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Abstract

This thesis proposes a probabilistic level set method to be used in segmen-
tation of tumors with heterogeneous intensities. It models the intensities of
the tumor and surrounding tissue using Gaussian mixture models. Through a
contour based initialization procedure samples are gathered to be used in expec-
tation maximization of the mixture model parameters. The proposed method
is compared against a threshold-based segmentation method using MRI images
retrieved from The Cancer Imaging Archive. The cases are manually segmented
and an automated testing procedure is used to find optimal parameters for the
proposed method and then it is tested against the threshold-based method.
Segmentation times, dice coefficients, and volume errors are compared. The
evaluation reveals that the proposed method has a comparable mean segmen-
tation time to the threshold-based method, and performs faster in cases where
the volume error does not exceed 40%. The mean dice coefficient and volume
error are also improved while achieving lower deviation.
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Chapter 1

Introduction

When solving differential equations it is common to divide the domain into a
discrete set of points and then evolve these according to the differential equation.
In one dimension one might consider a wave equation defined on an interval. A
certain number of points on the interval are chosen and some form of time step-
ping is employed (e.g., Runge–Kutta methods) together with finite differences
in the spatial domain. To visualize the wave at a later time point, line segments
are drawn between the values of the wave at the chosen points. Assuming step
sizes are chosen appropriately, stability is guaranteed and error sizes can be
controlled.

Now consider an interface evolving under some velocity field. In two di-
mensions this corresponds to the boundary (curve) of a connected region and
in three dimensions it corresponds to the boundary (surface) of a connected
volume. As earlier, a first approach is to discretize the interface into a finite
number of points. In two dimensions these can be connected through line seg-
ments and in three dimension by triangles (i.e., a mesh). While this approach
may work for cases where the topology does not change much under the velocity
field, for example a circle that is evolved under a velocity field pointing out with
speed one along the unit normal, it is easy to construct velocity fields that cause
large distortions. To avoid the accuracy deteriorating one would have to period-
ically modify the discretization to account for these distortions by regularizing
deformed interface elements. While such methods have been constructed, see
for example [14], there is a simpler way to handle such difficulties, namely the
level set method.

The level set method was introduced in 1988 by Osher and Sethian, [6], for
solving differential equations related to curvature dependent flow. To under-
stand the idea behind the level set method, consider a two-dimensional curve.
Let φ(x) be a function defined on R2 in such a way that the zero level set of
φ(x) corresponds to the curve and the points where φ(x) < 0 correspond to the
interior while φ(x) > 0 corresponds to the exterior. While there are of course
more details to consider, this is the core method. As we will see this will allow
us to transform the curve’s parametrized differential equation into one that can
be evolved using standard methods described above. Once evolution of φ has
completed it is only necessary identify its zero level set to observe the evolution
of the curve.

The generality of this technique has made it applicable in a diverse set of
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2 Chapter 1. Introduction

fields. Many of these involve simulations and computational physics, such as
compressible flow, shock waves, solid-fluid interactions, low-speed flames, and
heat flow. Another field where use of level set methods has become prevalent
is image processing, such as reconstruction of surfaces from unorganized data,
motion analysis, and the focus of this thesis; image segmentation. See [18], [16],
and [22] for surveys of the various applications.

The goal of image segmentation is to determine the boundary of some fea-
ture. Methods that attempt to achieve this are called Active contour models
and their starting point is often to minimize some form of energy that depends
on the segmentation. Geodesic active contours, introduced in [11], compute an
energy along the boundary of the segmentation that is inversely proportional to
the gradient of the image. In ideal cases this finds the desired contour of the
image feature as the gradient of the image is high around the feature’s border.
However, as many images contain noise and internal edges of the feature, this
method can fail as it is attracted to local minima. While the effect of noise in an
image can be partially negated by smoothing the image, this in turn can cause
edges to blur and the method to fail at identifying the feature’s boundary. When
this happens the segmentation might not stop when it reaches a blurred edge,
causing the segmentation to include too much of the image in the segmentation.
This is commonly referred to as leaking.

Medical images are a prime example of when geodesic active contour models
can fail. Transitions between internal structures are usually smooth and the re-
gion of interest is identified by intensity differences compared to its surroundings
rather than edges, see Figure 1.1. This has given rise to region based active con-
tour models. These aim to identify statistical properties of the feature in order
to distinguish it from the background. The first such method was developed by
Chan and Vese in [15]. The model they derived considers means of the interior
and exterior region and uses this information to propagate the interface. Much
work has been done to improve and build upon region based image segmentation
and a good review can be found in [22]. Many Chan–Vese inspired region based
models, however, assume that the feature being segmented is homogeneous. In
this thesis a level set method for segmenting heterogeneous objects with weak
boundaries is proposed.

Figure 1.1: An MRI image where tumor boundary has regions of low gradient
magnitude.
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1.1 Motivation and Purpose
In this thesis we will restrict our attention to medical images taken by mag-
netic resonance imaging (MRI). The procedure to create such images involves
measuring magnetic fields of the body and converting these measurements into
gray scale images where intensity differences distinguish structures. The result
is a volumetric dataset detailing the intensities measured in the region of body
scanned. Furthermore we will be looking at MRI images taken of brains con-
taining tumors. These are detected in the images by giving the patient contrast
medium, such as Gadolinium, binded to glucose. Since tumors are a collec-
tion of cells with uncontrolled growth they will consume more of the glucose
and thus also contrast medium than the surrounding tissue, resulting in an in-
creased intensity in the MRI image where the tumor is located. It should be
noted that there are many different types of MRI images that can be taken.
We will be looking at so-called T1 weighted images in which fat tissue is high-
lighted. Furthermore, MRI images are 16-bit images while computer screens can
only display images in 8-bit. In practice this means that when viewing images
one must choose a window level. This specifies a center intensity and a window
width. The intensities are then scaled to 8-bit according to their location within
the width of intensities considered, and if they fall outside the window width
they are clamped to black or white.

Parts of the tumor may not receive enough nutrients to stay alive as the
tumor tissue closer to the region’s border consumes an abnormal amount, re-
sulting in cell death. Such regions are commonly referred to as necrotic and will
appear as dark in the T1 weighted MRI image. This phenomena can occur to
a varying degree and thus the tumors are often very chaotic both in topology
and MRI-intensity, see Figure 1.2.

Figure 1.2: A T1 weighted image with a tumor containing necrotic tissue which
shows up as dark on the MRI image.

Sectra AB is a company active within medical technology (and encrypted
communication systems). Their picture archiving and communication system
(PACS) is used by radiologists (among others) to analyze medical images and
the software has a tool for real-time 3D volume segmentation based on a variant
of the previously mentioned Chan–Vese active contour model. By real-time we
mean that it is able to segment most structures in less than a second and has a
simple user interaction (i.e., quick setup). The method segments homogeneous
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tumors well but for more complicated cases such as the aforementioned heteroge-
neous tumors, it has difficulty producing an accurate segmentation. This thesis
aims to propose and test an alternative method that is able to better handle
heterogeneous tumors. The goal will be to answer the following questions:

• How is the level set method used for image segmentation?

• Can the level set method be used to develop a segmentation algorithm
that performs better on MRI images of heterogeneous brain tumors than
the existing method?

• How does segmentation time for the new method compare to the existing
method?

The theory needed to understand the current method and the implemen-
tation of the new method, as well as the method for testing the performance,
will be explained in the following chapter. In Chapter 3 the method for imple-
menting, testing, and evaluating the proposed segmentation algorithm will be
explained. In Chapter 4 and 5 the main results of this thesis are presented and
interpreted. We end with some final conclusions in Chapter 5.



Chapter 2

Theoretical Background

This chapter begins by discussing the general level set method. This is followed
by the derivation of an algorithm for computing the maximum likelihood esti-
mators of parameters for a mixture of Gaussian distributions. Thereafter the
theory for image segmentation using level set methods through the derivation
of the Chan–Vese level set equation is covered. We then present the level set
equation for the current method we wish to improve, and derive the proposed
level set method. We end by seeing how efficient numerical methods can be
designed to speed up computations.

2.1 The Level Set Method
2.1.1 Representation of an Interface
As the purpose is to develop a method for volume segmentation we will mainly
focus on surfaces in three dimensions. Note however that the level set method
is general and can be applied in any dimension. The two dimensional interface
located in three dimensions is a closed surface that partitions R3 into separate
subdomains with nonzero volume.

The surface can be represented explicitly or implicitly. When representing
the surface explicitly, some form of parametrization must be constructed. For
all but the most trivial cases this can be a cumbersome task, if not impossible.
Discretization of a surface can be quite difficult as well. In two dimensions the
connectivity of a curve is easy since it is determined by the ordering of the
points chosen to discretize the curve. For a surface it is necessary to choose
a number of points and specify their connectivity. Such a representation is
further complicated when deforming the surface which can cause connectivity
to change. This is why we use implicit level set representation.

To illustrate the process let us consider a simple example, the unit sphere
Ω = {~x ∈ R3; |~x| ≤ 1}. Explicitly we may write its boundary ∂Ω as

S(α, β) =

cos(α) sin(β)
sin(α) sin(β)

cos(β)

 , α, β ∈ R. (2.1)

On the other hand we know that the unit sphere describes all points ~x ∈ R3
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6 Chapter 2. Theoretical Background

that fulfill the equality |~x|2 = 1. Letting ~x = (x, y, z)T we can define

φ(~x) = x2 + y2 + z2 − 1. (2.2)
Now ∂Ω described explicitly by (2.2) is represented implicitly as the zero

isocontour of φ(~x). The interior of Ω, denoted by Ω− is given by ~x where
φ(~x) < 0, and the exterior Ω+ are all points satisfying φ(~x) > 0.

2.1.2 Geometric Tools
We will need some tools in translating expressions given in parametric form to
their implicit equivalent. To begin let us consider a general level set function
φ(~x) : R3 → R, where the interior region of the volume surface, denoted Ω− is
given by φ(~x) ≤ 0, and the boundary by φ(~x) = 0.

A well known fact from multi-variable calculus is that the gradient is per-
pendicular to the isocontours and points in the direction of increase. For our
level set function it means that the outward facing unit normal of the interface
∂Ω− is given by

~N = ∇φ
|∇φ|

. (2.3)

Note that the normal is defined on all of R3 where |∇φ| 6= 0,while coinciding
with the explicit representation’s normal for points located on the interface.
The curvature κ of the interface is defined as the divergence of the normal, and
so using (2.3) we get

κ = ∇ · ~N = ∇ ·
(
∇φ
|∇φ|

)
. (2.4)

We now define the characteristic function for the interior region including the
boundary, Ω− as

χ−(~x) =
{

1 if φ(~x) ≤ 0,
0 if φ(~x) > 0. (2.5)

Likewise, the characteristic function for the exterior region Ω+ is defined as

χ+(~x) =
{

1 if φ(~x) > 0,
0 if φ(~x) ≤ 0. (2.6)

The one-dimensional Heaveside function can alternatively be used to define
the characteristic functions, and it is given by

H(φ) =
{

0 if φ ≤ 0,
1 if φ > 0. (2.7)

Then we have that χ−(~x) = (1 − H(φ(~x))) and χ+(~x) = H(φ(~x)). In
numerical calculations, the Heaviside function is approximated by a smooth
function in order to avoid numerical oddities such as the Dirac function being
considered zero everywhere by the discretization. We will return to this later but
for now we use this to motivate viewing derivatives of the Heaviside function
in the usual sense. By definition the Dirac delta function is the directional
derivative of the Heaveside function in the outward normal direction, given by

δ̂(~x) = ∇H(φ(~x)) · ~N = H ′(φ(~x))∇φ(~x) ·
(
∇φ
|∇φ|

)
= H ′(φ(~x))|∇φ(~x)|. (2.8)
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In one spatial dimension the delta function is defined as the derivative of the
one-dimensional Heaveside function, i.e.

δ(φ) = H ′(φ).

Using this we can rewrite (2.8) as

δ̂(~x) = δ(φ(~x))|∇φ(~x)|. (2.9)

2.1.3 The Level Set Equation
Let us now add dynamics to our interface. Consider a surface S that evolves
over time, so that it at time t is given by S(t), where S(0) = S. Then for a
point ~x(t) ∈ S(t) we have that it moves according to the ordinary differential
equation (ODE)

~xt(t) = ~V (~x(t), t). (2.10)
Now we wish to find a differential equation for φ(~x, t) so that at time t the zero
isocontour of φ(~x, t) equals S(t). Assuming that the speed function ~V can be
extended to R3 we have the following.

Theorem 2.1 (The level set equation). Let φ(~x, t) be a level set function chosen
with the initial condition

{~x; φ(~x, t = 0) = 0} = S.

Then, evolving φ(t) according to

φt(~x, t) + ~V (~x, t) · ∇φ(~x, t) = 0, (2.11)

or
φt(~x, t) + F (~x, t)|∇φ(~x, t)| = 0, (2.12)

where F is the component of velocity in the normal direction ~N(~x), implies that

{~x; φ(~x, t) = 0} = S(t).

Proof. We want the zero isocontour of φ to equal the propagating surface S(t),
so we have the condition

φ(~x(t), t) = 0, ∀~x(t) ∈ S(t).

Thus it must hold that for all ~x(t) ∈ S(t)

0 = ∂

∂t
φ(~x(t), t) = φt +∇φ(~x(t), t) · ~xt(t). (2.13)

Using (2.10) we get

φt +∇φ(~x(t), t) · ~V (~x(t), t) = 0, (2.14)

and extending this PDE to all points ~x ∈ R3 we get (2.11). Now, let ~T (~x(t)) be
a tangential surface vector at ~x(t) ∈ S(t). Then we can write ~V = Vn ~N + Vt ~T .
By (2.3) we have that ~T · ∇φ = 0, and furthermore

∇φ · ~N = ∇φ
|∇φ|

· ∇φ = |∇φ|.
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Thus we can rewrite (2.14) as

φt(~x(t), t) +∇φ(~x(t), t) · (Vn ~N + Vt ~T ) = φt( ~x(t), t) + Vn|∇φ(~x(t), t)| = 0,

and extending this PDE to all points ~x ∈ R3 we get (2.12).

Once the level set equation is derived, no information on the topology of the
surface is needed. The level set PDE can easily be solved using finite difference
schemes and time stepping. Finding the surface’s propagation is then only a
matter of identifying the zero level set.

2.1.4 Numerical solutions
When solving (2.12) we divide the spatial domain into a three-dimensional grid
with grid widths ∆x,∆y, and ∆z. In our implementation we will consider one
grid-point for each voxel, so the grid widths are all set to 1. Now, at time tn
we let φnijk = φ(xi, yj , zk, tn), where tn+1 = tn + ∆t. We will use the explicit
forward Euler method for time stepping, which is a first order accurate method.
While higher order explicit methods or implicit methods could be used, they are
computationally expensive and so we do not explore these here. Let us begin
the discussion of discretization by considering the alternative level set equation
(2.11),

φt(~x, t) = −~V (~x, t) · ∇φ(~x, t). (2.15)
Suppose we have computed φ(~x, t̃) for some t̃ ≥ 0. Now we wish to determine
φ(x̂, t̃ + t), for some x̂ ∈ R3 and t > 0. Locally we can consider the constant
vector V̂ = ~V (x̂, t̃). Setting

φ(x̂, t̃+ t) = φ(x̂− V̂ t, t̃). (2.16)

we get a solution to (2.15),

∂

∂t
φ(x̂, t̃+ t) = ∂

∂t
φ(x̂− V̂ t, t̃) = ∂

∂t
· (x̂− V̂ t)∇φ(x̂− V̂ t, t̃) = −V̂ · ∇φ(x̂, t̃+ t).

Equation (2.16) tells us that, locally, the value at φ(~x, t) depends on the initial
data located at the offset −~V (~x, t)∆t. Now let ~x = (x, y, z)T and ~V (~x, t) =
(u, v, w)T . Consider the forward, backward, and central difference operators
given respectively,

D+
x φ = φi+1,j,k − φi,j,k

∆x (2.17)

D−x φ = φi,j,k − φi−1,j,k

∆x (2.18)

D0
xφ = φi+1,j,k − φi−1,j,k

2∆x . (2.19)

The forward and backward difference are first order accurate, while the central
is second order, which can be seen by Taylor expansion. In choosing what
difference operator to use for the discretization, an important result is needed.

Theorem 2.2 (The CFL condition). A numerical approximation of a partial
differential equation can converge only if the mathematical domain of dependence
is contained in the numerical domain of dependence.
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Proof. See [1] for the original derivation.

Returning to our discretization of (2.15) we know that the mathematical
domain of dependence is locally the values lying along the line −~V (~x, t) =
(−u,−v,−w)T . Thus, if u > 0 then information is traveling from left to right
along the x-axis and the backward difference should be used, while u < 0 implies
information is traveling from right to left along the x-axis and a forward dif-
ference should be used. This is what is commonly referred to as the upwinding
scheme. Thus when discretizing the PDE we use

∂

∂x
φ(~x, t) =

[
max(0, ~V1(~x, t))D−x φi + min(0, ~V1(~x, t))D+

x φi
]

+O(∆x), (2.20)

for the spatial derivatives (equivalently for y, and z partial derivatives). The
upwinding scheme can be shown to be stable (see [7] 7.1.1.1 and [18] 3.2) when

∆tmax
{
|~V1|
∆x + |

~V2|
∆y + |

~V3|
∆z

}
< 1. (2.21)

Let us now consider the level set equation, given by (2.12),

φt(~x, t) + F (~x, t)|∇φ(~x, t)| = 0, (2.22)

This will be the form of the level set equations we derive, and the obvious
problem here is how to determine the partial derivatives and equivalent step
size restriction. This can be done using the so-called Godunov scheme, see [18],
Section 6.2. Here we choose the spatial derivative in the following way when
computing |∇φ(~x, t)|,

∂

∂x
φ(~x, t)2 ≈

{
max

(
max(D−x φi, 0)2,min(D+

x φi, 0)2) , if F (~x, t) ≥ 0,
max

(
min(D−x φi, 0)2,max(D+

x φi, 0)2) , if F (~x, t) < 0.
(2.23)

The time step restriction for stability is then given by (see [13], Section 6.4.1),

∆t ≤ min(∆x,∆y,∆z)
max|F (~x, t)| . (2.24)

Lastly, when curvature is introduced to regularize the level set we use central
differencing as parabolic equations have a domain of dependency in all spatial
directions. The curvature can be expanded using the chain rule as follows,

∇ ·
(
∇φ
|∇φ|

)
=
(
φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφxz + φ2

zφxx

+ φ2
yφzz − 2φyφzφyz + φ2

zφyy
)
/|∇φ|3.

(2.25)

To discretize the second partial derivatives finite differencing is applied twice,
e.g., φxx ≈ D+

xD
−
x φ, and φxy ≈ D0

xD
0
yφ, which produces second order accurate

approximations.
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2.1.5 Signed Distance Function
A distance function d(~x) to a set U is defined by

d(~x) = min|~x− ~xC |, for all ~xC ∈ U.

Note that d(~x) = 0 for all ~x ∈ ∂U . A signed distance function is then a function
φ satisfying |φ(~x)| = d(~x) for all ~x. Recalling the notation for the exterior
region, Ω+, and the interior, Ω−, we can construct a level set function that is a
signed distance function if we set

φ(~x) =

 0, if ~x ∈ ∂Ω−,
−d(~x) if ~x ∈ Ω−,
d(~x) if ~x ∈ Ω+.

So φ is a distance function to ∂Ω− save for interior points where the distance is
taken to be negative. Since d(~x) is the Euclidean distance we have that

|∇φ| = 1,

for all points that are not equidistant to at least two points on the boundary.
While part of the reason for choosing φ to be a signed distance function is to
create a function that will not cause numerical issues with extreme gradient
values, the secondary objective is to have a function where we can only update
points on the interface, and then use that φ is a signed distance function to
update the points close to the interface. This is what is commonly referred to
as the sparse field method. Updating the entire computational domain requires
O(N3) operations, where N is the number of grid points in each dimension.
Working only in a neighborhood of the zero level set reduces this significantly.
If the interface has roughly O(N2) points, and we update the level set function
only for neighboring grid cells (i.e., a bandwidth of one) the computational
complexity is reduced to O(N2).

2.1.6 The Euler–Lagrange Equation
Most level set equations are derived from integrals representing an energy that
is to be minimized. The method to derive the corresponding PDE is to compute
the so called Euler–Lagrange equation. We begin by considering some open set
U ⊂ Rn. Now suppose we have a smooth function L : Rn × R × Ū → R. This
function is called the Lagrangian. To simplify notation in the derivation we will
write

L = L(p, z, ~x) = L(p1, . . . , pn, z, x1, . . . , xn),
for p ∈ Rn, z ∈ R, ~x ∈ U . The variables p and z will be replaced by ∇u and
u, respectively, below. The reason for this placeholder notation is to be able to
express derivatives of the functional with respect to partial derivatives of u in
a simpler manner. Let us now assume I[u] is of the form

I[u] =
∫
U

L(∇u(~x), u(~x), ~x)d~x,

for functions u : Ū → R satisfying some boundary condition. This can be taken
to either be a Dirichlet condition,

u(~x) = g(~x), on ∂U
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or a Neumann condition,

∇u(~x) · n̂(~x) = g(~x), on ∂U,

where n̂ is the outward facing unit normal for ∂U . Suppose now that we that
a certain function u, satisfying the chosen boundary condition, minimizes I[·].
We now construct the PDE that this function solves by taking an arbitrary test
function v with compact support (i.e., support in a closed bounded subset of
U). Then consider

i(τ) = I[u+ τv], τ ∈ R.

Suppose the Dirichlet condition is chosen. Then, since v has compact support,
it holds that u+ τv = u = g on ∂U . If instead a Neumann condition is chosen,
it holds that v having compact support implies it is zero in an open subset
containing ∂U and thus ∇v = 0 on ∂U , so again u+ τv satisfies the boundary
condition. Since u is a minimizer of I[·], it holds that

i′(0) = 0. (2.26)

Now let us explicitly compute this derivative. First observe that

i(τ) =
∫
U

L(∇u+ τ∇v, u+ τv, ~x)d~x.

Thus,

i′(τ) =
∫
U

[
n∑
i=1

Lpi(∇u+ τ∇v, u+ τv, ~x)vxi + Lz(∇u+ τ∇v, u+ τv, ~x)v
]
d~x.

Setting τ = 0 we get from (2.26)

0 = i′(0) =
∫
U

[
n∑
i=1

Lpi(∇u, u, ~x)vxi + Lz(∇u, u, ~x)v
]
d~x. (2.27)

Letting n̂ = (n1, . . . , nn)T we can integrate by parts to get∫
U

Lpi(∇u, u, ~x)vxi = −
∫
U

(Lpi(∇u, u, ~x))xiv +
∫
∂U

Lpi(∇u, u, ~x)v nidS

= −
∫
U

(Lpi(∇u, u, ~x))xiv.

Thus (2.27) is equivalent to

0 =
∫
U

[
−

n∑
i=1

(Lpi(∇u, u, ~x)xi + Lz(∇u, u, x)
]
vd~x. (2.28)

Since (2.28) holds for all test functions v it must hold that

−
n∑
i=1

(Lpi(∇u, u, ~x)xi + Lz(∇u, u, x)) = 0, in U.
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Dropping the placeholder notation we arrive at the Euler–Lagrange equation,

−
n∑
i=1

∂

∂xi

(
∂

∂uxi
L(∇u, u, ~x)

)
+ ∂

∂u
L(∇u, u, ~x) = 0, in U. (2.29)

As an example let us consider the Lagrangian

L(∇u(~x), u(~x), ~x) = 1
2 |∇u(~x)|2.

To compute the Euler–Lagrange equation we compute the derivatives,

∂

∂u

1
2 |∇u(~x)|2 = 0,

∂

∂uxi

1
2 |∇u(~x)|2 = uxi ,

∂

∂xi

(
∂

∂uxi

1
2 |∇u(~x)|2

)
= uxixi .

Thus a minimizer of
1
2

∫
U

|∇u(~x)|2d~x,

satisfies the PDE
∆u(~x) = 0, in U.

This is known as the Dirichlet principle. If we want to perform gradient descent
on the Euler–Lagrange equation we can introduce artificial time to get u(~x, t).
Then we perform time stepping on

ut(~x, t) =
n∑
i=1

∂

∂xi

(
∂

∂uxi
L(∇u(~x, t), u(~x, t), ~x)

)
− ∂

∂u
L(∇u(~x, t), u(~x, t), ~x).

(2.30)
To see why this holds we begin by labeling the left hand side of the Euler–
Lagrange equation (2.29) as A[u]. Then we can write (2.30) as

ut(~x, t) = −A[u].

Assume now that u is not a local minimizer of I[·]. Then for a fixed v we have

i(τ) = i(0) + τi′(0) +O(τ2).

We now wish to find v such that moving u in the direction of v (i.e., u + τv)
gives the greatest change to I[u], i.e., we want to find v that maximizes |i′(0)|.
The right hand side of (2.28) is precisely i′(0),

i′(0) =
∫
U

A[u]vd~x.

This is in fact the inner product of A[u] and v in L2 space. By the Cauchy-
Schwarz inequality we have

|i′(0)| = |〈A[u], v〉| ≤ ‖A[u]‖‖v‖,
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with equality when A[u] and v are collinear. Thus, choosing v = A[u] gives us
the greatest change in I[u] when moving u in its direction. In this case

i′(0) = 〈A[u], A[u]〉 ≥ 0,

and so to moving u in the direction −A[u] corresponds to the greatest descent
in I[u].

2.2 Expectation Maximization
The Expectation Maximization (EM) algorithm, introduced in [3], is an iter-
ative procedure for computing the Maximum Likelihood (ML) estimate for a
probabilistic model with unobserved, or missing, data. In general, we wish to
find parameters for the model that maximize the likelihood of the observed
data. As an example consider a set of observations where each observation
comes from one of two Gaussian distributions. However, we do not know which
Gaussian a given sample comes from, nor the respective Gaussians’ parameters
or the likelihood of the sample coming from a particular Gaussian. The EM-
algorithm computes the parameters that most likely produced the output. Here
the missing data is which Gaussian a given sample comes from. If we knew this
computing the parameters would be trivial. In this section we begin by recalling
some basic results regarding convex functions to use in deriving the general EM
algorithm, following the very intuitive method presented in [24]. We then see
how this is applied for models consisting of a linear combination of Gaussians,
so-called Gaussian mixture models, and finally how K-means clustering can be
used to create an initial guess for the parameters.

2.2.1 Convex Functions
We begin by recalling some properties of convex functions. We will skip the
proofs as this should be familiar from a calculus course. The proofs can however
be found in [24].

Definition 2.3. A real valued function f defined on I = [a, b] is said to be
convex on I if for all x1, x2 ∈ I and λ ∈ [0, 1], it holds that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

If the inequality is strict, we say that f is strictly convex. Furthermore, we say
that f is (strictly) concave if −f is (strictly ) convex.

For differentiable functions convexity can be determined by computing the
sign of the second derivative across the interval.

Lemma 2.4. If f(x) ∈ C2(I) and f ′′(x) ≥ 0 on I, then f is convex on I. If
the inequality is strict then f is strictly convex.

Then it directly follows that

Lemma 2.5. − ln(x) is strictly convex on (0,∞).

The following inequality is useful in moving summation out of the natural
logarithm.
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Lemma 2.6 (Jensen’s inequality). If f is convex on I, x1, ..., xn ∈ I, and
λ1, ..., λn ≥ 0 with

∑n
i=1 λi = 1, it holds that

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

Applying this to − ln(x) which is convex we get

ln
n∑
i=1

λixi ≥
n∑
i=1

λi ln(xi). (2.31)

2.2.2 The General Algorithm
Each iteration of the EM algorithm consists of two steps. The first is the E-step,
where the unobserved data is estimated given the observed data and current
parameters estimate. In the M-step, the likelihood function is maximized under
the assumption that the unobserved data is known. In the general case it is
possible for the EM algorithm not to converge. It is, however, proved in [4] that
for the exponential family, e.g., Gaussian distributions, the algorithm converges
to a stationary point that is a local maximum or in unusual cases, a saddle
point. To avoid the latter, several starting points in the parameter space can
be tested as the particular stationary point the algorithm converges to depends
on the starting values of the parameters.

We begin the derivation by considering a vector of independently drawn
observations X = (x1, . . . , xN )t, where each observation comes from some
parametrized family. We wish to find θ that maximizes p(X|θ), i.e., the ML
estimate of θ. To do this we introduce the log likelihood function

L(θ) = ln p(X|θ).

Since the logarithmic function is strictly increasing, the θ that maximizes L(θ)
will also maximize p(X|θ). Suppose we have an estimate for θ, denoted θn, after
the nth iteration of the EM algorithm. The goal is to find a θ that increases the
likelihood function, so L(θ) > L(θn). Using the definition of L we can express
this problem as finding θ that maximizes

L(θ)− L(θn) = ln p(X|θ)− ln p(X|θn). (2.32)

Let us now introduce the unobserved, or missing variables. It is assumed that
observing these would make the maximization of L easier. Denote a realization
of the unobserved data as the vector Z. The probability p(X|θ) can then be
expressed using the law of total probability as

p(X|θ) =
∑

Z

p(X|Z, θ)p(Z|θ),

where we sum over the sample space for Z. Using this to rewrite equation (2.32)
we get

L(θ)− L(θn) = ln
∑

Z

p(X|Z, θ)p(Z|θ)− ln p(X|θn). (2.33)
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Now, recall the expression derived for the logarithm of a sum (2.31),

ln
n∑
i=1

λixi ≥
n∑
i=1

λi ln(xi),

with the condition that λi ≥ 0, and
∑n
i=1 λi = 1. This inequality can be used

for constants of the form p(Z|X, θn), since it satisfies positivity and summation
over Z equals one, as it is a probability measure. We use this to rewrite (2.33)
as

L(θ)− L(θn) = ln
∑

Z

p(X|Z, θ)p(Z|θ)− ln p(X|θn)

= ln
∑

Z

p(Z|X, θn)
(
p(X|Z, θ)p(Z|θ)
p(Z|X, θn)

)
− ln p(X|θn) · 1

≥
∑

Z

p(Z|X, θn) ln
(
p(X|Z, θ)p(Z|θ)
p(Z|X, θn)

)
− ln p(X|θn)

∑
Z

p(Z|X, θn)

=
∑

Z

p(Z|X, θn) ln
(

p(X|Z, θ)p(Z|θ)
p(Z|X, θn)p(X|θn)

)
=: ∆(θ|θn),

which implies that

L(θ) ≥ L(θn) + ∆(θ|θn) =: l(θ|θn). (2.34)

Now observe that

l(θn|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑

Z

p(Z|X, θn) ln
(
p(X|Z, θn)p(Z|θn)
p(Z|X, θn)p(X|θn)

)

= L(θn) +
∑

Z

p(Z|X, θn) ln

 p(X,Z|θn)
p(Z|θn) p(Z|θn)

p(X,Z|θn)
p(X|θn) p(X|θn)


= L(θn) +

∑
Z

p(Z|X, θn) ln 1

= L(θn).

Together with (2.34) we have that{
L(θ) ≥ l(θ|θn),
L(θn) = l(θn|θn).

Thus any θ that increases l(θ|θn) must also increase the value of L(θ). Therefore
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θn+1 should be chosen as

θn+1 = arg max
θ
{l(θ|θn)}

= arg max
θ

{
L(θn) +

∑
Z

p(Z|X, θn) ln
(

p(X|Z, θ)p(Z|θ)
p(Z|X, θn)p(X|θn)

)}

= arg max
θ

{∑
Z

p(Z|X, θn) ln (p(X|Z, θ)p(Z|θ))

+ L(θn)−
∑

Z

p(Z|X, θn) ln (p(Z|X, θn)p(X|θn))
}

= arg max
θ

{∑
Z

p(Z|X, θn) ln
(
p(X,Z, θ)
p(Z, θ)

p(Z, θ)
p(θ)

)}

= arg max
θ

{∑
Z

p(Z|X, θn) ln p(X,Z|θ)
}

= arg max
θ

{
EZ|X,θn(ln p(X,Z|θ)

}
.

Thus the EM algorithm consists of iterating the following:

1. E-step: Determine the conditional expectation EZ|X,θn(ln p(X,Z|θ)).

2. M-step: Maximize EZ|X,θn(ln p(X,Z|θ)) with respect to θ to find θn+1.

2.2.3 EM for Gaussian Mixtures
Let us now see how the EM algorithm can be used to compute the ML estimate
of a Gaussian mixture model’s (GMM) parameters. We will in large follow the
arguments from [19], Chapter 9. A GMM consists of K Gaussians,

N (x|µk, σk) = 1√
2πσk

e
− (x−µk)2

2σ2
k , k = 1, .. .,K,

where µk ∈ R denotes the mean and σk ∈ R the standard deviation. The model,
furthermore, consists of probabilities

πk ≥ 0, k = 1, .. .,K,
K∑
k=1

πk = 1, (2.35)

that indicate the probability of a sample being drawn from Gaussian k. We are
given a vector of samplesX = (x1, . . . , xN )T but do not know which distribution
each sample was drawn from. Given this, we wish to find the ML estimate of
the parameter θ = (π,µ,σ)T , where π = (π1, .. ., πK)T , µ = (µ1, .. ., µK)T ,
and σ = (σ1, .. ., σK)T . We begin by introducing the K-dimensional unobserved
random variable zn = (zn1, .. ., znK) that has a 1-of-K representation, i.e., one
element zk is equal to one, and all others are equal to zero. This is the missing
variable that determines which distribution xn was drawn from. By definition
we must then have

p(znk = 1) = πk, k = 1, .. .,K,
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since znk = 1 if sample xn is drawn from Gaussian k, and the probability of this
occurring is πk. We can express the 1-of-K distribution for zn as

p(zn) =
K∏
k=1

πznkk . (2.36)

The conditional distribution of the random variable Xn, observed as xn, given
that element k of zn is equal to one is thus given by

p(x|znk = 1) = N (x|µk, σk),

which can also be expressed as

p(x|zn) =
K∏
k=1
N (x|µk, σk)znk . (2.37)

The marginal distribution of Xn can then be obtained by summing the joint
distribution p(zn)p(x|zn) over all the K possible states of zn,

p(x) =
K∑
k=1

p(znk = 1)p(x|znk = 1) =
K∑
k=1

πkN (x|µk, σk). (2.38)

This is what is referred to as a Gaussian mixture. Here we see how for every
realization xn there is a corresponding K-dimensional missing observation zn.
Let us now derive the EM algorithm for this model. We have observed data
X and denote the corresponding missing discrete data as a N by K matrix
Z. Each row zn is the corresponding missing data for the observation xn, so
element znk = 1 if observation xn was drawn from Gaussian k. Using (2.36),
(2.37), and independence of the samples, we have that the likelihood function
has the form

p(X,Z|θ) = p(Z|π)p(X|Z,µ,σ) =
N∏
n=1

K∏
k=1

πznkk N (xn|µk, σk)znk .

The log likelihood function is then given by

ln p(X,Z|θ) =
N∑
n=1

K∑
k=1

znk[ln πk + lnN (xn|µk, σk)].

Since the samples are independent, we have that the rows of Z, denoted zn,
are as well. Thus the expected value of znk under the posterior distribution
depends solely on xn and is given by

EZ|X,θn(znk) =
∑
znk

znkp(znk|X, θn) = p(znk = 1|xn, θn)

= p(znk = 1)p(xn|znk = 1)
p(xn) = πkN (xn|µnk , σnk )∑K

i=1 πiN (xn|µni , σni )
:= γ(znk),
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where θn = (πn,µn,µn) denotes the current estimate of θ = (π,µ,σ). Thus
we have that

EZ|X,θn(ln p(X,Z|θ)) =
N∑
n=1

K∑
k=1

EZ|X,θn(znk)[ln πk + lnN (xn|µk, σk)]

=
N∑
n=1

K∑
k=1

γ(znk)[ln πk + lnN (xn|µk, σk)].

We have that the E step consists of evaluating γ(znk) using the current param-
eter estimation θn, followed by maximization of

Q(θ, θn) := EZ|X,θn(ln p(X,Z|θ)) =
N∑
n=1

K∑
k=1

γ(znk)
(

ln πk + lnN (xn|µk, σk)
)
,

with respect to θ = (π,µ,σ)T . Using the definition of N ,

N (x|µ, σ) = 1√
2πσ

e−
(x−µ)2

2σ2 ,

we can write Q as

Q(θ, θn) =
N∑
n=1

K∑
k=1

γ(znk)
(

ln πk − ln(
√

2πσk)− (x− µk)2

2σ2
k

)
. (2.39)

Setting the derivative of Q with respect to µi equal to zero we get

0 =
N∑
n=1

γ(zni)
(x− µi)
σ2
k

,

which implies that

µi = 1
Ni

N∑
n=1

γ(zni)xn, (2.40)

where we let Ni :=
∑N
n=1 γ(zni). The expression for µi can be seen as the

weighted mean of all the samples, where the weighting factor is the posterior
probability that xn was sampled from Gaussian i. Setting the derivative of
(2.39) to zero with respect to σi we get

0 =
N∑
n=1

γ(zni)
(
(xn − µi)2 − σ2

i

)
σ3
i

,

which implies that

σi =

√√√√ 1
Ni

N∑
n=1

γ(zni)(xn − µi)2, (2.41)

which is similar to fitting one Gaussian to the data set, but again with each sam-
ple weighted by the posterior probability of it belonging to Gaussian i. Lastly
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we maximize Q with respect to πi. This is however a constrained optimiza-
tion problem since we have that (2.35) must hold. Adding this to the objective
function through a Lagrange multiplier we can instead consider maximizing

L(π, λ) =
N∑
n=1

K∑
k=1

γ(znk)
(

ln πk − ln(
√

2πσk)− (x− µk)2

2σ2
k

)
+ λ

(
K∑
k=1

πk − 1
)
.

Setting the derivative of L to zero with respect to πi we get

0 =
N∑
n=1

γ(zni)
πi

+ λ, (2.42)

which is equivalent to

0 =
N∑
n=1

K∑
k=1

πkγ(zni)
πi

+ λ

K∑
k=1

πk =
N∑
n=1

1 + λ,

which gives λ = −N . Using this in (2.42) we get

πi = Ni
N

= 1
N

N∑
n=1

γ(zni), (2.43)

so the weight πi is the average responsibility γ(zni) given to the ith Gaussian
component. Notice that the update formulas do not give a closed form solution
to the parameters since γ(znk) depends on the parameters. The EM algorithm
for a GMM can be summarized as follows.

1. Initialize the means µ0
k, the standard deviations σ0

k, and the mixing weights
π0
k. Set t = 0.

2. E-step: Evaluate the responsibilities using the current estimated param-
eters

γ(znk) = p(znk = 1|xn, θn) = πkN (xn|µtk, σtk)∑K
i=1 πiN (xn|µti, σti)

.

3. M-step: Update the estimation of the parameters using

µt+1
i = 1

Ni

N∑
n=1

γ(zni)xn,

σt+1
i =

√√√√ 1
Ni

N∑
n=1

γ(zni)(xn − µi)2,

πt+1
i = Ni

N
,

where

Ni =
N∑
n=1

γ(zni).

4. Check for convergence of the parameters or of the log likelihood function

ln p(X|πt,µt,σt) =
N∑
n=1

ln
(

K∑
k=1

πkN (xn|µtk, σtk)
)
.

If convergence criterion is not satisfied set t := t+ 1 and return to step 2.
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2.2.4 K-means Clustering
The first step of the EM algorithm is to estimate the parameters. The K-means
algorithm finds clusters such that the distance between points in each cluster is
small. Suppose we have K fixed as the number of clusters we are considering,
and we have a set of data points x = (x1, .. ., xn)T . Then we introduce the
vector µ = (µ1, .. ., µK)T . Here µk can be considered a “prototype” for cluster
k, or the “center” of the cluster. Next we introduce assignment to a specific
cluster through the binary variable rnk ∈ {0, 1}, where xn being assigned to
cluster k implies rnk = 1 and rnj = 0 for all j 6= k. The objective function we
wish to minimize is then given by

E =
N∑
n=1

K∑
k=1

rnk|xn − µk|2,

which is the sum of the squared distance between each point and the assigned
cluster’s centre µk. We wish to minimize E with respect to rnk and µk. We
begin with choosing some value for the µk, which can for instance be chosen
to be spread out evenly across the interval that the data lies within. Then we
minimize E with respect to the assignment variables rnk followed by minimiza-
tion with respect to µk. This is similar to the EM algorithm and in fact the
K-means algorithm can be seen as a limiting case of the EM algorithm, where
the variances are treated as fixed and allowed to tend towards zero. A more
detailed discussion of this can be found in [19], Section 9.3.2.

We begin by minimizing E with respect to the rnk. This is trivial since E
is a linear function of rnk and the terms involving different n are independent
and so we can maximize with respect to each n individually. Thus we assign
the data points to the closest cluster centre,

rnk =
{

1, if k = arg minj |xn − µj |2,
0, otherwise.

Next we set the derivative of E with respect to µk to zero and get

2
N∑
n=1

rnk(xn − µk) = 0,

which implies that

µk =
∑N
n=1 rnkxn∑N
n=1 rnk

,

i.e., the mean of the data points assigned to the cluster. The convergence prop-
erties of the K-means algorithm was studied in [2]. Convergence is guaranteed,
however it may be to a local optimum rather than global. In summary the
K-means algorithm proceeds as follows.

1. Initialize µk with some values.

2. Update assignments

rnk =
{

1, if k = arg minj |xn − µj |2,
0, otherwise.
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3. Update the cluster means

µk =
∑N
n=1 rnkxn∑N
n=1 rnk

.

4. Check for convergence by computing the objective function

E =
N∑
n=1

K∑
k=1

rnk|xn − µk|2.

If convergence criterion is not fulfilled, return to step 2.
Once the algorithm has converged we can use µk as an initial estimation of the
means in the EM algorithm. The weights and standard deviations are then set
to

πk = 1
N

N∑
n=1

rnk,

and

σk =

√√√√∑N
n=1 rnk(xn − µk)2∑N

n=1 rnk
.

2.3 Image Segmentation
The idea behind active contour models (ACM) is to have a curve evolve accord-
ing to constraints of a given image I. Let us begin with considering a simpler
case in R2. Let Ω be a bounded open subset of R2 and I : Ω̄ → R a given
grayscale image, and C(s) : [0, 1]→ R2 be a parametrized curve. In the original
ACM an edge-detector function g is used. They can generally be defined by a
positive and decreasing function such that

lim
x→∞

g(x) = 0.

In the geodesic ACM, [11], the edge detector is chosen to be

g(|∇I|) = 1
1 + |∇Gσ ∗ I|2

,

where Gσ∗I is a smoothing of I obtained through convolution with the Gaussian

Gσ(x, y) = 1√
(2π)σ

e−
(x2+y2)

2σ2 .

We then wish to find a minimizer to

E[C] =
∫ 1

0
g(|∇I(C(s))|)|C ′(s)|ds.

This energy is not minimized solely by a curve with short length but also one
that passes through regions where the image’s gradient is large. The issue with
models relying on an edge detector function is that in practice discrete gradients
are bounded and then g is never zero, and thus the curve may pass through the
boundary. Furthermore, if the image noisy then the smoothing must be strong
(i.e., choosing σ to be large in Gσ), this will however also smooth the edges.
Lastly, such models fail at segmenting objects with a very smooth boundary, a
characteristic common in medical images.



22 Chapter 2. Theoretical Background

2.3.1 The Chan–Vese Method
In the highly influential paper Active Contours Without Edges, [15], Chan and
Vese derived a region based ACM that constructs the energy functional based
on image fitting terms rather than image gradients. We will present the model
in three dimensions since we are interested in segmenting volumes, however the
two dimensional case follows the same arguments.

To begin, suppose we have a surface S in Ω ⊂ R3 that is the boundary of an
open subset Ω− ⊂ Ω, so S = ∂Ω−. The exterior is then given by Ω+ = Ω \Ω−.
To understand the basic idea of the model consider an image I consisting of
two regions, each with approximately constant intensity of distinct values, I−,
and I+. The object to be segmented is represented by the region with intensity
I−. Denote its boundary by S0. Then we have I ≈ I− in the interior Ω−, and
I ≈ I+ in the exterior Ω+. Now consider

F−(S) + F+(S) =
∫

Ω−
|I(~x)− c1|2d~x+

∫
Ω+
|I(~x)− c2|2d~x, (2.44)

where S is any other surface, and the constants c1, c2 depending on S, are the
averages of I inside and outside S, Ω− and Ω+, respectively. In this case it is
obvious that S0, the boundary of the object, minimizes

inf
S
{F−(S) + F+(S)} ≈ 0 ≈ F−(S0) + F+(S0).

In the Chan–Vese model this “fitting” term is minimized together with a regu-
larization term for the area of the surface and volume of the object. As earlier
we embed the surface as the zero level set of a level set function φ(~x). Then we
have as in Section 2.1.1 S = ∂Ω− = {~x ∈ Ω;φ(~x) = 0},

Ω− = {~x ∈ Ω;φ(~x) < 0},
Ω+ = {~x ∈ Ω;φ(~x) > 0}.

It is shown in [5] (section 6.1) that∫
R3
f(~x)δ(g(~x))d~x =

∫
g−1(0)

f(~x)
|∇g(~x)|dS.

Letting g(~x) = φ(~x) and f(~x) = |∇φ(~x)| we get a formula for computing the
area of the surface,

A(S) =
∫
∂Ω−

dS =
∫

Ω
δ(φ(~x))|∇φ(~x)|d~x. (2.45)

The volume of Ω−, the interior, is computed as

V (S) =
∫

Ω−
d~x =

∫
φ<0

d~x =
∫

Ω
[1−H(φ(~x))]d~x.

The fitting energies (2.44) are given by

F−(S) =
∫

Ω−
|I(~x)− c1|2d~x =

∫
φ<0
|I(~x)− c1|2d~x

=
∫

Ω
|I(~x)− c1|2[1−H(φ(~x))]d~x,
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and likewise,

F+(S) =
∫

Ω+
|I(~x)− c2|2d~x =

∫
φ>0
|I(~x)− c2|2d~x

=
∫

Ω
|I(~x)− c2|2H(φ(~x))d~x.

Then, the energy functional Ecv(φ, c1, c2) can be expressed as
Ecv(φ, c1, c2) = λ1F

−(S) + λ2F
+(S) + µA(S) + νV (S)

= λ1

∫
Ω
|I(~x)− c1|2[1−H(φ(~x))]d~x

+ λ2

∫
Ω
|I(~x)− c2|2H(φ(~x))d~x

+ µ

∫
Ω
δ(φ(~x))|∇φ(~x)|d~x

+ ν

∫
Ω

[1−H(φ(~x))]d~x,

(2.46)

where λ1, λ2, µ, ν are positive parameters. The energy Ecv can be minimized
with respect to c1, to get

c1(φ) =
∫

Ω I(~x)[1−H(φ(~x))]d~x∫
Ω[1−H(φ(~x))]d~x , (2.47)

the average intensity of the interior, as one might expect. Similarly minimizing
Ecv with respect to c2 gives

c2(φ) =
∫

Ω I(~x)H(φ(~x))d~x∫
ΩH(φ(~x))d~x , (2.48)

In order to compute the Euler–Lagrange equation of Ecv we consider regularized
approximations to H and δ, denoted Hε and δε, respectively. Choosing

Hε(x) = 1
2

(
1 + 2

π
arctan

(x
ε

))
,

then
δε(x) = H ′ε(x) = 1

π
· ε

ε2 + x2 .

These regularizations converge to H and δ as ε → 0. Let us now compute the
associated Euler–Lagrange equation (2.29) to the regularized functional Eεcv.
The Lagrangian is given by

L(∇φ, φ, ~x) =λ1|I(~x)− c1|2
(
1−Hε(φ(~x))

)
+ λ2|I(~x)− c2|2Hε(φ(~x))

+ µδε(φ(~x))|∇φ(~x)|+ ν
(
1−Hε(φ(~x))

)
.

Letting ~x = (x1, x2, x3)T , we get
∂

∂φxi
L = ∂

∂φxi
µδε(φ)|∇φ| = µδε(φ) φxi

|∇φ|
,

∂

∂xi

(
∂

∂φxi
L

)
= ∂

∂xi

(
µδε(φ) φxi

|∇φ|

)
= µδ′ε(φ)

φ2
xi

|∇φ|
+ µδε(φ) ∂

∂xi

(
φxi
|∇φ|

)
,

∂

∂φ
L = −λ1(I(~x)− c1)2δε(φ) + λ2(I(~x)− c2)2δε(φ) + µδ′ε(φ)|∇φ| − νδε(φ).
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From (2.29) we get

0 = −
3∑
i=1

∂

∂xi

(
∂

∂φxi
L(∇φ, φ, ~x)

)
+ ∂

∂φ
L(∇φ, φ, ~x)

= −
3∑
i=1

µδ′ε(φ)
φ2
xi

|∇φ|
+ µδε(φ) ∂

∂xi

(
φxi
|∇φ|

)
+
(
− λ1(I(~x)− c1)2δε(φ) + λ2(I(~x)− c2)2δε(φ) + µδ′ε(φ)|∇φ| − νδε(φ)

)
= −µδ′ε(φ)|∇φ| − µδε(φ)∇ ·

(
∇φ
|∇φ|

)
+
(
− λ1(I(~x)− c1)2δε(φ) + λ2(I(~x)− c2)2δε(φ) + µδ′ε(φ)|∇φ| − νδε(φ)

)
= δε(φ)

[
−λ1(I(~x)− c1)2 + λ2(I(~x)− c2)2 − µ∇ ·

(
∇φ
|∇φ|

)
− ν
]
.

This yields the gradient descent equation (2.30),

φt(~x, t) = δε(φ)
[
λ1(I(~x)− c1)2 − λ2(I(~x)− c2)2 + µ∇ ·

(
∇φ
|∇φ|

)
+ ν

]
(2.49)

with the initial condition being the level set function φ0 representing the initial
surface S0 as its zero level set, so φ(~x, 0) = φ0(~x). Since the tracked interface is
to stay within Ω we use the Neumann condition,

∇φ(~x) · n̂(~x) = 0, ~x ∈ ∂Ω, (2.50)

where n̂ is the outward facing unit normal for ∂U . Thus if the zero level set
is located at the boundary and the force term pushes the surface along the
outward facing normal, |∇φ| will be zero when evaluated according to (2.20),
thus only allowing the surface to stay stationary or contract at points located
at the boundary. At this point it should be noted that the descent equation
(2.49) is not a level set equation of the form (2.12) since we have δε instead
of |∇φ|. In [10] it is motivated that δε(φ) can be replaced for |∇φ| since this
amounts to time rescaling, and does not affect the steady state solution while
simultaneously removing stiffness near the level sets. Since both factors are
positive the direction of descent is not affected. This gives us the level set
equation,

φt(~x, t) =
[
λ1(I(~x)− c1)2 − λ2(I(~x)− c2)2

+ µ∇ ·
(
∇φ
|∇φ|

)
+ ν

]
|∇φ|, in (0,∞)× Ω,

φ(~x, 0) = φ0(~x), in Ω,
∂φ

∂n̂
= 0, on ∂Ω.

(2.51)

2.3.2 The Threshold Method
In the Chan–Vese descent equation (2.51), we note that the image driven force
is positive or negative, depending on how close the voxel’s intensity is the re-
spective mean intensities for the exterior and interior. In the threshold method
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an image driven force is used to cause the contour to expand outward only when
the image’s intensity at a given point is within a given threshold. In [17] a level
set equation for image segmentation is introduced of the form

φt(~x, t) =
[
α
(
|I(~x)− T | − ε

)
+ (1− α)∇ ·

(
∇φ
|∇φ|

)]
|∇φ(~x, t)|. (2.52)

Here α ∈ [0, 1] controls how much the external force should be factored in
compared to the internal smoothing force from the curvature. The parameter T
controls the intensity of the interior region that we are looking to segment, and
ε controls the range of intensities that should be considered inside. Thus, when
I(~x) ∈ (T −ε, T +ε) the internal force is negative causing the surface to expand,
and when I(~x) falls outside this region, the force becomes positive causing the
surface to contract. These parameters are decided at the start of evolution and
are not updated.

The existing level set method we will be comparing the new proposed method
against uses this level set function to control propagation. To decide the pa-
rameters and initialize the level set function the user is asked to draw a line
across the tumor, illustrated in Figure 2.1. The level set function is initialized
as the signed distance to a sphere located at the center of the drawn line, and
the parameters estimated from the distribution along the line for the interior,
and along an extrusion of the line for the exterior.

Figure 2.1: A line is drawn across the region that should be segmented.

Let us end with noting how an energy functional would be formulated in
order for the variational approach to give rise to the level set equation (2.52).
It is easily seen from studying the derivation of the level set equation for the
Chan–Vese energy functional (2.46) in the previous section, that the energy
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functional

Ethresh(φ) = α

(∫
Ω
|I(~x)− T |[1−H(φ(~x))]d~x

+
∫

Ω
εH(φ(~x))d~x

)
+ (1− α)

∫
Ω
δ(φ(~x))|∇φ(~x)|d~x,

gives rise to the level set function (2.52). With this formulation we see that the
energy of the interior intensities is their distance from T , while the energy of
exterior intensities is set to ε regardless of their values. Therefore, in the simple
case with two regions where one has intensities between T − ε and T + ε, and
the second region has intensities outside this interval, the surface with minimal
energy is attained at the border of the two regions.

2.3.3 The Proposed Method
The problem with many region based active contour models such as the two thus
far presented is the assumption that the region of interest has a single intensity
density coupled with noise. In the case of brain tumors with necrotic regions
there is clearly more than one intensity distribution, as seen in Figure 2.2. The
same of course applies to the exterior region.

Figure 2.2: The tumor encompasses a necrotic core giving rise to two distinct
distributions of intensities.

In this section we propose a new model inspired by the work in [20]. Mainly
we will modify the way in which the probabilistic models for the interior and
exterior are chosen while also introducing a probability weighting term and a
modified initialization procedure. It is observed in [20] that level set segmen-
tation can be expressed as a problem of Bayesian inference, in which the goal
is to compute the most likely level set function φ given the image I : Ω → R.
Thus we wish to maximize posterior likelihood function given by

p(φ|I) = p(I|φ)p(φ)
p(I) ∝ p(I|φ)p(φ), (2.53)
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given equal prior probability of observing a specific intensity. Maximizing the
likelihood function is equivalent to minimizing the negative log likelihood func-
tion

− ln[p(I|φ)p(φ)] = − ln p(I|φ)− ln p(φ). (2.54)

The shape prior term p(φ) is designed to regulate the surface area and is
therefore chosen to be

p(φ) = exp
(
−(1− α)

∫
Ω
δ(φ(~x))|∇φ(~x)|d~x

)
,

which implies that

− ln p(φ) = (1− α)
∫

Ω
δ(φ(~x))|∇φ(~x)|d~x.

As for the threshold method we will use the parameter α ∈ [0, 1] to control the
degree of smoothing. The posterior image likelihood function is chosen to be

p(I|φ) =
∏
~x∈Ω

[
p(I(~x)|φ(~x))

]αd~x
,

where the exponent d~x gives the volume of the cell defined by the grid, which as
we will see gives us an appropriate limit as d~x tends towards zero. Note in this
formulation how choosing α to be close to zero implies that p(I|φ) will stay close
to 1, causing this term not to affect maximization greatly. Taking the negative
log likelihood we get

− ln p(I|φ) = α
∑
~x∈Ω

− ln p(I(~x)|φ(~x))d~x

→ α

∫
~x∈Ω
− ln p(I(~x)|φ(~x))d~x, as d~x→ 0.

For the model of a specific intensity we assume that the interior and exterior
intensities are independent samples from the distributions pin and pout, respec-
tively. The probability of observing I(~x) given φ(~x) is given by

p(I(~x)|φ(~x)) =
{
pin(I(~x)), if φ(~x) ≤ 0
pout(I(~x))λ, if φ(~x) > 0 ,

where λ ∈ R can be chosen to increase or decrease the probability of an intensity
belonging to the exterior in order to avoid leakage in areas where pout(I(~x)) ≈
pin(I(~x)). The value of pout(I(~x)) lies between zero and one, and thus choosing
λ < 1 will increase its value. This gives

α

∫
~x∈Ω
− ln p(I(~x)|φ(~x))d~x = α

(
λ

∫
~x∈Ω
− ln pout(I(~x))H(φ(~x))d~x

+
∫
~x∈Ω
− ln pin(I(~x))[1−H(φ(~x))]d~x

)
.
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The energy functional is thus given by

EEM(φ) := α

(
λ

∫
~x∈Ω
− ln pout(I(~x))H(φ(~x))d~x

+
∫
~x∈Ω
− ln pin(I(~x))[1−H(φ(~x))]d~x

)
+ (1− α)

∫
Ω
δ(φ(~x))|∇φ(~x)|d~x.

(2.55)

Now we note that in the derivation of the Chan–Vese level set equation in Section
2.3.1 the terms |I(x) − ci|2 act as constants in the derivation and thus we can
replace them with the corresponding negative log likelihoods. This gives us the
level set equation for the proposed model:

φt(~x, t) =
[
α
(
λ ln pout(I(~x))− ln pin(I(~x))

)
+ (1− α)∇ ·

(
∇φ
|∇φ|

)]
|∇φ|, in (0,∞)× Ω,

φ(~x, 0) = φ0(~x), in Ω,
∂φ

∂n̂
= 0, on ∂Ω.

(2.56)

We have not yet discussed how the distributions pin and pout are to be chosen.
In the case of segmenting objects, such as tumors with necrotic regions, each
type of tissue displays intensities clustered close to one another with noise, and
so in this thesis we choose to model the intensities of the interior region as
coming from one of Kin Gaussian distributions, where Kin is the number of
distributions. Similarly each observed intensity from the exterior region comes
from one of Kout distributions. As we saw in Section 2.2 this implies that the
distributions pin and pout are of the form

pin(x) =
Kin∑
k=1

πin
k N (x|µin

k , σ
in
k ),

pout(x) =
Kout∑
k=1

πout
k N (x|µout

k , σout
k ).

(2.57)

These parameters can be estimated using expectation maximization based on
the samples gathered during initialization of the level set function. This can be
done by asking the user to draw a contour around the object of interest, see
Figure 2.3.
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Figure 2.3: A contour is drawn around the region that should be segmented.

The contour C drawn by the user lies in a plane with normal ~Nπ. The level
set function is initialized by first choosing a max distance Dmax and a max
sample distance Dsample. The idea is to initialize the level set function as an
approximately signed distance function from the surface that is described by C
in the plane Π, and by

CΠ̃ = {~x ∈ Π̃; d(proj(~x,Π), C) = d(Π̃,Π)},

in parallel planes Π̃ with distance less than Dmax from Π. In the two planes
with distance exactly Dmax, φ should have value zero at all points inside the
corresponding shrunk contour. The zero level set will describe a surface that
is the user drawn contour in the plane it was drawn, and then shrinks inwards
along the parallel planes until in a certain plane the volume is cut off, i.e. the
entire interior of the contour is the surface. In order to avoid sampling incorrect
points for the interior and exterior only points with a distance less than Dsample
are sampled. The assumption is that the user draws the contour in the plane
where the object is the largest, thus it can be assumed that in planes close
to Π, the contour for the object is roughly equal to the contour drawn in Π,
but slightly smaller than C. Since the object to be segmented can have various
shapes, this only holds true close to Π and so the max distance Dmax should
not be chosen large. The algorithm for initializing and sampling φ for the EM
algorithm can be described as follows.

1. Compute the distance dπ between ~x and Π.

2. Compute the signed distance dC between proj(~x,Π) and C, where dC ≤ 0
for interior points and dC > 0 for exterior points. Then do the following:

If dC ≤ 0: Let φ(~x) = max(dC + dπ, dπ −Dmax).
Else: Let φ(~x) = dC + dπ.

3. If dπ ≤ Dsample:

If φ(~x) ≤ 0: Add I(~x) to the interior sample list.
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Else: Add I(~x) to the exterior sample list.

We end by noting that while the distributions for the proposed method are
decided at run time using the EM algorithm, a key problem lies in determining
the parameters α, λ,Kin,Kout, Dmax, and Dsample.

2.3.4 The Dice Coefficient
In order to test similarity between image segmentations, for example an auto-
matic segmentation against a manual segmentation, the Dice coefficient is often
used, [8]. Suppose we have manually segmented a volume and denote the set of
points in the volume byM , similarly let A denote the set of points in the volume
resulting from automatic segmentation. The Dice coefficient is then given by

D(A,M) = 2|A ∩M |
|A|+ |M | ∈ [0, 1], (2.58)

where |X| denotes the number of elements in the setX. If the two segmentations
have no points in common the Dice coefficient equals 0, while all points in
common imply a Dice coefficient equal to 1. Thus a high Dice coefficient implies
greater similarity between the segmentations.

2.4 Coherent Propagation
Associated with the force F (~x, t) in the level set equation (2.12) are internal
and external forces. The external forces usually drive propagation by some
force function that depends on the image intensity at a location. Internal forces
depend on φ and are commonly incorporated as a function of the curvature
of φ, and modifies the force to keep φ smooth. The issue that arises here is
that certain regions might have a strong external force driving, for example, the
contour to expand, which in turn cause the curvature to increase if neighboring
regions have a lower external force. This causes the surface in high external
force regions to contract in order to smooth the surface, followed by expansion
as neighboring regions with a slower external force “catch up”.

This process results in a “wiggling” behavior as certain points move faster
than their neighbors, resulting in the curvature force moving them backwards
even if eventually the entire neighborhood moves forwards. In [23] Wang et al.
proposed an algorithm that avoids this phenomena by dividing the evolution of
the interface into several periods, where each period begins by modifying the
speed function and subsequently evolving the surface until convergence. At the
start of each period a trend map is established for each grid point. During each
period the force at a specific grid point must have the same sign as its trend, else
the point is put to “sleep” until the sign of the force term changes, for example
when neighboring points “catch up”. The modified level set equation can be
expressed as

φt(~x, t) = w(F (~x, t))|∇φ(~x, t)|,

where
w(F (~x, t)) =

{
F (~x, t), if F (~x, t) · trend(~x, t) > 0,
0 if F (~x, t) · trend(~x, t) ≤ 0.
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The period ends naturally when w(F (~x, t)) = 0 for all ~x. This method is what
is referred to as coherent propagation. In [23] it was noted that if only the CFL
condition (2.24) was used to control step length, the surface could overshoot
the true boundary when using coherent propagation. To solve this, the authors
introduced a step length factor smax < 1 and a damping factor d. During
coherent propagation, the step length is determined using the CFL condition and
then multiplied by smax. After each period smax is set to d · smax. It was found
that when smax < 0.1 the surface propagation can be stopped without affecting
accuracy. It should be noted that coherent propagation is a heuristically chosen
algorithm and its mathematical properties have not been studied. However, in
[23] this method was found to produce results that were very similar to the
unmodified level set method, while speeding up convergence by 10-100 times,
depending on the type of segmentation. This results in implementations that
perform segmentation in seconds rather than minutes. We will consider the case
when the trend map is chosen to be equal for all grid points. This will cause
the surface to alternate between expansion and contraction in each period. In
the first period we have trend(~x, t) := −1, only allowing negative values for F ,
i.e. expanding the contour. Then the trend alternates between 1 and −1. The
algorithm consists of a main loop for the periods, and a sub loop for coherent
propagation. The main loop is as follows.

1. Initialize the level set function φ and decide a maximum step length smax,
a minimum step length smin, and a damping factor d. Set the period
p = 1.

2. While smax > smin do the following:

• Let trend(~x) := (−1)p for all ~x ∈ Ω.
• Perform coherent propagation.
• Set smax := smax · d.

The algorithm for coherent propagation is then:
1. Set status(~x) = active ∀~x ∈ Ω.

2. Set iteration = 0 and choose a max number of iterations allowed, nmax.

3. Clear changed_list.

4. For all ~x ∈ Ω such that status(~x) = active , calculate F (~x).

5. Set ∆t = smax · 1
max(F (~x)) .

6. For all ~x ∈ Ω such that status(~x) = active , do the following:

If trend(~x) = sign(F (~x)):
φ(~x) = φ(~x) + F (~x)|∇φ(~x, t)| ·∆t.
Add ~x to changed_list.

Else:
Set status(~x) = sleep.

7. For all ~x in changed_list set status of neighboring gridpoints to active.

8. Set iteration = iteration + 1.

9. If changed_list is not empty and iteration < nmax then go to step 3.
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2.5 The Sparse Field Method
Introduced in [12] by Whitaker, the sparse field method (SPM) reduces the
computational complexity of updating the level set function from O(N3) to
O(N2), while maintaining the same level of accuracy. The SPM algorithm
approximates a signed distance function by replacing the Euclidean distance
with the Manhattan norm,

‖~x‖1 :=
n∑
i=1
|xi|.

Suppose we have defined our Cartesian grid to have unit distance between grid
points, so ∆x = ∆y = ∆z = 1. This discrete grid defines a set of cells for which
the zero level set interface S of the level set function φ passes. The grid points
adjacent to S are called active points, and they form the active set. To compute
finite differences, as described in Section 2.1.4, the neighboring grid points to
the active set are used. Therefore at any point in time only the active points
and their neighbors are relevant to the evolution of the surface.

Since φ is a distance function, the value of φ for the active set must lie
within a range of values, called the active range. When the value at an active
point moves out of this range it is no longer considered adjacent the surface,
and thus is removed from the active set, and the grid points which have values
moving into the active range are added to the active set. When the distance
between gridpoints is one as chosen above, then the active grid point ~x should
be removed from the active set when the value of φ(~x) no longer is between
[−1/2, 1/2]. When this occurs, a neighbor that has distance one from ~x will
enter the active range, and thus be added to the active set.

It is shown in the appendix of [12] that the active set will always form a
boundary between the interior and exterior of the volume, which implies that
there will be no points in the active set where |∇φ| = 0. This means that the
finite difference approximation for the curvature term (2.25) will be defined for
all active points.

Since grid points neighboring the active set have distance one from the
neighboring active point, the active set can be used to update changes to
the non-active adjacent grid points. These neighbors are defined as layers,
L±i, i = 1, .. ., N , where i denotes the signed Manhattan distance to the closest
active point. The positive values are used for the exterior region φ > 0 (Ω+),
and the negative for the interior region φ ≤ 0 (Ω−). The active set is denoted
L0. The N used should coincide with the neighborhood of grid points needed
to compute the finite differences. When using the finite difference schemes dis-
cussed in Section 2.1.4, it is enough to set N = 1. Letting G denote the set of
grid points we can express the layers as

Li =

 {~x ∈ G; i− 1
2 ≤ φ(~x) < i+ 1

2} if i < 0,
{~x ∈ G; 1

2 ≤ φ(~x) ≤ 1
2} if i = 0,

{~x ∈ G; i− 1
2 < φ(~x) ≤ i+ 1

2} if i > 0.
(2.59)

The algorithm is then as follows

1. Determine the layers using (2.59).

2. Update the level set function φ(~x, t) for all active grid points ~x ∈ L0.
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3. Visit all grid points in the layers Li, i = ±1, .. .,±N and update φ at
the grid points based on the values of the inner layer Li∓1 (by adding
or subtracting one). If there is more than one neighbor in Li∓1, use the
value of the closest neighbor, i.e. the neighbor with minimum value for
the interior, and the neighbor with maximum value for the exterior.



Chapter 3

Method

In this chapter the methods used to produce the results of the thesis are de-
scribed. We begin with an overview of the development process for the proposed
method. This is followed by a description of the test setup, how parameters were
chosen, and finally the evaluation process for comparing the proposed method
to the current method is provided.

3.1 Development of the Proposed Method
In the beginning of the thesis project Sectra described what goals they had for
an improved segmentation tool. The discussion was centered around segmenta-
tion of objects with varying intensities. In these cases the current method they
have performs inaccurate segmentations. However, it is in general very fast and
simple to use. This is highly valued as the segmentation tool is used in clinical
practice where high performance and user friendliness of Sectra’s products is
expected. The general focus for the thesis project was therefore to develop a
segmentation tool that produced fast and accurate segmentations of inhomo-
geneous objects compared to the current method in a way that kept the user
interaction simple and intuitive.

In order to better understand the current method and why it fails the theory
for level set methods was studied. In Section 2.3 the reason for the inaccurate
segmentation was identified and a new probabilistic force function was designed
with inhomogeneity in mind. When studying how propagation of level set meth-
ods can be made faster, two algorithms were identified for providing order of
magnitude speed increases; coherent propagation and the sparse field method.
The existing implementation of the level set method uses the sparse field method
combined with coherent propagation along with other optimizations in order to
produce fast segmentations.

By developing a new segmentation method based on the level set method
the underlying efficient algorithm for propagation of the surface could be used
by replacing the external force function and modifying the user interaction and
initialization. The proposed method presented in Subsection 2.3.3 was imple-
mented in Sectra’s Picture Archiving and Communication System (PACS). The
software handles viewing medical images and has a vast framework of tools such
as mouse and keyboard handling, drawing, and data structures. The code for

34 Webb, 2018.
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initialization from a user drawn contour was implemented in C# while the pro-
posed level set method was written in C++ alongside the current implementa-
tion. It uses the numerical schemes described in Section 2.1.4 and the proposed
method was implemented following the description in Subsection 2.3.3. The
automated testing procedure was implemented in Matlab.

3.2 Testing Setup
In order to gather quantitative data on the performance of the proposed and ex-
isting method, a set of test cases were constructed. The Cancer Imaging Archive
[25] is an open database containing anonymized medical images from thousands
of exams. For this thesis we used The Cancer Genome Atlas Glioblastoma
Multiforme (TCGA-GBM) data collection [26], which contains MRI images of
patients with Glioblastoma, an aggressive form of brain cancer. The reason for
this choice was that the tumors are often very inhomogeneous and irregular.

While the TCGA-GBM data collection contains hundreds of cases, 25 were
chosen at random to conduct testing on since each case needed to be manu-
ally segmented, which was very time consuming. The manual segmentation
was carried out by the author and done by viewing each case and drawing a
contour around the border of the tumor in each image, using Sectra’s software.
An individual at Sectra with clinical experience then reviewed the images and
after some adjustments deemed them acceptable manual segmentations. The
contours were subsequently used to determine the set of voxels that belonged
to the interior of the tumor.

Depending on what was to be tested, different metrics were gathered. How-
ever, the general common testing procedure can be described as follows:

1. Specify the cases to be tested.

2. For each case the three contours with largest area are identified and for
each contour the following actions carried out:

• Determine the longest line that can be drawn between two points on
the contour’s border which does not cross the contour.

• Start timer and call level set method for existing method with line
as argument.

• Stop timer when propagation finishes. Save segmentation and time
taken for existing method.

• Start timer and call level set method for the proposed method with
the contour as argument.

• Stop timer when propagation finishes. Save segmentation and time
taken for proposed method.

3. Analyze and save to file.
The reason for choosing the contours with largest area is to initialize the seg-
mentation method in an area representative for the tumor. The three contours
with largest area were analyzed in order to capture how small variations in
initialization affected the segmentation.

All tests were carried out on a computer with an Intel Xeon E3-1240 v3
CPU, 16 gb of RAM, and an ATI FirePro V (FireGL V) GPU.
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3.3 Parameter Tuning Process
In Subsection 2.3.3 a set of tunable parameters for the proposed method was
identified. These are described in Table 3.1.

Parameter Description

Kin ∈ N The number of components for the
interior mixture model.

Kout ∈ N The number of components for the
exterior mixture model.

α ∈ [0, 1] The weight of the external force
in the speed function.

(1− α) ∈ [0, 1] The weight of the internal (smoothing)
force in the speed function.

λ ∈ R The weight of the exterior probability.
Dmax The max plane distance for initialized contour.
Dsample The max plane distance for samples.

Table 3.1: Parameters for the proposed method.

It was also observed during implementation that allowing λ to have different
values during the periods of coherent propagation greatly affected segmentation
results. We recall from Section 2.4 that the propagation is divided into two
types of periods. In one the contour described by the zero level set is only
allowed to expand or stand still while in the second period only contraction
or no movement is allowed. Setting λ < 1 during the expansion period (when
trend(~x) = −1) implies that a higher internal probability for points is required
to give a negative speed, i.e., cause expansion. However, using the same λ <
1 during the contraction period (when trend(~x) = 1) can cause the contour
to contract too much as points are assigned positive external forces even if
they have higher probability of belonging to the interior. Therefore using λ =
λexpand < 1 during expansion and λ = λcontract > 1 during contraction seemed
more promising than letting λ remain fixed. This translates to requiring high
internal probability to expand and high exterior probability to contract.

Since the segmentation tool should be intuitive the user is not allowed to
modify the parameters. Furthermore, no relationship between data and pa-
rameters was found during the development process. Therefore an automated
testing procedure was developed to determine values for the parameters that
perform well in general. Of the 25 cases manually segmented, 15 were chosen
at random for determining the parameters. These are specified in Appendix A.

In the general testing procedure a set of automatic and manual segmenta-
tions are constructed. Let

Pij ,

{
i = 1, 2, .. ., 15
j = 1, 2, 3

denote the set of voxels belonging to the interior for the proposed method in
case i for contour with the jth largest area. The set of voxels belonging to the
interior for the manual segmentation is given byMi. Given these segmentations



3.3. Parameter Tuning Process 37

how should the performance of the automatic segmentation be measured? The
ultimate goal of the tool is to segment the object accurately in order to provide
a trustworthy measure of volume. Therefore a good segmentation is one which
is similar to the manual in location and volume. In Subsection 2.3.4 the dice
coefficient was introduced as a metric of similarity. This however does not
capture the differences in volume. This can be measured by computing

V (Pij ,Mi) = |Pij |
|Mi|

, (3.1)

where V (Pij ,Mi) = 1 if the volumes are equal. It was determined that a com-
bination of volume and segmentation similarity be used as a metric for the
performance of the parameters. If only the volume is compared the segmen-
tations can differ in location greatly which makes the accuracy of the volume
measurement difficult to estimate in the absence of a manual segmentation. For
parameter tuning the general automated testing procedure therefore saved the
following quantity for case i given a set of parameters ~P

W (i; ~P ) := max
j

1
2
[(

1−D(Pij ,Mi)
)

+ |1− V (Pij ,Mi)|
]
. (3.2)

The highest value recorded from the three contours was saved in order to pro-
duce parameters that performed well for all contours. The mean performance
denoted µ(~P ) and standard deviation σ(~P ) for a given set of parameters was
then computed. At first it might seem natural to simply find parameters that
minimize µ(~P ), however this can cause an optimum to have large variation and
thus produce inconsistent segmentations with widely varying accuracy. There-
fore, given an existing set of parameters ~P1, the following method was used to
determine if a new set of parameters ~P2 should be considered better.

1. If µ(~P2) < µ(~P1) and σ(~P2) < σ(~P1), then ~P2 is better than ~P1.

2. Else if µ(~P2) < µ(~P1) and σ(~P2) < σ(~P1) + (µ(~P1) − µ(~P2)), then ~P2 is
better than ~P1.

3. Else if σ(~P2) < σ(~P1) and µ(~P2) < µ(~P1) + (σ(~P1) − σ(~P2)), then ~P2 is
better than ~P1.

Thus if ~P2 is not better than ~P1 then the µ cannot be reduced without increasing
σ more than the amount that µ was reduced, or σ cannot be reduced without
increasing µ by more than the amount that σ was reduced. This characterizes
an optimal set of parameters as having consistent performance for all cases.

During the implementation phase a set of parameters for the proposed
method were found that seemed promising. These were chosen to initialize
the parameter tuning process. Running the automated testing procedure for a
given set of parameters took approximately 5 minutes and given the amount
of parameters it was determined not within the time budget to take the com-
binatoric approach of finding optimal parameters. The final method considers
step sizes for the parameters and finds an optimum in the sense that varying
any single parameter by at most 5 step lengths does not give a better set of pa-
rameters. Each parameter is modified in turn by increasing and decreasing its
value by the minimum number of step lengths required to give an untested set of
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parameters, but at most 5 step lengths. Then the automated testing procedure
is run to determine if the modification is better. Once every parameter has been
modified by 5 step lengths in each direction without finding an improved set of
parameters the search ends. The parameters used for the tuning process are
specified in Table 3.2.

Parameter Start value Step size
Kin 5 1
Kout 5 1
α 0.5 0.05

λexpand 0.95 0.01
λcontract 1.05 0.01
Dmax 5 1
Dsample 1 0.5

Table 3.2: Parameters used for tuning process.

3.4 Evaluation
Once the parameter tuning process found optimal parameters the remaining 10
cases were used to compare the proposed method against the existing threshold
based one, see Subsection 2.3.2. The cases used are specified in Appendix A.
In the automated testing procedure the segmentation time for each contour
was recorded along with metrics based on the segmentation results. The dice
coefficient (2.58) and volume ratio (3.1) were computed in order to compare
similarity. In order to have a meaningful interpretation of the mean volume
ratio we introduce and instead study the volume error between an automatic
segmentation X and manual segmentation M ,

VE(X,M) := |1− V (X,M)| =
∣∣1− |X|

|M |
∣∣. (3.3)

Another interesting quantity is the amount of the automatic segmentation
that was located inside the manual segmentation, which we henceforth refer to
as the internal volume ratio,

VI(X,M) = |X ∩M |
|X|

, (3.4)

where X is the segmentation for the proposed or existing method while M is
the manual segmentation. Currently, Sectra’s volume tool cannot modify the
segmentation after it is completed apart from doing another segmentation that
is added to the current one. This means that if the automatic segmentation
leaks significantly the segmentation must be deleted and redone. Therefore a
higher value of VI(X,M) is preferred, as this means it is possible to add to the
current segmentation without needing to completely restart.
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Results

This chapter presents the main results of the thesis. First the results from the
tuning process described in Section 3.3 are presented. Then each metric chosen
for evaluation in Section 3.4 is presented. As described in Section 3.2 each case
was segmented using the three largest contours. These are labeled as contour
1,2, and 3, ordered according to area size. The two methods are compared based
on the average metric achieved for each case and the mean deviation within each
case. We end with a series of figures comparing segmentation for three cases
chosen based on metric abnormalities.

Remark 4.1. When presenting the performance for different cases the x-axis
is labeled as “Case ID”; this refers to the ID assigned to each case in Appendix
A, Table A.2.

4.1 Parameter Tuning
The tuning process found a set of parameters satisfying the optimality condition
described in Section 3.3 after 70 iterations of parameter modification and testing.
A total of 155 iterations took place in order to check up to 5 step lengths in
each directions. This took approximately 13 hours. In Table 4.1 the optimal
parameters are compared to the start values. The best parameters found were
subsequently used when comparing the proposed method to the existing one.

Parameter Start value Optimal value Net change
Kin 5 5 0
Kout 5 7 +2
α 0.5 0.5 0

λexpand 0.95 0.95 0
λcontract 1.05 1.09 +0.04
Dmax 5 6 +1
Dsample 1 1 0

Table 4.1: Start parameters and final parameters found in tuning process.

Webb, 2018. 39
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Each iteration consisted of modifying a parameter and then testing the per-
formance. In Figure 4.1 the performance metric and standard deviation is plot-
ted for iterations where new parameters were chosen. Recall from Section 3.3
that better parameters lowered the mean performance metric or standard devi-
ation.
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Performance of best found paramters
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Figure 4.1: Performance and deviation at iterations where better parameters
were found.

4.2 Segmentation Time
We begin by looking at the performance across all segmentations. In Table 4.2
the mean segmentation time and standard deviation of all segmentations are
compared.

Method Mean Deviation
Existing 0.70 0.24
Proposed 0.77 0.17

Table 4.2: Segmentation times in seconds for all contours.

In Figure 4.2 each case is compared based on the mean segmentation time
for the three segmentation performed in each case.
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Mean time comparison
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Figure 4.2: Mean segmentation times for proposed and existing method.

Next we look at how segmentation varied in each case. In Table 4.3 the
mean deviation of segmentation time in each case is shown.

Method Mean deviation
Existing 0.18
Proposed 0.14

Table 4.3: Mean segmentation time deviation for each case.

In the following figures the segmentation time for each contour is presented.
Figure 4.3a shows the times for the existing method while Figure 4.3b shows
the times for the proposed method.
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Time for different initializations of existing method
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(a) Segmentation times using existing method.

Time for different initializations of proposed method
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(b) Segmentation times using proposed method.

Figure 4.3: Segmentation times for each contour.

4.3 Dice Coefficient
Next we look at the similarity between automatic and manual segmentations.
This is done by computing the dice coefficient (2.58). In Table 4.4 the mean
dice coefficient and standard deviation of all segmentations are compared.
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Method Mean Deviation
Existing 0.57 0.30
Proposed 0.84 0.05

Table 4.4: Dice coefficient for all contours.

In Figure 4.4 each case is compared based on the mean dice coefficient for
the three segmentations performed in each case.
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Figure 4.4: Mean dice coefficient for proposed and existing method.

As for the comparison of segmentation time we now look at how the dice
coefficient varied in each case. In Table 4.5 the mean deviation of the dice
coefficient in each case is presented.

Method Mean deviation
Existing 0.10
Proposed 0.02

Table 4.5: Mean dice coefficient deviation for each case.

We end by displaying the dice coefficient for each contour. In Figure 4.5a
the dice coefficients for the existing method is shown while Figure 4.5b shows
the dice coefficients for the proposed method.
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Dice coefficient for different initializations of existing method
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(a) Dice coefficients using existing method.

Dice coefficient for different initializations of proposed method

1 2 3 4 5 6 7 8 9 10

Case ID

0

0.2

0.4

0.6

0.8

1

D
ic

e 
C

oe
ffi

ci
en

t

Contour 1
Contour 2
Contour 3

(b) Dice coefficients using proposed method.

Figure 4.5: Dice coefficients for each contour.

4.4 Volume Error
In Section 3.4 the volume error (3.3) was introduced to measure the difference
in volume between the automatic and manual segmentation. In Table 4.6 the
mean volume error and standard deviation of all segmentations are compared.
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Method Mean Deviation
Existing 1.11 2.19
Proposed 0.21 0.11

Table 4.6: Volume error for all contours.

Figure 4.6 compares the mean volume error for the three segmentations
performed for each method. As the existing method had cases where the error
was extremely large the bar plot is cut at 0.6, which corresponds to 60% volume
difference, in order to be able to compare the differences in cases where the
errors are smaller.
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Figure 4.6: Mean volume error for proposed and existing method.

Next we look at the mean volume error deviation in each case. This is shown
in Table 4.7.

Method Mean deviation
Existing 0.94
Proposed 0.07

Table 4.7: Mean volume error deviation for each case.

The volume error for each segmentation is presented in Figure 4.7a for the
existing method and in Figure 4.7b for the proposed method. Again we cut the
axis at 0.6 in order to compare the results.
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Volume error for different initializations of existing method
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(a) Volume errors using existing method.

Volume error for different initializations of proposed method
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(b) Volume errors using proposed method.

Figure 4.7: Volume errors for each contour.

To investigate if there is a connection between volume errors and segmen-
tation times the mean segmentation time for segmentations having a maximal
volume error are plotted in Figure 4.8.
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Figure 4.8: Mean segmentation times for segmentations with different maximal
volume errors.

4.5 Internal Volume Ratio
In Section 3.4 the internal volume ratio (3.4) was introduced as a measure of the
percentage of automatic segmentation’s volume located inside the manual seg-
mentation. In Table 4.8 the mean internal volume ratio and standard deviations
of all segmentations are shown.

Method Mean Deviation
Existing 0.70 0.36
Proposed 0.93 0.08

Table 4.8: Internal volume ratio for all contours.

In Figure 4.9 the mean internal volume ratio for the three segmentations
performed for each method is compared.
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Mean internal volume ratio comparison
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Figure 4.9: Mean internal volume ratio for proposed and existing method.

The mean deviation within each case is shown in Table 4.9.

Method Mean deviation
Existing 0.16
Proposed 0.03

Table 4.9: Mean internal volume ratio deviation for each case.

Finally, the internal volume ratio for each contour is presented in Figures
4.10a and 4.10b for the existing and proposed method, respectively.
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(a) Internal volume ratios using existing method.

Internal volume ratio for different initializations of proposed method
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(b) Internal volume ratios using proposed method.

Figure 4.10: Internal volume errors for each contour.

4.6 Segmentation Comparison
We conclude by comparing segmentations for a few cases. As segmentation
in three dimension is difficult to illustrate properly we will show the image
where segmentation is initialized and then the resulting segmentation in a few
locations. Looking at Figure 4.4 where the mean dice coefficients are compared
we see that both methods achieve the highest dice coefficient in case 5. In Figure
4.11 segmentation with the existing method and proposed method is displayed.
The red contour visible in each image is the manual segmentation while the blue
contour is the automatic segmentation.
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Figure 4.11: Comparison of segmentation for case 5. Left column shows existing
method, right column show the proposed method. The red contour is the manual
segmentation. The existing method is initialized from the blue line and the
proposed method from the contour.

Next we look at Figure 4.6 where the mean volume error for the proposed
method is largest in case 2. This is illustrated in Figure 4.12.
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Figure 4.12: Comparison of segmentation for case 2. Left column shows existing
method, right column show the proposed method. The red contour is the manual
segmentation. The existing method is initialized from the blue line and the
proposed method from the contour.
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Finally, we note that the mean volume error is extremely large in Figure 4.6
for the existing method in case 10 while the proposed method has a much lower
volume error. In Figure 4.13 the segmentations are again compared.

Figure 4.13: Comparison of segmentation for case 10. Left column shows exist-
ing method, right column show the proposed method. The red contour is the
manual segmentation. The existing method is initialized from the blue line and
the proposed method from the contour.
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Discussion

This chapter will discuss the results and the method. We will end with a dis-
cussion on future work and improvements that could be considered.

5.1 Results
In Table 4.1 we see that several starting parameters were not modified during the
tuning process. This coupled with the fact that the performance for the starting
parameters was already quite good, as seen in Figure 4.1, could indicate that
the starting parameters happened to be close to the optimum, the cases were
not varying enough, or that more cases should have been used. It is less likely
that many local optimum exist as the method attempted to vary each parameter
greatly at the end of the tuning process, although it is possible that a better
optima could be attained by modifying more than one parameter simultaneously
or by using a smaller step size. The results, however, clearly indicate, through
the lens of the metrics considered, that the proposed method is better suited for
segmentation of inhomogeneous tumors than the existing one. Among all the
metrics considered the mean performance of the proposed method was improved
while at the same time decreasing the deviation. Furthermore, the mean intra-
case deviation was also lowered.

5.1.1 Segmentation Time
In Table 4.2 we observe that the mean segmentation time is increased by 0.07
seconds, or 10%, for the proposed method while reducing the deviation by 0.07
seconds. The proposed method performed more consistently within each case,
with a mean intra-case deviation of 0.14 compared to 0.18 for the existing
method. While the existing method does perform very fast segmentations in
certain cases, as seen in figure 4.3a (e.g., case 1, case 3 contour 3, and case
7 contour 2) the large variation in segmentation times results in a mean time
comparable to the proposed method. On the other hand, in Figure 4.3b all
segmentations take at least 0.5 seconds for the proposed method. The absence
of faster segmentations can be explained by the fact that the proposed method
requires considerably more computation time during initialization, regardless of
the subsequent propagation time.

Webb, 2018. 53
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Furthermore, Figure 4.8 shows that the fast segmentations occur for the ex-
isting method in cases with a large volume error while the proposed method
performs consistently for different maximal volume errors. For example, the
mean segmentation time for cases with maximal volume error 20% is 0.94 sec-
onds for the existing method and 0.74 seconds for the proposed method. It
is only when segmentations with volume errors exceeding 40% are considered
that the existing method becomes faster. However, in such cases it is likely
that the segmentation will need to be redone which will lead to a larger total
segmentation time.

5.1.2 Similarity
In Section 4.3 and 4.4 the dice coefficient and volume error were compared
to determine the level of similarity to the manual segmentation. In Table 4.4
the dice coefficient for the proposed method is 0.27 (48%) higher than for the
existing one while having a deviation of 0.05 compared to 0.3 for the existing
method. The latter can be attributed to case 1,3,7, and 10 as seen in Figure 4.4
where the dice coefficient for the existing method are extremely low. In Figure
4.5a we see that the existing method has a dice coefficient of almost zero for
contour 2 in case 7. Looking at Figure 4.7a in Section 4.4 we see that the low
dice coefficient can be explained by the segmentation leaking, as illustrated by
the large volume error.

In Figure 4.5b we see that the proposed method has a much more consistent
dice coefficient across the cases and within. The lowest performance is attained
in case 2. A visual inspection in Figure 4.12 show that parts of the tumor are
missed. A notable aspect of case 2 is that it consists of only 57 images and
furthermore the tumor changes shape quickly throughout the images. Thus
even if the tumor is relatively homogeneous both the existing and proposed
method have difficulty performing accurate segmentations as the smoothing
force becomes large due to the curvature becoming large as the segmentation
attempts to propagate with great variation in neighboring planes.

We also observe in Figure 4.4 that both methods achieve their highest dice
coefficient in case 5. In Figure 4.6 we note that the proposed method and
existing method have very low volume errors in this case. In Figure 4.11 we
see that both methods are close to the manual segmentation, the tumor is quite
homogeneous and furthermore the case has 192 images causing the tumor not
to quickly change between neighboring planes as the images are taken more
densely.

Due to the cases where the current method fails to detect the boundary
the resulting mean volume error is extremely large, as seen in Table 4.6. On
the other hand, the proposed method has a more consistent error of 0.21 with
deviation 0.11. In Figure 4.6 we see that the existing method has a very large
volume error compared to the proposed method in several cases. This was
visually inspected in Figure 4.13. Here we see that the tumor consists of a
very dark and bright region while the surrounding tissue lies between these
values. The existing threshold method fails completely as one might expect at
establishing an appropriate threshold for the tumor and leaks severely across
the boundary.

From these results it is no surprise that the internal volume ratio for the
proposed method is considerably higher than for the existing one. In Table 4.8
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we see that on average only 70% of the automatic segmentation is located within
the manual segmentation for the existing method with a deviation of 36%. For
the proposed method 93% is located within the manual segmentation with a
deviation of only 8%.

5.2 Method
The tuning process was quite rudimentary and running it multiple times with
different starting parameters and step sizes could have resulted in better pa-
rameters. While only 15 cases were used for the tuning process and 10 for the
evaluation, performing multiple segmentations per case resulted in more test
cases while also providing insight into how different initializations affected the
metrics. It is possible that the manual segmentations affected the result and it
should be noted that even among radiologists manual segmentations can differ
greatly.

The approach of using the largest contours for initializations provided a
convenient way of performing a large number of objective segmentations. It also
means that increasing the number of cases to be tested only requires performing
manual segmentations with no additional work required to incorporate them
into the automated testing procedure. Furthermore, looking at several different
metrics and how these varied within the cases gave insight into the qualitative
performance of the methods through quantitative data.

Reproducibility of the results should be mentioned. While the proposed
method is presented in its entirety the various optimizations Sectra’s implemen-
tation of the level set method performs are not. This means that attempting
to use the proposed method with coherent propagation and the sparse field
method would not give the same segmentation times. Furthermore, the way in
which the existing method determines the exact threshold to use is not disclosed
making it difficult to perform the same comparison. However, the underlying
flaw in the threshold method should give similar results regardless of how they
are chosen, as the model cannot handle multiple interior intensity distributions
spread apart.

5.3 Further Work and Improvements
One of the most interesting results was that the proposed method achieved the
highest and lowest dice coefficient for tumors that were very homogeneous but
where the lower result came from a case where there were few images with a
large distance between them resulting in great variation in tumor shape be-
tween neighboring planes. It would therefore be very interesting to see methods
designed to account for this in the smoothing curvature term. One approach
could be to artificially add images by interpolation, another would be to consider
curvature in each plane separately.

As Sectra’s volume segmentation tool is used in many different types of
exams a crucial step before replacing the existing method with the proposed
one is to investigate how the method performs in different types of medical
images of in a variety of exams.
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An improvement that could be considered for any type of volume segmen-
tation tool is the ability to modify the segmentation after it is done. Often the
segmentation covers a large part of the object but some part has been missed.
For single images there exists a variety of so called “nudge tools” that allow
smooth deformation of the contour. However, it is considerably more difficult
to allow the user to nudge the boundary of a volume in one plane that deforms
the boundary surrounding the plane in a manner the user can easily control.

We also observe that the proposed method attempts to create a Gaussian
mixture model for the interior and exterior with no temporal information. Thus
if both the exterior and interior display a similar distribution the method can
fail. Future work could examine how this can be handled, for example by
considering how intensities correlate to the surrounding or smoothing the image
in order to remove distributions arising from noisy images.

Another approach to improve segmentation results is to use a GPU-accelerated
level set method. This could potentially improve segmentation times signif-
icantly and allow for multiple automatic segmentations to be performed and
then compared in a structured manner in order to improve the final segmen-
tation. For example different weights on smoothing could be used to attempt
detection of leakage.

Finally, we note that different types of MRI images are usually taken in an
exam with the same frame of reference, i.e. the body locations are identical
in the images. Since these images highlight different organic structures, such
as water or fat, it might be possible to build a statistical model that utilizes
this. For example, the border might be clearer in a certain type of image and a
speed function could therefore be used that always uses the probabilities from
the MRI images that give the largest absolute speed. This corresponds to using
the probability from the image type where the interior and exterior probability
differ the greatest.



Chapter 6

Conclusions

We are now ready to answer the research questions posed at the beginning of
the thesis:

How is the level set method used for image segmentation?
By embedding the segmentation boundary implicitly as the zero level set
of a function, it is possible to construct various energy functionals that
depend on the segmentation and are minimized when the zero level set
is located at the true boundary of the object. Using the Euler–Lagrange
equation a gradient descent method can be constructed that finds a min-
imizer to the functional.

Can the level set method be used to develop a segmentation algorithm that
performs better on MRI images of heterogeneous brain tumors than the
existing method?
By modifying the initialization of the level set function and the probabilis-
tic model used in [20] a level set method can be constructed that segments
heterogeneous brain tumors in MRI images more accurately than the exist-
ing method with regard to the dice coefficient, volume error, and internal
volume ratio.

How does segmentation time for the new method compare to the existing
method?
While the existing method can perform fast segmentations in certain cases,
and is 10% faster than the proposed method overall, the absolute difference
of 70 milliseconds is arguably negligible. Furthermore, when considering
cases where the volume error is at most 40%, the proposed method per-
forms faster segmentations than the existing method, at the cost of higher
user interaction time, due to the placement of a contour instead of a line.

Let us end by remarking on a few more subtle aspects of the material presented
in this thesis. First, we note that new segmentation methods can be constructed
that can improve results greatly by simply modifying the level set speed function.
Thus the underlying efficient implementation of for example the sparse field
method and coherent propagation can be reused. As initialization is independent
from propagation it is also possible to modify initialization and user interaction
without affecting the propagation algorithm. Secondly, we note that even with
improved level set methods for image segmentation such as the one presented
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in this thesis, the segmentation will often miss parts of the tumors and it would
be very beneficial for any segmentation algorithm to include a tool that allows
deforming the final segmentation. Lastly, we note that the testing procedure
used in this thesis could be incorporated into an automated testing framework
used by developers to quickly check what effect changes to the segmentation
algorithm have. This could greatly ease the development of different methods
for segmentation as the effect for the end user can be determined with greater
confidence.



Appendix A

Test Data

The MRI images used in this thesis can be retrieved from [26]. In all cases it
is the T1-weighted MRI images were used. Below the specific case names for
evaluation are listed alongside the ID they were given for testing. Each exam
has a varying amount of image slices taken however each image has resolution
512× 512.

Case name Image count
TCGA-06-0182 79
TCGA-06-0238 84
TCGA-06-0176 60
TCGA-06-0189 76
TCGA-06-0210 31
TCGA-08-0244 124
TCGA-27-2519 192
TCGA-12-0620 128
TCGA-27-1833 192
TCGA-27-2518 192
TCGA-06-0216 30
TCGA-06-0213 56
TCGA-02-0037 124
TCGA-06-0185 38
TCGA-06-0190 71

Table A.1: Test cases for parameter tuning.
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Case ID Case name Image count
1 TCGA-02-0034 124
2 TCGA-06-0214 57
3 TCGA-06-0221 60
4 TCGA-06-0238 84
5 TCGA-27-2523 192
6 TCGA-27-2526 80
7 TCGA-27-2527 192
8 TCGA-06-0187 41
9 TCGA-08-0529 124
10 TCGA-02-0027 124

Table A.2: Test cases for evaluation.
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