
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Synthesis of GPU Programs
from High-Level Models

ZIYUAN JIANG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Title: Synthesis of GPU Programs from Higher-Level Models
Author: Ziyuan Jiang
Supervisor: George Ungureanu
Examiner: Ingo Sander
Thesis number: TRITA-EECS-EX-2018:5
KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)

Abstract

Modern graphics processing units (GPUs) provide high-performance general
purpose computation abilities. They have massive parallel architectures that
are suitable for executing parallel algorithms and operations. They are also
throughput-oriented devices that are optimized to achieve high throughput for
stream processing. Designing efficient GPU programs is a notoriously difficult
task. The ForSyDe methodology is suitable to ease the difficulties of GPU pro-
gramming. The methodology encourages software development from a high level
of abstraction and then transforming the abstract model to an implementation
through a series of formal methods. The existing ForSyDe models support the
synchronous data flow (SDF) model of computation (MoC) which is suitable
for modeling stream computations and is good for synthesizing efficient stream
processing programs. There also exists high-level design models named parallel
patterns that are suitable to represent parallel algorithms and operations. The
thesis studies the method of modeling parallel algorithms using parallel pat-
terns, and explores the way to synthesize efficient OpenCL implementation on
GPUs for parallel patterns. The thesis also tries to enable the integration of
parallel patterns into the ForSyDe SDF model in order to model stream parallel
operations. An automation library that helps designing stream programs for
parallel algorithms targeting GPUs is purposed in the thesis project. Several
experiments are performed to evaluate the effectiveness of the proposed library
regarding implementations of the high-level model.

Sammanfattning

Moderna grafikbehandlingsenheter (GPU) tillhandah̊aller högpresterande gene-
rella syftes-beräkningsförm̊agor. De har massiva parallella arkitekturer som är
lämpliga för att utföra parallella algoritmer och operationer. De är ocks̊a stream-
inriktade enheter som är optimerade för att uppn̊a hög streaming för streaming-
behandling. Att utforma effektiva GPU-program är en notoriskt sv̊art upp-
gift. ForSyDe-metoden är lämplig för att underlätta sv̊arigheterna med GPU-
programmering. Metodiken uppmuntrar mjukvaruutveckling fr̊an en hög niv̊a
av abstraktion för att sedan omvandla den abstrakta modellen till en imple-
mentering genom en rad formella metoder. De befintliga ForSyDe-modellerna
stöder synkron dataflöde (SDF) modell av beräkning (MoC) som är lämplig
för modellering av streaming-beräkningar och är bra för att syntetisera effektiv
streaming-bearbetningsprogram. Det finns ocks̊a högkvalitativa designmodeller
som kallas parallella mönster vilka är lämpliga för att representera parallella al-
goritmer och operationer. Avhandlingen analyserar metoden för modellering av
parallella algoritmer med parallella mönster, och utforskar sättet att syntetisera
effektiv OpenCL-implementering för GPU för parallella mönster. Avhandling-
en försöker även att möjliggöra integration av parallella mönster i ForSyDe
SDF-modellen för att modellera streaming parallella operationer. Ett automa-
tionsbibliotek som hjälper till att designa stream-program för parallella algo-
ritmer som riktar sig mot GPU:er är avsedda för avhandlingsprojektet. Flera
experiment utförs för att utvärdera effektiviteten hos det föreslagna biblioteket
avseende implementering av högniv̊amodellen.

2

Acknowledgements

Several people have helped me and supported me during the thesis project. I
would like to express my gratitude to them in this section.

First of all, I would like to thank my examiner and mentor Ingo Sander for
providing many feedbacks on both the design of my program and the writing of
the thesis report. The papers that Ingo recommended also helped me quickly
understand the background knowledge. He also provided me with several excel-
lent materials that helped me improve my skills on reading papers and writing
reports, which are very beneficial during the thesis project. It was also very kind
of him to check my progress frequently and gave me advice when I encounter
problems.

I also want to thank my supervisor George Ungureanu. He pointed out several
good directions that I can look into at the beginning of the thesis project. His
previous works inspired me a lot. He also offered me lots of help on getting
familiar with several high-level computation models. I want to thank him for
his quick replies to my doubts and problems.

I want to express my gratitude to my parents for their support during my study
in Sweden. The development of my knowledge and skills during the master
program is simply not possible without their support. I would also like to thank
my girlfriend Liping Gu. She always believes in me. Her letters and phone calls
always brought me much happiness and encouragement to overcome so many
difficulties during the project.

3

4

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Contribution . 12

1.3 Structure of the Thesis . 12

I UNDERSTANDING THE PROBLEM 15

2 GPGPU and OpenCL 17

2.1 GPU Architecture . 17

2.2 OpenCL Programming Model . 19

2.3 Communication and Synchronization 21

2.4 OpenCL Application Workflow and Kernel Functions 21

2.5 OpenCL Optimization Tips . 23

2.5.1 Global Memory Coalescing 23

2.5.2 Bank Conflicts . 25

2.6 Performance Portability and Autotuning 25

3 ForSyDe 27

3.1 Introduction . 27

5

3.2 The Modeling Framework . 28

3.3 Models of Computation . 29

4 Patterns 31

4.1 Data Parallel Patterns . 31

4.1.1 Map Pattern . 31

4.1.2 Reduce Pattern . 32

4.1.3 Gather and Scatter Pattern 33

4.1.4 Transpose Pattern . 34

4.1.5 Array of Structures (AoS) vs. Structures of Arrays (SoA) 35

4.2 Compositional Patterns . 36

4.2.1 Operation Map Pattern 36

4.2.2 Stage-generate Pattern . 37

4.3 Example Algorithm Modeled with Patterns 37

4.3.1 Vector Dot Product . 37

4.3.2 Fast Fourier Transformation (FFT) 38

5 Related Approaches 41

5.1 F2CC . 41

5.2 SkelCL and SkePU . 42

II Development and Implementations 43

6 Representations of Parallel Patterns 45

6.1 Supported Data Types . 45

6.2 Function Decriptions . 46

6.3 Process Descriptions . 47

6

6.3.1 Variables and Parameters 47

6.3.2 Port Declarations . 48

6.3.3 Data Parallel Patterns . 48

6.3.4 Compositional Patterns 50

6.4 Examples . 51

7 P2CL Overview 53

7.1 Overview from Users’ Perspective 53

7.1.1 Designing Workflow . 53

7.1.2 Buffer Sizes and Flow Control 56

7.2 Overview of the Library . 56

8 Kernel Generation and Execution 59

8.1 Pattern Fusion . 59

8.2 Kernel Templates . 60

8.2.1 Map Kernel . 60

8.2.2 Reduce Kernel . 62

8.2.3 Data Arrangement Kernel 63

8.2.4 Transpose Kernel . 64

III Evaluations and Discussions 67

9 Evaluations 69

9.1 Programing Simplicity . 69

9.2 Performance of P2CL over Naive OpenCL Programs 70

9.2.1 Elementwise Addition . 70

9.2.2 Vector Dot Production . 73

7

9.2.3 Transpose Operation . 74

10 Future Works 77

10.1 Parallel Operations in SDF Processes 77

10.2 Scheduling SDF Network on Heterogeneous Platforms 78

10.3 More Intuitive XML Representation 79

10.4 Auto-Tuning . 79

8

List of Terms and
Acronyms

AoS array of structures. 6, 25, 35

API application programming interface. 11, 19, 20, 24, 42, 48, 53, 54, 56, 70,
77

CPU Central Processing Unit. 12, 62, 69–74, 77, 78

FFT fast fourier transform. 6, 38–40, 51

FIFO first in, first out. 29, 56

ForSyDe Formal System Design. 1, 5, 11, 12, 27–29, 31, 41, 42

FPGA field-programmable gate array. 19

GPGPU general-purpose computing on graphics processing units. 5, 11, 17,
59

GPU graphics processing unit. 1, 5, 11–13, 17–20, 23–26, 57, 59, 69–74, 77–79

MoC model of computation. 1, 12, 27, 29, 41

NDRange N-Dimensional Range. 20

P2CL Patterns-to-OpenCL (P2CL) is the library developed in this thesis project
which helps create OpenCL stream programs using data parallel patterns.
7, 12, 13, 27, 31, 45, 46, 48, 53, 54, 56, 57, 59, 62, 69, 70, 73, 74, 79, 80

SDF synchronous data flow. 1, 8, 12, 29, 54, 56, 77–79

SIMT single instruction, multiple threads. 18, 19

SM streaming multiprocessor. 17, 20

SoA structure of arrays. 6, 25, 35, 36, 46, 49

SoC System on a Chip. 69, 74

SP streaming processor. 17, 18, 20

XML Extensible Markup Language. 8, 45–47, 51, 53, 54, 79

9

10

Chapter 1

Introduction

This chapter gives a brief overview of the thesis. The problem the thesis tries to
solve is presented in the first section, which is followed by a short summary of
the accomplished work in the thesis and its limitations. Finally, the structure
of this report is presented in the last section.

1.1 Motivation

As the performance of single processor reaches its limit, the industry put more
effort into multicore devices to utilize data-level parallelism and thread-level par-
allelism [1]. Graphics processing unit (GPU) is one of the parallel-structured
devices which is originally designed to accelerate rendering of 3D graphics. Its
multiprocessor structure makes it also suitable for exploiting data-level paral-
lelism for general purpose computing.

However, designing efficient programs for general-purpose computing on graph-
ics processing units (GPGPU) is a notoriously difficult task. Firstly, the paral-
lelism of the target algorithm is required to be fully analyzed before designing.
Secondly, programmers need to have thorough knowledge of the GPU archi-
tecture and the programming model of the selected application programming
interfaces (APIs) in order to avoid enormous unnecessary overheads and apply
optimizations. Besides that, although there exist APIs that provide functional
portability to multiple platforms, the performance portability is not guaran-
teed. Additional adjustments might be necessary to achieve high performance
on different devices.

The methodology of Formal System Design (ForSyDe) is suitable to ease these
difficulties. The methodology encourages starting software development from
a high level of abstraction and then transforming the abstract model to an
implementation through a series of formal methods [2]. It allows programmers to

11

focus on the what the system should do rather than how [3]. This transformation
can be achieved through a set of synthesis and verification tools, which not only
reduce development time and cost but also ensure correctness and efficiency of
implementations through the approach of correct-by-construction.

1.2 Contribution

This thesis explores transformation from high-level models down to OpenCL
implementations on GPUs. The existing synchronous data flow (SDF) model
of computation (MoC) in the ForSyDe modeling framework is suitable for GPU
programming. This is because GPUs are designed in a way that throughput
is emphasized more than latency [4], and the SDF MoC naturally suits stream
processing. However, in order to explicitly express parallel operations, another
high-level model named parallel pattern is also used in this thesis. This thesis
provides a way to add support for parallel patterns inside a SDF graph in
order to utilize both the parallel structure and the throughput-oriented design
of GPUs. This thesis provides a methodology for generating optimized software
for GPUs from the high-level model, captured in the design of an automation
tool named Patterns-to-OpenCL (P2CL). Due to the limited time frame of the
thesis project, the tool currently focuses on efficient implementations of parallel
patterns. It embeds operations described by parallel patterns inside one single
SDF process , which can interact with data flows fed from the Central Processing
Unit (CPU). The plan for supporting complete SDF networks is described in
Chapter 10.

The tool has the following features:

• Recognize and parse a script that describes a stream processing system
using parallel patterns.

• Instead of statically generating codes, the tool allows users to load the
script describing a system at runtime, feed data flow to the system and
get a sequence of results.

• Efficient kernel code and execution plan for GPUs for several parallel
patterns are automatically generated and the kernel code can be exported
for development of other programs.

• In the case when new input data arrives faster than the computation,
several instances of computation can concurrently run on a single GPU to
hide memory latencies and provide higher throughput.

1.3 Structure of the Thesis

This thesis report is divided into three parts. The first part describes the
background studies including the description of parallel patterns, the ForSyDe

12

project and several other projects that targeting designing GPU programs from
high level models. An introduction to GPU programming and OpenCL is also
provided in this part. The second part contains information on how P2CL should
be used and the implementation details of P2CL. The last part demonstrates
evaluations of the tool. The limitations and visions for future development are
also discussed in this part.

13

14

Part I

UNDERSTANDING THE
PROBLEM

15

Chapter 2

GPGPU and OpenCL

The GPU parallel programming model is different from the sequential execution
model used for CPUs. In order to generate efficient code, one has to understand
the programming model. Its relationship to the detailed architecture of the GPU
is also vital for program optimization. This section briefly describes the GPU
architecture together with the OpenCL programming model. Several common
good practices and pitfalls of GPU programming are also introduced which are
used as guidelines in the development of the automation tool.

2.1 GPU Architecture

GPUs are originally designed for display generation. Throughout the years,
its architecture has been evolved from hard-wired graphics pipelines to mas-
sive highly-programmable processors [5]. Modern GPUs use the same type of
processors to perform different stages of graphics processing as well as general
purpose computing. This unified architecture allows better load balancing and
scalability since all the functions can use the whole processor array [5].

As shown in Figure 2.1, a modern GPU consists of massive streaming processor
(SP) cores. Each SP core is capable of managing multiple concurrent threads.
Their states are managed inside the SP cores, thus no expensive register saving
and restoring mechanism is performed between those threads. The SP cores are
organized into several streaming multiprocessors (SMs). Besides the SP cores,
each SM also includes special function units, instruction and constant caches,
a multithreaded instruction unit, and a shared memory [5]. SMs are grouped
into texture/processor clusters (TPC), which control SMs and provide a lower
hierarchy of caches.

Although modern GPUs have a massively parallel structure, in order to man-
age tasks whose data set is larger than the number of processors, or to execute

17

TPC

Shared
Memory

SM

SPSP

SPSP

SPSP

SPSP

SP SP

SPSP

Shared
Memory

Texture Unit
Tex L1

SM

TPC

Shared
Memory

SM

SPSP

SPSP

SPSP

SPSP

SP SP

SPSP

Shared
Memory

Texture Unit
Tex L1

SM

TPC

Shared
Memory

SM

SPSP

SPSP

SPSP

SPSP

SP SP

SPSP

Shared
Memory

Texture Unit
Tex L1

SM

TPC

Shared
Memory

SM

SPSP

SPSP

SPSP

SPSP

SP SP

SPSP

Shared
Memory

Texture Unit
Tex L1

SM

DisplayDRAMDRAMDRAM

L2ROPL2ROPL2ROP

DRAM

Display InterfaceL2ROP

SFUSFU

SP

SP

SP

SP

SP

C-Cache

MT Issue

SM

Shared
Memory

SP

I-Cache

Interconnection Network

TPC

Shared
Memory

SM

SPSP

SPSP

SPSP

SPSP

SP SP

SPSP

Shared
Memory

Texture Unit
Tex L1

SM

Compute Work
Distribution

Pixel Work
Distribution

Viewport/Clip/
Setup/Raster/

ZCull

High-Definition
Video Processors

Vertex Work
Distribution

Input Assembler

Host Interface

GPU

Figure 2.1: GPU Architecture Adapted from [5]

multiple different tasks at the same time, GPUs must be able to schedule con-
current threads. A single instruction, multiple threads (SIMT) mechanism is
implemented in many GPUs. In this mechanism, parallel threads that execute
the same instructions are grouped into warps. It is also called wavefront in
AMD’s terminology. The size of warps is a fixed value on a given architecture.
GPUs schedule and execute several warps concurrently. At each instruction is-
sue time, a warp that is ready to execute its next instruction is selected to be
issued [5]. The instruction is then broadcast to the active threads of the warp
to be executed [5]. As shown in Figure 2.2, three warps running on a GPU
are illustrated. At first, warp 4 is ready to be executed. Its instruction 10 is
selected and broadcasted to threads managed by several SP cores. It turns out
that the instruction request memory accesses which cannot be finished in one
cycle. Thus, warp 4 is not ready at the next instruction issue time. Instead,
instruction 9 of warp 2 is selected to be issued. When the memory access re-
quested by warp 4 is finished, warp 4 becomes ready again and is issued later.
It is worth mentioning that although threads in one warp execute the same in-
struction, they are allowed to take different execution paths when conditional
branch instructions are encountered. If different execution paths are taken in a
warp, all threads will work through both paths and masking is applied to ensure
the correct result. Therefore, stream processors can only achieve full efficiency
when all the threads in a warp follow the same execution path.

18

S
I
M
T

M
U
L
T
I
T
H
R
E
A
D
E
D

I
N
S
T
R
U
C
T
I
O
N

S
C
H
E
D
U
L
E
R

Time

w
a
r
p

4

i
n
s
t
r
u
c
t
i
o
n

1
0

w
a
r
p

3

i
n
s
t
r
u
c
t
i
o
n

5
0

w
a
r
p

4

i
n
s
t
r
u
c
t
i
o
n

1
1

w
a
r
p

2

i
n
s
t
r
u
c
t
i
o
n

1
0

w
a
r
p

3

i
n
s
t
r
u
c
t
i
o
n

5
1

...

w
a
r
p

2

i
n
s
t
r
u
c
t
i
o
n

9

Figure 2.2: SIMT Scheduling Adapted from [5]

2.2 OpenCL Programming Model

In order to do massive parallel computing on a GPU, application program-
ming interfaces (APIs) are provided to allow programmers to design software
directly using a parallel programming model. In the earlier days of general-
purpose computing on GPUs, there are only APIs featuring graphics program-
ming. Programmers had to transform the data into graphic forms and adapt
the computation into graphics operations. The creation of CUDA and OpenCL
frees programmers from this conversion. While CUDA is created by NVIDIA
and only used on their CUDA-enabled GPUs, OpenCL is an open standard sup-
ported by multiple vendors, targeting heterogeneous platforms which not only
include GPUs from different vendors but also include field-programmable gate
arrays (FPGAs) and digital signal processors (DSPs). Programming portability
is emphasized in OpenCL development [6]. Thus an OpenCL program can be
executed on different platforms with correct results. However, as mentioned
earlier, there is no guarantee on performance portability. OpenCL hides the ar-
chitecture details of platforms and provides a platform model, a memory model,
and an execution model, allowing programmers to think about parallelization
from the start and identify performance critical issues at an abstract level. The
following paragraphs introduce the overview of these three models. Execution
flow and memory consistency are subtracted and put into the later section.
This thesis does not intend to include all the details of OpenCL. Readers are
encouraged to read the newest OpenCL specification [7] for more information.

19

OpenCL Platform Model Figure 2.3 demonstrates the view of hardware in
the OpenCL model. Several compute devices are connected and controlled by
a host machine. Each of the compute devices may represent a GPU or other
devices. The OpenCL host program needs to select devices where the compute
kernel executed on at the beginning of a program. Inside each compute device,
there are several compute units which can be used to model SMs inside GPUs.
At the lowest level, SPs can be represented by processing elements which can
process several threads of computation.

Device

Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE

Device

Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE

Device

Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE
Compute Unit

PE PE · · · PE

Host

Figure 2.3: OpenCL Platform Model

OpenCL Execution Model OpenCL programs consist of the host programs
that issue and manage workloads and the kernels that run on the device. The
kernel programs are written in OpenCL C and are executed in parallel over a
predefined N-dimensional computation domain [8]. This domain is named N-
Dimensional Range (NDRange). Each element of execution in the computation
domain is named a work-item which runs inside a processing element. Work-
items are grouped into work-groups which fit inside compute units. At execution
time, each work-item can get access to its position in the work-group and in
the global domain through provided APIs. The work-group indexes are also
available to be obtained. Work-items operate accordingly to that information
and collectively complete the entire computation. Figure 2.4 shows the overview
of the index space structure.

OpenCL Memory Model As shown in Figure 2.1, there is a hierarchy of
different types of memory and caches inside a GPU. OpenCL memory model uses
three levels of memory to simplify and resemble the complex memory hierarchy.
The model is demonstrated in Figure 2.5. Work-items have their own private
memory which is the fastest to access. Local memory is within compute units
and is used to share data within work groups. At the lowest level, global and
constant memory can be accessed by all the work-items. Constant memory can
represent read-only memory inside a GPU, which is faster to read than global
memory. Programmers are given the responsibilities to explicitly select memory
regions to use and move data between regions.

20

WG

<0,0>

WG

<1,0>
· · · WG

<v,0>

WG

<0,1>

WG

<1,1>
· · · WG

<v,1>

...
...

WG

<i,j>

...

WG

<0,u>

WG

<1,u>
· · · WG

<v,u>

WI

<0,0>

WI

<1,0>
· · · WI

<q,0>

WI

<0,1>

WI

<1,1>
· · · WI

<q,1>

...
...

WI

<i,j>

...

WI

<0,p>

WI

<1,p>
· · · WI

<q,p>

Figure 2.4: OpenCL Index Space

2.3 Communication and Synchronization

Communication and synchronization in OpenCL are only available within work-
groups in a kernel invocation. Work-items are able to communicate through
local or global memory with the help of synchronization functions [8]. Barrier
functions ensure that all work-items within a work-group must encounter it be-
fore any of the work-items are allowed to continue [9]. The function also provides
memory fences that ensure correct ordering to local or global memory. In the
newer OpenCL C 2.0 standard [10], there are more communication functions
along with some common parallel pattern operations that will be introduced
later.

2.4 OpenCL Application Workflow and Kernel
Functions

With the OpenCL programming model in mind, it is easier to understand an
OpenCL program. A typical OpenCL application workflow can be summarized
into the following steps:

1. Query and select the platform and devices to create a context object and

21

Device

Global Memory
Constant Memory

work-group work-group

Local Memory

work-item work-item

Private
Memory

Private
Memory

Local Memory

work-item work-item

Private
Memory

Private
Memory

Host

Host Memory

Figure 2.5: OpenCL Memory Model

command queues.

2. Build kernel programs for each device.

3. Create kernel function objects.

4. Create memory objects and assign them along with other parameters to
the kernel functions.

5. Run the kernels functions in NDRange domain and collect results.

OpenCL APIs is originally in C language. An efficient C++ wrapper is also
provided to allow simpler software development using C++.

A simple kernel program that performs vector addition is shown in Listing
2.1. Kernels functions that a host program may enqueue is prefixed with
" kernel". Only they can be enqueued to a command queue. The " global"

qualifier together with " local", " private", and " constant" are used to
specify which memory space the buffer or array is located. A pointer can-
not point to a buffer or array with different address space qualifier. The

22

"get global id" function is the API for getting the global position of a work-
item in the NDRange. For this kernel function, each work-item fetches the values
from i-th position in A and B, and put the results back to the corresponding
position in C.

1 k e r n e l void vadd (
2 g l o b a l f l o a t ∗ A,
3 g l o b a l f l o a t ∗ B,
4 g l o b a l f l o a t ∗ C)
5 {
6 in t i = g e t g l o b a l i d (0) ;
7 C[i] = A[i] + B[i] ;
8 }

Listing 2.1: Vector Addition Kernel

2.5 OpenCL Optimization Tips

Although different GPU vendors implement OpenCL in different ways. There
still exist good practices in OpenCL programming that benefit the performance
on most GPUs. Several of these optimization tips are introduced here while
readers are encouraged to read more about this topic from guides written by
various GPU vendors.

2.5.1 Global Memory Coalescing

Global memory read and write are expensive operations on GPU. Therefore,
memory coalescing is one of the most important performance considerations
in GPU programming [11]. On modern GPU architectures, accesses to global
memory requested by a portion of threads within a warp are grouped as one
transaction if certain requirements are met. Several access patterns and their
impacts on the global memory latency are illustrated below.

• The simplest pattern that guarantees coalesced memory access is the case
where the k-th threads in a warp access the k-th word in a segment [11].
However, it is not required for all the threads to participate [11]. Figure
2.6 shows the pattern.

• Misaligned access refers to the situation where each thread accesses mem-
ory locations in a segment with an offset. On older GPUs such as NVIDIA
GeForce GTX 8800, this type of memory requests cannot be coalesced,
thus they must be serialized and cost much time [11]. However, newer
GPUs like NVIDIA GeForce GTX 280 can coalesce these memory requests
as long as they all fall within the same aligned segment [11]. According to
NVIDIA, on devices of compute capability 1.2 or higher, memory trans-
actions requested by half warps within a 128-byte aligned segment can
be coalesced. These devices can also reduce the transaction size to max-
imize effective bandwidth. Figure 2.7 shows the situation. In this figure,
there are 16 threads accessing a 64Bytes (16 words) aligned segment. All

23

Figure 2.6: Sequential Access

the requests fall into the same 16-word segment. Thus only one 64-Byte
memory transaction is required for this case on newer GPUs.

Figure 2.7: Misaligned Access

• Strided access is the case when threads access memory locations with a
unified or non-unit stride. In Figure 2.8, 16 threads are accessing memory
locations with a stride of 2. Like the misaligned access, as long as the
memory locations fit in a 128-byte aligned segment, modern GPUs can
coalesce them. However, since only one out of two words in the segment
is useful, the effective bandwidth is low. In the case when each thread in
the group need to access consecutive words, if the data is loaded word by
word, there will be several of these coalesced strided memory access and
each of them with a lot of wasted bandwidth. Vector load and store is
recommended to be used by AMD OpenCL Optimization Guide [12] and
Adreno OpenCL Programming Guide [13]. On AMD and Adreno GPUs,
using vector APIs for 4 words leads to the requests to be coalesced. There
is no benefit using vector APIs for 8 words and 16 words over a multiple
of vector accesses for 4 words [13].

Figure 2.8: Strided Access

24

2.5.2 Bank Conflicts

As mentioned earlier, local memory is available for work-items to communicate
within their work-groups. They are fast to access compared to the global mem-
ory. On GPUs, accesses to consecutive local memory locations are handled by
different memory banks. For example, if the number of banks in a GPU is 8
and there is a block of local memory that is aligned to 8 words, accesses to word
0 is handled by bank 0 and accesses to word 1 is handled by bank 1. Word 8 is
warped around and mapped to bank 0 again. This example of bank mapping is
shown in Figure 2.9. For a NVIDIA GPU with compute capability 2.0, shared
memory has 32 banks, with each of them mapped to a consecutive 32-bit word
[14].

Figure 2.9: Memory Banks Mapping

These banks are able to serve local memory accesses simultaneously. However, if
several work-items in a work-group try to access memory locations that mapped
to the same bank, the transactions must be serialized. This is an important issue
to consider when work-items are accessing a column of data in a row-major order
matrix. If the width of the matrix is a multiple of the number of banks, every
memory location in a column is mapped to one memory bank. The general
techniques to avoid bank conflicts in this case is usually allocating one extra
word for every row, so that the data in the same column mapped to different
banks. Thus, bank conflicts are resolved.

2.6 Performance Portability and Autotuning

Owing to various structures and specifications of GPUs, a fixed kernel cannot
achieve maximum performance on all devices. Several factors in kernel designing
might affect the performance on different platforms. Lee, Joo Hwan et al. [15]
evaluated effects of several aspects of OpenCL programs executed on multi-core
CPUs and GPUs. The work of [16] also summarized several performance critical
factors for GPU programs. They are shown as follows.

• Tiling Size for block-based algorithm

• Data Layout

– column-major or row-major

– AoS or SoA

25

• Caching and Prefetching

• Thread Data Mapping

– work-item/ work-group size

• Operation-Specific Tuning

– usage of instrinsic functions for specific architectures

In order to take those aspects into consideration and provide performance porta-
bility for different platforms, autotuning has been introduced to GPU comput-
ing. The idea is to generate multiple kernel versions which implement the same
algorithm optimized for different architectures and heuristically select the best-
performing one [6].

26

Chapter 3

ForSyDe

The goal of this thesis is to enable the integration of P2CL into the ForSyDe
framework. This chapter briefly describes the ForSyDe framework in order for
the reader to understand the methodology and the model used in this thesis.
For a more detailed description of the ForSyDe framework, the reader is advised
to consult [2] and [17].

3.1 Introduction

The high level of abstraction enables designers to have a clear overview of the
system and data flow, allowing simpler identification of optimization and oppor-
tunities for better decisions [18]. Keutzer et al. state that a design methodology
that addresses complex systems must start at high levels of abstraction in order
to be efficient [19]. ForSyDe is such a methodology that provides a formal base
in the form of the theory of models of compuation (MoCs), targeting designs of
heterogeneous embedded and cyber-physical systems [20]. The main objective
of ForSyDe is to move system design from the implementation into the func-
tional domain [2]. This allows designers to specify the system functionality using
high-level models and then transform the high-level model to an implementation
model with the help of design transformational methods. Through this tranfor-
mation and refinement, the implementation model has the same semantics as
the initial model but is more detailed and optimized for implementation.

ForSyDe supports two modeling languages. The functional language Haskell is
an elegant choice because the language is free from side effects and it naturally
supports many concepts of ForSyDe such as higher order functions and lazy
evaluations. There are two libraries available in Haskell ForSyDe. The shallow-
embedded library supports different types of MoCs. It is a rapid-prototyping
framework used only for simulation. The deep-embedded library [21] supports
both simulation and transformation. Models specified in this library can be

27

used to synthesis VHDL code for hardware synthesis or to generate GraphML
graphs that can be used for other analysis and synthesis backend tools. Sys-
temC is another supported language of Formal System Design (ForSyDe) [22].
It is a library of C++ that provides event-driven interfaces with the purpose
of co-simulating and validating hardware-software systems at a high level of
abstraction [3]. To accord with ForSyDe principles, restricted features of Sys-
temC are used. SystemC ForSyDe can generate an intermediate representation
named ForSyDe-XML based on XML and C++ files. Similar to the GraphML,
this intermediate representation is used by backend tools.

3.2 The Modeling Framework

Figure 3.1 shows the structure of the ForSyDe modeling framework. In ForSyDe,
a system is modeled as a hierarchical network of concurrent processes [2]. There
are two types of process. Leaf processes are created directly from process con-
structors which take side-effect-free functions and initial values as input [22].
Composite processes are created by composing processes together [22]. There
is no global state in the system. Thus, processes communicate through signals
[2]. Since ForSyDe supports multiple models of computation, domain interfaces
are provided to allow communications between models.

Signal
P4

P2

P3
P5

P1

InterfaceMoC

A
B

A
B

MoC A MoC B

Process
Figure 3.1: ForSyDe Modeling Framework Adapted from [20]

A signal is a sequence of events marked with a tag and a value. The tag can
be used to model physical time, the order of events or other properties of the
computational model [17]. The tag of the signal is either implicitly given or
explicitly specified. The value type of one signal must be consistent with all the
events in it.

28

3.3 Models of Computation

ForSyDe currently provide libraries for the several MoCs, which are Synchronous
MoC, synchronous data flow (SDF) MoC, Discrete-Event MoC, and Continuous
Time MoC. This thesis have particular insterests for the synchronous data flow
MoC.

This ForSyDe SDF model follows the definition of synchronous data flow graph
[23]. An example of SDF graphs is shown in Figure 3.2. This model consists of
process (actor) nodes which represent computations and arcs which stands for
FIFO buffers.

Figure 3.2: a synchronous data flow Example Adapted from [23]

This model is good for signal processing algorithms because signal processing
algorithms naturally fit in data flow graphs. The synchronous data flow is a
special data flow where the amount of data comsumed and produced by the
data flow node is fixed for each input and output[23]. An actor can be invoked
when there is enough input data. Each invocation of an actor generates fixed
amount of data to output buffers. This model have a high level of analyzability
[17]. Using this model, the schedules and required buffer size of a system can
be determined at compile time [23]. Efficient implementations with different
optimization goals can be achieved through different scheduling plan [24].

29

30

Chapter 4

Patterns

Parallel programming has several generic program structures, called skeletons
or patterns[25]. They represent parallel algorithms in an abstract form and
can be used as components for building parallel programs [25]. There are two
types of parallel patterns namely task-parallel patterns and data-parallel pat-
terns [25]. Task-parallel patterns are used for model execution of several tasks
[25]. Data-parallel patterns partition the data and performing computations
simultaneously [25]. The idea behind programming using parallel patterns is
similar to ForSyDe. Programmers are encouraged to focus on the computa-
tion problem and leave the actual organization of parallelism to an automation
tool [25]. This thesis mainly focuses on several data parallel patterns for lists.
In order to have additional expressiveness, the thesis also uses some composi-
tional patterns for hierarchically composing algorithms with operations created
by data parallel patterns. This chapter describes those patterns that are used
in P2CL. Many of the used patterns are modified from commonly known pat-
terns. However, some constraints and extensions are introduced for the purpose
of better expressiveness and simplicity. For a complete description of commonly
used parallel patterns, readers may refer to [25] and [26].

4.1 Data Parallel Patterns

This section describes the data parallels used in P2CL.

4.1.1 Map Pattern

The map pattern is a fundamental data parallel pattern that applies a function
f to each element of the list. It can be expressed by the following equation.

31

map (f) [a0, ..., am−1] = [f a0, ..., f am−1] (4.1)

As shown in Figure 4.1, the input, and output of this pattern have a one-to-one
relationship. There is no communication required between these computations.

f f f f f f f f

Figure 4.1: Map Pattern

4.1.2 Reduce Pattern

The reduce pattern is another commonly used pattern. It takes a binary asso-
ciative operation and applies it to list elements. Assume the binary associative
operation is ⊕. The following equation defines that pattern. A common example
of this pattern is summing all the data in a list.

reduce(⊕)[a0, ..., am−1] = a0 ⊕ ...⊕ am−1 (4.2)

This pattern shows a many-to-one relationship between the input and the out-
put. Since the operation is binary associative, there are usually different ways
of executing this pattern. Figure 4.2 shows the sequential and the parallel ap-
proaches to compute the result of a reduce pattern. The sequential approach
on the left combines one element from the list at a time, while for the parallel
approach, each adjacent pair of elements are combined at the same time to form
a new list and recursively get the final result.

Figure 4.2: Reduce Pattern

32

4.1.3 Gather and Scatter Pattern

Gather and scatter are different from previously introduced patterns. They do
not involve computations but mainly focus on the management of data. The
gather pattern collects data from multiple locations and saves to one single
location. The scatter pattern stores a collection of data to multiple places.
These operations are widely used in scientific simulation and image processing
applications. However, the descriptions are too general, which allows several
variants [27]. Here in this thesis, the following constraints are added to these
patterns so that they are easier for modeling and implementation.

1. All the locations that are used for gathering (scattering) data must be
expressed as offsets relative to the location of the collective output (input).

2. These offsets must be identical between all the locations in the collective
output(input).

These constraints are explained in details for each pattern in the following para-
graphs.

Gather Pattern Consider a map pattern where the function is an identity
function. The data in the i-th location of the input buffer is stored into the i-th
location of the output buffer. This operation can also be modeled using gather
pattern. Since only one element in the input buffer is gathered, the data type
of the collective output is the same as the element of the input. The offset for
gather, in this case, is zero, as in the i-th collective output gathers data from the
i-th element of the input buffer. Take another example of gather patterns shown
in Figure 4.3. There are eight data elements that are gathered into four output
tuples where each of the tuples consists of two data elements. The offsets, in
this case, are 0 and 4 and they are the same for all the output tuples. The first
output tuple gathers data from input location 0 and 4. The index for the second
output tuple is 1. Thus, the required input location is computed by adding 1
to 0 and 4, resulting 1 and 5. It is similar for the remaining output tuples.

Figure 4.3: Gather Pattern

With the help of the examples above, it is easier to understand the constraints
described above. The constrained gather pattern used in this thesis can be

33

defined as the following equation.

gather ([o0, ..., on−1]) [a0, ..., am−1]

= [(ao0 , ..., aon−1), ..., (am−1+o0 , ..., am−1+on−1)]
(4.3)

The data encaptured in a parentheses is a tuple represents one collective output.

Scatter Pattern A scatter pattern is defined as the inverse operation of a
gather pattern with the same offsets. Similar to the gather pattern where the
operation may not use all the data elements in the input list, an operation
modeled by scatter pattern may not fill all the elements in the output list.
Figure 4.4 shows a scatter operation that inverse the gather operation in Figure
4.3. Each data element in an input tuple is scattered to the location with offset
0 and 4 respectively.

Figure 4.4: Scatter Pattern

4.1.4 Transpose Pattern

The transpose pattern is another pattern that rearranges the input data. It
mimics the matrix transpose operation where a row-major matrix is transformed
to be column-major. However, in this context, it is not limited to matrix oper-
ation but can also be applied to lists and other data structures [28]. Figure 4.5
shows such a situation where a transpose operation is used to separate the odd-
indexed elements and the even-indexed elements. This operation is modeled as
transposing a matrix with the width of two.

Figure 4.5: Transpose Pattern

Since this thesis only focuses on parallel patterns for lists, the definition of the
transpose pattern is described as follows.

34

Definition Let A be a list with the length m × n. Then the transpose of A
with parameter m and n is another list B with the length m × n. For every i
and j that satisfy i ∈ [0,m), j ∈ [0, n) and i, j ∈ Z, the element in B with index
n× i + j is equal to the element in A with index m× j + i,

All the elements in the input list have an one-to-one mapping to elements in
the ouput list in the transpose pattern, which is different from the gather and
scatter patterns. It is also easy to see that a transpose operation can also be
modeled with gather and scatter patterns. However, because the locations to
read and write for gather and scatter are specified as offsets, it is convenient to
use the transpose pattern for reordering of a long list.

4.1.5 Array of Structures (AoS) vs. Structures of Arrays
(SoA)

Before completing the descriptions of data parallel patterns, the concept of array
of structures and structure of arrays are introduced to extend the expressiveness
of those patterns. Array of structures and structure of arrays are two different
ways of storing sequences of structured data that contains several elements. AoS
is the intuitive approach, where data structures are stored one after another.
For SoA, different fields of the structured data are separated into different lists.
Figure 4.6 shows such an example. The structure data type foo consists of two
fields. The first field is an integer and second one is a floating point number.

Figure 4.6: array of structures (AoS) vs. structure of arrays (SoA)

Different from some other researches [29] [30] that also study data parallel pat-
terns, the thesis does not distinguish patterns that involve one input/output list
with those that involve multiple input/output lists. One consequence is that
the map pattern can take functions that have several inputs and outputs. An
operation similar to Figure 4.7 can be created. It might seem contradictory to
the original definition. However, since input(output) lists share the same length.
They can be considered as SoA, which is functionally the same as AoS. Thus
the function can be considered to apply to each element of a conceptual list,
whose elements are considered as structured data that are separated in several

35

physical lists.

Figure 4.7: Map Pattern with Multiple Input and Output Lists

Inputs and outputs of all the data parallel patterns in this thesis follow the
concept of structure of arrays, as in they are theoretically all capable of creating
operations that have multiple input and output lists. However, it is currently
not supported for the reduce pattern. Some additional restrictions are described
in Chapter 6.

4.2 Compositional Patterns

Consider computations and data arrangements modeled by the data parallel
patterns are basic operations. Then compositional patterns are patterns that
are used to compose complex algorithms with these basic operations. The nest-
ing pattern described in [26] provides a general way to create a network of
operations. However, it is difficult to express a network of operations in code
and GPU does not naturally support executing a network of operations. In this
thesis, only several simple ways of combining operations are allowed to create a
process. A general network of processes is expected to be used for the creation
of more complex algorithms in future versions.

4.2.1 Operation Map Pattern

Operation map pattern is a way to extend the operations on a larger list. It
takes a basic operation as a parameter and repeats the operation to form a
larger composed operation. As shown in Figure 4.8, a basic operation operates
on a list of 6 elements. An operation map takes this operation as a parameter
and takes another parameter 3 to create a composed operation that operates
on a list of 18 elements, where the same basic operation is performed on every
small segment of 6 elements. In the current version of P2CL, the operation map
cannot be nested, as in the only the operations created by basic data parallel
patterns or a sequence of these basic operations can be used for operation map.

36

Figure 4.8: Operation Map

4.2.2 Stage-generate Pattern

The idea of the stage-generate pattern comes from the for-generate loop syn-
tax in VHDL. The for-generate loop in VHDL is used to create compositional
systems with repeated components. Within each replication of the for-generate
loop, there is an identifier named generate parameter that indicates the value
to be used for generation of the current component. Here in the stage-generate
pattern, the same concept is applied. The stage-generate pattern takes the
number of stages as a parameter. Another parameter is the operation to be
replicated. The operations are repeated in sequence to create multiple stages
and there is an iterator that can be used to vary operations in different stages.
This pattern allows taking all kinds of operations either created by data parallel
pattern or by compositional patterns. A simple repetition of one operation for
three stages is illustrated in Figure 4.9

Figure 4.9: Stage Generate Pattern

4.3 Example Algorithm Modeled with Patterns

Here in this section, several algorithms are described using models that are
introduced above.

4.3.1 Vector Dot Product

Vector dot product is an operation that sums the products of each dimension
of two vectors. This operation takes the two vectors as inputs and generates a

37

single number. It can be seen as a map operation followed by a reduce operation.
Its structure is visualized as Figure 4.10.

Figure 4.10: Dot Production

4.3.2 Fast Fourier Transformation (FFT)

FFT is a widely used algorithm in scientific and engineering applications. It
possesses a large amount of parallelism and it also has a relatively complex
structure. Thus, it is good as an example for creating algorithms with patterns.
This example is inspired from the ForSyDe Atom [31] FFT example. A radix-2
decimation-in-frequency(DIF) FFT of length 4 is demonstrated here. In this
thesis, only the necessary information of the algorithm is described. Additional
information about the DIF FFT algorithm can be found in [32]. The purpose of
this section is only to provide an introduction on how the DIF FFT algorithm
can be created by patterns. A complete model that can be used by P2CL for
a larger-length FFT algorithm is expressed in an extensible markup language
(XML) script in Chapter 6.

As shown in Figure 4.11, the FFT algorithm consists of multiple the same
computations. That is the basic building block of the DIF FFT algorithm–the
butterfly operation. Figure 4.12 shows such an operation. The ωl

N term is
called a twiddle factor, which is a value that can be easily determined by the
FFT length and where the butterfly function is located. The butterfly operation
takes two complex values from the first and the second half of the input list and
produces two intermediate complex values for the next stage.

2-

--

-

Stage 0 Stage 1

Figure 4.11: DIF FFT of length 4

Figure 4.12: DIF FFT Butterfly
adapted from [32]

It is easy to see that a butterfly operation involves input/output arrangements as
well as computations. If the computation of the butterfly operation is extracted
as a function whose input and output are tuples of two complex numbers, then
the entire butterfly operation can be expressed as a sequence of gather, map

38

and scatter patterns. The anatomy of the first stage of the FFT algorithm is
shown in Figure 4.13. The input list is first gathered into two tuples, followed
by a map operation works on the two tuples. At the final step, the tuples are
scattered to the output list. It is also obvious that all these gather, map and
scatter operations requires half the length of the input list as a parameter. The
gather and scatter operation need this length for their pattern offsets. The map
operation needs the length because the butterfly function uses it to calculate the
twiddle factor. It is also worth mentioning that besides the two lists of tuples,
the map operation has another input list whose values are 0 and 1. It is used
to indicate the position of the butterfly function.

Figure 4.13: Stage 0 of the FFT Algorithm

The second stage also consists of two butterfly operations, but they are orga-
nized in a different way. They can be seen as two exactly the same operations
performed on both the lower and the upper half of the list. The parameter used
by gather, map, and scatter patterns for this stage is 1 and a list with one value
zero is served as an additional input for the map operation. This structures can
be created by the operation map pattern with the number of repetition as 2.

Figure 4.14: Stage 1 of the FFT Algorithm

With the analysis of two stages, it is easy to notice that the two stages have
similar structures. Only some of the parameters used either by patterns or
functions vary. And those parameters can all be determined by the index of
the stages. Thus the entire FFT operation can be created with the following
structures.

1. A generic butterfly operation is created using a sequence of gather, map,
and scatter operations.

39

2. The butterfly operation is then extended to a larger list to form a generic
stage operation of FFT algorithm.

3. The stage operation is wrapped with the stage generate pattern where the
iterator of the stage pattern can be used to determine the parameters used
in different stages.

A complete structure of the algorithm is shown in Figure 4.15.

Figure 4.15: Complete FFT Algorithm Modeled by Patterns

As shown in Figure 4.11, the output of the DIF FFT is not properly ordered.
Some permutation operations are necessary to be performed after the algorithm.
For the radix-2 FFT, the permutation is a bit-reversal permutation, as in the
indexes of the element in the input list are translated to binary format and bit-
reversed to get its new indexes in the output list. This operation can be modeled
by multiple stages of transpose operations. For the FFT algorithm of length
4, only one transpose operation with width 2, and height 2 is necessary. The
8-length bit-reversal permutation modeled by two stages of transpose pattern is
illustrated in Figure 4.16. It can be modeled as a generic transpose operation
with width 2 wrapped with the operation map pattern and then wrapped with
the stage-generate pattern.

Figure 4.16: Bit-reversal Permutation

40

Chapter 5

Related Approaches

Exploration of using data parallel patterns or other formalisms in parallel pro-
gramming has been a research topic since the creation of parallel hardware.
Bird-Meertens formalism created a notation and calculus for deriving programs
from specifications [33]. Its theory on lists [34] is later used as parallel model
[30] and has been implemented by many projects [35] [36] for fast and efficient
data parallel programming. There are also several projects use Bird-Meertens as
data parallel patterns and also support for several task parallel patterns. Eden
[37] and P3L [38] are such projects.

Instead of letting designers to explicitly specify patterns, there also exist re-
searches that extract parallel patterns from other higher-order functions or from
sequential programs. Examples of such researches are ParaPhrasing [39] and
Busvine’s PUFF compiler [40].

In this chapter, several projects that targeting developing GPU program from
high-level abstraction are introduced.

5.1 F2CC

ForSyDe-to-CUDA-C (f2cc) is a software synthesis tool developped under the
ForSyDe project [41]. It was developed by Gabriel Hjort Blindell in 2012 as part
of his Master Thesis [3]. An experimental version with several improvements is
developed under George Ungureanu’s Master Thesis project in 2013 [18]. The
tool generates CUDA C code from models specified with ForSyDe synchronous
MoC. Since the ForSyDe synchronous MoC does not naturally exploits data
parallelism. A pattern named split-map-merge is used to model a process that
accepts an array as input, applies one or several functions on every element,
and produces an array as output [42]. This pattern can be explicitly declared
using the ParallelMapSY process constructor. It can also recognize this parallel

41

pattern in a ForSyDe process network and combine relevant processes into a
ParallelMapSY process.

In the experimental version, a general cost-based platform model used for rep-
resenting execution platforms are provided. The model is provided in order to
have better load balance when mapping processes to a GPU.

5.2 SkelCL and SkePU

SkelCL [43] and SkePU [44] are two independent but quite similar projects that
target skeleton programming on multi-core CPUs, GPUs. They support vector
and matrix as container types. The containers are where the parallel patterns
can be applied on. They support map, reduce patterns which are quite similar
to the definitions in Chapter 4. The map pattern in SkePU is able to take
functions with any numbers of input and output, while in SkelCL, zip pattern
is used for functions that take multiple inputs. They both support the scan
pattern. However, scan pattern in SkePU is only capable of performing prefix
sum while it is general purpose in SkelCL. Besides, SkelCL have support for
stencil patterns [45] while SkePU do not. C++ is selected to be the language
for both of their APIs. However, functions needed by parallel patterns are
specified as function template in SkePU while they should be provided as strings
in SkelCL.

In terms of implementation, SkelCL is based on OpenCL, while SkePU is ca-
pable generate codes using OpenCL, CUDA, OpenMP for different platforms.
SkePU also supports autotuning so that it can have some extent of performance
portability on different platforms [46].

42

Part II

Development and
Implementations

43

Chapter 6

Representations of Parallel
Patterns

This chapter provides a tutorial on how to specify an algorithm using parallel
patterns in an XML file that are accepted by P2CL.

6.1 Supported Data Types

P2CL support several atomic types and also support composite data types with
some limitations.

Atomic Types The supported atomic types are listed below.

• char

• unsigned char/ uchar

• short

• unsigned short/ ushort

• int

• unsigned int/ uint

• long

• unsigned long/ ulong

• float

Note that the double type is not supported in current version of P2CL. Support
for double type is an optional feature in OpenCL. Current version discards this
type because it does not detect whether the targeting hardware support double
type.

45

Tuple Types In terms of composite data types, only tuple types are sup-
ported P2CL. They are structures that consist of elements of the same atomic
type. Their names are the capitalized atomic datatype name CHAR, UCHAR,
SHORT, USHORT, INT, UINT, LONG, ULONG and FLOAT followed by an
integer value n that defines the number of elements. The supported values for
n are within the range 2 and 32 inclusive. However, it is better for users to con-
sider using values 2, 4, 8, 16, so that the intrinsic vector types function provided
by OpenCL can be used. The elements of the tuple types can be referred to
by indices that started with character ’e’ and followed by the index. f.e0 refer
to the first elements of a tuple named f. In order to represent more complex
composite data types, the idea of SoA which is introduced in Chapter 4 should
be used as a workaround.

6.2 Function Decriptions

Several parallel patterns require functions as parameters. In order for parallel
patterns to use these functions, some general information of the functions needs
to be specified in the input XML file. Note that the XML file only needs the
declaration of functions. The definition of them is provided to P2CL separately
from the XML file. Listing 6.1 shows an example of the function descriptions
section. All the function descriptions are provided in the body of the func-
tion descriptions element. Each function description is specified as a function
element. Inside a function element, the function declaration and the informa-
tion of the parameters are provided. The declaration should follow the syntax
of C language. Some additional restrictions should also be followed.

• The function should not have return types. All the outputs should be
passed through pointers provided as parameters.

• The parameter list is allowed to contain multiple inputs and output data
and several integer parameters that are used to vary the computation.

• The parameters should be provided in the order of input data, output
data pointers and functional parameters.

• A special input is the index. It must be the last one of all the input
parameters. The name of the parameter must be ”index” and its type
must be int. It is used to take the corresponding value from an index
list so that the function is able to know the location of the elements it
operates on. It is a special input because the index list is a virtual list
that should not provide by users or generated by the preceding operation.
As long as the parameter is specified correctly, the synthesized kernel for
map and reduce patterns will feed the index to the function.

After the function declaration, the number of the input, output, and functional
parameters should also be provided in separate elements.

46

1 <f u n c t i o n d e s c r i p t i o n s>
2 <f unc t i on>
3 <dec l>void f f t b f l y 2 (FLOAT4 f in , i n t index , FLOAT4∗ fout , i n t m)</ dec l>
4 <num input>2</num input>
5 <num output>1</num output>
6 <num para>1</num para>
7 </ funct i on>
8 </ f un c t i o n d e s c r i p t i o n s>

Listing 6.1: Function Descriptions

6.3 Process Descriptions

The process element contains the descriptions of operations modeled by patterns
along with information of the input and output port. The process is specified
as a sequence of parallel operations where the output lists of the previous oper-
ation are the input of the next operation. Thus, the sequence of the operations
elements matters in the XML file. Basic operations modeled by data parallel
patterns are specified in separate operation elements. They are wrapped by
elements of compositional patterns to create more complex operations.

6.3.1 Variables and Parameters

Before getting into details of the process descriptions, it is worth mentioning
that users can declare integer variables that can be used as parameters either
for patterns or for the functions used by patterns. The variables can be declared
inside the scope of a process or in the scope of a stage generate or an operation
map pattern. The stage generates pattern also provides an iterator variable
for operations inside it. The variables can either be specified as a fixed integer
number or as an expression that uses other variables as parameters. Listing
6.2 shows the two ways of defining a variable. Variables that are set by value
should have the value type attribute set as ”value”. The default value for this
attribute is also ”value” so that this can also be omitted. Variables that are
set by expression should set that attribute as ”expr”. Those variables must
also specify the other variables that the expression is depended on in a space
separated list in the para list attribute. Basic + − ∗/ operators and math
functions pow() and sqrt() can be used to create the expression.

1 <sha r ed va r i ab l e name=” f f t 2pow ” va lue type=” value ”>9</ sha r ed va r i ab l e>
2 <sha r ed va r i ab l e name=” f f t l e n g t h ” va lue type=”expr ” p a r a l i s t=” f f t 2pow ”>pow(2 ,

f f t 2pow)</ sha r ed va r i ab l e>

Listing 6.2: Variables Declarations

Figure 6.1 show a structure of variables. Variable a and b are declared in the
global scope of the process. Variable c is in the scope of a stage generate pattern.
An iterator is also provided by the stage generate pattern. The patterns inside
the stage generate pattern can access those variables. There also exists a tree-
structured dependency relationship between those variables.

47

Figure 6.1: Variables Tree

6.3.2 Port Declarations

The information of ports determines the input and output list size. Listing 6.3
shows the declarations of two input ports and one output port. Each port ele-
ment should specify the name, the direction, the type, and the length attributes.
The name of the port is used to identify it. It is later used by P2CL APIs to
query the index of the port. The direction attribute determines whether the
port is an input port or an output port. The type and length of the port is used
to determine the input and output list size. For simplicity, only atomic data
types can be used in this type attribute.

1 <port name=” ipo r t0 ” d i r e c t i o n=” in ” type=” in t ” length=”4”/>
2 <port name=” ipo r t1 ” d i r e c t i o n=” in ” type=” in t ” length=”4”/>
3 <port name=”oport ” d i r e c t i o n=”out” type=” in t ” length=”1”/>

Listing 6.3: Port Declarations

6.3.3 Data Parallel Patterns

Operations created by data parallel pattern are represented inside operation
elements. Depend on the skeleton types (parallel pattern types), the operation
elements require different child elements.

map A map operation is shown in Listing 6.4. The function elements specify
the function that is used to create the operation. The func para element contains
settings for the functional parameters of that function. The element whose name
is a ”para” followed by an index is to set those parameters which is identified by
the index. The way of setting values to the parameters is similar to declarations
of variables. They can either be specified as a fixed value or an expression. The
length element is used to set the number of elements in the input and output
lists. The element types are depended on the input and output parameters
types of the function declaration.

1 <operat ion>
2 <sk e l e t on type>map</ ske l e t on type>
3 <f unc t i on> f f t b f l y 2</ funct i on>
4 <func para>

48

5 <para0 va lue type=”expr ” p a r a l i s t=”m”>m</para0>
6 </ func para>
7 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>
8 </ operat ion>

Listing 6.4: Map Operation Representation

reduce Listing 6.5 shows an reduce operation. It is almost the same as the
map representation. The only difference is the function used by the reduce
pattern can only have two input parameters and one output parameter. And
no index input is allowed. These restrictions guarantees the function is a binary
associative function. However, as mentioned in Chapter 4, these restrictions
made the reduce pattern currently does not support SoA input and output.

1 <operat ion>
2 <sk e l e t on type>reduce</ ske l e t on type>
3 <f unc t i on>vector sum</ funct i on>
4 <l ength va lue type=” value ”>4</ length>
5 </ operat ion>

Listing 6.5: Reduce Operation Representation

gather A gather operation is described in a script snippet in Listing 6.6. The
input range is used to define the number elements of the input list. The basetype
and tuple size elements are used to determine the types of input elements. In
this example, elements of the input list is seen as a tuple of two float numbers.
If another basetype is set, there will be another input list whose elements is a
tuple of two number of that basetype, and there will also have two output lists.
It is also important to notice that only a fixed integer number can be assigned in
the tuple size element. This is different from other parameters which can accept
expressions. Offset elements are used to set the offsets of the gather operation.
Since the type of input elements is FLOAT2 and there are two offsets specified,
the type of collective output elements is FLOAT4, as in two FLOAT2 tuples
grouped together. The length elements define the number of tuples inside the
output lists.

1 <operat ion>
2 <sk e l e t on type>gather</ ske l e t on type>
3 <t u p l e s i z e>2</ t u p l e s i z e>
4 <input range va lue type=”expr” p a r a l i s t=”m”>2 ∗ m</ input range>
5 <basetype>
6 <type0> f l o a t</ type0>
7 </ basetype>
8 <o f f s e t>0</ o f f s e t>
9 <o f f s e t va lue type=”expr ” p a r a l i s t=”m”>m</ o f f s e t>

10 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>
11 </ operat ion>

Listing 6.6: Gather Operation Representation

scatter An example of operation representation is shown in Listing 6.7. The
syntax is similar to the gather operation. However, the tupe size and basetype
are used to determine the type for output lists instead of input lists. The
output range also describes the number of elements in the output lists. In this
way, the gather and scatter operations with the same parameters are the exact
inverse operations.

49

1 <operat ion>
2 <sk e l e t on type>s c a t t e r</ ske l e t on type>
3 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>
4 <t u p l e s i z e>2</ t u p l e s i z e>
5 <basetype>
6 <type0> f l o a t</ type0>
7 </ basetype>
8 <output range va lue type=”expr ” p a r a l i s t=”m”>2 ∗ m</ output range>
9 <o f f s e t>0</ o f f s e t>

10 <o f f s e t va lue type=”expr ” p a r a l i s t=”m”>m</ o f f s e t>
11 </ operat ion>

Listing 6.7: Scatter Operation Representation

transpose Listing 6.8 shows an example of a transpose pattern. The basetype
and tuple size have the same meaning and syntax as the gather pattern. The
width and height parameters can be set as fixed values or expressions.

1 <operat ion>
2 <sk e l e t on type>t ranspose</ ske l e t on type>
3 <width>2</width>
4 <he ight>256</ he ight>
5 <t u p l e s i z e>2</ t u p l e s i z e>
6 <basetype>
7 <type0>i n t</ type0>
8 </ basetype>
9 </ operat ion>

Listing 6.8: Transpose Operation Representation

6.3.4 Compositional Patterns

The compositional patterns are defined as container elements that can embed
basic operations

Operation Map Pattern The operation map pattern is simply a map ele-
ment with sequences of operations and a num of extensions inside it. An exam-
ple is shown in Listing 6.9.

1 <map>
2 <num of extens ions va lue type=”expr ” p a r a l i s t=” i ”>pow(2 , i)</ num of extens ions>
3 <!−−−− . . .−−−−>
4 <!−−−−bas i c ope ra t i ons−−−−>
5 </map>

Listing 6.9: Operation Map Representation

Stage Generate Pattern The stage generate pattern element needs to spec-
ify the number of stages. The iterator name element is used to set the name of
the iterator variable. Other variables can be defined under the scope of a stage
generate pattern. Listing 6.10 shows an example of stage generate patterns.

1 <s t ag e g ene ra t e>
2 <num of stages va lue type=”expr ” p a r a l i s t=” f f t 2pow ”>f f t 2pow</ num of stages>
3 <i t e ra tor name>i</ i t e rator name>
4 <!−−−− . . .−−−−>
5 <!−−−−other compos i t iona l pat te rns or sequences o f ba s i c ope ra t i ons−−−−>
6 </ s t ag e gene ra t e>

Listing 6.10: Stage Generate Pattern Representation

50

6.4 Examples

This section shows the XML documents that represent the two examples in-
troduced in Chapter 4. Listing 6.11 shows the description for the vector dot
product.

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <p2c l>
3 <f u n c t i o n d e s c r i p t i o n s>
4 <f unc t i on>
5 <dec l>void vector mul (i n t a , i n t b , i n t ∗ c)</ dec l>
6 <num input>2</num input>
7 <num output>1</num output>
8 <num para>0</num para>
9 </ funct i on>

10 <f unc t i on>
11 <dec l>void vector sum (in t a , i n t b , i n t ∗ c)</ dec l>
12 <num input>2</num input>
13 <num output>1</num output>
14 <num para>0</num para>
15 </ funct i on>
16 </ f un c t i o n d e s c r i p t i o n s>
17 <proce s s>
18 <port name=” ipo r t0 ” d i r e c t i o n=” in ” type=” in t ” length=”4”/>
19 <port name=” ipo r t1 ” d i r e c t i o n=” in ” type=” in t ” length=”4”/>
20 <port name=”oport ” d i r e c t i o n=”out” type=” in t ” length=”1”/>
21
22 <operat ion>
23 <sk e l e t on type>map</ ske l e t on type>
24 <f unc t i on>vector mul</ funct i on>
25 <l ength va lue type=” value ”>4</ length>
26 </ operat ion>
27 <operat ion>
28 <sk e l e t on type>reduce</ ske l e t on type>
29 <f unc t i on>vector sum</ funct i on>
30 <l ength va lue type=” value ”>4</ length>
31 </ operat ion>
32 </ proce s s>
33 </ p2c l>

Listing 6.11: Vector Dot Production Representation

Listing 6.11 shows the description for the fast fourier transform (FFT) algo-
rithm.

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <p2c l>
3 <f u n c t i o n d e s c r i p t i o n s>
4 <f unc t i on>
5 <dec l>void f f t b f l y 2 (FLOAT4 f in , i n t index , FLOAT4∗ fout , i n t m)</ dec l>
6 <num input>2</num input>
7 <num output>1</num output>
8 <num para>1</num para>
9 </ funct i on>

10 </ f un c t i o n d e s c r i p t i o n s>
11 <proce s s>
12 <port name=” ipo r t ” d i r e c t i o n=” in ” type=” f l o a t ” length=”1024”/>
13 <port name=”oport ” d i r e c t i o n=”out” type=” f l o a t ” length=”1024”/>
14 <sha r ed va r i ab l e name=” f f t 2pow ” va lue type=” value ”>9</ sha r ed va r i ab l e>
15 <sha r ed va r i ab l e name=” f f t l e n g t h ” va lue type=”expr ” p a r a l i s t=” f f t 2pow ”>pow(2 ,

f f t 2pow)</ sha r ed va r i ab l e>
16 <s t ag e g ene ra t e>
17 <num of stages va lue type=”expr ” p a r a l i s t=” f f t 2pow ”>f f t 2pow</ num of stages>
18 <i t e ra tor name>i</ i t e rator name>
19 <sha r ed va r i ab l e name=”m” va lue type=”expr ” p a r a l i s t=” f f t l e n g t h i ”>
20 f f t l e n g t h /pow(2 , i +1)
21 </ sha r ed va r i ab l e>
22 <map>
23 <num of extens ions va lue type=”expr ” p a r a l i s t=” i ”>pow(2 , i)</

num of extens ions>
24 <operat ion>
25 <sk e l e t on type>gather</ ske l e t on type>
26 <t u p l e s i z e>2</ t u p l e s i z e>
27 <input range va lue type=”expr” p a r a l i s t=”m”>2 ∗ m</ input range>
28 <basetype>
29 <type0> f l o a t</ type0>
30 </ basetype>
31 <o f f s e t>0</ o f f s e t>
32 <o f f s e t va lue type=”expr ” p a r a l i s t=”m”>m</ o f f s e t>
33 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>
34 </ operat ion>
35 <operat ion>
36 <sk e l e t on type>map</ ske l e t on type>
37 <f unc t i on> f f t b f l y 2</ funct i on>
38 <func para>
39 <para0 va lue type=”expr ” p a r a l i s t=”m”>m</para0>
40 </ func para>
41 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>

51

42 </ operat ion>
43 <operat ion>
44 <sk e l e t on type>s c a t t e r</ ske l e t on type>
45 <l ength va lue type=”expr ” p a r a l i s t=”m”>m</ length>
46 <t u p l e s i z e>2</ t u p l e s i z e>
47 <basetype>
48 <type0> f l o a t</ type0>
49 </ basetype>
50 <output range va lue type=”expr ” p a r a l i s t=”m”>2 ∗ m</ output range>
51 <o f f s e t>0</ o f f s e t>
52 <o f f s e t va lue type=”expr ” p a r a l i s t=”m”>m</ o f f s e t>
53 </ operat ion>
54 </map>
55 </ s t ag e gene ra t e>
56 <s t ag e g ene ra t e>
57 <num of stages va lue type=”expr” p a r a l i s t=” f f t 2pow ”>f f t 2pow</ num of stages>
58 <i t e ra tor name>i</ i t e rator name>
59 <sha r ed va r i ab l e name=”m” va lue type=”expr ” p a r a l i s t=” f f t l e n g t h i ”>
60 f f t l e n g t h /pow(2 , i +1)
61 </ sha r ed va r i ab l e>
62 <map>
63 <num of extens ions va lue type=”expr” p a r a l i s t=” i ”>pow(2 , i)</

num of extens ions>
64 <operat ion>
65 <sk e l e t on type>t ranspose</ ske l e t on type>
66 <width>2</width>
67 <he ight va lue type=”expr ” p a r a l i s t=”m”>m</ he ight>
68 <t u p l e s i z e>2</ t u p l e s i z e>
69 <basetype>
70 <type0> f l o a t</ type0>
71 </ basetype>
72 </ operat ion>
73 </map>
74 </ s t ag e gene ra t e>
75 </ proce s s>
76 </ p2c l>

Listing 6.12: Vector Dot Production Representation

52

Chapter 7

P2CL Overview

This chapter gives an overview of the P2CL library. It is split into the user guide
on how to use the library and the introduction to the implementation details.
The APIs of P2CL is quite simple. The content of this chapter is enough to
understand them. The structure of the library is described in this chapter,
whereas, the details of kernel generation and execution is described in Chapter
8.

7.1 Overview from Users’ Perspective

This section provides information that is sufficient for users to use the P2CL
library with given algorithms modeled in an XML file.

7.1.1 Designing Workflow

The APIs of P2CL is developed with the intention to separate the algorithm
specification and the actual usage of the algorithm. With such motivation, the
modeled algorithm can be easily invoked by the provided APIs. Figure 7.1 shows
the overview from the users’ perspective. The workflow of using an algorithm
with P2CL is described as follows:

1. The algorithm is first modeled using patterns with the structure of algo-
rithm stored in an XML file.

2. Although the functions used by the patterns are declared inside the XML
file, their definitions are provided in strings as another parameter at ini-
tialization.

53

Figure 7.1: Workflow

3. For the algorithms that contain reduce patterns, function pointers of re-
duce functions are also required by the library so that the CPU can do
the last steps of combinations. This is because the last steps of reduce
operations have limited level of parallelism.

4. After the initialization, a process object is created. The programmers can
easily use the object as a SDF actor. The consumption and production
rate of each input and output port is determined by the input and output
lists size specified in the XML file. The APIs are thread-safe, thus they
can be invoked from different threads.

An example of a vector dot production program created using P2CL is demon-
strated in Listing 7.1. Line 40 shows the initialization of a process object.
According to the description of the constructor function shown in the text box
below, the process object is created with the capability of enqueuing enough
data that is suitable for three invocations of the algorithm. The path of the
XML file is provided as the second parameter, and the string of the func-
tion definitions is provided as the third parameter. Since the dot production
involves a reduce pattern, a function pointer that do the final combinations
should be provided. The required function pointer needs to satisfy the type
void(∗)(void∗a, void∗ b, void∗ c), where the first two parameters are pointers to
the inputs and the last parameter is the pointer of the output. Thus the function
vector sum is wrapped with another function and feed to the constructor.

54

Process Constructor

p2cl::Process::Process (
int batchNum,
std::string xmlFileName,
std::string additionalFunc = std::string(),
std::function<void(void *, void *, void *)> reduceFunction
= std::function<void(void *, void*, void*)>()

)
Parameters:

batchNum the max number of computation that the process object
can handle at the same time

xmlFileName file name of the xml file that describes the algorithm

After the initialization, the pushBack function is used to enqueue the vectors.
The first parameter is the size in byte that the user want to enqueue. The second
parameter is the index of the input array that the data should be enqueued to.
The third parameter takes the pointer of the input data. In this demonstration
example, two vectors with only four dimensions are pushed into the object.
However, in a real program, larger data sets should be used for achieving higher
efficiency.

After pushing back the required input data, users may use the blocking pop
function to pop the result. The first parameter is the index of the output array
and the second parameter is the pointer to the output location. The poped data
size in bytes is provided as the return value of the function.

1 #inc lude <iostream>
2 #inc lude ” proce s s . hpp”
3
4 void vector sum (in t a , i n t b , i n t ∗ c)
5 {
6 ∗c = a + b ;
7 }
8
9 void vector sum wrapper (void ∗a , void ∗b , void∗c)

10 {
11 in t va = ∗((i n t ∗) a) ;
12 in t vb = ∗((i n t ∗)b) ;
13 vector sum (va , vb , (i n t ∗) c) ;
14 }
15
16 const char ∗ f unc t i on s=
17 ”\
18 void vector mul (i n t a , i n t b , i n t ∗ c)\
19 {\
20 ∗c = a ∗ b ;\
21 }\
22 \
23 void vector sum (in t a , i n t b , i n t ∗ c)\
24 {\
25 ∗c = a + b ;\
26 }\
27 ” ;
28
29 in t main (i n t argc , char ∗argv [])
30 {
31 in t a [4] = {1 ,2 ,3 ,4} ;
32 i n t b [4] = {1 ,2 ,3 ,4} ;
33 i n t c [4] ;
34
35 in t i po r t 0 i ndex ;
36 in t i po r t 1 i ndex ;
37 in t oport index ;
38
39 i f (argc < 2)
40 {
41 std : : cout<<”usage : ”<<argv [0]<<” xmlf i lename ”<<std : : endl ;
42 return 0 ;
43 }
44
45 p2c l : : Process obj (3 , argv [1] , funct ions , vector sum wrapper) ;

55

46 ipo r t 0 i ndex = obj . getInPortIndex (” ipo r t0 ”) ;
47 i po r t 1 i ndex = obj . getInPortIndex (” ipo r t1 ”) ;
48 oport index = obj . getOutPortIndex (” oport ”) ;
49
50
51 obj . pushBack (s i z e o f (i n t) , ipo r t0 index , a) ;
52 obj . pushBack (s i z e o f (i n t) , ipo r t0 index , a + 1) ;
53 obj . pushBack (s i z e o f (i n t) , ipo r t0 index , a + 2) ;
54 obj . pushBack (s i z e o f (i n t) , ipo r t0 index , a + 3) ;
55 obj . pushBack (s i z e o f (i n t) , ipo r t1 index , b) ;
56 obj . pushBack (s i z e o f (i n t) , ipo r t1 index , b + 1) ;
57 obj . pushBack (s i z e o f (i n t) , ipo r t1 index , b + 2) ;
58 obj . pushBack (s i z e o f (i n t) , ipo r t1 index , b + 3) ;
59 obj . pop (oport index , c) ;
60 std : : cout<<c [0]<< std : : endl ;
61 }

Listing 7.1: Vector Addition Kernel

7.1.2 Buffer Sizes and Flow Control

The APIs of P2CL allows users to use algorithms as SDF actors. Although single
invocation of the algorithm consumes fixed-length input data and generates
fixed-length output data, it is recommended to enqueue more input data to the
buffer before waiting for the result, so that more instances of computations can
be executed concurrently to achieve higher performance. Besides that, each
input or output port can be operated in different threads. Thus, it is important
for users to understand the size of the input and output buffer and how flow
control is achieved for multithreaded programs.

With fixed consumption and production rate, typically the size of FIFO buffers
connected to a SDF actor is dependent on the consumption and production
rate and the scheduling of the actor. Since the current version of P2CL does
not support networks of processes, the maximum buffer size is determined by
the first parameter of the process constructor. Take the vector dot product
described in the last subsection as an example. The list size for both input
ports is 4 float numbers. The output port size is one float number. The first
parameter to the constructor is 3, which means the process object is capable of
storing 12 float numbers in each input port buffer before popping any output
data. The output port is also able to store 3 float numbers. If more input
data tries to be pushed to the FIFO buffer, the function will block the thread.
Fetching data from an empty output port also cause the thread to be blocked.
Thus, a simple flow control mechanism is achieved.

7.2 Overview of the Library

Figure 7.2 illustrates the structure of the P2CL library. It can be separated
into the synthesis part and the execution part. All the rounded rectangles
represent the vital objects used insides the library. The parser and analyzer are
surrounded with dashed lines because these two objects are deleted after the
synthesis procedure to reduce memory footprint.

Figure 7.3 shows the detailed procedure of the synthesis part. The parser takes

56

Figure 7.2: Block Diagram of P2CL library

the algorithm specification as an input and generate an intermediate operations
representation which is stored in a special linked list structure. This represen-
tation is used to create the analyzer object. The parser also passes the port
information to the analyzer. The analyzer is used to scan the intermediate
representation, update the representation, and collect information needed for
execution. After analysis, the analyzer passes the kernel program, max lists size
for all operations, and the execution plan to a worker object.

Figure 7.3: Details of the Synthesis Procedure

In the execution part, the worker object is provided with the OpenCL context.
The worker object is then duplicated to a list of objects. Each worker object
manages a set of OpenCL zero-copy buffers connected to the GPU device. They
can independently dispatch computations to support concurrent execution.

Those workers are managed by a set of circular indexes. Suppose a program
enables four workers, which are identified as worker A, worker B, worker C and
worker D. Figure 7.4 shows how they are managed by a set of indexes. The
worker objects are listed in a circle where indexes iterate around it. Each input
port has an index points to a worker whose input buffer for that port has not
been filled. The indexes for the input port also record how much data has been

57

enqueued to the corresponding input buffer of the current worker. They advance
to the next worker when the corresponding input buffers are filled. When all
the input buffer of a worker has been filled, the worker is invoked to start the
computation. The execution index points to the next worker that is waiting to
be invoked. The output port indexes indicate the workers whose corresponding
output list has not been read out. Each output list is popped out as a whole.
The result index points to the last worker who has output data that has not
been read out. All the input port index cannot exceed the result index since the
computation of workers after that index might not complete. The input of these
workers should not be changed. In a similar manner, the output port indexes
cannot exceed the execution index since the input of workers beyond that index
is not ready.

Figure 7.4: Details of the Circular Index

58

Chapter 8

Kernel Generation and
Execution

This chapter describes how the P2CL library transforms patterns to the OpenCL
kernels and how the kernels are executed. The P2CL library provides kernel
templates for Map, Reduce, Transpose patterns. The gather and scatter pattern
share the same template named data arrangement template.

8.1 Pattern Fusion

In the work of Sato, Shigeyuki et al. fusion transformation is applied to skeleton
programming for GPGPU [36]. The idea is that operations created by data
parallel patterns can be fused to a single operation according to some rules, so
that the operation can fit in one kernel invocation in GPU programming. This
is a beneficial optimization since the intermediate results between two successive
operations do not need to fall back to the slow global memory at the end of the
first kernel invocation and loaded back to private memory in the later kernel
invocations. They apply a greedy fusion strategy, which fuses operations even
when it involves recomputations. This is still in most cases beneficial since the
computation cost in GPU programming is usually much lower than the cost of
memory accesses.

In the current version of P2CL, since operations in a process can only be consec-
utive operations, the fusions are much simpler. The fusion rules for the patterns
used in the thesis is shown is Table 8.1.

59

aaaaaaaaaaaaa
Previous Operation Type

Next Operation Type

Map Reduce Gather Scatter Transpose

Map M R MF
Reduce
Gather M R MF
Scatter

Transpose

•M means the fused operation use the Map kernel template, and can still
follow the fusion rule of map operation to fuse with later operations.

•MF means the fused operation use the Map kernel template, but cannot
continue to fuse with other operations.

•R means the fused operation use the Reduce kernel template.

Table 8.1: Fusion Rules

8.2 Kernel Templates

Operations described with patterns can be synthesized into kernel sources with
some templates. By filling in code snippets generated by operation information,
a complete kernel source can be created.

8.2.1 Map Kernel

Listing 8.1 shows an example of generated map kernel sources. It is structured
with several sections wrapped with curly brackets. The first section is used
to shift the input and output pointers. This is an optional section that only
appears for operations inside a operation map pattern. After declarations of
input and output variables, the second section is used for loading input data
from the global memory to local memory. The data can either be loaded ac-
cording to the global index or gathered according to the information of a fused
gather operation. The section of computation follows the loading section, in
which a sequence of function can be nested to get the final output data. The
last section of the map kernel is the storing section, the output data is either
normally stored in sequence or scattered to multiple locations. The definitions
of tuple types and the storing and loading function TUPLE POINTER LOAD
and TUPLE POINTER STORE are automatically generated and are put in the
beginning of the entire kernel source.

60

1 k e r n e l void operat ion0 (
2 g l o b a l f l o a t ∗ input0
3 ,
4 g l o b a l f l o a t ∗ output0
5 ,
6 i n t m
7)
8 {
9 s i z e t g0 = g e t g l o b a l i d (0) ;

10
11 s i z e t l 0 = g e t l o c a l i d (0) ;
12
13 {
14 // s h i f t input and output po in te r f o r
15 // high order map pattern
16 s i z e t g1 = g e t g l o b a l i d (1) ;
17
18 s i z e t g s i z e 0 = g e t g l o b a l s i z e (0) ;
19
20 input0 += g1 ∗ (2 ∗ m) ∗ 2 ;
21 output0 += g1 ∗ (2 ∗ m) ∗ 2 ;
22 }
23
24 FLOAT4 inpu t va r i ab l e 0 ;
25 FLOAT4 output var i ab l e0 ;
26 {
27 // the s e c t i on f o r load ing input data
28 f l o a t ∗ p input var0 = (f l o a t ∗)(& inpu t va r i ab l e 0) ;
29 {
30 in t a r range index base = g0 ;
31 in t range = 2 ∗ m;
32 in t ar range index ;
33 ar range index = ar range index base + (0) ;
34 i f ((a r range index < range && arrange index >= 0))
35 {
36 TUPLE POINTER LOAD2(p input var0 , arrange index , input0) ;
37
38 } e l s e {
39 p input var0 [0] = 0 ;
40 p input var0 [1] = 0 ;
41
42
43 }
44
45 arrange index = ar range index base + (m) ;
46 p input var0 += 2 ;
47 i f ((a r range index < range && arrange index >= 0))
48 {
49 TUPLE POINTER LOAD2(p input var0 , arrange index , input0) ;
50
51 } e l s e {
52 p input var0 [0] = 0 ;
53 p input var0 [1] = 0 ;
54
55
56 }
57
58 }
59
60 }
61
62 {
63 // the s e c t i on f o r the mapped func t i on s
64 f f t b f l y 2 (input va r i ab l e0 , g0 , &output var iab le0 , m) ;
65 }
66
67 {
68 // the s e c t i on f o r s t o r i n g ouput data
69 f l o a t ∗ p output var0 = (f l o a t ∗)(&output var i ab l e0) ;
70 {
71 in t a r range index base = g0 ;
72 in t ar range index ;
73 ar range index = ar range index base + (0) ;
74
75 TUPLE POINTER STORE2(p output var0 , arrange index , output0) ;
76
77 arrange index = ar range index base + (m) ;
78
79 p output var0 += 2 ;
80 TUPLE POINTER STORE2(p output var0 , arrange index , output0) ;
81
82 }
83
84 }
85
86 }

Listing 8.1: Map Kernel Source

61

8.2.2 Reduce Kernel

Before introducing the Reduce kernel template, it is necessary to describe how
a reduce operation is performed in P2CL. Figure 8.1 illustrates the execution
data flow. At the beginning of execution, the input data is stored in the global
memory. For the example shown in the figure, there are two work-groups where
each of them contains four work-items. Firstly, all the work-items load the data
elements according to their global indexes. If the number of elements is more
than the number of work-items, each work-item will continuously load the next
corresponding element and combined it with the previously computed value
until all the input data has been loaded. This approach guarantees coalesced
global memory accesses. The next step is to combine values within work-groups.
Each element stores their intermediate value to the local memory which is shared
within its work-group. The first half of elements in the local memory is combined
with the second half utilizing only half of the work-items. Iteratively, all the
values in the local memory reduce to one value for each work-group. These
results are stored back to the global memory. Finally, CPU will do the last step
of computation since the level of parallelism at the end is limited. It is also worth
mentioning that the work-group size is set to be the maximum work-group size
for the reduce kernel if the input list length is higher than that. When there is
a small input list, the work-group size is selected as the maximum power-of-two
number that is smaller than the input length. A limit of 32 also restricts the
total number of work-groups so that only limited data needs to be transferred
back to the CPU.

Figure 8.1: Reduce Pattern Data Flow

62

Listing 8.2 shows the kernel template of reduce pattern. It reflects the execution
plan described above with the first for loop loading and combining data and the
next while loop combining results within work-groups. Note that the input
data in the reduce template can either directly loaded from the global memory
or from the intermediate result of a fused map pattern.

1 k e r n e l void operat ion100 (
2 g l o b a l f l o a t ∗ input0
3 ,
4 g l o b a l f l o a t ∗ output0
5 ,
6 i n t r educe l ength
7 ,
8 l o c a l f l o a t ∗ ope ra t i on100 l o ca l spac e0
9)

10 {
11 s i z e t gp0 = ge t g roup id (0) ;
12
13
14 s i z e t l 0 = g e t l o c a l i d (0) ;
15
16 s i z e t l s i z e 0 = g e t l o c a l s i z e (0) ;
17
18 s i z e t g s i z e 0 = g e t g l o b a l s i z e (0) ;
19
20 s i z e t index0 = g e t g l o b a l i d (0) ;
21
22 FLOAT4 inpu t va r i ab l e 0 ;
23 FLOAT4 p a r t i a l r e s u l t ;
24 f l o a t ∗ p p a r t i a l r e s u l t = (f l o a t ∗)&p a r t i a l r e s u l t ;
25 f l o a t ∗ p input var0= (f l o a t ∗)&inpu t va r i ab l e 0 ;
26 in t p a r t i a l l e n g t h = l s i z e 0 ;
27 TUPLE POINTER LOAD4(p a r t i a l r e s u l t , index0 , input0) ;
28 in t i t end = reduce l ength ;
29 f o r (i n t i t = index0 + g s i z e 0 ; i t < i t end ; i t += g s i z e 0)
30 {
31 TUPLE POINTER LOAD4(input va r i ab l e0 , i t , input0) ;
32 {
33 reduce (p a r t i a l r e s u l t , i nput va r i ab l e0 , &p a r t i a l r e s u l t)

;
34 }
35
36
37 }
38
39 TUPLE POINTER STORE4((p p a r t i a l r e s u l t) , l0 , ope r a t i on100 l o ca l spac e0) ;
40 b a r r i e r (CLK LOCAL MEM FENCE) ;
41 whi le (p a r t i a l l e n g t h > 1)
42 {
43 p a r t i a l l e n g t h >>= 1;
44 i f (l 0 < pa r t i a l l e n g t h)
45 {
46 TUPLE POINTER LOAD4(p input var0 , l 0 + pa r t i a l l e n g th ,

ope ra t i on100 l o ca l spac e0) ;
47 {
48 reduce (p a r t i a l r e s u l t , i nput va r i ab l e0 , &

p a r t i a l r e s u l t) ;
49 }
50
51 TUPLE POINTER STORE4(p p a r t i a l r e s u l t , l0 ,

ope r a t i on100 l o ca l spac e0) ;
52
53 }
54 ba r r i e r (CLK LOCAL MEM FENCE) ;
55
56 }
57 i f (l 0 == 0)
58 {
59 TUPLE POINTER STORE4(p p a r t i a l r e s u l t , gp0 , output0) ;
60
61 }
62 }

Listing 8.2: Reduce Kernel Source

8.2.3 Data Arrangement Kernel

The data arrangement kernel is used for the gather and scatter pattern when
they are not fused with other patterns. Although the gather and scatter pattern
can be achieved using map pattern, gathering and scattering data directly for

63

large tuple types in the way of the map template may break down to several
global memory accesses and introduces overhead. This data arrangement tem-
plate uses one work-item for loading and storing one element in a tuple. Listing
8.4 shows one kernel source code for gathering two tuples of four float numbers.
Each workitem takes the element in the tuple corresponding to its local index.
There are two offsets specified for this gather operation. Therefore only two
coalesced global memory accesses are necessary for loading the data. In the
second section of the kernel source, each work-item also stores the data to the
two corresponding locations in the grouped tuple.

1 k e r n e l void operat ion100 (
2 g l o b a l f l o a t ∗ input0
3 ,
4 g l o b a l f l o a t ∗ output0
5 ,
6 in t m
7)
8 {
9 s i z e t gp0 = ge t g roup id (0) ;

10
11 s i z e t l 0 = g e t l o c a l i d (0) ;
12
13
14
15 FLOAT2 inpu t va r i ab l e 0 ;
16
17 {
18 f l o a t ∗ p input var0 = (f l o a t ∗)(& inpu t va r i ab l e 0) ;
19 {
20 in t a r range index base = gp0 ;
21 in t ar range index ;
22 in t range = 2 ∗ m;
23 arrange index = ar range index base + (0) ;
24 i f ((a r range index < range && arrange index >= 0))
25 {
26 arrange index = arrange index ∗ (4) ;
27 p input var0 [0] = input0 [ar range index + l0] ;
28
29 } e l s e {
30 p input var0 [0] = 0 ;
31
32 }
33
34 arrange index = ar range index base + (m) ;
35 i f ((a r range index < range && arrange index >= 0))
36 {
37 arrange index = arrange index ∗ (4) ;
38 p input var0 [1] = input0 [ar range index + l0] ;
39
40 } e l s e {
41 p input var0 [1] = 0 ;
42
43 }
44
45 }
46
47 }
48
49
50 {
51 f l o a t ∗ p output var0 = (f l o a t ∗)(& inpu t va r i ab l e 0) ;
52 {
53 in t a r range index base = gp0 ∗ 8 ;
54 ar range index base += l0 ;
55 output0 [a r range index base + 0] = p output var0 [0] ;
56 output0 [a r range index base + 4] = p output var0 [1] ;
57 }
58
59 }
60
61 }

Listing 8.3: Data Arrangement Kernel Source

8.2.4 Transpose Kernel

The kernel template for the transpose pattern is basically a matrix tranpose
kernel except that local indexes of work-items are used for elements in tuple

64

types. The input lists are separated into small segments. Each segment is loaded
to the local memory which is shared within one work-group. This approach tries
to coalesce global accesses by using different work-items for loading and storing
one element for the differently aligned input and output list. Notice that in line
37 and 54, there is a ”plus one” on the column size for computing the index for
the local memory. That is used for avoiding bank conflicts on local memory.

1 k e r n e l void operat ion0 (
2 g l o b a l i n t ∗ input0
3 ,
4 g l o b a l i n t ∗ output0
5 ,
6 l o c a l i n t ∗ ope r a t i on0 l o c a l s pa c e 0
7 ,
8 i n t width
9 ,

10 in t he ight
11 ,
12 in t group dimx
13 ,
14 in t group dimy
15)
16 {
17 s i z e t gp0 = ge t g roup id (0) ;
18
19
20 s i z e t l 0 = g e t l o c a l i d (0) ;
21
22 in t tup l e index = l0 % 2 ;
23 l 0 = l0 / 2 ;
24 in t b l o c k s i z e x = c e i l ((f l o a t) width/ group dimx) ;
25 in t b lock x = gp0 % (b l o c k s i z e x) ;
26 in t b lock y = gp0 / (b l o c k s i z e x) ;
27
28 in t l o c a l x = l0 % group dimx ;
29 in t l o c a l y = l0 / group dimx ;
30
31 in t in x = mad24(block x , group dimx , l o c a l x) ;
32 in t in y = mad24(block y , group dimy , l o c a l y) ;
33 i f (i n x < width && in y < he ight)
34 {
35 in t input index = mad24(in y , width , in x) ;
36
37 in t l o c a l i n pu t = mad24(l o c a l y , group dimx ∗ 2 + 1 , l o c a l x ∗ 2) ;
38
39 l o c a l i n pu t += tup l e index ;
40 input index = input index ∗ 2 + tup l e index ;
41 ope r a t i on0 l o c a l s pa c e 0 [l o c a l i n pu t] = input0 [input index] ;
42
43 }
44 l o c a l x = l0 % group dimy ;
45 l o c a l y = l0 / group dimy ;
46
47 in t out x = mad24(block y , group dimy , l o c a l x) ;
48 in t out y = mad24(block x , group dimx , l o c a l y) ;
49
50 ba r r i e r (CLK LOCAL MEM FENCE) ;
51 i f (out x < he ight && out y < width)
52 {
53 in t output index = mad24(out y , height , out x) ;
54 in t l o c a l ou tpu t = mad24(l o ca l x , group dimx ∗ 2 + 1 , l o c a l y ∗ 2) ;
55
56 l o c a l ou tpu t += tup l e index ;
57 output index = output index ∗ 2 + tup l e index ;
58 output0 [output index] = ope r a t i on0 l o c a l s pa c e 0 [l o c a l ou tpu t] ;
59
60 }
61 }

Listing 8.4: Data Arrangement Kernel Source

65

66

Part III

Evaluations and Discussions

67

Chapter 9

Evaluations

Although current P2CL has some limitations, it manages to ease the GPU pro-
gramming and provides implementations with sufficient efficiency. This chapter
demonstrates the result of some experiments regarding the usability and effi-
ciency of P2CL.

The evaluations are performed on two devices. Their specifications are listed in
Table 9.1. Device One is a Laptop with one integrated graphics unit which is in
the same System on a Chip (SoC) of the CPU. Device Two is a virtual private
server that is equipped with one graphics card and one virtual CPU.

Device One Device Two
CPU Model Intel R© i7-6500U Intel R© Xeon R© E5-2682 v4

GPU Model Intel R© HD Graphics 520 AMD FirePro
TM

S7150
OpenCL Version 2.0 1.2

Maximum Number
of Compute Units

24 32

Local Memory Size 64 KiB 32 KiB
Global Memory Size 1488 MiB 7.979GiB

Maximum Work-group
Total Size

256 256

Maximum Work-group
Dimensions

{256 256 256} {256 256 256}

Table 9.1: Device Specifications

9.1 Programing Simplicity

P2CL reduces the complexity of creating a OpenCL program. The following
table shows the number of lines of code that should be used to create several

69

programs using P2CL and plain OpenCL APIs. It is easy to see that writing
GPU programs using P2CL requires much less effort.

Application
P2CL OpenCL

function definitions
& script

host
program

kernel
program

host
program

vector addition 32 68 38 169
vector dot production 42 48 45 192

reshape 16 68 167 10

Table 9.2: Comparison of Programming Simplicity

Note that those hand-written programs using plain OpenCL APIs are naive
implementations that are also used to compare throughput. Programs with
optimizations usually require more code size.

9.2 Performance of P2CL over Naive OpenCL
Programs

In addition to programming simplicity, P2CL also provides sufficient efficiency
comparing to naive hand-written GPU programs. It is also worth mentioning
that P2CL also introduces overhead that might hinder the performance. This
section discusses the overhead and the performance gain of P2CL through the
evaluations of several applications.

9.2.1 Elementwise Addition

Elementwise addition is a typical case of map pattern. In this application, each
element in a input list is added with a scalar value for several times in order to
vary the computation strength in a kernel. It is a simple and straight-forward
application, which exists little space for optimizations. Therefore it is a good
test case to evaluate the overhead of P2CL. The operations are performed on
a list with 65536 elements. Varied number of additions are performed on each
element to have different workload. Figure 9.1 shows the result of the evaluation
on Device One.

The yellow line shows the performance of the hand-written OpenCL program.
The execution time grows linearly with the workload. The orange line demon-
strates the result when P2CL is used with only one thread and each input
element is feed into the process object one by one. This approach introduces
much overhead on the CPU as each call of the pushBack function involves index
checking and invocations of some thread communication functions. There are
two ways of reducing the latency. The first one is pushing input data in bulks
instead of pushing data elementwise. The second one is pushing input data from

70

0

0.005

0.01

0.015

0.02

0.025

10
0

50
0

90
0

13
0

0

17
0

0

21
0

0

25
0

0

29
0

0

33
0

0

37
0

0

41
0

0

45
0

0

49
0

0

53
0

0

57
0

0

61
0

0

65
0

0

69
0

0

73
0

0

77
0

0

81
0

0

85
0

0

89
0

0

93
0

0

97
0

0

Ex
ec

u
ti

o
n

 T
Im

e
/

se
co

n
d

Number of Float Operations in a Kernel

concurrent_execution single_thread

single_thread_entire_list hand_written

Figure 9.1: Overhead Evaluations with Elementwise Addition Application on
Device One

a different thread and enabling the process object to allow concurrent execu-
tion. The first solution reduce invocations of pushBack function thus reduces
index checking. This second solution fills the GPU with sufficient work while
the CPU continue collecting input data. These two solutions are also illustrated
in Figure 9.1. The gray line is collected with the entire input list enqueued in
one pushBack function call. The blue line shows the performance of concurrent
execution. Note that the execution time stays at almost the same value for
current execution when the workload is small. That time can be seen as the
overhead of pushing the input data elementwise to the process object since the
concurrent execution on GPU is not large enough to hide the latency caused by
the slow input enqueuing.

Since both the GPU and the CPU on Device two are much more powerful than
those on Device one, the result is slightly different and is shown in Figure 9.2.
The case that the entire input list is enqueued in one function call has similar
overhead as the hand-written program. However, for the concurrent execution
program, although it has better performance than the single thread version, it
still has a constant overhead comparing to the hand-written version. Consider
that the overhead is a constant value, it is still bearable when there are a large
amount of computations in a program.

In order to test the limit of concurrent execution, another evaluation experiment
is performed by toggling the allowed number of concurrent computations of a
process object. The input lists in this experiment are all enqueued in only one
function call. And there is only one floating point addition inside one kernel.
Figure 9.3 shows the results collected on Device one. The vertical axies shows
the total amount of floating point operations within one second. It reflects the
throughput and performance. When only one instance of computation is allowed

71

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

10
0

0

50
0

0

90
0

0

13
0

00

17
0

00

21
0

00

25
0

00

29
0

00

33
0

00

37
0

00

41
0

00

45
0

00

49
0

00

53
0

00

57
0

00

61
0

00

65
0

00

69
0

00

73
0

00

77
0

00

81
0

00

85
0

00

89
0

00

93
0

00

97
0

00

Ex
ec

u
ti

o
n

 T
im

e
/

Se
co

n
d

Number of Float Operations in a Kernel

concurrent single_thread

single_thread_entire_list hand_written

Figure 9.2: Overhead Evaluations with Elementwise Addition Application on
Device Two

to be executed at a time, the throughput is very low, as in there is only one set
of input buffer in this configuration. New input data has to wait until the results
of the previous computation are popped out before it can be pushed to GPU.
That is the reason for the significant increase in throughput when the allowed
number of concurrent computations becomes two. The highest throughput is
achieved when the number is five, this throughput gain is achieved because of
the latency hiding between different works when they concurrently executed on
GPU. However, there is no benefit to allow more concurrent computations, since
the transfer speed between CPU and GPU then becomes the bottleneck. The
similar results are achieved on Device Two, which are shown in Figure 9.4.

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

fo
rm

an
ce

 /
 F

lo
p

s

Allowed Number of Concurrent Works

Figure 9.3: Concurrent Execution
Evaluation with Elementwise Addi-
tion Application on Device One

2.0E+08

2.2E+08

2.4E+08

2.6E+08

2.8E+08

3.0E+08

3.2E+08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

fo
rm

an
ce

 /
 F

lo
p

s

Allowed Number of Concurrent Works

Figure 9.4: Concurrent Execution
Evaluation with Elementwise Addi-
tion Application on Device Two

72

9.2.2 Vector Dot Production

Vector dot production is a simple application which can be composed using the
map and reduce pattern. There are many optimization techniques that can
be used for this computation. Here the comparison between the naive hand-
written implementation and the optimized implementation created by P2CL
is presented. On Device one, the application created using P2CL finishes the
computation of vector production for the length of 131072 in 0.00204347 sec-
onds. This evaluation is performed with the condition that all the input data
is enqueued in one function call and the input and output are enqueued and
popped in one thread. The reduce pattern in P2CL only allow a maximum of
32 elements in the last step of a reduce operation to be transferred and com-
puted on CPU. This is a heuristic approach that tries to balance the limited
parallelism in the last steps of reduce operation and the high cost of transferring
between CPU and GPU, which can be improved in a future version. In order
to have a good comparison, the hand-written counterpart also follows this rule
to minimize the effect of the CPU speed. Different work-group sizes are toggled
for the hand-written program to test the complete performance potential. The
results are shown in Table 9.3.

work-group size execution time / second
2 0.000853
4 0.000936
8 0.000887
16 0.001030
32 0.001067
64 0.001662
128 0.009099
256 0.012715

Table 9.3: Execution Time for Hand-written Vector Production on Device One

It can be seen that the P2CL program outperforms the hand-written program
with work-group size 128 and 256. Consider that according to P2CL’s execu-
tion plan, such application on Device one is performed with work-group size 256,
the P2CL program only requires 1/6 of the execution time of the hand-written
program to finish. The reason that P2CL tend to choose larger work-group is
to have fewer iterations for the computation of the first map operation, which
is beneficial when the mapped function requires much execution time. When
adding 1000 floating point operations in the mapped operation, the P2CL pro-
gram takes 0.00449777 seconds, while the results of the hand-written program
shown in Table 9.4 are all higher than that.

On Device two, the unmodified program created using P2CL already shows bet-
ter performance than the hand-written program with different work-group size.
It takes 0.00039245 second for the P2CL program and the results of the hand-
written program are shown in Table 9.5. By adding additional computations
into the mapped function, the P2CL program has an even better advantage
over the hand-written program. The detailed data collected for that will not be

73

workgroup size execution time / second
2 0.005133
4 0.004874
8 0.004857
16 0.005598
32 0.006015
64 0.006394
128 0.010876
256 0.018389

Table 9.4: Execution Time for Hand-written Vector Production with Addtional
Idle Computations on Device One

presented in this report.

workgroup size execution time / second
2 0.000511
4 0.000492
8 0.000507
16 0.000450
32 0.000462
64 0.000540
128 0.000900
256 0.005469

Table 9.5: Execution Time for Hand-written Vector Production on Device Two

9.2.3 Transpose Operation

The transpose pattern is another pattern that many memory optimizations can
be applied to. The evaluation is performed with varied length of the input
list. The width and the height are set to be either the same or the closest
values whose product equals the length. Figure 9.5 shows the results collected
on Device Two. The program using P2CL outperforms the naive hand-written
implementation starting from the very small list. As the list becomes larger,
the effect of the optimizations becomes more obvious. On Device One, similar
behavior can be seen in Figure 9.6. However, the program using P2CL only
outperforms the hand-written program on Device One with very large list. This
behavior is probably due to the special design of the integrated GPU that shares
the same SoC as a CPU. The large shared last level caches might alleviate the
performance penalty caused by strided accesses.

74

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

1.8E-03

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

Ex
ec

u
ti

o
n

 T
im

e
/

Se
co

n
d

List Length

p2cl hand_written

Figure 9.5: Transpose Operation Evaluation on Device Two

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ex
ec

u
ti

o
n

 T
im

e
/

Se
co

n
d

List Length

p2cl hand_written

Figure 9.6: Transpose Operation Evaluation on Device One

75

76

Chapter 10

Future Works

Although currently the tool is capable of generating kernel programs and pro-
viding an easy-to-use API that allows the CPU side to interact with the GPU
program in a similar way to interact with an SDF process. Much work should
be done to firstly allow more complex systems and secondly make the model
more intuitive to be understood and to be written.

10.1 Parallel Operations in SDF Processes

The first thing that is neccessary to improve is to add support for complete
SDF graphs. Currently, in the model representation, all the parallel operations
are embedded in one SDF process. There can be a sequence of operations in
it like shown in Figure 10.1. The complete model that supports SDF networks
should be like the one shown in Figure 10.2. The parallel operations specified by
parallel patterns are still inside SDF processes. However, a sequence of parallel
operations should be modeled by a sequence of SDF process, inside which there
is only one parallel operation. The result of one process can feed to several other
processes so that more complex systems can be modeled. In this way, the fusion
optimizer can recognize more parallel operations that can be combined. Figure
10.2 (a) shows a network of processes where the result of a map operations feed
to another map operation and a reduce operation in separate processes. Figure
10.2 (b) shows the model after fusion. As mentioned before, fusion should be
applied whenever possible in order to reduce expensive global memory accesses.
Thus, the first process that containing the map operation is coalesced to both
the latter processes.

77

Map f Map g

Figure 10.1: Parallel Operations inside a SDF process

Map
f

Map
g

Reduce
h

6
6

6 6

6
1

(a) Before Fusion

6 6

6
1

Map
f ·g

Map f
then

Reduce
h

(b) after Fusion

Figure 10.2: Parallel Operations in SDF networks

10.2 Scheduling SDF Network on Heterogeneous
Platforms

Another idea regarding supporting SDF graphs is to allow the CPU and the
GPU to execute different SDF processes and collectively complete the specified
computations. Under this design, CPUs are assigned processes that require less
parallelism. The processes containing parallel operations should be executed
on GPUs. Scheduling of processes is critical to the throughput of this system.
Figure 10.3 show such an example where process A and C are assigned to a CPU
and process B is assigned to a GPU. Two scheduling plan can be applied to the
system. One schedule is executing process A eight times which provides just
enough data to one invocation of process B. After the invocation of process B,
eight invocations of process C is followed. This is a typical SDF schedule plan
for the minimization of buffer size. Another schedule is executing process A for
twenty-four times to provide enough input data for three invocations of process
B. Twenty-four times invocation of process C follows the execution of process

78

B. This schedule although requires more buffer size, it should show a better per-
formance in terms of throughput, because more workloads can be concurrently
executed to hide memory latencies. These considerations for scheduling can be
applied to the future development of P2CL.

f
f
f
f
f
f
f
f

8 8

GPU

A C

CPU

1

CPU

B

1

CPU: 24A 24C

GPU: 3B

CPU: 8A 8C 8A 8C 8A 8C

GPU: B B B
is a better schedule than regarding throughput

Figure 10.3: Scheduling of SDF Network

10.3 More Intuitive XML Representation

The XML representation of parallel patterns described in Chapter 6 reply on
the user to specify the data types and length of an parallel operation. However,
during the development of the tool, it becomes obvious that in many cases the
data types and length can be derived from the input lengths and data types.
Besides that, the operation map pattern can also be replaced by the divide and
conquer paradigm that specify how input data can be split into equal sections
instead of extending basic operations. These are differences of perspectives.
The current XML representation describes a system from the perspective of
operations However a representation from the perspective of data might be
more intuitive for the user. This left space for improvement. A more intuitive
and easy-to-written representation can be developed in the future.

10.4 Auto-Tuning

One set of kernel program and execution plan cannot achieve high performance
on all GPU devices. The evaluation chapter also demonstrates that program
created using P2CL cannot achieve good performance for all devices and dif-
ferent computation strength. In Chapter 2, the idea of auto-tuning is briefly
introduced as a good approach to achieve performance portability. In the future

79

development of P2CL, this approach may be applied to achieve better perfor-
mance on different devices. One parameter that can be tuned to achieve better
performance is the workgroup size. Varying it usually does not require modi-
fication of the kernel code, so it should be easier to achieve than tuning some
other parameters.

80

Bibliography

[1] J. L. Hennessy and D. A. Patterson, “Data-level parallelism in vector,
SIMD, and GPU architectures”, in Computer Architecture: A Quantitative
Approach, 5th ed. 225 Wyman Street, Waltham, MA 02451, USA: Morgan
kaufmann, 2012, ch. 4, pp. 262–341.

[2] I. Sander and A. Jantsch, “System modeling and transformational design
refinement in ForSyDe”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 23, no. 1, pp. 17–32, Jan. 2004.
doi: 10.1109/TCAD.2003.819898.

[3] G. Hjort Blindell, “Synthesizing software from a ForSyDe model targeting
GPGPUs”, Master’s thesis, KTH Royal Institute of Technology, Stock-
holm, 2012.

[4] M. Garland and D. B. Kirk, “Understanding throughput-oriented archi-
tectures”, Commun. ACM, vol. 53, no. 11, pp. 58–66, Nov. 2010, issn:
0001-0782. doi: 10.1145/1839676.1839694. [Online]. Available: http:
//doi.acm.org/10.1145/1839676.1839694.

[5] J. Nickolls and D. Kirk, “Graphics and computing GPUs”, in Computer
Organization and Design: The Hardware/Software Interface, 5th ed. 225
Wyman Street, Waltham, MA 02451, USA: Morgan kaufmann, 2014, ch. Appendix-
C, pp. C1–C83.

[6] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming”, Parallel Computing, vol. 38, no. 8,
pp. 391–407, 2012.

[7] The open standard for parallel programming of heterogeneous systems.
[Online]. Available: https://www.khronos.org/opencl/ (visited on
08/06/2017).

[8] J. Tompson and K. Schlachter, “An introduction to the OpenCL program-
ming model”, Pearson Education, vol. 49, 2012.

[9] Khronos Group et al., “The OpenCL specification–version 1.2”, Khronos
OpenCL Working Group., vol. 380, 2012.

[10] ——, “The OpenCL C specification–version 2.0”, Khronos OpenCL Work-
ing Group., vol. 205, 2016.

81

https://doi.org/10.1109/TCAD.2003.819898
https://doi.org/10.1145/1839676.1839694
http://doi.acm.org/10.1145/1839676.1839694
http://doi.acm.org/10.1145/1839676.1839694
https://www.khronos.org/opencl/

[11] NVIDIA OpenCL best practices guide, Aug. 2009. [Online]. Available:
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/

papers/NVIDIA_OpenCL_BestPracticesGuide.pdf (visited on 08/06/2017).

[12] OpenCL optimization guide. [Online]. Available: http : / / developer .

amd.com/amd-accelerated-parallel-processing-app-sdk/opencl-

optimization-guide/ (visited on 08/06/2017).

[13] Adreno OpenCL Programming Guide. [Online]. Available: https://developer.
qualcomm.com/download/adrenosdk/adreno-opencl-programming-

guide.pdf (visited on 08/06/2017).

[14] Memory Statistics - Shared. [Online]. Available: http://docs.nvidia.
com/gameworks/content/developertools/desktop/analysis/report/

cudaexperiments/kernellevel/memorystatisticsshared.htm (visited
on 08/18/2017).

[15] J. H. Lee, N. Nigania, H. Kim, K. Patel, and H. Kim, “OpenCL perfor-
mance evaluation on modern multicore CPUs”, Sci. Program., vol. 2015,
4:4–4:4, Jan. 2016, issn: 1058-9244. doi: 10.1155/2015/859491. [On-
line]. Available: https://doi-org.focus.lib.kth.se/10.1155/2015/
859491.

[16] Y. Zhang, M. Sinclair, and A. A. Chien, “Improving Performance Portabil-
ity in OpenCL Programs”, in Supercomputing: 28th International Super-
computing Conference, ISC 2013, Leipzig, Germany, June 16-20, 2013.
Proceedings, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 136–150, isbn: 978-3-
642-38750-0. doi: 10.1007/978-3-642-38750-0_11. [Online]. Available:
https://doi.org/10.1007/978-3-642-38750-0_11.

[17] I. Sander, A. Jantsch, and S.-H. Attarzadeh-Niaki, “ForSyDe: System de-
sign using a functional language and models of computation”, in Hand-
book of Hardware/Software Codesign, S. Ha and J. Teich, Eds. Dordrecht:
Springer Netherlands, 2017, pp. 1–42, isbn: 978-94-017-7358-4. doi: 10.
1007/978-94-017-7358-4_5-1. [Online]. Available: https://doi.org/
10.1007/978-94-017-7358-4_5-1.

[18] G. Ungureanu, “Automatic software synthesis from high-level ForSyDe
models targeting massively parallel processors”, Master’s thesis, KTH
Royal Institute of Technology, Stockholm, 2013.

[19] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: Orthogonalization of concerns and platform-based
design”, IEEE transactions on computer-aided design of integrated circuits
and systems, vol. 19, no. 12, pp. 1523–1543, 2000.

[20] ForSyDe Website. [Online]. Available: https://forsyde.ict.kth.se/
trac (visited on 03/30/2017).

[21] A. Acosta, H. Woidt, I. Sander, and S.-H. Attarzadeh-Niaki, ForSyDe
deep. [Online]. Available: https://github.com/forsyde/forsyde-deep
(visited on 08/06/2017).

[22] S. H. A. Niaki, M. K. Jakobsen, T. Sulonen, and I. Sander, “Formal het-
erogeneous system modeling with SystemC”, in Specification and Design
Languages (FDL), 2012 Forum on, IEEE, 2012, pp. 160–167.

82

https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/
http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/
http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/opencl-optimization-guide/
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf
https://developer.qualcomm.com/download/adrenosdk/adreno-opencl-programming-guide.pdf
http://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsshared.htm
http://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsshared.htm
http://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticsshared.htm
https://doi.org/10.1155/2015/859491
https://doi-org.focus.lib.kth.se/10.1155/2015/859491
https://doi-org.focus.lib.kth.se/10.1155/2015/859491
https://doi.org/10.1007/978-3-642-38750-0_11
https://doi.org/10.1007/978-3-642-38750-0_11
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://doi.org/10.1007/978-94-017-7358-4_5-1
https://forsyde.ict.kth.se/trac
https://forsyde.ict.kth.se/trac
https://github.com/forsyde/forsyde-deep

[23] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing”, IEEE Transactions on
computers, vol. 100, no. 1, pp. 24–35, 1987.

[24] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded
software from synchronous dataflow specifications”, The Journal of VLSI
Signal Processing, vol. 21, no. 2, pp. 151–166, 1999.

[25] J. Fischer, S. Gorlatch, and H. Bischof, “Foundations of data-parallel
skeletons”, in Patterns and Skeletons for Parallel and Distributed Com-
puting, F. A. Rabhi and S. Gorlatch, Eds. London: Springer London, 2003,
pp. 1–27, isbn: 978-1-4471-0097-3. doi: 10.1007/978-1-4471-0097-3_1.
[Online]. Available: https://doi.org/10.1007/978-1-4471-0097-3_1.

[26] M. D. McCool, A. D. Robison, and J. Reinders, “Patterns”, in Structured
parallel programming: patterns for efficient computation, Elsevier, 2012,
ch. 3.

[27] M. McCool, Parallel Pattern 4: Gather, 2010. [Online]. Available: http:
//www.drdobbs.com/parallel-pattern-4-gather/222600465 (visited
on 08/18/2017).

[28] Udacity, Transpose Part 2 - Intro to Parallel Programming. [Online].
Available: https://youtu.be/CM4tB3NsKiY.

[29] M. Steuwer, P. Kegel, and S. Gorlatch, “SkelCL - a portable skeleton li-
brary for high-level gpu programming”, in 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and Phd Forum,
May 2011, pp. 1176–1182. doi: 10.1109/IPDPS.2011.269.

[30] D. B. Skillicorn, “The bird-meertens formalism as a parallel model”, in
Software for Parallel Computation, J. S. Kowalik and L. Grandinetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 120–133, isbn:
978-3-642-58049-9. doi: 10.1007/978- 3- 642- 58049- 9_9. [Online].
Available: https://doi.org/10.1007/978-3-642-58049-9_9.

[31] G. Ungureanu, Forsyde-atom, https://github.com/forsyde/forsyde-
atom, 2013.

[32] E. Chu and A. George, “The divide-and-conquer paradigm and two basic
FFT algorithms”, in FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms, Boca Raton, Florida, USA: CRC Press, 1999, ch. 3.

[33] R. Bird et al., A calculus of functions for program derivation. Oxford
University. Computing Laboratory. Programming Research Group, 1987.

[34] R. S. Bird, “An introduction to the theory of lists”, in Logic of Pro-
gramming and Calculi of Discrete Design: International Summer School
directed by F.L. Bauer, M. Broy, E.W. Dijkstra, C.A.R. Hoare, M. Broy,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 5–42, isbn:
978-3-642-87374-4. doi: 10.1007/978- 3- 642- 87374- 4_1. [Online].
Available: https://doi.org/10.1007/978-3-642-87374-4_1.

[35] S. Sankar and R. Hayes, “ADL an interface definition language for speci-
fying and testing software”, SIGPLAN Not., vol. 29, no. 8, pp. 13–21, Aug.
1994, issn: 0362-1340. doi: 10.1145/185087.185096. [Online]. Available:
http://doi.acm.org.focus.lib.kth.se/10.1145/185087.185096.

83

https://doi.org/10.1007/978-1-4471-0097-3_1
https://doi.org/10.1007/978-1-4471-0097-3_1
http://www.drdobbs.com/parallel-pattern-4-gather/222600465
http://www.drdobbs.com/parallel-pattern-4-gather/222600465
https://youtu.be/CM4tB3NsKiY
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1007/978-3-642-58049-9_9
https://doi.org/10.1007/978-3-642-58049-9_9
https://github.com/forsyde/forsyde-atom
https://github.com/forsyde/forsyde-atom
https://doi.org/10.1007/978-3-642-87374-4_1
https://doi.org/10.1007/978-3-642-87374-4_1
https://doi.org/10.1145/185087.185096
http://doi.acm.org.focus.lib.kth.se/10.1145/185087.185096

[36] S. Sato and H. Iwasaki, “A skeletal parallel framework with fusion op-
timizer for GPGPU programming”, in Programming Languages and Sys-
tems: 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16,
2009. Proceedings, Z. Hu, Ed. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 79–94, isbn: 978-3-642-10672-9. doi: 10.1007/978-3-
642-10672-9_8. [Online]. Available: https://doi.org/10.1007/978-
3-642-10672-9_8.

[37] R. Loogen, Y. Ortega, R. Peña, S. Priebe, and F. Rubio, “Parallelism ab-
stractions in Eden”, in Patterns and Skeletons for Parallel and Distributed
Computing, F. A. Rabhi and S. Gorlatch, Eds. London: Springer London,
2003, pp. 95–128, isbn: 978-1-4471-0097-3. doi: 10.1007/978-1-4471-
0097-3_4. [Online]. Available: https://doi.org/10.1007/978-1-4471-
0097-3_4.

[38] S. Pelagatti, “Task and data parallelism in P3L”, in Patterns and Skele-
tons for Parallel and Distributed Computing, F. A. Rabhi and S. Gorlatch,
Eds. London: Springer London, 2003, pp. 155–186, isbn: 978-1-4471-0097-
3. doi: 10.1007/978-1-4471-0097-3_6. [Online]. Available: https:
//doi.org/10.1007/978-1-4471-0097-3_6.

[39] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schöner, and T.
Breddin, “Paraphrasing: Generating parallel programs using refactoring”,
in Formal Methods for Components and Objects: 10th International Sym-
posium, FMCO 2011, Turin, Italy, October 3-5, 2011, Revised Selected
Papers, B. Beckert, F. Damiani, F. S. de Boer, and M. M. Bonsangue,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 237–256,
isbn: 978-3-642-35887-6. doi: 10.1007/978-3-642-35887-6_13. [On-
line]. Available: https://doi.org/10.1007/978-3-642-35887-6_13.

[40] D. Busvine, “Implementing recursive functions as processor farms”, Par-
allel Computing, vol. 19, no. 10, pp. 1141–1153, 1993, issn: 0167-8191.
doi: http://dx.doi.org/10.1016/0167-8191(93)90023-E. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
016781919390023E.

[41] f2cc ForSyDe-2-CUDA C. [Online]. Available: https://forsyde.ict.
kth.se/trac/wiki/ForSyDe/f2cc (visited on 09/07/2017).

[42] G. H. Blindell, C. Menne, and I. Sander, “Synthesizing code for GPGPUs
from abstract formal models”, in Languages, Design Methods, and Tools
for Electronic System Design: Selected Contributions from FDL 2014, F.
Oppenheimer and J. L. Medina Pasaje, Eds. Cham: Springer International
Publishing, 2016, pp. 115–134, isbn: 978-3-319-24457-0. doi: 10.1007/
978-3-319-24457-0_7. [Online]. Available: https://doi.org/10.1007/
978-3-319-24457-0_7.

[43] SkelCL a skeleton library for heterogeneous systems. [Online]. Available:
http://skelcl.uni-muenster.de (visited on 09/07/2017).

[44] SkePU2 autotunable multi-backend skeleton programming framework for
multicore CPU and multi-GPU systems. [Online]. Available: http : / /

www . ida . liu . se / labs / pelab / skepu / #publications (visited on
09/07/2017).

84

https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1007/978-3-642-10672-9_8
https://doi.org/10.1007/978-1-4471-0097-3_4
https://doi.org/10.1007/978-1-4471-0097-3_4
https://doi.org/10.1007/978-1-4471-0097-3_4
https://doi.org/10.1007/978-1-4471-0097-3_4
https://doi.org/10.1007/978-1-4471-0097-3_6
https://doi.org/10.1007/978-1-4471-0097-3_6
https://doi.org/10.1007/978-1-4471-0097-3_6
https://doi.org/10.1007/978-3-642-35887-6_13
https://doi.org/10.1007/978-3-642-35887-6_13
https://doi.org/http://dx.doi.org/10.1016/0167-8191(93)90023-E
http://www.sciencedirect.com/science/article/pii/016781919390023E
http://www.sciencedirect.com/science/article/pii/016781919390023E
https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc
https://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc
https://doi.org/10.1007/978-3-319-24457-0_7
https://doi.org/10.1007/978-3-319-24457-0_7
https://doi.org/10.1007/978-3-319-24457-0_7
https://doi.org/10.1007/978-3-319-24457-0_7
http://skelcl.uni-muenster.de
http://www.ida.liu.se/labs/pelab/skepu/#publications
http://www.ida.liu.se/labs/pelab/skepu/#publications

[45] M. Steuwer, M. Haidl, S. Breuer, and S. Gorlatch, “High-level program-
ming of stencil computations on multi-GPU systems using the SkelCL
library”, Parallel Processing Letters, vol. 24, no. 03, p. 1 441 005, 2014.

[46] U. Dastgeer, J. Enmyren, and C. W. Kessler, “Auto-tuning SkePU: A
multi-backend skeleton programming framework for multi-GPU systems”,
in Proceedings of the 4th International Workshop on Multicore Software
Engineering, ser. IWMSE ’11, Waikiki, Honolulu, HI, USA: ACM, 2011,
pp. 25–32, isbn: 978-1-4503-0577-8. doi: 10.1145/1984693.1984697.
[Online]. Available: http://doi.acm.org.focus.lib.kth.se/10.1145/
1984693.1984697.

85

https://doi.org/10.1145/1984693.1984697
http://doi.acm.org.focus.lib.kth.se/10.1145/1984693.1984697
http://doi.acm.org.focus.lib.kth.se/10.1145/1984693.1984697

TRITA-EECS-EX-2018:5

www.kth.se

	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	I UNDERSTANDING THE PROBLEM
	gpgpu and OpenCL
	gpu Architecture
	OpenCL Programming Model
	Communication and Synchronization
	OpenCL Application Workflow and Kernel Functions
	OpenCL Optimization Tips
	Global Memory Coalescing
	Bank Conflicts

	Performance Portability and Autotuning

	forsyde
	Introduction
	The Modeling Framework
	Models of Computation

	Patterns
	Data Parallel Patterns
	Map Pattern
	Reduce Pattern
	Gather and Scatter Pattern
	Transpose Pattern
	Array of Structures (aos) vs. Structures of Arrays (soa)

	Compositional Patterns
	Operation Map Pattern
	Stage-generate Pattern

	Example Algorithm Modeled with Patterns
	Vector Dot Product
	Fast Fourier Transformation (fft)

	Related Approaches
	F2CC
	SkelCL and SkePU

	II Development and Implementations
	Representations of Parallel Patterns
	Supported Data Types
	Function Decriptions
	Process Descriptions
	Variables and Parameters
	Port Declarations
	Data Parallel Patterns
	Compositional Patterns

	Examples

	p2cl Overview
	Overview from Users' Perspective
	Designing Workflow
	Buffer Sizes and Flow Control

	Overview of the Library

	Kernel Generation and Execution
	Pattern Fusion
	Kernel Templates
	Map Kernel
	Reduce Kernel
	Data Arrangement Kernel
	Transpose Kernel

	III Evaluations and Discussions
	Evaluations
	Programing Simplicity
	Performance of p2cl over Naive OpenCL Programs
	Elementwise Addition
	Vector Dot Production
	Transpose Operation

	Future Works
	Parallel Operations in sdf Processes
	Scheduling sdf Network on Heterogeneous Platforms
	More Intuitive xml Representation
	Auto-Tuning

