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Abstract

Given the explosion in the size of social media, the amount of hate speech is also

growing. To efficiently combat this issue we need reliable and scalable machine

learning models. Current solutions rely on crowdsourced datasets that are limited

in size, or using training data from self-identified hateful communities, that lacks

specificity. In this thesis we introduce a novel semi-supervised modelling strategy.

It is first trained on the freely available data from the hateful communities and

then fine-tuned to classify hateful tweets from crowdsourced annotated datasets.

We show that our model reach state of the art performance with minimal hyper-

parameter tuning.
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1 Introduction

We spend more time than ever on social media platforms. These platforms promotes

increasing emphasis on users to participate, resulting in increasing amounts of content

produced by the users. Much of this content is good, but not everything. We’ve lately

been made aware of the dangers when these platforms are used with nefarious intent. In

April 2018 a Canadian man killed 10 people in Toronto after making a facebook post

pledging allegiance to the Incel Rebellion, an online movement and community which

unites men in their in-ability to convince women to sleep with them (Beauchamp 2018).

Incels, involuntary-celibacy, have had an active presence online on sites such as reddit.com

spreading hateful content aimed towards women. A recent study has shown that the

amount of hateful content towards migrants can predict the amount of reported violence

against this group (Müller and Schwarz 2017). Hate speech online is wide spread and

can be found in sectors such as gaming (Consalvo 2012), Wikipedia talk pages (Wulczyn,

Thain, and Dixon 2016), reddit (Moreno, Pao, and Ohanian 2015), and twitter (Kwok

and Wang 2013; Waseem and Hovy 2016; Davidson et al. 2017). A survey from the Pew

Research Center showed that 73 percent of online internet users had witnessed online

harassment, and 40 percent had been personally targeted (Duggan et al. 2014). This

issue has gained the attention of governments such as the UK (Home Office 2016), and

Germany who will fine social media companies up to €50 million if hate speech is not

removed within 24 hours (The Guardian 2017). The European Union has, together with

several major technology companies, released a Code of Conduct on online hate speech

(European Commission 2016). In order to combat online hate we need to find scalable

and transparent solutions.

The benefits of using automated techniques to detect hate speech are obvious. This

explains the substantial amount of attention this problem has gained in recent years. A

good overview of the current state of research can be found in Schmidt and Wiegand

(2017). Current approaches all have their limits. Hate Speech cannot be understood as

a monolithic problem, some empirical evidence of this can be found in Kwok and Wang

(2013) who show that the ethnic background decides what one might consider hateful.

Davidson et al. (2017) also find suggestions that cases of misogyny are often annotated

as being offensive when cases of homophobia and racism is seen as hate speech. There

seems to be an social dimensionality to ones perception of hate speech. It would not be

surprising if it also depends on locality and culture (compare the usage of the n-word

among white Americans and black Americans). Current attempts often use self sampled

datasets that in most cases have been annotated using some crowd sourcing platform

such as CrowdFlower or Amazon MTurk (Davidson et al. 2017; Waseem and Hovy 2016;
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Kwok and Wang 2013; Wulczyn, Thain, and Dixon 2016). These datasets are in many

cases limited in size, and annotated with unique definitions of hate speech. There are

attempts to move past this limitation using data from alternate sources (Saleem et al.

2017) or training a classifier on more than one dataset (Waseem, Thorne, and Bingel

2018).

Annotating hate speech is an expensive and time consuming process, and machine

learning models are limited by the size of the dataset. In theory, a very large and

reliably annotated dataset would most likely produce powerful and reliable classifiers,

however such datasets are very hard to produce. Rather than relying on one large dataset

for the majority of the hate speech classification we propose a solution. Building on

the work of Howard and Ruder (2018) we introduce Fine-Tuned Language Model for

Hate Speech Classification. This is a semi-supervised text classifier that in three steps

trains and fine-tunes a general language model to produce classifications. We expect this

model to be more robust towards over-fitting if trained correctly and to reach acceptable

performance using small specialised datasets. In this thesis we show that, with minimal

hyper-parameter tuning, we can reach close to state of the art result or even beat it using

two previously studied datasets. We use the same datasets as in Waseem, Thorne, and

Bingel (2018).

The rest of this thesis is structured as follows: first we present earlier research and

discuss definitions of hate speech used in earlier attempts to build hate speech classifiers.

The following section we introduce a natural language transfer technique and discuss our

implementation. After that we describe our data, and also our experimental results. We

end with an analysis of the errors of our model and conclude with suggestions on further

research. For an overview of our final classification model, see figure 3.
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2 Earlier work

In order to train a model to classify hate speech we need to have a clear understanding

of what it is. Human annotators are normally used to create training datasets that are

used to evaluate models and build production models. But collecting and annotating

hate speech corpora using this method leads to low agreement among annotators and as

a result low reliability. In order to collect and reliably annotate cases of hate speech we

need to have clear definitions and multiple annotators. (Ross et al. 2017; Waseem 2016)

In the literature the definition of hate speech varies. Saleem et al. (2017) talks about

hateful speech and defines it as speech which contains an expression of hatred on the part

of the speaker/author against a person or people, based on their group identity. Badjatiya

et al. (2017) define hateful tweets as those containing abusive speech targeted against

individuals, such as cyber-bullying or hate directed towards public figures, or on basis

on group belonging, for example LGBTQ or gender. The common denominator is hate

aimed against something or someone, often with incitement to discrimination, hostility

or violence (Taylor, Peignon, and Chen 2017). Without having a clear definition it is

impossible for the annotators to do a good job, resulting in low agreement among human

annotators. Often this inter-annotator agreement is measured with the κ statistic, pro-

posed by Fleiss (1979). This statistic is bounded by 0 and 1, and a value of 1 corresponds

to a perfect agreement among the annotators.

Currently, attempts to classify hate speech can roughly be divided in two groups. The

first which relies on crowdsourced datasets, whose annotation process is highly depen-

dent on the definition of hate speech. The second tries to do away with the reliance of

definitions by either using a transfer learning model (Waseem, Thorne, and Bingel 2018)

or changing the objective by sampling from self-defined hateful communities.

2.1 Attempts using Crowdsourced Datasets

Kwok and Wang (2013) focuses on a narrow definition of hate speech against blacks.

They first collected a sample of 100 tweets and let 3 students of similar age and gender

but different ethnicity label each tweet as offensive or not. The three students did not

annotate this sample reliably (κ = 0.33), Kwok and Wang concludes that this is indicative

that it would be hard for a computer to reliably classify tweets. They annotate a sample

of 24582 tweets, with tweets coming from self-identified racist accounts. After a manual

review of the individual tweets they label those that were found to be racist and trained

a Naive Bayes classifier to distinguish between the racist and the non-racist tweets. They

achieve a mean accuracy of 77 percent. This methodology is highly dependent on manual

feature engineering. The authors conclude that many of the tweets are racist because
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they contain certain words, such as alternative forms of the n-word. Other tweets are

however deemed offensive without the use of obvious terms, for example the tweet Why

did Obama’s great granddaddy cross the road? Because my great granddaddy tugged his

neck chain in that direction. The authors of the study conclude that in order to classify

racism on twitter additional techniques must be used, such as bigrams (using two word

tokens instead of just one, for example New York can be considered a bigram), sentiment

analysis etc.

Separating hate speech from non-hate speech is achievable using linear classifiers with

lexical features. For many people, hate speech is somewhat defined by the use of particular

words such as homophobic or racial slurs. However, there are cases where a comment or

tweet contains any of these words without the result constituting hate speech. This is

the focus of Davidson et al. (2017). They begin with a lexicon of hate speech words and

phrases defined by internet users, Hatebase.org. A total of 85.4 million tweets is gathered

from 33,458 twitter users using the Twitter API. A sample of 25 thousand tweets is drawn

and annotated by CrowdFlower users1. The tweets are labelled as either hate speech,

offensive speech, or neither offensive speech nor hate speech by at least 3 annotators.

The label is chosen from a majority decision. The inter-annotator agreement has a κ

score of 0.92. By using a combination of TF-IDF weighted uni-grams, bi-grams, and

tri-grams, sentiment scores as well as count indicators for hashtags, mentions, retweets,

and URLs, they reach a F1 score of 0.90 when training on and evaluating on the full

data. They used a logistic regression model with L2 regularisation and performed hyper-

parameter tuning using cross-validation. Note that this data is used in the upcoming

experiments. For a more in-depth analysis of sampling and data, see section 4.

Waseem and Hovy (2016) contributes with a dataset consisting of 16,000 annotated

tweets that has been labelled as either sexist, racist, or neither. The definition used in the

paper comprise an 11 point list (can be found in section 4.1) used to define hate speech.

What is different in this definition is that it includes idiosyncratic features of Twitter

such as the point shows support of problematic hash tags. E.g. #BanIslam, #whoriental,

#whitegenocide. The inter-annotator agreement for this dataset is 0.84. A whole 85

percent of the disagreements among annotators occur in examples of sexism, with 98

percent of all reviewer changes being set to neither sexist nor racist. The remaining are

set to racist. They conclude that most cases stems from the context, or rather lack thereof.

In an effort to evaluate the importance of different features, they use a base model using

n-grams. They then experiment with adding the additional features length of of tweet,

gender of twitter user, and the locality of the twitter user. They find that gender is the

1CrowdFlower is a platform where you can outsource the annotation process, similar to Ama-
zon Mechanical Turk. CrowdFlower has since been renamed figure eight and can be found on
https://www.figure-eight.com/
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only feature that improves the overall f1-score, they report a score of 73.89. To evaluate

the models they used a logistic regression classifier and ran a 10-fold cross-validation.

Using n-grams and lexical features usually involves representing a document as a

sparse vector with non-zero elements representing the count of some n-gram, or length

of the document. This approach has obvious drawbacks as it throws away the structure

of the text. This representation is commonly know as bag-of-words (BoW), it can be

though of as taking the tokens, or words, and putting them in a bag without taking

the order into consideration. In this representation the sentences I love to hate you

and I hate to love you would be considered equivalent even though they have different

semantic meanings. An alternative to the BoW representation is to view the sentence as

a sequence of words, this is commonly done by representing each word as a dense vector

trained on large amounts of data2. This approach is used by Badjatiya et al. (2017) who

experiments on the dataset provided by Waseem and Hovy 2016, described above. They

manage to achieve an average F1 score of 0.93 using a combination of randomly initialised

word embeddings, an LSTM neural network (described in further detail in the upcoming

section 3) and a gradient boosting classifier.

2.2 Other attempts

In an attempt to bridge the differences between different groups of annotators and differ-

ent definitions Waseem, Thorne, and Bingel (2018) run experiments using the two earlier

mentioned datasets from Waseem and Hovy (2016) / Waseem (2016), and Davidson et al.

(2017) using a multi task framework. This is a transfer learning technique that in essence

trains a model by solving two separate tasks simultaneously. A hand-wavy explanation

goes like this: consider two tasks, an auxiliary task and a primary task. By solving these

tasks simultaneously we hope to utilize similarities between the two tasks, in theory re-

sulting in better generalisations. They switch between using the two datasets as auxiliary

and primary datasets and finds that the multi-tasking model outperforms the model that

is solely trained on a single dataset.

So far, we have only discussed cases where hate speech is defined using a supervised

learning framework, complete with annotated datasets. This is however, not the only

approach that can be found in literature. Saleem et al. (2017) treats the problem of hate

speech differently. They propose a model of language that is defined by the community.

Using historic data they sample comments from self-defined hateful subreddits (user run

sub-communities on the popular link-sharing site reddit) and subreddits that are polar

2A few examples of these pre-trained dense vectors, also known as word embeddings, are fastText
(Bojanowski et al. 2016), Word2Vec (Mikolov et al. 2013), and GloVE (Pennington, Socher, and Manning
2014)
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opposites. One example is the subreddit fatpeoplehate, banned in 2015, that is defined

by hate towards overweight people. The opposite subreddit in this case is loseit which

is a community for people who are trying to lose weight. They show that these two

communities share vocabulary and are discussing the same topics. They then train a

classifier to explore the separability of the two communities. With accuracies around 80

percent, it is clear that the we can distinguish between the languages in the two hate

groups. This data can be acquired with low cost, but the classifier will at best be able to

indicate which community a comment is similar to. But to classify hate speech we need

to be more specific.

This review is not comprehensive. A more thorough discussion on previous work can

be found in Schmidt and Wiegand (2017). Considering previous work it becomes apparent

that this problem is often framed as a supervised learning problem, with annotated

datasets. These models are limited by the size of the dataset and often use features

directly derived from the data itself, resulting in overfitting to the specific sample. Any

claims of out-of-sample performance is therefore invalid as the out-of-sample data was

used to create the models itself. In order to build a model with generalisable performance

one needs to create a dataset so big that it encompasses large parts of the possible hateful

language space: something that is not only expensive but also difficult to encompass with

different definitions. A plausible solution would be to use a semi-supervised method as

described in Saleem et al. (2017), but this lacks the precision to accurately distinguish

text possibly stemming from a hateful community, from the actual comments. Instead we

propose a model that draws from both approaches, by using a technique called transfer

learning we can extract knowledge from easily available un-annotated data, subreddits,

and use this to create predictions on annotated datasets.
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3 Fine-tuned Language Model for Hate Speech Clas-

sification

Most machine learning techniques works well under a common assumption: that the train

data and test data are drawn from the same feature space and the same distribution. In

most cases when this is not the case, we need to sample fresh training data and retrain

the model from scratch. This is often an expensive and tricky task, as in the case of

labelling hate speech.

Just a quick note on some machine learning taxonomy, we usually divide the method-

ologies into three groups (excluding a fourth type of algorithms called reinforcement

learning): supervised learning, unsupervised learning, and semi-supervised learning. Su-

pervised learning are the cases when you observe some kind of label or dependent variable

for each observation. We then try to find a function that maps the features to the label

or dependent variable. Examples of techniques that falls into this category is regression

based techniques, support vector machines, random forests, etc. Unsupervised learn-

ing deals with observations that has no label. Examples of unsupervised techniques are

cluster analysis, principal components analysis, auto encoders, etc. A semi-supervised

approach can loosely be understood as a technique that includes elements of both. In

this thesis we are trying to build a semi-supervised hate speech classifier. We start off

by building an unsupervised model that can learn the structure of the data. We then

fine-tune this model using an annotated dataset. Finally we make changes to our model

and we turn it into a supervised machine learning model that is trained to create pre-

dictions. By fine-tuning we mean updating weights using a new dataset to an already

trained model.

As discussed in the previous section, current hate speech classifiers are lacking in a

number of ways. Hate speech is hard to annotate, and classifiers trained using supervised

learning models depends heavily on the annotation process. Machine learning models are

also limited by the size of the dataset. This is one of the problems we want avoid by

introducing the unsupervised element to our approach. This should give us acceptable

performance even with small datasets. We based our approach on the work by Howard

and Ruder (2018). They manage to obtain state-of-the-art performance on a five widely

studied datasets. Their approach uses an unsupervised neural language model that is

trained on some large corpus of documents. They then fine-tune their model and change

the final neural network to produce classifications. Reusing their publicly available model

weights is possible. But given the nature of hate speech, we are better off using a domain

specific language model. Note that this is not the only possible semi-supervised text

classifier, Dai and Le (2015) describes an alternative unsupervised part that consists of
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sequential auto-encoder, which is a neural network where the input is the same as the

output, rather than a neural language model.

The rest of this section explains the modelling steps in detail. It comprise three parts,

the first is the neural language model; which is the unsupervised part of our approach.

The second part is the fine-tuning where we continue to train the model that was obtained

in step one using the annotated dataset. The third part consists of switching the final

layers of our network to produce classifications. The whole model is visualised in figure

3. We report on our hyper-parameters in the results section.

3.1 Neural Language Model

A neural language model predicts the next words in a sequence. As an example, if we have

the sentence the quick brown fox jumped over the lazy dog we would input the sequence

from the to lazy, and predict the sequence from quick to dog. At each time point, we

know the current, and the previous words. As an example, at time step 3 in figure 1

we input the word brown and know that the previous words were quick and the. This

information is used to predict the word fox. What we are estimating is the probability

distribution for each word in the dictionary, and we make a prediction of the next words

using a maximum likelihood principle, i.e. the word with the highest probability mass.

Figure 1: Illustration of a language model where we try to predict the next word in a
sequence, given the previous words.

Each box in figure 1 is called a cell and each arrow represents some kind of dependence.

If we consider the probability of the word at time step 3 being fox we might think of this

like,

Pr(Y <3> = fox|X<3>, X<2>, X<1>,W )

The task we want to solve is to find a set of weights W so that the estimated proba-

bility distribution assign a high probability mass to observed words, and low to the rest.

We model this probability distribution by using a multi-layer recurrent neural network.
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In the next section, we will introduce this family of networks, recurrent neural networks.

After that we discuss some implementation details of our model

3.1.1 LSTM and recurrent neural networks

Recurrent neural networks are a family of nets that are for processing of sequential or

longitudinal data. The main feature is that they can process variable length sequences

without altering the amount of parameters in the model, this comes down to something

called weight sharing. The importance of this can be found in an example given by

Goodfellow, Bengio, and Courville (2016), consider the two sentences ”I went to Nepal in

2009” and ”In 2009, I went to Nepal”. If we want to have a machine learning model that

outputs the year in which I went to Nepal, we would like identify 2009 as the interesting

information regardless if it occurs in as the first word, or the last. In theory this can be

performed using a regular network that inputs a fixed length sentence but then we would

have to learn the whole structure of language at each position in the sequence.

We input a sentence to our model, represented by integers which corresponds to a

position in our dictionary, a set of the n most common words. These words are then

represented as dense vectors, commonly known as word vectors. These dense vectors are

stacked in a matrix U that, in figure 1 would contain unique vectors for the words like

the, quick, brown etc. Once trained, these vectors capture meaningful semantic meanings,

similar words’ vectors tend to be grouper closer together.

For the purpose of this thesis we consider a recurrent neural network that at each

time step inputs the element a sequence and makes an output that is a function of the

current input and previous inputs. This is illustrated in 2 where we see the net with its

recurrent connection to the left and unrolled to the right. X<t> is the input at position t

and a<t> is its output. Note that these might be vectors and matrices as well as scalars.

One of the main issues with this simple formulation of the recurrent network is its

disability to model long time dependencies – consider if we want to model opening and

closing a parenthesis. More modern architectures has been proposed, most notably the

LSTM (Hochreiter and Schmidhuber 1997) and GRU (Cho et al. 2014). In the follow-

ing experiments we will focus on the former, the Long Short-Term Memory Network or

LSTM.

The most basic building block of an LSTM neural network is the LSTM cell itself.

At each time step, the cell receives input data, X<t> and the previous output vector

a<t−1>, and the previous cell state vector c<t−1>. Much of the power of this architecture

lies in the gates, denoted as Γ. These are vectors whose values are bounded by 0 and 1.

These gates controls the amount of information that flows between time steps, mimicking

memory (hence the name). Below are equations that defines a single LSTM cell.
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Figure 2: RNN illustration

Γ<t>
f = σ

(
Wfaa

<t−1> + WfxX
<t> + bf

)
(1)

Γ<t>
u = σ

(
Wuaa

<t−1> + WuxX
<t> + bu

)
(2)

c̃<t> = tanh
(
Wcaa

<t−1> + WcxX
<t> + bc

)
(3)

c<t> = Γ<t>
f × c<t−1> + Γ<t>

u × c̃<t> (4)

Γ<t>
o = σ

(
Woaa

<t−1> + WoxX
<t>) + bo

)
(5)

a<t> = Γ<t>
o tanh(c<t>) (6)

where Γf is the forget gate, Γu is the update gate, and Γo is the output gate. The two

most important parts of the architecture are the cell state c<t> and the output a<t>. In

step (1) above we compute the forget gate Γf as a function of the previous output, a<t>

and the current input, X<t> which are matrix multiplied with two weight matrices. This

weighted sum is then put through a sigmoid function, σ(a) = 1
1+e−a , which is σ ∈ (0, 1) ∀a.

This matrix is later element-wise multiplied in equation (4) to decide which information

we keep from the previous cell state, hence the name forget gate. The second gate is

like the forget gate calculated as a weighted sum of the previous output and the current

input. In equation (3) we have what is called the candidate cell-state, c̃<t> which is

calculated by matrix multiplying the previous output, and input with weights and put

them through another activation function, the hyperbolic tangent function. This function

is defined as arctan(a) = sinh(a)
cosh(a)

and arctan(a) ∈ (−1, 1) ∀a. In equation (4) we start to

see how everything comes together. We calculate the current cell state c<t> by doing

two element wise multiplications and then summing them. The first part is using the

forget gate Γ<t>
f calculated in (1) and the previous cell state. The forget gate decides

what to keep from the previous state. The second part is using the update gate Γ<t>
u to

update the current state by using the candidate state. Operations (1) to (4) calculates

the current state as a function of the previous cell state, the previous output and the
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current input. The information in the current state is governed by the values of the two

gates. Operation (5) and (6) is straight forward, the third gate is calculated like the two

earlier gates. In the final operation where we decide the output of the current cell, we

multiply the tanh of the cell state with the output gate.

At each time step we project our, outputs also called, activation vector a<t> by

multiplying it with a matrix V, which is then squished by using a softmax activation

layer so that,

softmax(a<t>TV) = ŷ<t>

where element j of ŷ<t> is ea
<t>Tvj∑k

i=1 e
a<t>Tvi

. The effect of the softmax function gives us a

vector of values between 0 and 1 where all elements sum to 1. This is a valid estimation

of the probability distribution over the dictionary for each position in the sequence. The

exponential element can intuitively be understood to force a few elements to be much

larger than others. We then end up with a matrix Ŷ =
[
ŷ<1>, ŷ<2>, . . . , ŷ<N>

]
which is

of dimension (vocabulary size, timesteps) where each column is the estimated probability

distribution of words given context.

One very common approach to avoid overfitting when using neural networks is dropout

(Srivastava et al. 2014) which before each epoch randomly puts some elements to equal

zero. We apply dropout to the inputs of the LSTM layers to avoid overfitting. We

also apply something called dropconnect which is dropout applied to the weight matrix

rather than the activations, this is also know as weightdrop (Merity, Keskar, and Socher

2017; Wan et al. 2013). We apply dropconnect to the hidden-to-hidden weight matrices,

[Wfa,Wua,Wca,Woa] in the LSTM layer.

We trained our general language model using the common stochastic gradient descent

optimizer with learning rate decay. Consider the general parameter matrix θ, which will

be updated at step k as:

θk = θk−1 − η∇J(θ)

where∇J(θ) is the gradient of the loss function with respect to the parameter matrix and

η is the learning rate. After each update we shrink η exponentially with some predefined

amount, so that

ηu = ηu−1(1 + decay× u)−1

where ηu is the learning rate at update u and decay is the decay hyper-parameters.
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3.1.2 Weight tying

Each token in the input sequence is represented as a vector that is zero everywhere ex-

cept at the index which represents that unique word, a so-called one-hot encoding. A

sequence is an ordered set of tokens, which is represented as matrix that is of dimension

(length, number of tokens). The first step in the language model projects this sequence

matrix to a dense representation using a word embedding matrix U. The dense represen-

tation is of dimension (length, embedding size). The model then pass this matrix through

the recurrent net and produces a matrix of activations A = [a<1>, a<2>, . . . , a<n>]. A

is then projected to produce matrix Z by multiplying A with a second matrix V. Z

has the same dimension as our first one-hot encoded sequence matrix and is squished to

model the probability distribution over each token in the sequence. The matrices U and

V has the same dimensions, and both can be considered valid word embeddings (dense

representation of words, i.e we represent each word or token as a vector). Recent work

on language modelling using neural networks has proposed to tie these matrices together

(so that Û = V̂) and has shown that this improves the performance (Press and Wolf

2016; Inan, Khosravi, and Socher 2016).

In our experiments we tie the these weights together. This has the additional benefit

of cutting the number of parameters in our model used for the word embeddings by half.

3.1.3 Bidirectional language model

We train a two language models, one from each direction. That means that we train

one model from start to end, and one from end to start. This means that we train and

fine-tune two language models. Finally these models will be put concatenated, this is

explained more in an upcoming section.

3.2 Fine-tuning the Language Model using the Classification

Corpus

Each dataset contains some unique features that we cannot learn from the big unlabelled

dataset. Therefore we fine-tune the language model on the sentences in our classification

dataset. In order to avoid destroying the ingrained knowledge in our model, we train

for two epochs per layer for the Waseem and Hovy, gradually unfreezing layer after the

epochs (explained below) and two epochs per layer in the Davidson et al. case.

Fine-tuning is one of the most important aspects of transfer learning as it is in this

step that the transferring is happening. One risk of doing this is called catastrophic

interference, or catastrophic forgetting, which is the tendency of neural networks to forget

previously learned knowledge when faces with a new task. We understand this concept in
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the framework of fine-tuning language models as no longer having the knowledge learned

in the general training.

In order to combat this problem we gradually unfreeze the layers on our network

(which is also done by Howard and Ruder 2018). We train our network for a predefined

number of epochs per layer whilst gradually unfreezing them one-by-one. By freezing we

simply mean we stop updating the weights of that specific layer.

Like Howard and Ruder we used a trick when performing the fine-tuning called cosine

annealing of the learning rate where we change it after each update according to,

η = ηmin + (ηmax − ηmin)

(
1 + cos

t

T
π

)
where η is the learning rate and ηmax, ηmin are hyper-parameters and T is the maximum

updates for one epoch, and t is the current update. We train for using cosine annealing

for two epochs, one with increasing learning rate (only difference to the expression above

is a minus instead of the plus in the second part with the cosine).

3.3 Training the Classifier

The outputs of the final recurrent layer are fed into a block of various layers that outputs

a prediction. The first part of the linear block is used the extract useful information that

can be used to distinguish between our classed. We do this in a similar way as described

in (Howard and Ruder 2018). We take the outputs from the third LSTM layer, stacked

in tensor

A =
[
a<1>,a<2>, . . . ,a<N>

]
where a<i> is the output at position i in the sequence i = 1, 2, . . . N . The first two

operations we use are called global max pooling and global average pooling. As in the

name, max pooling takes the max along the temporal dimension, so if A is of di-

mension (batch size, time, number of units), max pooling outputs a matrix of dimen-

sions (batch size, number of units). Average pooling is the same as max-pooling but

takes the average rather than the max. Finally we also flatten our the output of our

final LSTM layer. This is done by stacking tensor A so that it has the dimension

(batch size, time× number if units). These three matrices are concatenated and fed into

a dense layer with a ReLU activation. The rest of the block is made up of a batch nor-

malisation layer (Ioffe and Szegedy 2015) and dropout (Srivastava et al. 2014). Finally

we feed the outputs into a final dense layer with a softmax-activation which produces the

predictions.

Every weight in the network gets updated in the final step. In order to reduce risk
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of catastrophic forgetting we use different learning rates for different layers. The code

implementation used in the experiments multiplies the learning rate by a predefined factor

that can be set layer by layer. In our experiments we lower the learning rate based on

the order of the layer. We used the Adam optimizer (Kingma and Ba 2014) in this step.

3.3.1 Making a unidirectional model bidirectional

So far we have only discussed the modelling from a single-model perspective. But since

we train two neural language models, one from each direction, we need a way to ensemble

these models. This is what we are discussing in this section.

The simplest sampling technique would be the one used in Howard and Ruder (2018)

where they train each model separately and then simply average the predictions. This

is easy to implement and does not require any extra memory. Another idea would be to

create the predictions of both models and then use these as the features for some other

machine learning algorithm such as a support vector machine or logistic regression. This

idea is slightly more involved than the one before as we need to consider a whole new

set of hyper-parameters. If we however want to maximize performance by creating an

ensemble with more than the model discussed here this is a viable option. We would

however advice to pay some attention to how the hyper-parameters of this ensemble

model are tuned as it is easy to cause data leakage between splits.

The approach we used in our experiments is however slightly different. By removing

the final classification layers in the linear block of the two models we concatenate the

outputs of the final dense layers, creating a single bidirectional model. This has the nice

property that we don’t have to consider two models in parallel but can focus on a single,

big model. However, as we are effectively doubling the amount of parameters in our

model, we need to have a large memory in our GPU to make training feasible. In our

experiments we went from 30 million to 60 million. The choice of ensembling technique

most likely plays little role in the grand scheme of things.
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4 Data

4.1 Sampling

4.1.1 Waseem and Davidson

Waseem and Hovy (2016) sampled 16,914 tweets out of which 3,383 were labelled as sexist

and 1,972 were labelled as racist. The data was collected during a period of two months

and collected tweets that fulfilled any of the 11 criteria. This means that 20 percent

of the tweets in the dataset are labelled as sexist and almost 12 percent are labelled as

racist. These are (cited from their paper):

1. Uses a sexist or racial slur

2. Attacks a minority

3. Seeks to silence a minority

4. Criticizes a minority (without a well founded speech or violent crime)

5. Promotes, bot does not directly use, hate speech or violent crime

6. Criticizes a minority and uses a straw man argument

7. Blatantly misrepresents truth or seeks to distort views on a minority with unfounded

claims.

8. Shows support of problematic hash tags. E.g. #BanIslam, #whoriental, #whitegeno-

cide

9. Negatively stereotypes a minority

10. Defends xenophobia or sexism

11. Contains a screen name that is offensive, as per previous criteria, the tweet is

ambiguous (at best), and the tweet is on a topic that satisfies any of the above

criteria.

The inter-rater agreement is 0.84. Waseem (2016) extended this dataset with about

4000 observations using the same criteria. Their annotation process was done using a

combination of expert and amateur annotators. Among the amateur annotators the inter-

rater agreement is 0.57, among the expert annotators the agreement is 0.34 if we would

label according to a majority vote and 0.7 if we would label according to a full agreement.
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Subreddit Number of comments

TwoXChromosomes 2 366 474
fatpeoplehate 1 437 861
MensRights 966 959
loseit 761 489
islam 541 864
CoonTown 334 176
Feminism 88 459
racism 11 110
ShitN*ggersSay 50

Total 6 508 442

Table 1: Dataset statistics for Reddit data extracted from 2014-2015

Among all groups the agreement is low, just 0.14. We merged these datasets in the same

way as Waseem, Thorne, and Bingel (2018).

The approach taken by Davidson et al. (2017) used a hate speech lexicon containing

words and phrases identified by internet users as hate speech. They then scrape the

entire history of the accounts that appears in the search. A sample of 25000 tweets where

then sampled from this population and annotated by humans using the CrowdFlower

platform. Each tweet is labelled according the a majority rule. The raters were given the

definition of hate speech given by the authors: [hate speech is] language that is used to

express hatred towards a targeted group or is intended to be derogatory, to humiliate, or

to insult the members of the group. The reported inter-rater agreement is 0.92.

4.1.2 Reddit data

In 2015 a Reddit user by the name of Stuck in the matrix posted a huge dataset consisting

of the entire history of reddit. It has since been updated and realised to the public

in large torrent files. We downloaded the files spanning 2014 and 2015 and grabbed

the comments from nine subreddits: mensrights, fatpeoplehate, coontown, beatingwomen,

racism, twoxchromosomes, loseit, transgays and shitniggerssay. This list includes several

of the controversial communities on the website that were banned in 2015 (Moreno,

Pao, and Ohanian 2015) in an attempt to combat hate and harassment. The choice of

subreddits is to some extent arbitrary, but since hate speech is very dependent on specific

words or tokens it made sense to pick a corpus that probably includes many of these.

4.2 Processing

With processing we mean the process of representing the raw texts as vectors. We start

off with a short discussion of the processing strategies used in the benchmarks we are
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comparing against. Then we discuss the processing pipeline used in our experiments. We

also discuss how we split the data and prepared in for the experiments.

Davidson et al. (2017) rely on features extracted from the text, chosen in relation to

the whole corpus. The tweets were first lower cased and stemmed. They then extracted n-

grams that were weighted by the TF-IDF. They also introduced several counted features

such as hashtags, mentions, retweets, and URLs. They also included syntactic features,

reading ease scores, and sentiment scores.

Waseem and Hovy (2016) also builds their model on extracted features. They remove

stop words except for the word not. They keep tokens for retweets, screen names and

punctuations. Unigrams, bigrams, trigrams, and fourgrams of characters are extracted

together with the length of each text, the gender of the user, and the users locality.

Waseem, Thorne, and Bingel (2018) compare two different representation techniques,

the first is a bag-of-words like approach described above. The second is a different way

of using word embeddings. Details can be found in the paper, but they choose not to

use any architecture, like a recurrent neural network, that can process variable length se-

quences. Instead they take the element-wise mean of the word embeddings in a sequence

and use that fix-length vector to represent a document. Like a bag-of-words represen-

tation, this does away with the sequential information and shares its drawbacks. Using

word embeddings, especially pre-trained, should result in better predictions. Imagine a

sentence containing the word football, using a bag-of-words approach our representation

would be different if we swapped the word with soccer. As embeddings of words tends to

be closer to words that are semantically similar, the distance between the words soccer

and football is small. So, using word embeddings would give the two sentences similar

representation. The texts were preprocessed, i.e. lower cased, removing stop words etc.

in the same way as in Waseem and Hovy (2016).

Our preprocessing strategy is that it requires much less feature engineering. This

means that we want to tweak our preprocessing pipeline as little as possible between

datasets. Our preprocessing function adds tokens for several common emoticons, num-

bers, and mentions of users. It also adds tokens for elongated words – as an example,

laaaame would be shortened to lame 〈elong〉 – and repeated use of delimiting characters,

such as exclamation marks or question marks. We also add a specific token for hashtags.

In addition to this, we remove punctuation and extra delimiting characters, we lower case

the words and split the comments into equal sized sequences. A common preprocessing

technique often used when representing the documents as bag-of-words is to remove stop

words 3, but since we model the sequences directly, we keep these words. Words that are

3Stop words are common words that usually doesn’t carry any information. Words such as I, you,
are, etc. are commonly regarded as stop words
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Dataset split Hate speech Offensive Neither Total

Train 1144 15352 3331 19826
Validation 143 1919 416 2478
Test 143 1919 416 2478

Total 1430 19190 4163

Table 2: Dataset statistics for Davidson et al. 2017

Dataset split Racism Sexism Neither Total

Train 1653 3371 10733 15757
Validation 207 421 1342 1970
Test 207 421 1342 1970

Total 2067 4213 13417

Table 3: Dataset statistics for Waseem and Hovy 2016 and Waseem 2016

not in the vocabulary where replaced by an unknown-word token.

We also included a few extra tricks for the preprocessing. As earlier mentioned, there

is an hate-speech online lexicon known as hatebase.org. To make sure that our model

has capacity to read all of these words we added those that weren’t among the first 50

000 most common words in the reddit data to the tokenizer, resulting in 50 105 words.

The words that were in the hate speech lexicon, but occurred less than 10 times were

given a hateful-unknown word token. The quintessential hateful word is the derogatory

term n*gger and variations of this, unique words that begins with nig* are given the

unknown-n-word token.

We split the classification datasets in three parts:

• Training data: Used to update the weights

• Validation data: Used to measure out-of-sample performance of the model during

training

• Test data: Used to measure out-of-sample performance after training. All results

reported are from the test dataset

For both Waseem and Davidson data we created stratified samples consisting of ap-

proximately 10 percent of the overall number of documents each. The sizes of these

datasets can be found in table 2 and table 3.
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5 Experimental results

In this section we present the models and how they stack up against the current bench-

marks. First we define the metrics that we use to evaluate our models, we then report

our hyper-parameters, and then we go through the performance of the models.

5.1 Metrics

We will report on 3 different metrics: precision, recall, and F1. It is easy to mix some of

these metrics up, so below is a quick recap on the different metrics.

We start off by considering a two class classification problem, an observation can

either be 0 or 1. If we then have some model that produces predictions we get four

different possibilities for each observation. We start with the two most obvious cases:

true positives(tp) and true negatives(tn). The first one refers to the observations that

are 1 and was predicted to be 1. The second refers to the observations that are 0 and

that were predicted as 0. The last two cases refers to when our model is wrong. A false

positive(fp) is an observation that is predicted to be 1 but that is 0. A false negative(fn)

is an observation that is predicted as 0 but that are 1. This is summed up in the table

below. For notational simplicity, we drop the sum-operator below when we define our

metrics. So, we write the number of false positives as fp =
∑

false positives.

Predicted
Label 0 1

0 True positive False positive
1 False negative True negative

Table 4: The different possible outcomes of a binary classification problem

We may now define our metrics. The first metric we are interested in is called precision

and is defined as proportion of correctly classified examples among the one that are

predicted to be 1.

precision =
tp

tp + fp

The second metric is called recall and is the proportion of the observations that are

1 that are correctly classified as such.

recall =
tp

tp + fn

20



And finally, the third metric is called the F1-score and is a harmonic mean of the

precision and recall.

f1 = 2
precision× recall

precision + recall

All of these metrics are bound [0, 1], the higher the better. Even though that we are

dealing with more than two classes in our task, this argument is still valid. We can think

of our problem in a one-vs-rest way. As in the case of the Waseem data, we have three

classes: sexist, racist or neither. We can then consider each label at a time, calculate

the metrics as if the problem were binary, and then report the weighted average of each

metric.

5.2 Hyperparameters

Our language model has three recurrent layers, the first and third with 400 units in each,

and the middle with 1150 units. We applied dropout to the hidden-to-hidden weight

matrices in the middle lstm layer with a probability of 0.5. We also applied conventional

dropout to the inputs of the first LSTM layer with a probability of 0.5, to the inputs of

the second LSTM layer of 0.3 and to the inputs of the third LSTM layer of 0.1. During

training we also had a validation sample of 5000 sequences. We trained each model for

three epochs, one epoch took about 5-6 hours to run. We trained the forward model for

six epochs and the reverse model for four epochs.

We fine-tuned the model gradually unfreezing the layers. We trained for two epochs

per layer with ηmin = 0 and ηmax = 0.002, the first epoch for each layer with increasing

learning rate and the second with decreasing. We used a batch size of 100 observations

in the fine-tuning. We used the Adam (Kingma and Ba 2014) optimizer with β1 = 0.9

and β2 = 0.7. The language model has 30 million trainable parameters.

The classification models where trained using a learning rate multiplier of 0.7 using

the Adam optimizer with β values the same as above. We used a fixed learning rate of

0.0005 and a batch size of 128. The two models were then concatenated and trained for

two more epochs. In both cases we trained the combined model with a learning rate of

0.001 with multipliers of 0.001, using the same Adam optimizer as before.

The weights of the recurrent layers were initialised using a uniform distribution where

the limits are varying with the number of outputs and inputs to the specific layer4. The

embeddings were initialised using a uniform distribution with limits ±0.05.

4See keras.io for details, we used the glorot uniform initialiser
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5.3 Performance on the Waseem data

The performance metrics for the Waseem data can be found in table 5. The bidirectional

model managed to achieve an weighted average precision score of 0.83, an weighted av-

erage recall score of 0.83 which results in an weighted average f1-score of 0.83. The

performance varies over the different classes, the neither class had by far the highest

f1-score of 0.88, with precision at 0.85 and recall at 0.91. Racism has a slightly higher

f1-score than sexism which is due to the low recall score of the latter. The gap between

the precision, 0.78, and recall, 0.64, for the sexism class indicates that we have a relatively

low amount of false-positives. This means that if our model classifies a text as sexist, we

can be relatively certain that it actually is. Low recall indicates that our model missed

many of the sexism examples, i.e. we observe a high amount of false-negatives. Racism

has lower precision than sexism but higher recall.

Class F1 Precision Recall Support

Neither 0.88 0.85 0.91 1342
Racism 0.73 0.74 0.72 207
Sexism 0.70 0.78 0.64 421

Weighted Average 0.83 0.83 0.83

Table 5: Experimental results from Waseem / Waseem & Hovy data

If we consider the confusion matrix in table 6 we find that the model managed to

separate sexism from racism. There were only two cases of racism that was classified as

sexism, and only one example of sexism that was classified as racism. A large majority of

the errors made by the model was when it misclassified any of the two hateful categories

with neither and vice versa

Predicted
Label Neither Sexism Racism

Neither 1217 50 75
Sexism 56 150 1
Racism 151 2 268

Table 6: Confusion matrix for Waseem / Waseem & Hovy data

In order to make sense of the errors the model made, and also to inform further

research, we sampled three examples of every combination in the confusion matrix. Many

of the examples are hard to make any sense of, for example the tweet

Raw: @User People were making scientific discoveries, including Algebra,

before Islam.
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Processed: 〈unk〉 〈user〉 people were making scientific discoveries including

algebra before islam

Which was correctly classified as racist. Or the tweet

Raw: RT @User @User she is blond what do you want #notsexist

Processed: rt 〈allcaps〉 〈user〉 〈user〉 she is blond what do you want 〈hashtag〉
〈unk〉

which was correctly classified as sexist. These examples indicates that the model learns

to conflate use of some words with hate speech. In the first example the model most

likely pick out the word islam. In the second case it would make sense to assume the

model focus on the word blond or the hashtag that contained an unknown word. The

tendency to have certain words being influential can also be seen in the tweet

Raw: Why We Need ’A Feminist Deck’ LINK

Processed: why we need a feminist deck 〈url〉 〈unk〉

which was mislabelled as sexist by our model. The tweet is annotated as neither. The

word feminist is likely to play a big role in the classification. The model is not aware

of the contents of hyperlinks, which in this case makes the tweet difficult to classify.

Without any knowledge of the contents of the link this case is hard to classify.

In some cases the preprocessing choices are what makes our model misclassify, as in

one of the two cases where we mistook sexism for racism.

Raw: RT @User: What #FemiNazi said young children are not sexual? ”5

yr old son behaving sexually” LINK

Processed: rt 〈allcaps〉 〈user〉 what 〈hashtag〉 〈unk〉 nazi said young children

are not sexual 〈number〉 yr old son behaving sexually 〈url〉 〈unk〉

Which most likely was classified as sexism due to the misreading of the hashtag #Femi-

Nazi as 〈hashtag〉 〈unk〉 nazi5

5.4 Performance on the Davidson data

The model does not manage to classify the hateful tweets very well. In table 7 we see that

the f1-score for the hate class is 0.39, with a precision score of 0.30, and a recall score of

0.54. This is much lower than the f1-scores of the offensive and neither categories which

5Our preprocessing tries to split a hashtag that is a sentence, so that #ThisIsASentence would be
〈hashtag〉 this is a sentence. This is achieved by splitting a hashtag by capital letters.
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has f1-scores of 0.93 and 0.84. In turn, we observe low scores across the board for the

hate class with a precision score of 0.54 and a recall score of 0.30. For the neither class

we observe values of 0.84 for f1 and recall, and 0.83 for precision. The most common

class offensive achieves a precision score of 0.93, a recall score of 0.96, which results in a

f1-score of 0.94.

Class F1 Precision Recall Support

Hate speech 0.39 0.54 0.30 143
Offensive language 0.94 0.93 0.96 1919
Neither 0.84 0.84 0.83 416

Weighted Average 0.89 0.89 0.90 2478

Table 7: Experimental results from Davidson data

In table 8 we see the confusion matrix for the Davidson data. It is obvious that we

didn’t manage to classify the hate class very well. In most cases, hate speech is conflated

with offensive language. This is most likely a tendency of the model to base predictions

on certain words.

Predicted
Label Hate speech Offensive language Neither

Hate speech 43 87 13
Offensive language 29 1838 52

Neither 8 61 347

Table 8: Confusion matrix for Davidson data

Our model manages to correctly classify a few cases of the hate speech class. For easy

examples such as,

Raw: @whoswilly white boy talmbout Ight I’ll see you tomorrow at school

n*gger

Processed: 〈unk〉 〈user〉 white boy 〈unk〉 〈unk〉 ill see you tomorrow at school

n*gger

Or the tweet,

Raw: @USER @USER @USER USER is Chi Sox Jew fag.

Processed: 〈unk〉 〈user〉 〈use〉 〈user〉 〈unk〉 is chi sox jew fag

If we look at examples that were labelled neither but were predicted as hate we find some

cases that are strange. For example,
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Raw: @USER Marshall Law! Whatever you coon

Processed: 〈unk〉 〈user〉 marshall law whatever you coon

which actually seems to be misclassified. The word coon is an insulting word, which

basically can be translated to the n-word when used against blacks. So does the tweet

Raw: Do you have a nickname? What is it? &#8212; Tator, Tator tot,

Tightey whitey, whitey Jr, Taylor whitey pants, agent ti... LINK

Processed: do you have a nickname what is it 〈number〉 〈unk〉 〈unk〉 tot 〈unk〉
whitey whitey jr taylor whitey pants agent ti 〈repeat〉 〈url〉 〈unk〉

which is difficult to classify, even for a human. The model classifies it as hate, which

makes sense given earlier examples of the model depending on individual words in the

tweets.

5.5 Comparing our results to the benchmark

In table 9 we list the results of other published metrics using the same data as us.

Waseem, Thorne, and Bingel (2018) is the main source we compare our results to as they

use similar data splits as we do and also utilize a transfer learning technique in their

experiments. Davidson et al. (2017) reports the result they observe when training and

measure performance using the same data. Even though they use a classifier that doesn’t

overfit like a neural network-based model might, it cannot be seen as a true estimate of

out-of-sample performance.

Model F1 Precision Recall

Waseem / Waseem & Hovy data

Base 0.80 . .

Ours 0.83 0.83 0.83

Davidson data

Base 0.90 0.89 0.91

Waseem, Thorne, and Bingel (2018) 0.89 . .

Ours 0.89 0.89 0.90

Table 9: Hate speech classification benchmark results. The Ours refers to the model in
this paper

When training with the Waseem data we observe a new state-of-the-art result with a

weighted average f1-score of 0.83 to compare with the previously observed 0.80. We did
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not manage to beat the benchmark set by Davidson et al. They observed a f1-score of

0.90 while we observe a score of 0.89 which interestingly is the same observed score as

Waseem, Thorne, and Bingel (2018).

6 Conclusions

In this thesis we set out to build a scalable hate speech classification model. The model

that we’ve describes is scalable in the way that we obtain state-of-the art, or close to it,

on two previously published benchmark datasets. The model is scalable since we used

the same preprocessing on the two different datasets, this gives our model a very nice

plug-and-play feature. Given a new dataset, we can with minimal effort, train a classifier

with good performance, or even state of the art performance.

Even though we didn’t overcome the issue of depending on labelled datasets, and the

issues that comes with it; such as varying definitions and low inter-rater agreement, we

come close to a solution. We’ve shown that a semi-supervised approach to hate speech

classification is the way forward to build good classifiers. The second part of the issue is

coming up with the right annotation scheme, or even schemes depending on the platform

and usage. Transfer learning lets us train complex architectures using minimal data, as

shown in this thesis. This means that by using a transfer learning technique we don’t

need very large datasets to achieve good general performance.

Good areas of further research would be any of the following:

• Experiment with alternate unsupervised techniques, such as sequence auto-encoders.

• Experiment with different fine-tuning techniques and ensembling procedures.

• Research the unconscious biases that we learns from the annotated data. As shown

in the results section, our model tends to see the occurrence of a certain hateful

word as evidence enough. How does this affect the end user if the words that are

learned to be hateful is words such as homosexual, muslim, or feminism?
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