K(↓) ∩ L∞
w1

)1−θ we have

(71) z(t) ≤ xθ
0(t) ·

( 1

rw(t)

)1−θ

(t) (t ∈ R+)

with x0 ∈ K(↓) ∩ L1
w0

and ‖x0 |L1
w0

‖ = 1.
Since rw is nonzero a.e., the claim follows from (71). �
Now everything is ready to prove an analog of Theorem 10 with conditions (63) and

(64) replaced by (65) and (66).

Theorem 12. Fix p ∈ (1,∞) and a weight function v satisfying (10), (11). Define a
new function sv by (12) and put θ = 1/p.

Suppose we are given operators T, T ′ ∈ Sub(+), where T ∈ Sub(+) acts boundedly in
the couple

T : K(↓) ∩ Lp
v → Lp

v.

Then there exist functions w0, w1 such that

wθ
0(t) · w1−θ

1 (t) ≡ v(t),

and T acts boundedly in the following couples:

T : K(↓) ∩ L1
w0

→ L1
w0

, T : K(↓) ∩ L∞
w1

→ L∞
w1

.

Proof. We introduce a new operator T1 by the formula

T1x(t) = Tx(t) + x(t)

and apply Theorem 10 to it, obtaining functions v0, v1, w0, w1 for which we have

(72) vθ0(t) · v1−θ
1 (t) ≡ sv(t), wθ

0(t) · w1−θ
1 (t) ≡ v(t)

(here sv is defined by (12)).
The operator T1Q acts boundedly in the following couples:

TQ+Q : L1
v0 → L1

w0
, TQ+Q : L∞

v1 → L∞
w1

.
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We introduce a function u0 by the formula

(73) ‖χ(0,t)u0 |L1‖ ·
∥∥∥∥χ(t,∞)

1

v0
|L∞

∥∥∥∥ ≡ 1

and consider the space L1
u0
. By (73) and Theorem 8, the pair ((L1

v0)+, Q) generates the

cone K(↓) ∩ L1
u0
.

Next, we introduce a function u1 by the formula

(74)
1

u1(t)
≡

∫ ∞

t

1

v1(s)
ds

and consider the space L∞
u1
. By (74) and Theorem 9, the pair ((L∞

v1)+, Q) generates the
cone K(↓) ∩ L∞

u1
.

Since Q acts boundedly in the couples

Q : L1
v0 → L1

w0
, Q : L∞

v1 → L∞
w1

and the cones K(↓) ∩ L1
u0
, K(↓) ∩ L∞

u1
are generated by the pairs ((L1

v0)+, Q) and
((L∞

v1)+, Q), respectively, we arrive at the continuous embeddings

(75) K(↓) ∩ L1
u0

⊆ K(↓) ∩ L1
w0

, K(↓) ∩ L∞
u1

⊆ K(↓) ∩ L∞
w1

.

On the other hand, since Q is positive, inequality (68) in Theorem 11 shows that for
every x0 ∈ L1

v0 , x1 ∈ L∞
v1 we have

(76) Q(xθ
0 · x1−θ

1 )(t) ≤ (Qx0(t))
θ · (Qx1(t))

1−θ

almost everywhere. By Theorem 8, the pair ((Lp
sv)+, Q) generates the cone K(↓) ∩ Lp

v.
Therefore, (76) yields the continuous embedding

(77) K(↓) ∩ Lp
v ⊆ (K(↓) ∩ L1

u0
)θ(K(↓) ∩ L∞

u1
)1−θ.

At the same time, formula (72), Remark 1, and the definitions yield the continuous
embedding

(78) (K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ ⊆ K(↓) ∩ Lp
v.

Consequently, by (77) and (78) we obtain

(K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ ⊆ K(↓) ∩ Lp
v ⊆ (K(↓) ∩ L1

u0
)θ(K(↓) ∩ L∞

u1
)1−θ.

This implies the continuous embedding

(K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ ⊆ (K(↓) ∩ L1
u0
)θ(K(↓) ∩ L∞

u1
)1−θ.

Together with the second embedding in (75), this yields the continuity of the embeddings

(K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
u1
)1−θ ⊆ (K(↓) ∩ L1

w0
)θ(K(↓) ∩ L∞

w1
)1−θ

⊆ (K(↓) ∩ L1
u0
)θ(K(↓) ∩ L∞

u1
)1−θ.

Thus,

(79) (K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
u1
)1−θ ⊆ (K(↓) ∩ L1

u0
)θ(K(↓) ∩ L∞

u1
)1−θ.

By (79), using Lemma 3, we obtain the embedding

K(↓) ∩ L1
w0

⊆ K(↓) ∩ L1
u0
.

Comparing this with the first embedding in (75), we see that, up to equivalent norms,
we have

(80) K(↓) ∩ L1
w0

= K(↓) ∩ L1
u0
.
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Thus, (73) and (80) imply the existence of a constant c > 0 such that for every t > 0 we
have

c < ‖χ(0,t)w0 |L1‖ ·
∥∥∥∥χ(t,∞)

1

v0
|L∞

∥∥∥∥ <
1

c
.

Combining (12) and (72) with the last relation, we see that

1 =

(∫ t

0

(wθ
0(s) · w1−θ

1 (s))1/θ ds

)θ

·
(∫ ∞

t

( 1

vθ0(s) · v1−θ
1 (s)

)1/(1−θ)

ds

)1−θ

=

(∫ t

0

w0(s) · w(1−θ)/θ
1 (s) ds

)θ

·
(∫ ∞

t

( 1

v0(s)

)θ/(1−θ)( 1

v1(s)

)
ds

)1−θ

≤ sup
s≤t

w1−θ
1 (s) ·

(∫ t

0

w0(s) ds

)θ

· sup
s≥t

1

vθ0(s)
·
(∫ ∞

t

1

v1(s)
ds

)1−θ

=

(
sup
s≤t

w1(s) ·
∫ ∞

t

1

v1(s)
ds

)1−θ

·
(
sup
s≥t

1

v0(s)
·
∫ t

0

w0(s) ds

)θ

≤
(1
c

)θ

·
(
sup
s≤t

w1(s) ·
∫ ∞

t

1

v1(s)
ds

)1−θ

for all t ∈ R+ . This shows that the inequality

c
θ

1−θ · inf
s≤t

1

w1(s)
≤

∫ ∞

t

1

v1(s)
ds

is true for all t ∈ R+. Taking (74) and (34) into account, we can rewrite the last inequality
in the following equivalent form: for all t ∈ R+ we have

1

rw1(t)
≤ c

−θ
1−θ

1

u1(t)
,

or, in the language of embeddings,

(81) K(↓) ∩ L∞
rw1

⊆ K(↓) ∩ L∞
u1
.

Theorem 5 implies the identity K(↓) ∩ L∞
w1

= K(↓) ∩ L∞
rw1
. Thus, the embedding (81) is

equivalent to the embedding

K(↓) ∩ L∞
w1

⊆ K(↓) ∩ L∞
ru1
.

Together with the second embedding in (75), this relation shows that, up to equivalent
norms, the following identity holds true:

K(↓) ∩ L∞
u1

= K(↓) ∩ L∞
w1

.

Combined with (80), this proves the theorem. �

Since the Hardy operator fits in the scope of Theorem 12, we have the following
statement.

Theorem 13. Fix p ∈ (1,∞) and consider a weight function v satisfying (10) and (11).
Put θ = 1/p. The Hardy operator H is bounded as an operator

H : K(↓) ∩ Lp
v → Lp

v

if and only if there exist functions w0, w1 such that a) wθ
0(t) · w1−θ

1 (t) ≡ v(t) for all
t ∈ R+;

b) H acts boundedly in the couples

H : K(↓) ∩ L1
w0

→ L1
w0

, H : K(↓) ∩ L∞
w1

→ L∞
w1

.
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§5. Proofs of Theorems 1 and 7,
and auxiliary lemmas

To prove Theorem 1, we need some auxiliary statements, with which we shall start.

Lemma 4. Let X be an ideal space. Take a numerical sequence

0 < · · · < tj < tj+1 < · · · < ∞ with lim
j→−∞

tj = 0.

Let the element x =
∑∞

−∞ 2−jχ[0,tj) belong to X and satisfy the condition

(82) lim
k→−∞

∥∥∥∥
k∑

j=−∞
2−jχ[0,tj) |X

∥∥∥∥ = 0.

Then there exists a sequence of integers kj : −∞ < · · · < kj < kj−1 < · · · < k0 < ∞
such that

∞∑
i=0

∥∥∥∥
ki∑

j=ki+1+1

2−jχ[0,tj) |X
∥∥∥∥+

∥∥∥∥
∞∑

j=k0

2−jχ[0,tj) |X
∥∥∥∥ ≤ 2‖x |X‖.

Proof. The sequence ki can be defined as follows. Using (82), take k0 so as to have∥∥∥∥
k0∑
−∞

2−jχ[0,tj) |X
∥∥∥∥ ≤ 2−1‖x |X‖.

Suppose that the numbers ki−1 < ki−2 < · · · < k1 < k0 are constructed. Then we choose
ki < ki−1 so as to have ∥∥∥∥

ki∑
−∞

2−jχ[0,tj) |X
∥∥∥∥ ≤ 2−i−1‖x |X‖.

The possibility of this choice follows from (82).
Since X is an ideal space, an easy calculation shows that

∞∑
i=0

∥∥∥∥
ki∑

j=ki+1+1

2−jχ[0,tj) |X
∥∥∥∥+

∥∥∥∥
∞∑

j=k0+1

2−jχ[0,tj) |X
∥∥∥∥

≤
∞∑
i=0

∥∥∥∥
ki∑
−∞

2−jχ[0,tj) |X
∥∥∥∥+

∥∥∥∥
∞∑

j=k0+1

2−jχ[0,tj+1) |X
∥∥∥∥

≤
∞∑
i=0

2−i−1‖x |X‖+ ‖x |X‖ ≤ 2‖x |X‖. �

The next lemma allows us to estimate the norms of certain specific functions.

Lemma 5. Let p ∈ [1,∞). Consider the space Lp
v, where the weight v satisfies (10) for

every t > 0, i.e., the cone K(↓) ∩ Lp
v is nondegenerate.

Let {tj}∞j=k be a numerical sequence such that the relations tj+1 > tj are fulfilled for

all j = k, k + 1, . . . . Suppose that the element x =
∑∞

j=k 2
−jχ[0,tj) belongs to Lp

v. Then
we have

(83) ‖x |Lp
v‖p = 2(1−k)p‖χ[0,tk)v |Lp‖p +

∞∑
j=k

2−(j+1)p‖χ[tj ,tj+1)v |Lp‖p,
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∞∑
j=k

2−jp‖χ[0,tj)v |Lp‖p =
1

1− 2−p
(2−kp‖χ[0,tk)v |Lp‖p

+

∞∑
j=k

2−(j+1)p‖χ[tj ,tj+1)v |Lp‖p).
(84)

Proof. First, we verify (83):

‖x |Lp
v‖p =

∥∥∥∥
∞∑
j=k

2−jχ[0,tj) |Lp
v

∥∥∥∥
p

=

∥∥∥∥2−k+1χ[0,tk) +

∞∑
j=k

2−jχ[tj ,tj+1) |Lp
v

∥∥∥∥
p

= 2p‖2−kχ[0,tk) |Lp
v‖p +

∞∑
j=k

2−pj‖χ[tj ,tj+1) |Lp
v‖p.

Next, we prove (84). Condition (10) shows that for every tj we have ‖χ[0,tj)v |Lp‖p <
∞. Therefore, for every m ≥ k we have

(85) ‖χ[0,tm)v |Lp‖p = ‖χ[0,tk)v |Lp‖p +
m−1∑
i=k

‖χ[ti,ti+1)v |Lp‖p.

Suppose first that the left-hand side in (84) is finite. Then, taking (85) into account,
we obtain

∞∑
j=k

2−jp‖χ[0,tj)v |Lp‖p

= ‖χ[0,tk)v |Lp‖p
∞∑
j=k

2−jp +
∞∑
i=k

( ∞∑
j=i+1

2−jp

)
‖χ[ti,ti+1)v |Lp‖p

=
2−kp

1− 2−p
‖χ[0,tk)v |Lp‖p +

∞∑
i=k

2−(i+1)p

1− 2−p
‖χ[ti,ti+1)v |Lp‖p.

(86)

Thus, (84) is true in this case.
But if the left-hand side of (84) is infinite, we deduce that the right-hand side is also

infinite because all transformations in (86) have been done for nonnegative terms. �

The next statement is a principal lemma in this paper.

Lemma 6. Fix p ∈ [1,∞) and a weight function v such that (10) is true for all t > 0,
i.e., the cone K(↓) ∩ Lp

v is nondegenerate.
We introduce a new function sv by the equation

(87) ‖χ[0,t)v |Lp‖ ·
∥∥∥χ[t,∞)

1

sv
|Lp′

∥∥∥∥ ≡ 1.

Then if a function x from the unit ball of Lp
v has the form x =

∑k1

i=k0
2−iχ[0,ti)

(0 ≤ tk0
< · · · < ti < ti+1 < · · · < ∞, where k0 is finite and k1 may be infinite), then for

every ε > 0 there exists a function xε ∈ Lp
sv satisfying

(88) ‖xε |Lp
sv‖ ≤ 1 + ε

(2p − 1)1/p
‖x |Lp

v‖

and such that for all t ∈ [0,∞) we have

(89) (Qxε)(t) ≥
1

16
x(t).
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Proof. So, suppose we a given a function x in the unit ball of Lp
v and x =

∑k1

i=k0
2−iχ[0,ti)

(0 ≤ tk0
< · · · < ti < ti+1 < · · · < ∞, k0 is finite and k1may be infinite).

It is easily seen that for every admissible i = k0, k0+1, . . . we have

(90) 2−i−1 ≤ x(ti) ≤ 2−i.

For every admissible i ∈ Z, we define a number bi by

(91) bi = inf

{
‖y |Lp

sv‖ :

∫ ∞

ti

y(s) ds ≥ 2−i−1

}
.

Since ti < ∞ and the weight function is finite a.e., all numbers bi are finite. Moreover,
since p ∈ [1,∞) and Lp

sv is an ideal space, it follows that

(92) inf

{
‖y |Lp

sv‖ :

∫ ∞

ti

y(s) ds ≥ 2−i−1

}
= inf

{
‖y |Lp

sv‖ :

∫ ∞

ti

y(s) ds = 2−i−1

}
,

i.e., we may assume that we have equality in (91). By the definition of the dual space,
formulas (87) and (92) yield immediately two important relations:

2−i−1 =

∫ ∞

ti

y(s) ds ≤ ‖χ[ti,∞)y |Lp
sv‖ · ‖χ[ti,∞) | (Lp

sv)
′‖

= ‖χ[ti,∞)y |Lp
sv‖ ·

∥∥∥χ[ti,∞)
1

sv
|Lp′

∥∥∥,
(93)

(94) bi =
2−i−1

‖χ[ti,∞)
1
sv |Lp′‖

= 2−i−1 · ‖χ[0,ti)v |Lp‖.

Fixing ε > 0, for every i = k0, k0 + 1, . . . we choose a nearly extremal function yi
ensuring the relations

(95) supp yi ⊆ [ti,∞),

∫ ∞

ti

yi(s) ds = 2−i−1, bi ≤ ‖yi |Lp
sv‖ ≤ bi(1 + ε).

The possibility of such a choice is clear.
The subsequent construction of the required function is entirely algorithmic. So, we

present it in the form usual for description of algorithms. Thus, let a collection of
functions {yk(t)}k1

k0
be given.

Fix k0 ∈ Z. Put k = k0, ζk0
(t) = yk0

(t).

Step A. If

(96)

∫ tk+1

tk

ζk(s) ds ≥
1

2

∫ ∞

tk

ζk(s) ds,

put zk(t) = ζk(t)χ[tk,tk+1), k = k + 1, ζk(t) = yk(t). Return to Step A.

Step B. If (96) fails, i.e., we have

(97)

∫ tk+1

tk

ζk(s) ds <
1

2

∫ ∞

tk

ζk(s) ds,

then again define zk by zk(t) = ζk(t)χ[tk,tk+1), remove the function yk+1 from the collec-

tion {yk(t)}k1

k0
, put ζk+1(t) ≡ ζk(t), k = k + 1, and return to Step A.

Note that if k1 < ∞, then the last step of the algorithm is done for k = k1 − 1. In
this case zk1

should be modified. Specifically, if the last step of the algorithm is of type
B, we define zk1

by zk1
(t) = yk1

(t), but if the last step of the algorithm is of type B, we
put zk1

(t) = ζk1−1χ[tk1
,∞).
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First, we show that for all admissible k: k ≥ k0 we have

(98)

∫ ∞

tk

ζk(s) ds ≥
∫ ∞

tk

yk(s) ds.

Indeed, for k = k0 we have equality in (98). We do an induction step. If we perform
Step A after Step A, then again we have equality in (98). If we perform Step A after
Step B, then from (97) and the inductive hypothesis we deduce that∫ ∞

tk+1

ζk+1(s) ds =

∫ ∞

tk+1

ζk(s) ds =

∫ ∞

tk

ζk(s) ds−
∫ tk+1

tk

ζk(s) ds

≥ 1

2

∫ ∞

tk

ζk(s) ds ≥
1

2

∫ ∞

tk

yk(s) ds =

∫ ∞

tk+1

yk+1(s) ds.

Thus, (98) is proved.

The algorithm results in replacing the collection {yk(t)}k1

k0
with a new collection of

functions {zk(t)}k1

k0
; furthermore, the procedure implies directly that the supports of the

functions in the collection {zk(t)}k1

k0
are mutually disjoint.

Now, we define the new function

xk0
(t) =

k1∑
k0

zk(t).

First, we show that for every j = k0, k0 + 1, . . . we have

(99) Q Ďxk0
(tj) =

∫ ∞

tj

k1∑
k0

zk(s) ds ≥
1

4

∫ ∞

tj

yj(s) ds = 2−j−3 ≥ 2−3x(tj).

Three possibilities may occur.
a) Let zj(t) ≡ yj(t)χ[tj ,tj+1), zj+1(t) ≡ yj+1(t)χ[tj+1,tj+2), i.e., Step A is performed.

Then (96) yields

Q Ďxk0
(tj) =

∫ ∞

tj

k1∑
k0

zk(s) ds ≥
∫ tj+1

tj

zj(s) ds =

∫ tj+1

tj

yj(s) ds ≥
1

2

∫ ∞

tj

yj(s) ds,

which proves (99) in the case in question.
b) Suppose that, starting with some m ≥ k0, we have

zk(t)χ[tk,tk+1) ≡ ym(t)χ[tk,tk+1), k = m,m+ 1, . . . ,m+ l (1 < l < ∞),

and that zm+l+1(t) does not coincide with ym(t) on [tm+l+1, tm+l+2). This happens if,
starting with k = m, the algorithm walks away to Step B and does not change the
function ζm(t) (l− 1) times, i.e., in accordance with (96) and (97), we have the relations∫ tj+1

tj

ym(s) ds <
1

2

∫ ∞

tj+1

ym(s) ds for j = m,m+ 1, . . . ,m+ l − 1;

∫ tm+l+1

tm+l

ym(s) ds ≥ 1

2

∫ ∞

tm+l+1

ym(s) ds.

(100)

In this case, for j = m, m+ 1, . . . ,m+ l we put

aj =

∫ tj+1

tj

ζj(s) ds =

∫ tj+1

tj

zj(s) ds =

∫ tj+1

tj

ym(s) ds,

dj =

∫ ∞

tj+1

ζj(s) ds =

∫ ∞

tj+1

ym(s) ds.

(101)
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Therefore, (100) and (101) show that for all j = m, m + 1, . . . ,m + l the following
inequalities hold true:

Q Ďxk0
(tj) =

∫ ∞

tj

k1∑
k0

zk(s) ds ≥
∫ tm+l+1

tj

m+l∑
i=j

zj(s) ds

=

∫ tj+m+l

tj

ym(s) ds = aj + aj+1 + · · ·+ am+l

= aj + aj+1 + · · ·+ am+l−1 +
1

2
am+l +

1

2
am+l

≥ aj + aj+1 + · · ·+ am+l−1 +
1

2
am+l +

1

4
dm+l

≥ 1

4

∫ ∞

tj

ym(s) ds =
1

4

∫ ∞

tj

ζj(s) ds.

To prove (99) in the case in question, it remains to apply (98).
c) It remains to consider the case where, starting with some m ≥ k0, for all k ≥ m we

have zk(t) ≡ ym(t). This happens if, starting with k = m, the algorithm walks away to
Step B and does not change the function ζm(t) any longer. In this case, for all j = m,
m+ 1, . . . we have ζm(t) ≡ ζj(t) ≡ ym(t). By (98), it follows that we also have

Q Ďxk0
(tj) =

∫ ∞

tj

k1∑
k0

zk(s) ds =

∫ ∞

tj

ym(s) ds =

∫ ∞

tj

ζj(s) ds ≥
∫ ∞

tj

yj(s) ds.

Again, this implies (99).
Now, let t ∈ (tj , tj+1). Then the explicit form of the function x, inequalities (90) and

the nonnegativity of Ďxk0
(t) imply the relation

Q Ďxk0
(t) =

∫ ∞

t

k1∑
k0

zk(s) ds ≥
∫ ∞

tj+1

k1∑
k0

zk(s) ds ≥ 2−j−4 ≥ 1

16
x(tj) ≥

1

16
x(t).

Put xε(t) ≡ Ďxk0
(t). The last inequality and (99) yield (89). It remains to verify (88).

First, we prove the relation

(102) ‖xε |Lp
sv‖p =

k1∑
j=k0

‖zj |Lp
sv‖p ≤

k1∑
j=k0

‖yj |Lp
sv‖p.

The identity in (102) follows from the fact that the supports of the functions in the

collection {zj(t)}k1

k0
are mutually disjoint. On the other hand, for every function yj the

algorithm either merely drops it or multiplies it by a characteristic function, i.e.,

k1∑
j=k0

zj =

k1∑
j=k0

χ(Dj)yj ,

where Dj = ∅ if yj was dropped, Dj = [tj , tj+1) if yj was involved in the action of the
algorithm only once, Dj = [tj , tj+2) if yj was involved in the action of the algorithm
twice, and so on. Therefore,

k1∑
j=k0

‖zj |Lp
sv‖p =

k1∑
j=k0

‖yjχ(Dj) |Lp
sv‖p ≤

k1∑
j=k0

‖yj |Lp
sv‖p.

So, relations (102) are proved.
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Next, taking the choice of the yj into account, by (95) and (94) we obtain the inequality

‖xε |Lp
sv‖p ≤

k1∑
j=k0

‖yj |Lp
sv‖p ≤ (1 + ε)p

k1∑
j=k0

bpj ≤ (1 + ε)p
k1∑

j=k0

(2−j−1‖χ[0,tj)v |Lp‖)p.

Together with (84), this implies

‖xε |Lp
sv‖p ≤ 2−p(1 + ε)p

1− 2−p
(2−k0p‖χ[0,tk0

)v |Lp‖)p +
k1∑

j=k0

(2−j−1‖χ[tj ,tj+1)v |Lp‖)p.

Next, using (83), we finally obtain

‖xε |Lp
sv‖ ≤ (1 + ε)

(2p − 1)1/p
‖x |Lp

v‖. �

Now, everything is ready for the proof of Theorem 1. We proceed with this.

Proof. By Lemma 2, the embedding

QLp
sv ⊆ K(↓) ∩ Lp

v

follows from the boundedness of Q as an operator from Lp
sv to Lp

v (that is how the
weight sv was chosen). Furthermore, Q takes any nonnegative function to a monotone
nonincreasing function. This proves (a).

We pass to the second statement of the theorem.
Fix a function x ∈ K(↓)∩Lp

v with nonzero norm. Condition (11) implies the identity

(103) lim
t→∞

x(t) = 0.

Since the norm in Lp
v is absolutely continuous, by (103) we see that there exists a strictly

monotone continuous function x0 ∈ K(↓) ∩ Lp
v enjoying the conditions

x0(t) ≥ x(t) (∀t > 0);(104)

‖x0 |Lp
v‖ ≤ 2‖x |Lp

v‖;(105)

lim
t→∞

x0(t) = 0;(106)

lim
t→0

x0(t) = ∞.(107)

Since the continuous function x0(t) is strictly monotone, by (106), (107) we deduce that
for every i ∈ Z there exists a unique point ti ∈ (0,∞) with x0(ti) = 2−i. We define two
new functions

ys0(t) =

∞∑
−∞

χ[ti,ti+1)2
−i, ys1(t) =

∞∑
−∞

χ[0,ti+1)2
−i.

Direct calculations show that for every t > 0 we have

(108) ys1(t) ≡ 2ys0(t), ys0(t) ≥ x0(t) ≥
1

2
ys0(t).

Consequently,

(109) ‖ys1 |Lp
v‖ = 2‖ys0 |Lp

v‖ ≥ 2‖x0 |Lp
v‖ ≥ 1

2
‖ys0 |Lp

v‖.

But form (105), (108), and the absolute continuity of the norm in Lp
v we deduce that

lim
i→−∞

∥∥∥∥
i∑

−∞
χ[0,tj+1)2

−j |Lp
v

∥∥∥∥ = lim
i→−∞

2

∥∥∥∥
i∑

−∞
χ[tj ,tj+1)2

−j |Lp
v

∥∥∥∥
= 2 lim

i→−∞
‖ys0χ[0,tj+1) |Lp

v‖ ≤ 4 lim
i→−∞

‖x0χ[0,tj+1) |Lp
v‖ = 0.

(110)
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570 E. I. BEREZHNOĬ AND L. MALIGRANDA

Taking (110) into account, we apply Lemma 4 to ys1. This yields a sequence {ki}∞0 such
that

(111)

∥∥∥∥
∞∑

k0+1

2−jχ[0,tj+1) |Lp
v

∥∥∥∥+
∞∑
i=0

∥∥∥∥
ki∑

ki+1+1

2−jχ[0,tj+1) |Lp
v

∥∥∥∥ ≤ 2‖ys1 |Lp
v‖.

We define the functions

z0 =
∞∑

k0+1

2−jχ[0,tj+1); zi+1 =

ki∑
ki+1+1

2−jχ[0,tj+1) (i = 0, 1, 2, . . . ).

Fixing ε > 0, we apply Lemma 6 to every function {zi}∞0 . This will result in a collection
of functions {ziε}∞0 satisfying the conditions

Qziε(t) ≥
1

16
zi(t) (∀t > 0);(112)

‖ziε |Lp
sv‖ ≤ 1 + ε

(2p − 1)1/p
‖zi |Lp

v‖.(113)

Put

xε =

∞∑
i=0

ziε.

Then (104), (108), (111), and (112) show that for every t > 0 we have

Qxε(t) = Q

( ∞∑
i=0

ziε

)
(t) ≥ 1

16

∞∑
i=0

zi(t) =
1

16
ys1(t) =

1

8
ys0(t) ≥

1

8
x0(t) ≥

1

8
x(t).

But from (105), (108), (109), and (113) we obtain

‖xε |Lp
sv‖ =

∥∥∥∑ ziε |Lp
sv

∥∥∥ ≤
∑

‖ziε |Lp
sv‖ ≤ 1 + ε

(2p − 1)1/p

∑
‖zi |Lp

v‖

≤ 2
1 + ε

(2p − 1)1/p
‖ys1 |Lp

v‖ ≤ 8
1 + ε

(2p − 1)1/p
‖x0 |Lp

v‖

≤ 16
1 + ε

(2p − 1)1/p
‖x |Lp

v‖. �

We pass to the proof of Theorem 7.

Proof. By Theorem 5, the cones K(↓) ∩ L∞
v and K(↓) ∩ L∞

rv coincide.
First, we verify (a). By Lemma 2, the operator Q : L∞

u → L∞
w is bounded if and only

if

(114) sup
t>0

w(t)

∫ ∞

t

ds

u(s)
= C8 < ∞.

In our case, (114) has the form

(115) sup
t>0

rv(t)

∫ ∞

t

ds

sv(s)
= sup

t>0
rv(t)

∫ ∞

t

(
− d

ds

1

svac
(s)

)
= sup

t>0
rv(t)

1

rvac(t)
≤ C8.

Now, we prove (b). Let x ∈ K(↓) ∩ L∞
rv and c0 = supt>0 x(t)rv(t). Put yε(t) = c0

sv(t) .

Then ‖yε |L∞
sv ‖ = c0, and we have

Qyε(t) =

∫ ∞

t

yε(τ ) dτ =

∫ ∞

t

c0
sv(τ )

dτ

= c0

∫ ∞

t

(
− d

ds

1

svac(s)
ds
)
= c0

1

svac(t)
(t) ≥ c0

c
x(t). �
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Now we pass to a lemma that yields a necessary and sufficient condition for the
existence of an absolutely continuous function equivalent to a given weight function v.

We remark at once that, in the case of the space L∞
v , the value of the weight function

at every point is essential. Therefore, we assume for definiteness in what follows that v
is continuous from the left.

Lemma 7. Fix p = ∞ and a weight function v : [0,∞) → R+. Next, define a function rv
as in (34). Then the existence of an absolutely continuous function rvac ∈ K(↓) ∩ L∞

v

such that

(116)
1

c
rvac(t) ≤ rv(t) ≤ crvac(t)

for some constant C and all t ∈ R+ is equivalent to the inequality

(117) sup
t∈R+

rv(t+ 0)

rv(t− 0)
= d < ∞.

Proof. We verify the implication (116) ⇒ (117). Since rvac is absolutely continuous,
by (116) we obtain

(118)
rv(t+ 0)

rv(t− 0)
≤ crvac(t+ 0)

rv(t− 0)
≤ c2rvac(t+ 0)

rvac(t− 0)
= c2,

and this proves the implication (116) ⇒ (117).
Now, we verify the implication (117) ⇒ (116). Since rvac is monotone nondecreasing,

the Radon–Nikodym decomposition yields the representation

(119) rv(t) = x1(t) + x2(t) + x3(t),

where x1, x2, x3 ∈ K(↓) are, respectively, absolutely continuous, singular, and jump
functions. We construct an equivalent absolutely continuous function for each of them
separately. The function x1 is absolutely continuous itself, so nothing should be con-
structed for it. We have two possibilities for x2: a) this function is positive for all
t ∈ R+, b) there exists τ0 ∈ R+ such that x2(τ0) = 0 and x2(t) > 0 for t < τ0 . We
consider a) first.

Put c = x2(1). For every k ∈ Z we define tk ∈ R+ by tk = sup{t : x2(t) ≥ 2kc}.
If 0 ≤ tk+1 < tk < ∞, then for t ∈ [tk+1, tk] we define a function x2ac by the formula

x2ac(t) = x2(tk) + (t− tk)
x2(tk+1)−x2(tk)

tk+1−tk
. Then for all t ∈ [tk+1, tk] we have

(120) x2ac(tk) ≤ x2(t) ≤ x2ac(tk+1) = 2x2ac(tk) ≤ 2x2(t).

If 0 < tk < tk−1 = ∞, then for t ∈ [tk,∞) we define a function x2ac by the formula
x2ac(t) = x2(tk). Then for all t ∈ [tk,∞) we have

(121) x2(t) ≤ x2ac(tk) ≤ 2x2(t).

Now, if x2(0) < 2x2(tk), then for t ∈ [0, tk] we define x2ac by the formula x2ac(t) = x2(0).
Then for t ∈ [0, tk] we again have (121).

Relations (120)–(121) show that in case a) we have constructed an absolutely contin-
uous functionx2ac equivalent to x2 with constant 2.

If condition b) is fulfilled, then for all t ∈ [τ0,∞) we define x2ac by the formula
x2ac(t) ≡ 0. The subsequent construction is similar to case a) treated above.

Now, we show how to construct an equivalent absolutely continuous function in K(↓)
for x3.

Again, there are two possibilities for x3: a) the function x3 is positive for all t ∈ R+,
b) there exists τ0 ∈ R+ such that x3(τ0) = 0 and x2(t) > 0 for t < τ0.

First, we consider case a). For every k ∈ Z, we define tk ∈ (τ,∞) by tk = inf{t :
x3(t) ≤ (d+ 1)k}. Again by continuity, x3(tk) ≤ (d+ 1)k for all k.
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Again, we construct a linear approximate. If 0 ≤ tk+1 < tk < ∞, then for t ∈ [tk+1, tk]

we define a function x3ac by the formula x3ac(t) = x3(tk)+ (t− tk)
x3(tk+1)−x3(tk)

tk+1−tk
. Then,

if x3(tk+1) ≤ (d+ 1)x3(tk), for all t ∈ [tk+1, tk] we have

(122) x3ac(tk) ≤ x3(t) ≤ x3ac(tk+1) ≤ (d+ 1)x3ac(tk) ≤ (d+ 1)x3ac(t).

But if x3(tk+1) > (d + 1)x3(tk), then for every δ > 0 we have x3(tk − δ) > (d + 1)k.
Therefore, by (117) we obtain x3(tk+1) ≤ (d+1)k+1 ≤ (d+1)x3(tk−δ) and, consequently,
x3(tk+1) ≤ d(d+ 1)x3(tk). Thus, for all t ∈ [tk+1, tk] we have

(123) x3ac(tk) ≤ x3(t) ≤ x3ac(tk+1) ≤ d(d+ 1)x3ac(tk) ≤ d(d+ 1)x3ac(t).

If 0 < tk < tk−1 = ∞, then for t ∈ [tk,∞) we define x3ac by the formula x3ac(t) =
x3(tk).

Applying (117) once again, we see that

(124) x3(t) ≤ x3ac(t) ≤ d(d+ 1)x3ac(t)

for all t ∈ [tk,∞). Relations (122)–(124) show that, in case a), we have constructed an
absolutely continuous function x3ac equivalent to x3 with the constant d(d+ 1).

If b) is fulfilled, then for all t ∈ [τ0,∞) we define x3ac by x3ac(t) ≡ 0. The subsequent
arguments resemble those in case a). �

In conclusion we discuss Lemma 8, required for the proof of Lemma 3.

Lemma 8. Fix θ ∈ (0, 1). In the spaces L1
w0

and L∞
w1

, consider the cones K(↓) ∩ L1
w0

and K(↓) ∩ L∞
w1

. Let

x ∈ (K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ

satisfy

(125) ‖x | (K(↓) ∩ L1
w0

)θ(K(↓) ∩ L∞
w1

)1−θ‖ = 1.

Then there exists x0 ∈ K(↓) ∩ L1
w0

with ‖x0 |L1
w0

‖ = 1 such that

(126) x(t) ≤ xθ
0(t) ·

( 1

rw1(t)

)1−θ

(t)

for all t ∈ R+.

Proof. Theorem 5 shows that the cones K(↓) ∩ L∞
w1

and K(↓) ∩ L∞
rw coincide.

Suppose that (125) is fulfilled. This means that there exists a sequence of pairs of func-
tions x0n ∈ K(↓) ∩ L1

w0
with ‖x0n |L1

w0
‖ = 1 and x1n ∈ K(↓) ∩ L∞

rw with ‖x1n |L∞
rw ‖ = 1

such that for all t ∈ R+ we have

(127) x(t) ≤
(
1 +

1

n

)
· xθ

0n(t)x
1−θ
1n (t).

Since every x ∈ K(↓) ∩ L∞
Ăw1

with ‖x |L∞
Ăw1
‖ = 1 satisfies x(t) ≤ 1

rw(t) for all t ∈ R+, we

can rewrite (127) in the form

(128) x(t) ≤
[(

1 +
1

n

)1/θ

· x0n(t)
]θ

·
( 1

rw1(t)

)1−θ

.

We define a function y at all points t ∈ R+ by the formula y(t) = infn
(
1+ 1

n

)1/θ ·x0n(t).

Then y ∈ K(↓)∩L1
w0

, and the pointwise inequality y(t) ≤
(
1+ 1

n

)1/θ · x0n(t) shows that

‖y |L1
w0

‖ ≤
(
1 + 1

n

)1/θ
for every n ∈ N . This means that ‖y |L1

w0
‖ ≤ 1. In (128), we

pass to the infimum over n for every t ∈ R+, obtaining the inequality

(129) x(t) ≤ y(t)θ ·
( 1

rw1(t)

)1−θ
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valid for all t ∈ R+. Now, if we suppose that ‖y |L1
w0

‖ = q < 1, then, putting q0 = qθ,
we see that for all t ∈ R+ we have

x(t) ≤
(y(t)

q
q0

)θ

·
( q0

rw1(t)

)1−θ

;

moreover, q0
q y ∈ K(↓) ∩ L1

w0
with

∥∥ q0
q y |L1

w0

∥∥ = q0, and also q0
1
Ăw1

∈ K(↓) ∩ L∞
Ăw1

with∥∥q0 1
Ăw1

|L∞
Ăw1

∥∥ = q0, which contradicts (125). �
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[11] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York,
1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR0482275

[12] Yu. A. Brudny̆ı and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I, North-
Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991. Translated
from the Russian by Natalie Wadhwa; With a preface by Jaak Peetre. MR1107298

[13] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964),

113–190. MR0167830
[14] M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112

(1993), no. 2, 480–494. MR1213148
[15] M. Christ, Weighted norm inequalities and Schur’s lemma, Studia Math. 78 (1984), no. 3, 309–319.

MR782668
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