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Abstract 
Feature selection is the process of automatically selecting important features from data. It is an 

essential part of machine learning, artificial intelligence, data mining, and modelling in general. 

There are many feature selection algorithms available and the appropriate choice can be difficult. 

The aim of this thesis was to compare feature selection algorithms in order to provide an 

experimental basis for which algorithm to choose. The first phase involved assessing which 

algorithms are most common in the scientific community, through a systematic literature study in 

the two largest reference databases: Scopus and Web of Science. The second phase involved 

constructing and implementing a benchmark pipeline to compare 31 algorithms’ performance on 50 

data sets.  

The selected features were used to construct classification models and their predictive performances 

were compared, as well as the runtime of the selection process. The results show a small overall 

superiority of embedded type algorithms, especially types that involve Decision Trees. However, 

there is no algorithm that is significantly superior in every case. The pipeline and data from the 

experiments can be used by practitioners in determining which algorithms to apply to their 

respective problems. 
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Sammanfattning 
Variabelselektion är en process där relevanta variabler automatiskt selekteras i data. Det är en 

essentiell del av maskininlärning, artificiell intelligens, datautvinning och modellering i allmänhet. 

Den stora mängden variabelselektionsalgoritmer kan göra det svårt att avgöra vilken algoritm som 

ska användas. Målet med detta examensarbete är att jämföra variabelselektionsalgoritmer för att ge 

en experimentell bas för valet av algoritm. I första fasen avgjordes vilka algoritmer som är mest 

förekommande i vetenskapen, via en systematisk litteraturstudie i de två största 

referensdatabaserna: Scopus och Web of Science. Den andra fasen bestod av att konstruera och 

implementera en experimentell mjukvara för att jämföra algoritmernas prestanda på 50 data set. De 

valda variablerna användes för att konstruera klassificeringsmodeller vars prediktiva prestanda, 

samt selektionsprocessens körningstid, jämfördes. Resultatet visar att inbäddade algoritmer i viss 

grad är överlägsna, framför allt typer som bygger på beslutsträd. Det finns dock ingen algoritm som 

är signifikant överlägsen i varje sammanhang. Programmet och datan från experimenten kan 

användas av utövare för att avgöra vilken algoritm som bör appliceras på deras respektive problem. 

 

Nyckelord  

Variabelselektion, maskininlärning, datautvinning, klassificering 
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1 Introduction 
 

This chapter explains the purpose of the project by introducing the topic and briefly explaining its importance 
in a broad context and the current state, including problems and limitations. The problems addressed by the 

project are specified, along with aims and objectives, to which approaches and delimitations are presented.  

In recent years, the size of collected data sets are increasing, both regarding the number of 

observations and number of dimensions (Fig. 1). More data means potentially greater predicting 

power, discoveries and understanding of phenomenon. However, large amounts of raw data by itself 

is not particularly useful for analysis and must be processed to extract patterns or insight (1). One 

such pre-processing step is to determine which features reflect the underlying structure of the data. 

 

 
Figure 1: The increase of size and dimensionality of datasets.The data points were collected from the UCI Data Set 

Repository (2). 

Feature selection is the process of automatically selecting a subset of features from the original data 

set. Its importance for machine learning, artificial intelligence, statistics, data mining and model 

building is undisputed and the use will increase as data sets grow (3–5). Feature selection removes 

irrelevant, redundant and noisy data, which reduces computation costs, improves predictive 

performance and model interpretability (6). 

There are many feature selection algorithms (FSAs) available but knowing which one to use for a 

given scenario is not an easily answered question (5). Several studies have concluded that different 

FSAs vary greatly in performance when applied on the same data (7). Others have claimed that all 

algorithmic performance is equal when averaged on every possible type of problem (8). Some have 

found that incorrectly applied FSAs can reduce predictive performance (1,9).   

Finding the optimal feature selection algorithm remains an open research question and many 

benchmark studies have been undertaken. The problems with many existing benchmarks are 
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● No or poor motivation for the choice of algorithms included. 

● Small number of algorithms and data sets included. 

It therefore remains unclear for inexperienced practitioners from different fields which FSAs to use. 

  

 Aim 

This report is intended for practitioners who are not data scientists, statisticians or machine 

learning experts. The aim is to benchmark common feature selection algorithms on a large and 

diverse set of classification problems. This diversity might help readers find results on data sets that 

are similar to their own. Hopefully it will help users in choosing an algorithm and serve as an 

introduction to the field. We also hope to entice the more experienced reader to try out alternative 

algorithms that are not routinely used within their field. Additionally, we will construct an 

experimental pipeline for benchmarking FSAs. The resulting software will be available for Nordron 

AB to extend and develop further into an interactive benchmarking tool. 

 

 Objectives 

The objectives consist of answering the following questions: 

1. Which feature selection algorithms are the most prevalent in literature? 

2. Taking the previous objective into account, which feature selection algorithm(s) has the 

overall best performance?  

 

 Approach 

The first objective was addressed quantitively, by searching certain scientific databases for how 

publications existed for each FSA. The second objective was solved by constructing a pipeline 

capable of performing the experiment and analysing the results. By testing 31 feature selection 

algorithms on 50 data sets using three performance metrics, we acquired a large amount of 

information that can be used for comparison. 

 

 Delimitations 

● The number of selected features was set to 50% of the original features for all algorithms. 

● Feature extraction techniques were not included. 

● Performance in this work is evaluated in terms of accuracy, F-measure and runtime.  

● No algorithms were written from scratch, only pre-made software packages were used. 

● Due to the number of algorithms involved and the intended reader, this work focuses on the 

application, not on the inner workings of the algorithms. 

● The quality (feature engineering) of the data sets were not questioned. 
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 Thesis overview 

The remaining chapters are structured as follows: 

Chapter 2. Presents the theoretical background related to the thesis. It explains the concepts of 

machine learning, feature selection, how to evaluate algorithmic performance and statistical 

analysis. 

Chapter 3. Explains the literature study, experimental setup. 

Chapter 4. The results are presented in terms of predictive performance and runtime. 

Chapter 5. The results are discussed. 

Chapter 6. The conclusions are presented. It further brings up recommendations for practitioners 

and suggestions for future research. 

Appendix A-F. Contains relevant but not essential information such as raw data from the 

experiments, search queries, definitions and software package information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 
 

  



 

5 
 

2 Theory 
 

This chapter explains the theory that is relevant for understanding the thesis. It starts by describing machine 

learning in a broader sense and works towards more detailed subjects. It explains the concepts: machine 

learning, feature selection, performance evaluation, cross-validation, hyperparameter optimisation and 

strategies for analysis. 

 

 Machine learning 

Machines learning is a scientific discipline concerned with algorithms that automate model 

building, in order to make data-driven predictions or analysis. It borrows from several other fields 

such as psychology, genetics, neuroscience and statistics (6). The applications are many and varied, 

to name but a few: medical diagnostics (10), image recognition (11), text categorisation (12), DNA 

analysis (13), recommendation systems (14), fraud detection (15), social media news feeds (16), 

search engines (17) and self-driving vehicles (18). 

A central concept of human and machine learning is called the Classification Problem. It can be 

seen as a variant of the famous philosophical Problem of Induction (19), which questions how one 

can generalise from seen examples to unseen future observations. In classification, this means 

determining what category a new observation belongs to (Fig. 2.a). Knowing the class (or label) of 

an object means that one can foresee its properties and act accordingly. It is an important technique 

since it solves many practical problems such as deciding if an email is spam by reading the title or 

determining the gender of a person by looking at an image. The classes in these cases are categorical 

or discrete. If the class values are continuous it is a regression problem (Fig. 2.b). An example is to 

determine the price of a used car by looking at mileage, age etc. 

Figure 2: Classification vs. regression problems. Classification problem (A): The two shapes belong to different classes. 

The line is the decision boundary made by the trained model and determines how the model classifies new examples. 

Regression problem (B): The line represents a model that has been fitted to data.  

  

(A) (B) 
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There are several ways to categorise learning types. If a problem has known class labels, it is called a 

supervised machine learning problem (also called function approximation). A problem without 

known class labels is an unsupervised problem. Some structure must then be derived from the 

relationships of the data points. Semi-supervised problems have both labelled and unlabelled data. 

The labelled data is used as additional information to improve unsupervised learning. All three 

types of learning can be applied to both classification and regression problems. This thesis concerns 

supervised learning algorithms applied on classification problems. 

There are many terms used to refer to machine learning algorithms and the related concepts. In this 

report learning algorithms are referred to as predictors, while the term algorithm refers to both 

predictors and feature selection algorithms. The terms class and label are used to denote categories 

of data instances. 

Each type of predictor has a different strategy for how it builds models depending on the underlying 

mathematics. The process of building models by loading data into the predictor is called fitting or 

training. It can be regarded as the search for a function whose input is an instance of the data and 

the output is a label. Given the data set shown in Table 1, a predictor would likely produce a simple 

function where the output is the input squared, 𝑦(𝑥) = 𝑥2. When this function is given a new input 

such as 10, it will make the prediction that the label is 100. 

Table 1: Simple data set with one feature and one output label. 

instances 1 2 3 4 5 6 7 

labels 1 4 9 16 25 36 49 

 

Both the predictive performance and training time of the model depends on several factors, such as 

the data quality, size and dimensionality, in addition to the underlying mathematics and 

mechanisms of the predictor. Having access to bigger data sets means that the predictor gets more 

training examples which generates - but does not guarantee - more accurate models. It also 

increases the training time since more instances must be processed. Predictors with simple 

underlying mathematics are trained faster than complex ones since less computation is needed to 

build the model.  

2.1.1 Ethics 

Machine learning is having a huge impact on the world and consequently raises a score of ethical 

questions. Poorly designed implementations of machine learning not only inherit but can amplify 

biases and prejudices. If a predictor is trained on a data set that contains biases it may project these 

upon use (20–22). An example of this regards risk assessment algorithms used to predict future 

criminal behaviour, of which one was shown to assign more false positives to certain groups of 

people (23). Some systems decide what news articles are displayed in social media, potentially 

misrepresenting and biasing public opinion and world awareness (24). Other situations raise the 

question of culpability such as who to blame when a self-driving car collides (25). There is also the 

question of artificial intelligence rendering a large portion of the human workforce redundant. Frey 

and Osborne (2017) estimate that 47 % of US jobs have a high risk (>0.7) of becoming automatable 

in the next few decades (26). Many machine learning systems are black boxes and thus unfair 

decisions on subjective problems could happen unbeknownst to the user or even the designer. In 

summary, this development puts a great weight on responsible data collection, design transparency 

and accountability. How to design fair algorithms is an open research question (27,28).  

 

 



 

7 
 

 Feature selection 

“Make everything as simple as possible, but no simpler” -  Albert Einstein (as paraphrased by 

Roger Sessions in the New York Times, 8 January 1950) 

The features of a data set are the semantic properties that describe the object or phenomenon of 

interest. When a data set is represented as a table, the features are usually the columns and each 

instance is a row. In supervised problems, there is also a column denoting class membership (Table 

2). Consequently, every instance is made up by a feature vector, and a corresponding class label. 

Table 2: A fictive diabetes diagnostic data set. Each instance represents a patient. 

High insulin 
resistance 

Weight 
(kg) 

Family history 
of disease 

Height 
(cm) 

Shoe size 
(paris point) 

Favourite 
movie 

Label 

yes 123 yes 172 40 
“Minority 
Report” 

positive 

yes 81 no 190 47 “Ex Machina” negative 

no 95 yes 163 37 “Her” negative 

 

There are many possible definitions of feature selection. Different aspects of the process have 

received varying emphasis depending on the researcher stating the definition. A proposed general 

definition, and used for this thesis is: 

“Feature selection is the process of including or/and excluding some features or data in modelling 

in order to achieve some goal, typically a trade-off between minimising the cost of collecting the 

data and fulfilling a performance objective on the model.” - Torbjörn Nordling (Assistant 

Professor, Founder of Nordron AB, December 2016) 

The difficulty in finding fully overlapping definitions could be because there are several types of 

FSAs with varying objectives. A collection of definitions rewritten as mathematical optimisation 

problems (Appendix A), resulted in three points that are central to the concept: 

1. A chosen performance objective on the resulting model such as reduced training time or 

improved predictive accuracy. 

2. The reduced feature vector—the feature subset—should be as small as possible. 

3. The label distribution of the subset should be as close as possible to the original label 

distribution. 

Features selection can thus be viewed as a pre-processing step applied on data before it is used to 

train a predictor. FSAs can themselves use predictors, and some predictors perform internal feature 

selection as part of the training process. In the examples in Table 2, a FSA would likely omit the 

“Shoe size” and “Favourite movie” columns since they contain useless information for diabetes 

diagnostics. The technique should not be confused with feature extraction, where features are 

altered, such as reducing the number of features by combining them; feature selection omits 

features without altering the remaining ones. 

There is no guarantee that every feature is correlated with the label. A feature is relevant if its 

removal reduces predictive performance. Irrelevant features have low or no correlation with the 

label. Redundant features have a correlation with the label but their removal does not reduce 

performance due to the presence of another feature; both being relevant on their own. An example 

of this could be the same value given in two different units, represented as two different features. 

(29)  
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There are several reasons for removing features from data sets. Features with low or no correlation 

can lead to overfitting, meaning that the model is overly complex and describes noise and random 

error rather than underlying causality. The consequence is reduced predictive performance since the 

model does not generalise well on unseen data (6). Overfitting has been described as the most 

important problem in machine learning (30). Other causes and remedies for overfitting are 

mentioned in sections 2.4 Cross-validation and 2.5 Hyperparameter optimisation. 

Another reason for using FS is higher learning efficiency. Since the data set is less complex the 

learning process is faster. Additionally, a data set with more features requires more instances for the 

predictor to find the best solution. This is due to the density of the instances decreasing as the 

dimensionality increases, known as the Curse of Dimensionality (Fig. 3). Since the number of 

instances often is fixed, reducing the number of features is tantamount to increasing the amount of 

instances (6). 

Figure 3: Curse of dimensionality. The three figures show the same data points plotted in one (A), two (B) and three (C) 

dimensions. Even though it is possible to draw a cleaner decision boundary in three dimensions than in two, the predictive 

performance will probably be worse due to increased data sparsity. 

(A) 

(B) 

(C) 
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Feature selection also improves model interpretability. A predictor trained on a high-dimensional 

data set will naturally produce a complex model, making it difficult to understand the modelled 

phenomenon. 

Attempts have been made to categorise FSAs depending on how a feature subset is chosen: 

wrapper, embedded and filter. However, there is no established unified framework and there are 

discrepancies between the definitions of these categories. The descriptions below were formulated 

after analysis of eight publications that produced category definitions (1,4–7,31–33) 

2.2.1 Wrapper 

This category combines a search strategy with a predictor to select the best subset. By training with 

different candidate subsets and comparing their performances, the subset that gives the best 

performance is kept. An example: a data set consists of three features 𝐷 =  {𝑥1, 𝑥2, 𝑥3}. Three subsets 

𝑆 ⊂ 𝐷,  𝑆1  =  {𝑥1, 𝑥2},  𝑆2  =  {𝑥1, 𝑥3},  𝑆3  =  {𝑥2, 𝑥3} are used separately to train the same type of 

predictor, producing three models. The performance of the models is then compared on a chosen 

performance measure such as accuracy. The subset that yields the best performing model is selected 

as the final subset. Note that in this example only 42.8 % of all feature combinations are examined. 

The only way to guarantee finding the best solution would require testing all seven feature 

combinations with an exhaustive search (1). 

An exhaustive search is only feasible if the number of features is small (1,29). A data set with 90 

features, such as the Libras data set in this thesis, has 290 - 1 possible subsets. If 100 000 subsets can 

be examined each second it would take more than 4∙1018 years to finish. Applying heuristic search 

strategies enables finding adequate solutions in a shorter timeframe, without testing all possible 

feature combinations. Some examples of heuristic search strategies are GRASP (34), Tabu Search 

(35), Memetic Algorithm (36), Sequential forward selection (SFS) and Sequential backward 

selection (SBS) (37).  

The two strategies used in this work are SFS and SBS. The former works by starting with an empty 

feature set and sequentially adds the feature that yields the best score until the desired subset size is 

reached. The latter starts with the full feature vector and sequentially removes the feature that yields 

the worst score. Both algorithms have the same complexity but generate different candidate subsets, 

leading to different solutions as illustrated in Figures 4 and 5. In this thesis, the names of wrapper 

algorithms are combinations of the internal predictor and search strategy, for example: AdaBoost 

SBS, Decision Tree SFS and Perceptron SFS. 

 

 

Figure 4: Process of Sequential Forward Selection (SFS). The objective function, for instance predictive accuracy, is 

represented by J(∙). Starting from the top, features are added to the best performing subset. The best subset is found to be 

the combination of x1, x2 and x3 (circled). 

𝐽(𝑥1) = 0.45 𝐽(𝑥4) = 0.4 𝐽(𝑥3) = 0.5 𝑱(𝒙𝟐) = 𝟎. 𝟕 

𝐽(𝑥2𝑥1) = 0.55 𝐽(𝑥2𝑥4) = 0.5 𝑱(𝒙𝟐𝒙𝟑) = 𝟎. 𝟖 

𝑱(𝒙𝟐𝒙𝟑𝒙𝟏) = 𝟎. 𝟗 

 

𝐽(𝑥2𝑥3𝑥4) = 0.4 

 

𝐽(𝑥2𝑥3𝑥1𝑥4) = 0.7 
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Figure 5: Process of Sequential Backward Selection (SBS). The objective function, for instance predictive accuracy, is 

represented by J(∙). Starting from the top, features are removed from the best performing subset. The best subset is found to 

be the combination of features x1 and x3 (green circle). In this problem, a better subset is found using SBS, since SFS (Fig. 4) 

never examines the combination of x1 and x3. 

2.2.2 Embedded 

Another way to use predictors for feature selection is to examine the model structure instead of 

performance. This can be illustrated in the case when the trained predictor is a linear polynomial. 

The model is represented by the function 𝑦, �̅� is the feature vector and 𝐶̅ is a vector of coefficients: 

𝑦(�̅�) = 𝐶̅�̅� = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4𝑥4 

These coefficients can be viewed as weights that the predictor has given each feature, which indicate 

their importance in the generated model. By choosing some threshold value of  𝐶̅ or length of  �̅�, 

unimportant features are omitted. If for example it is decided that half the features shall be omitted 

and 𝐶3 > 𝐶2 > 𝐶1 > 𝐶4 the resulting subset will be 𝑆 =  {𝑥3, 𝑥2}. 

This type of embedded method, where the learning algorithm is trained only once, will be referred 

to as standard embedded. Another type is Recursive Feature Elimination (RFE) (38) which checks 

the feature weights and iteratively re-trains the predictor after removing the least important feature 

with each iteration. In this thesis, the names of the embedded methods are the names of the internal 

predictors used, with the suffix ‘RFE’ added on the versions that use recursive feature elimination. 

Some examples are Random Forest, Random Forest RFE, Perceptron and LASSO. 

2.2.3 Filter 

Filter methods assess feature importance without the use of predictors by examining the general 

characteristics of the data set. If for example a feature value barely varies across all instances, it is 

ineffective for differentiating between labels. Therefore, calculating the 𝜒2 or F-test statistic for a 

feature column are ways to estimate correlation with the label. Other filter methods, such as 

Minimum Redundancy Maximum Relevance (mRMR) and Correlation-based Feature Selection 

(CFS), also try to eliminate redundant features by calculating feature-to-feature correlation, thus 

further improving the data set quality.  

2.2.4 Univariate or multivariate selection 

Filter and embedded methods rank features according to their individual importance while wrapper 

methods choose entire subsets at a time (Table 3). Theoretically, the complexity of univariate 

methods should therefore scale linearly with the number of features (39) and thus be faster than 

wrappers, especially when dealing with high-dimensional data sets (40). Wrappers, on the other 

𝐽(𝑥1𝑥2) = 0.55 𝐽(𝑥2𝑥3) = 0.8 𝑱(𝒙𝟏𝒙𝟑) = 𝟎. 𝟗𝟓 

𝑱(𝒙𝟏𝒙𝟐𝒙𝟑𝒙𝟒) = 𝟎. 𝟕 

𝐽(𝑥1𝑥2𝑥4) = 0.5 

 

𝑱(𝒙𝟏𝒙𝟐𝒙𝟑) = 𝟎. 𝟗 

 

𝐽(𝑥2𝑥3𝑥4) = 0.4 

 

𝐽(𝑥1𝑥3𝑥4) = 0.3 

 

𝐽(𝑥1) = 0.45 

 

𝐽(𝑥3) = 0.5 
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hand, directly test the predictive performance of entire feature subsets. This excels in situations 

where a combined set of features is optimal, regardless of their individual importance.   

Table 3: Summary of FSA types. 

 Involves internal predictors Basis of selection Uni- or multivariate 

Wrapper Yes Model performance Multivariate 

Embedded Yes Model structure Univariate 

Filter No Statistical measures Univariate 

 

 Performance evaluation 

The performance of a predictor depends on the quality of the data used for training. Since FS is a 

pre-processing step applied on the data, the performance of the predictor implicitly represents the 

performance of the FSA (Fig 6). The general process is described in the following steps: 

 
Figure 6: Basic experimental process. The last step is used for evaluation.  

1. The data set is split into two sets, one for training and one for testing. 

2. The training set is run through the FSA which produces a subset with less features. 

3. The subset is used to train an external predictor. 

4. The test set (without its labels) is inputted into the predictor which produces predictions, in 

other words, guesses the label of each instance. 

5. The predictions are compared to the true labels in order to measure predictive performance. 

This approach has some problems that need to be resolved. Different predictors have different 

biases and might favour certain FSAs. It is therefore prudent to choose several predictors with 

varying underlying mathematics. It is also wise to test performance with different metrics. Firstly, a 

predictor may perform optimally on one metric and suboptimally on another (41). Secondly, the 

performance metrics in turn have various strengths and weaknesses. Thirdly, practitioners in 

different scientific fields prefer different metrics (and predictors) (41). The measures used in this 

experiment are accuracy, F-measure and runtime. In order to understand the former two, it is 

necessary to understand confusion matrices.  

2.3.1 Confusion matrix 

Several performance metrics for predictions are derived from the confusion matrix: a n×n-

dimensional matrix with n being the number of classes in the dataset (Table 4). All the predictions 

on the diagonal are correct. A n×n-dimensional can be reduced to a 2×2 matrix by applying micro 

averaging (Table 5), enabling calculation of other compressed performances metrics, such as 

accuracy and F-measure. True positives and true negatives are the number of correctly predicted 

positive and negative cases respectively. False positives and false negatives are the number of 

falsely predicted positive and negative cases and are also known as Type I and Type II errors 

respectively. 
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Table 4: A 3x3-dimensional confusion matrix.There are for example 17 instances of A but seven of these are falsely 

classified as B and C i.e., false negatives.

 
Actual Class 

A B C 

Predicted Class 

A 10 3 1 

B 5 10 9 

C 2 3 10 

 

Table 5: Table 4 after micro averaging for B-class.

 
Actual Class 

B Not B 

Predicted Class 
B 10 14 

Not B 6 23 

 

2.3.2 Accuracy 

The degree of which the predictions match the reality that is being modelled. It is defined as the 

number of true positives (TP) and true negatives (TN) divided by the total amount of predictions, 

which includes false positives and negatives (FP and FN): 

𝐴𝐶𝐶 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Accuracy can be misleading when a data set has an imbalanced class distribution. Consider a cancer 

data set with 90500 negative cases and 1000 positive cases. The predictor in Table 6 would get a 99 

% accuracy even though it missed half of the cancer cases. Since many real-world data sets have 

imbalanced class distributions (6) accuracy alone is insufficient as a performance metric. 

Table 6: Cancer detection. 

 

Actual Class 

Positive Negative 

Predicted Class 

Positive 500 500 

Negative 500 90 000 

 

2.3.3 F-measure 

This is a mean between precision and recall. Precision (also called positive predictive value) is the 

portion of predicted positives that are actually positive. Low precision happens when few of the 

positive predictions are true. Recall (also called true positive rate and sensitivity) is the portion of 

true positives that are predicted positive. Low recall happens when few of the true positive cases are 

predicted at all. An algorithm with a good F-measure has both high precision and recall since it is 

heavily penalised if either has a small value. F-measure is therefore better than accuracy when 

dealing with imbalanced data sets. In the case with Table 6, the algorithm would only get a F-

measure of 50 %. However, it does not consider the number of true negatives which is a weakness 
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when the negative class label is interesting. Precision (P), recall (R) and F-measure (F) are 

calculated as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 = 2
𝑃 ⋅ 𝑅

𝑃 + 𝑅
 

2.3.4 Runtime 

The time it takes for a FSA to produce a subset. Speed is important when dealing with large, high-

dimensional data sets. It also enables scrupulous calibrations and reruns which in turn can improve 

predictive performance.  

In contrast to comparing FSAs runtime using only one data set, comparisons across multiple data 

sets requires further treatment. Calculating the mean of the runtimes for a FSA across data sets is 

not prudent since large data sets would result in misleading outliers. It would also make it difficult 

to visualise and compare all runtimes. This problem is addressed by rescaling the runtimes for each 

FSA and dataset. 𝑥′ is the rescaled runtime, 𝑥 is the initial runtime, 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the largest and 

smallest runtimes in the set respectively (42). The rescaled values range from 0 to 1 with 0 being the 

slowest and 1 being the fastest in the set. An example is shown in Table 7.  

𝑥′ = 1 −
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

 
Table 7: Examples of runtime rescaling. 

Algorithm 
Runtime Rescaled runtime 

Data Set 1 Data Set 2 Data Set 1 Data Set 2 

FSA 1 15 300 0.81 1 

FSA 2 45 8600 0.11 0.14 

FSA 3 5 450 1 0.98 

FSA 4 60 10 000 0 0 

 

 Cross-validation 

Training and testing a predictor on the same data can lead to overfitted models since the instances 

used for training and testing are the same. To know how well an algorithm performs on unknown 

data it is therefore important to test the performance with unseen instances. A number of instances 

are chosen to be the training set and the rest is the testing set. This is known as a train/test split and 

enables a more realistic estimate of the predictive performance. A problem however, is that the 

performance highly depends on how the instances are distributed between the two sets; they may 

for example have disparate class distributions. A way to bypass this is to reuse the data several times 

with different equally sized folds, train the predictor separately with each training fold, test the 

performance with each test fold and average the measured performances. In Table 8 each partition 

is used three times for training and once for testing. The three training sets in the training fold are 

used in union to train the predictor in each run. This is known as cross-validation (CV) and is a 

better estimate of performance on unknown data. Another advantage of CV is a more economic use 

of data since every instance is recycled. 
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Table 8: A four - fold cross-validation. 

 Train set Test set 

First fold 1 2 3 4 

Second fold 2 3 4 1 

Third fold 3 4 1 2 

Fourth fold 4 1 2 3 

 

The type of CV applied in this experiment is called Stratified K-fold where the class distribution of 

the entire data set is approximately represented in each fold. This is done to reduce the variability of 

the predictor performance between folds. It has been proven to be superior to regular CV in most 

cases (29). 

 

 Hyperparameter optimisation 

Hyperparameters are settings that need to be specified for many algorithms and have a big impact 

on performance, such as model flexibility and overfitting. Figure 7 show models that are over- and 

underfitted respectively due to poor hyperparameter choices. In order to do a fair benchmark of 

machine learning algorithms it is important they perform optimally (43). Hyperparameter 

optimisation (HPO) is therefore a vital step. Determining the correct hyperparameters is an 

optimisation problem that depends on the data set and performance metric in question. It must 

therefore be performed anew for both the FSAs and predictors every time a data set is processed. 

Figure 7: Over- and underfitted models. Overfitted models (top row) and underfitted models (bottom row). 
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There are several variants of HPO, however to preserve reproducibility grid searches were 

implemented in this experiment. In grid searches, all parameters are manually chosen and the 

program exhaustively produces FSAs and predictors using each combination of parameter values. 

The procedure is computationally expensive but prudent when comparing algorithms since it does 

not involve randomness. An example is the Support Vector Machine FSA with two varied 

hyperparameters  𝐶 and  𝛾: 

𝐶 ∈ {2−3, 2, 23, 25, 29, 213} 

       𝛾 ∈ {2−15, 2−11, 2−7, 2−5, 2, 23} 

Since both parameters have six values with each pair is used once, it is run 36 times within each 

cross-validation fold. Each time it produces a new–but not necessarily–unique feature subset, which 

is then sent to the predictor. The predictor in turn is trained 36 times for each of its own 

hyperparameter settings. In this benchmark, the reason for also performing HPO on the predictors 

even though only the FSAs are being compared, is to ensure the predictors’ default settings do not 

randomly favour particular FSAs. 

Feature subset size can also be considered a hyperparameter. Many FSAs require this to be 

specified, but the optimal number of features is most often unknown. If the subset is too large, it 

may eliminate the purpose of FSA; if the subset size is too small, it may omit relevant features and 

result in a biased predictor. In practice one usually tests the performance in a grid search fashion 

with subsets of varying sizes and picks the size with the best performance (4). 

 

 Analysing benchmark results 

In order to discern which FSAs perform better, statistical hypothesis testing can be used. The many 

different strategies available can easily become overwhelming, each with their various benefits and 

limitations. The following section explains the two main categories of these and how to choose 

between them. The subsequent section explains briefly the issue with multiple comparisons, as with 

the case of using several different data sets, describing specifically the method that was used in this 

thesis for data analysis.  

2.6.1 Parametric vs nonparametric statistical testing 

Parametric hypothesis tests make strong assumptions about the distribution of the underlying data 

such as normality, and can be powerful in rejecting a false null hypothesis when conditions are met. 

In contrast, nonparametric tests are less powerful but make weaker assumptions, allowing for 

nonnormality (44). Machine learning and data mining communities have voiced concerns regarding 

misuse and misinterpretations of hypothesis testing, which can lead to misinformed conclusions. 

Strict conditions on data distribution can incorrectly be assumed fulfilled resulting in overly 

confident results and false rejection of the null hypothesis. Yet as with nonparametric tests, the 

decreased power can result in interesting finds being missed, effectively blocking potential new 

discoveries (45).  

When choosing between methods of statistical analysis, the distribution of the performance scores 

needs inspection. Departures from normality can be seen with Tukey boxplots of the performance 

score for each FSA as modality, skewness and unequal variances. However, distributions can be 

deemed pseudo-normal depending on how severe these violations are, which can still warrant for a 

parametric method. If severe, the less powerful conservative nonparametric method is necessary, 

but offers consolation regarding observational value. In the case of FSA comparison, the value of 

mean performances across different datasets lack meaning, whereas a more interesting 

observational value is how the FSAs rank on each dataset. Nonparametric techniques in general 

make use of these individual ranks, in contrast to parametric techniques which use absolute values. 
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2.6.2 Multiple comparisons across multiple datasets 

There are many ways of comparing algorithms, and the choice depends on the experimental setting 

and conditions. The following is an example of multiple testing: 

1. State a null hypothesis for every pair of algorithms in the study, such as “A is equivalent to 

B”, and “A is equivalent to C”. 

2. Calculate the p-value for every pair, using for instance pairwise t test. 

3. Reject or retain each null hypothesis based on the p-values. 

The problem with this procedure is well known, and referred to as the multiple comparisons, 

multiplicity or multiple testing problem. In essence: with many null hypothesis, there is risk of one 

getting rejected by chance. A choice is therefore required among statistical techniques that can deal 

with multiple comparisons.  

Although there is yet no established strategy for comparing several predictors on several datasets, 

among the most well-known nonparametric techniques is the Friedman test. Iman and Davenport 

(1980) formulated an extension to the Friedman’s  𝜒𝐹
2 statistic in order to increase power (46); it 

was therefore the chosen technique for our experiment. Formally, 𝑘 FSAs are applied on 𝑁 datasets. 

Let 𝑟𝑖
𝑗
 be the rank of FSA 𝑗 on dataset 𝑖 regarding performance score. Using the average rank 𝑅𝑗 =

1

𝑁
∑ 𝑟𝑖

𝑗
𝑖 , the Friedman statistic 𝜒𝐹

2 is calculated: 

𝜒𝐹
2 =

12𝑁

𝑘(𝑘 + 1) [∑ 𝑅𝑗
2 −

𝑗

𝑘(𝑘 + 1)2

4 ] 

If the ranks are tied, the average of the tied ranks can be assigned. Missing values can be handled by 

receiving rank zero, and adjusting 𝑁 to 𝑁′ =  𝑁 − 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠  before averaging. The 

Iman-Davenport 𝐹𝐹 statistic is further calculated using 

𝐹𝐹 =
(𝑁 − 1)𝜒𝐹

2

𝑁(𝑘 − 1) − 𝜒𝐹
2  

which in turn is distributed along the 𝐹 distribution with (𝑘 − 1) and (𝑘 − 1)(𝑁 − 1) degrees of 

freedom. 

Multiple-hypothesis tests check if there exists at least one pair of FSA that are significantly different. 

Which pair or pairs that differ requires post hoc testing. The rationale of the Nemenyi post hoc test 

is that two FSAs differ in performance if their corresponding average ranks 𝑅𝑗 differ by at least the 

critical distance (CD), defined as 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘 + 1)

6𝑁
 

with the Nemenyi critical value 𝑞 at significance level 𝑎, which is derived from the studentised 

range statistic divided by √2 (46).  
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3 Method 
 

This chapter further explains the approaches presented in chapter 1. The resulting choice of FSA, predictors 

and datasets are presented, followed by a description of the experimental setup for FSA implementation.  

 

 Literature study 

The literature study resulted in 31 feature selection algorithms, three predictors and 50 data sets to 

include in the experiments. The following three sections describe how these were selected. 

3.1.1 Choosing feature selection algorithms 

The first criterion for inclusion of a FSA in this benchmark was prevalence. With the vast body of 

different algorithms, it can be difficult to discern which ones are most used by researchers. Due to 

diverse terminology it was necessary to have a comprehensive search string to uncover as many 

publications as possible. For this purpose, the list found in (47) was modified and extended. This set 

of terms is referred to as search string Feature Selection (ssFS) and is made available in Appendix 

B. Using ssFS to search Scopus, Web of Science and Google Scholar, FSA names were collected from 

review articles to a total of 102 algorithms. Every synonym and abbreviation for each name were 

used in combination with ssFS for searches of FSA publications in Web of Science and Scopus. For 

example, the search string used for the algorithm LASSO was (“LASSO” OR “least absolute 

shrinkage and selection operator”) AND (“feature selection” OR “attribute selection” OR “variable 

selection” OR …). The number of hits acted as an approximation of a method’s prevalence. The top 

results of these searches are found in Appendix C, along with a discussion about the difficulties of 

such a search. 

The second criterion was to include as many categories of FSAs as possible, with a variety of 

underlying mathematics; the assumption being that different types have varying advantages and 

limitations. Taking the intended reader/ user into account, the choice of FSAs was also restricted to 

the availability of pre-made software packages. Some highly prevalent methods, such as Genetic 

Algorithm and Multilayer Perceptron, were omitted since they were judged to require a high 

expertise to implement. The final chosen FSAs are listed in Table 9. 

 

Table 9: FSAs used in the experiment. 

Name 
Machine Learning 

Category 
Basic description 

FSA 
Category 

Source 

AdaBoost 

Tree Ensemble 

Builds models with weighted 
combinations of simple 
decision trees. Weights are 
assigned depending on how 
the trees misclassify. 

Embedded 

(48) 

AdaBoost RFE 

AdaBoost SBS 

Wrapper 

AdaBoost SFS 

ANOVA Statistical 
Selects the features with the 
highest variance. 

Filter (49) 

Correlation Based FS 
(CFS) 

Statistical 

Selects features that have a 
high correlation with the label 
and low correlation with each 
other. 

Filter (7) 

Chi Squared Statistical 
Selects the features with the 
highest variance. 

Filter (50) 



18 
 

Name 
Machine Learning 

Category 
Basic description 

FSA 
Category 

Source 

Decision Tree 

Decision Trees 

Builds a tree structure where 
the nodes are features and 
leaves are labels. Parent nodes 
have a higher feature-to-label 
correlation. 

Embedded 

(51) 

Decision Tree RFE 

Decision Tree SBS 

Wrapper 

Decision Tree SFS 

Fast Correlation Based FS 
(FCBF) 

Statistical 

Selects features that have a 
high correlation with the label 
and low correlation with each 
other. 

Filter (52) 

Least Angle Regression 
(LARS) 

Regularization and 
linear models 

Builds model by drawing a 
regression line and estimates 
feature importances by 
calculating the sum of squared 
errors. 
 

Embedded 
 

(53) 

Least Absolute Shrinkage 
and Selection Operator 
(LASSO) 

(54) 

LASSOLARS (53) 

Linear Regression - 

Low Variance Statistical 
Selects the features with the 
highest variance. 

Filter (49) 

Minimum Redundancy 
Maximum Relevance 
(mRMR) 

Statistical 

Selects features that have a 
high correlation with the label 
and low correlation with each 
other. 

Filter (55) 

Perceptron 

Neural Networks 

Iteratively trains predictive 
neurons and assigns feature 
weights depending on 
misclassification. 

Embedded 

(56) 

Perceptron RFE 

Perceptron SBS 

Wrapper 

Perceptron SFS 

Random Forest 

Tree Ensemble 

Splits data and trains a 
separate decision tree for each 
split. It then averages the 
decision trees. 

Embedded 

(57) 

Random Forest RFE 

Random Forest SBS 

Wrapper 

Random Forest SFS 

ReliefF Statistical 

Selects features that have a 
high correlation with the label 
and low correlation with each 
other. 

Filter (58) 

Support Vector Machines 
(linear) 
Support Vector Machines 
(linear) RFE Support Vector 

Machines 
 

Draws a linear decision 
boundary and maximises its 
margin. Bigger margins mean 
more informative features. 

Embedded 

(59) 
Support Vector Machines 
(nonlinear) SBS 
Support Vector Machines 
(nonlinear) SFS 

Draws a nonlinear decision 
boundary and maximises its 
margin. Bigger margins mean 
more informative features. 

Wrapper 

 

3.1.2 Choosing predictors 

The predictors were chosen to have different underlying mathematics. A thorough search for 

prevalence was not performed, however inspiration was taken from the work of Wu et al. (60). Their 
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work attempted to identify the top ten predictors used in data mining. The final choice is presented 

in Table 10.  

Table 10: Predictors used in the experiment. 

Name Type Source 

Gaussian Naive Bayes (NB) Bayesian (61) 

K-Nearest Neighbour (KNN) Instance based    - 

Decision Trees (DT) Decision Trees (51) 

 

3.1.3 Choosing and pre-processing datasets 

To reduce the risk of introducing bias by a particular choice of data set, the study consisted of 50 

data sets from different scientific fields and preferably derived from real world measurements. The 

number of instances, features and classes varied, however upper limitations to these were imposed 

due to increased computational costs. Well known data sets were used; avoiding customisations as 

much as possible to conserve reproducibility. Therefore, to fit the required input type for the 

algorithms, the data types were limited to numerical. Categorical text, features and labels were in a 

few cases transformed into appropriate integers. Data sets with missing values were avoided, since 

these require choosing among many available imputation strategies, of which the optimal choice 

remains as an open research question. However, if < 5 % of all instances had missing values, the 

dataset was included with the instances removed. Time series were also avoided, since these require 

special treatment in terms of sampling. In summary, data sets fulfilled following requirements for 

inclusion in the study: 

• has an upper limit on the number of instances and features in the order of 105 and 102 

respectively, 

• is well known, preferably highly cited in prominent journals,  

• has categorical labels, in other words is a classification problem, 

• consists of numerical datatypes, 

• is not a time series with data points that are progressing through time, 

• is not a multi-label classification task, meaning one instance can only belong to one class,   

• has no or very few (< 5 %) instances with missing values. 

The data sets and their corresponding information can be found in Appendix D. 

 

 Experimental Setup 

The performance of 31 FSAs on 50 data sets were compared using predictions from three predictors, 

over which the scores were averaged. For contrast, performance was also measured without feature 

selection, and was included in the comparison. Implementations in Python and HPO settings of 

algorithms are explained in the following sections. 

3.2.1 Implementation 

One observation consisted of one FSA applied on one data set. The resulting subsets were used to 

train one predictor resulting in a performance measure. The program was written in Python, using 

pre-existing software packages for the algorithms. Links to these are listed in Appendix E, along 
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with pseudocode for part of the program summarised below. One run of the pipeline was performed 

in following steps, which are illustrated in Figure 8:  

1. Load and split data. The data set is loaded from a csv-file and split into five CV folds. 80 

% of each fold is used for training and the rest for testing. Each fold is stratified so the class 

distribution mirrors the complete data set. The training set is relayed to the FSA while the 

test set is kept for later evaluation. 

2. Feature selection. The training set is processed by the FSA which outputs an array of 

subsets, one for each hyperparameter setting. The runtime of this process is noted and 

averaged over hyperparameter settings. 

3. Prediction. The subsets are used to train three predictors, resulting in a model for each 

subset and their individual hyperparameter settings. The models are then applied on the 

test set to get predicted lables. 

4. Evaluation. The accuracy and F-measure are calculated by comparing the predictions to 

the true class labels.  

5. Validation. The best accuracy and F-measure values from each fold are saved and 

averaged to get the cross-validated performance score. The mean of the runtimes from each 

fold is calculated. 

Figure 8: Overview for one run in the pipeline. Shows what happens within each CV-fold. The Validation step happens 

outside the folds. Note: The number of folds, feature subsets and predictions (represented as sheets) are only illustrative. 

 

3.2.2 Hyperparameter Settings 

Hyperparameter settings for each FSA and predictor are presented in Tables 11 and 12, with 

magnitudes chosen above and below the default code setting. For reasons discussed under the title 

‘The choice of subset size and hyperparameters’ in section 5.2.4, we chose to have all FSAs return 

subsets of the same size. 
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Table 11: Hyperparameter settings for each FSA. The FSAs without hyperparameters are not included. N = total number 

of features, M = total number of instances. 

FSA Hyperparameter Values 

AdaBoost, AdaBoost RFE, AdaBoost SBS, AdaBoost SFS 

Number of inner decision 

stumps 
10, 20, 40, 80, 160 

Learning rate 1, 2, 4, 16, 32 

DT, DT RFE, DT SBS, DT SFS 

Number of features examined 

when looking for node splits. 
√𝑁, 0.2𝑁, 0.4𝑁, 0.8𝑁 

Minimum number of samples 

required for node splits 
1, 4,

𝑀

8
,
𝑀

4
 

LASSO 
Alpha 0,05, 0.1, 0.25, 0.5, 1, 1.5 

LASSOLARS 

Perceptron, Perceptron RFE, Perceptron SBS, Perceptron 

SFS 
Number of iterations 3, 5, 10, 20 

RF, RF RFE, RF SBS, RF SFS 

Number of inner decision trees 10, 20, 40, 160 

Number of features examined 

when looking for node split 
auto, 0.2, 0.4, 0.8 

Minimum number of samples 

required for node split 
1, 4,

𝑀

8
,
𝑀

4
 

ReliefF Number of nearest miss points 2, 5, 10, 20 

SVM, SVM RFE, SVM SBS, SVM SFS 
C 2−3, 2, 23, 25, 29, 213 

Gamma 2−15, 2−11, 2−7, 2−5, 2, 23 

 

 

Table 12: Hyperparameters for each predictor. Gaussian Naive Bayes had no hyperparameters. N = total number of 

features, M = total number of instances. 

FSA Hyperparameter Values 

K-Nearest Neighbour Number of neighbours to consider 2, 4,
𝑀

4
,
𝑀

2
 

Decision Tree 

Number of features examined when looking for split √𝑁, 0.2𝑁, 0.4𝑁, 0.8𝑁 

Minimum number of samples required for split 1, 4,
𝑀

8
,
𝑀

4
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4 Results 
 

This chapter is the presentation of the experimental results. Initially the results of the comparison are 

summarized, followed by more detailed presentations of predictive performance and runtimes respectively. 

The chapter concludes with a closer description of the comparison between FSAs for overall performance.  

 

 Summary 

The result from the experiments for each performance measure consisted of a m×n-matrix: m 

datasets and n FSAs, containing performance scores averaged over the three predictors. If any 

combination of FSA, predictor and dataset failed to produce a score, even within a single CV fold, 

the experiment was noted as failed for that particular FSA-dataset combination. Consequently, this 

led to some sparsity in the results matrix, but the magnitude was judged not to impede the 

comparison.  

The best performing group of FSAs is presented in Table 13. Both accuracy and F-measure shared 

the same best performing group, all of which were embedded types. With addition to SVM RFE, this 

group consisted of the only FSAs that performed better than omitting feature selection entirely, the 

case from which the remaining 24 FSAs were indistinguishable. Runtimes revealed a different 

group, with types varying between filter and embedded. One FSA appeared in both of the best 

performing groups: Decision Tree. Two FSAs were present among the best performing within one 

measure while also having noteworthy high comparative performance in the other: Decision Tree 

RFE and Lasso. 

  

Table 13: Best performing group of FSAs regarding predictive performance and runtime. The types of FSA are 

specified: Embedded (E) and Filter (F). Underlined FSA are present in both groups. FSAs with dotted underline are present 

in only one of the groups, but had noteworthy high comparative performance in the other. 

Predictive performance Runtime 

FSA Type FSA Type 

Random Forest RFE 

Random Forest 

Decision Tree RFE 

Decision Tree 

AdaBoost RFE 

AdaBoost 

E 

E 

E 

E 

E 

E 

Low Variance Filter 

Decision Tree 

Anova 

Chi Squared 

Lasso 

Perceptron 

LassoLars 

F 

E 

F 

F 

E 

E 

E 

 

In the following sections, the background to this summary is presented in more detail. For the 

curious reader, summary statistics are found in Appendix F. 

 

 Comparison of predictive performance: accuracy and F-measure 

To assess the distribution of the results, Tukey boxplots were used for each feature selection method 

and for both accuracy and F-measure (Fig. 9). The mean (red box) and median (red horizontal line) 

are both superimposed in addition to the underlying raw accuracies, overlaid as semi-transparent 

dots. All distributions exhibited large but similar interquartile ranges (IQR) and most displayed 

negative skew. The skewness, along with modal tendencies, suggested departure from normality, 

which warranted a nonparametric statistical method for significant comparison. 
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Figure 9: Tukey-boxplots of estimated accuracies (top) and F-measures (bottom) for each FSA, across all datasets. 

Overlaid raw data points are illustrated with semi-transparent red dots. Whiskers (dashed blue lines) extend to Q3 + 1.5 ∙ IQR 

(upper) and Q1-1.5 ∙ IQR (lower). Singular data points outside these limits are considered possible outliers (additional black 

“-”). Within the boxes, the mean (red squares) and median (red horizontal lines) across are displayed.  

The null-hypothesis H0 stated for accuracy and F-measure respectively: 

• H0, Accuracy : There is no difference in estimated accuracy between FSAs 

• H0, F-measure: There is no difference in estimated F-measure between FSAs 
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The calculated FF statistic was FF ≈ 27.01 and was distributed according to the F-distribution with 

31 (upper) and 1519 (lower) degrees of freedom. The calculation depended on 𝑘 number of FSAs 

(including “No FS”) and 𝑁 number of data sets as 𝑘 = 32, and 𝑁 = 50 respectively. The tabular 

critical F -value for  F (31,1519) = 1.46. Since FF > F (31,1519), both H0, Accuracy and H0, F-measure are 

rejected at significance level 0.05. 

To find which FSA or groups of FSAs that differ, the Nemenyi post-hoc test was performed using 𝑘 

and 𝑁 from earlier and tabular Nemenyi critical value 𝑞0.05 = 3.78, resulting in calculated Nemenyi 

critical distance (CD) at significance level 0.05 as CD0.05 ≈ 7.09. The performance of two FSAs can 

be considered different at significant level 0.05 if their average ranks 𝑅𝑗 differ by at least CD0.05, 

illustrated as FSAs with non-overlapping bars in the following graphs for accuracy and F-measure 

(Fig. 10). 

 
Figure 10: Comparison of estimated accuracies (top) and F-measures (bottom) between FSAs across all datasets. 

Dots represent the average ranking (AR) of each FSA, with upper and lower boundaries representing the Nemenyi critical 

distance (CD). The FSAs are ordered from lowest (best performance) to highest (worst performance) AR (+/-0.5 CD0.05). 

Groups with non-overlapping bars are considered significantly different (a = 0.05). 
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Random Forest RFE was observed as the top performing FSA regarding predictions. However, since 

the following five algorithms cannot be distinguished as different at the required significance level, a 

group of the best performing FSAs was determined. Both performance metrics shared the same 

group:  

• Random Forest RFE 

• Random Forest 

• Decision Tree RFE 

• Decision Tree 

• AdaBoost RFE 

• AdaBoost 

 

Upon comparing with the case of omitting feature selection: FSAs that performed better with 

significance was the aforementioned group of six FSAs with addition of SVM RFE. The remaining 24 

FSAs were indistinguishable from “NoFS” in Figure 10, meaning that no FSAs performed worse 

than not performing FS at all. 

 

 Comparison of runtimes 

Analogous to the previous section, the distribution of rescaled runtimes from slowest to fastest (0-1) 

for each FSA on each dataset were inspected with raw data overlaying Tukey boxplots. The mean 

(red boxes) and median (red horizontal line) are both superimposed in addition to the underlying 

raw runtimes, as semi-transparent dots. Since the dispersion varied greatly between FSAs, 

complementary subplots were added, which divided groups of FSAs within a fitting range of values 

(next page Fig. 11, note that y-axes are scaled differently between plots). The observed skewness, 

along with modal tendencies strongly implied nonnormality. In combination with the largely 

varying degree of dispersion between different FSAs, a nonparametric statistical method was a 

justified choice over parametric for comparison. 
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Figure 11: Tukey-boxplots of estimated rescaled runtimes from slowest to fastest (0-1). Top: Measured and rescaled 

runtimes for each FSA, performed on all available datasets. Overlaid raw data points are illustrated with semi-transparent red 

dots. Whiskers (dashed blue lines) extend to Q3 + 1.5 ∙ IQR (upper) and Q1-1.5 ∙ IQR (lower). Singular data points outside 

these limits are considered possible outliers (additional black “-”). Within the boxes, the mean (red squares) and median (red 

horizontal line) of runtimes across data sets are displayed. Bottom: The top box plots, but with FSAs divided into three 

separate plots with differently scaled y-axis. Note: the FSAs in all plots are sorted in descending order with respect to their 

bottom outlier/minimal value. 
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The null hypothesis H0 for runtime stated: 

H0,Runtime : There is no difference in estimated runtime between FSAs.  

 

With 𝑘 = 31 number of FSAs and 𝑁 = 50 number of datasets, the calculated FF statistic was FF ≈

89.62, distributed according to the F-distribution with 30 (upper) and 1470 (lower) degrees of 

freedom. The tabular critical F-value for F (30,1470) = 1.46. Since FF > F (31,1519), H0,Runtime is 

rejected at significance level 0.05. 

 

As with predictive performance, to discern which FSA, or groups of FSAs differ, the Nemenyi post-

hoc test was performed, resulting in CD0.05 ≈ 6.85 using previously defined 𝑘 and 𝑁 and tabular 

critical value 𝑞0.05 = 3.76. The runtimes of two FSAs can be considered different at significance level 

0.05 if their corresponding average ranks differ by at least the calculated CD0.05, which translates to 

FSAs with non-overlapping bars in the following plot (Fig. 12).  

 
Figure 12: Comparison of estimated and rescaled runtimes between FSAs across all datasets. Dots represent the 

average rank (AR) of each FSA across datasets, with upper and lower boundaries together representing the Nemenyi critical 

distance (CD). The FSAs are ordered from lowest (best performance) to higher (worst performance) AR (+/-0.5 CD0.05). 

Groups with non-overlapping bars are considered significantly different (a = 0.05). 

Low Variance Filter was observed as the fastest FSA. However, since the following six algorithms 

cannot be distinguished as different with confidence, a group of the fastest FSAs is presented below:  

• Low Variance Filter 

• Decision Tree 

• Anova 

• Chi Squared 

• Lasso 

• Perceptron 

• LassoLars 
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 Discerning best overall performance  

The overall best performance was attributed to the FSA or group of FSAs that achieve among the 

best average ranks with respect to both predictive performance (accuracy and F-measure) and 

runtime. Consequently, plots presenting CD for accuracy, F-measure (Fig.10) and runtime (Fig.12) 

from earlier sections were compared, considering only the best performing group and the 

consecutive statistically indistinguishable group of FSAs (Fig.13). 

Figure 13: Discerning FSAs with best overall performance.Plots of average ranks with Nemenyi critical distances are 

used for accuracy (Fig.10), F-measure (Fig.10) and runtime (Fig.12) from earlier sections. Only the best performing group 

(within rectangle) and the consecutive, statistically indistinguishable group of FSAs are compared. Decision Tree (red) was 

present in all the best performing groups of FSAs. Decision Tree RFE (orange) and LASSO (blue) were present in a best 

performing group with regards to one measure while simultaneously present in the consecutive group of the other. 

As presented in Figure 13, Decision Tree (red) was present in the best performing groups of FSAs 

with respect to both predictive performance and runtime. Decision Tree RFE (orange) was in the 

best performing group regarding prediction (left and middle plot), while being indistinguishable 

from the majority of best performing FSAs regarding runtime (right plot). Analogously, Lasso (blue) 

was present in best performing group regarding runtime, while being indistinguishable from the 

majority of the FSAs in the best performing group regarding predictive performance. 
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5 Discussion 
 

This chapter discusses the results and the resulting insights, in addition to factors of weakness and strengths 

in different parts of the study.  

 

 The performance of the examined feature selection algorithms 

The experiment produced two top performing groups of FSAs: one for predictive performance and 

one for runtime. It is notable that all the top performing FSAs regarding predictive performance 

were of type embedded, and involved predictors that use tree structures: Decision Tree, Random 

Forest and AdaBoost (Table 13). The respective wrapper versions of these were also top ranked 

among wrapper methods, except for AdaBoost SFS. The produced models seem to include good 

estimations of feature importance. The predictive performances of these methods were not 

significantly different (Fig.10) but Decision Tree RFE was found to also be fast (Fig. 13). However, 

Decision Tree was the only FSA present in both best performing groups. Within the framework of 

this experiment, it can therefore be considered as the best performing FSA. 

Apart from a few filter types, the majority of the best performing FSAs regarding speed were also of 

type embedded. Lasso in particular was found to be among the fastest FSAs while also having good 

predictive performance (Fig. 13). However, generalisations based on FSA types is approached with 

caution, since the number of FSAs included in the study within each category is unbalanced. This is 

kept in mind along with the further discussions below. 

5.1.1 Runtime 

It was unexpected to find any of the slowest FSAs to be of filter type (Fig. 12). Filter methods that 

only assess feature-to-label correlation, i.e. only assess feature relevance (Low Variance Filter, 

ANOVA and Chi Squared) were among the fastest of all FSA. However, two filter methods that in 

addition calculate feature-to-feature correlation (feature redundancy), ReliefF and CFS, were among 

the slowest. Apparently calculating redundancy can take a longer time than training learning 

algorithms. 

Several FSAs had both wrapper and embedded versions. These were expected to have the same 

ordering of runtimes, from fastest to slowest: embedded, embedded RFE, SFS, SBS. This is intuitive 

since it reflects the amount of training rounds and the feature vector sizes within each round. 

Standard embedded only involves one training round while the number of rounds for embedded 

RFE depends on the size of the original feature vector. Both wrapper types have a similar number of 

rounds, however SFS starts with one feature and sequentially increases the number while SBS starts 

with all features and sequentially decreases the number. The two should be equally fast, but in our 

benchmark we imposed a fixed 50% restriction on subset size. This means that SBS becomes slower 

than SFS, since it trains on larger feature vectors. Both wrappers have several times more training 

rounds than the embedded types. It was therefore surprising that Random Forest and SVM had a 

different ordering, with wrapper versions faster than embedded: SFS, SBS, embedded, embedded 

RFE for Random Forest and embedded, SFS, SBS, embedded RFE for SVM (Fig.11). Although these 

cannot be distinguished from each other with statistical confidence (Fig. 12), it may be that it 

generally takes a longer time for these algorithms to extract feature importances from the model 

structure than it does to construct it. 

The runtime results indicate that univariate (filter and embedded) FSAs in several cases are slower 

than multivariate methods (wrappers). Most papers consistently claim the opposite 
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(4,5,32,33,40,62,63). Our results might have reflected this if data sets with higher dimensionality 

were included. 

5.1.2 Predictive performance 

We believe that the fixed restriction on subset sizes had large implications on the results. For 

instance, if the structure of a data set in question could have been sufficiently represented by less 

features, noisy features would have been retained and thus degrade performance. Conversely, if 

more than half of the features was optimal, the subset size restriction would also have degraded 

performance. This could have especially affected the wrapper methods since they examine feature 

combinations instead of individual feature importances; the experimental setup might have put the 

wrapper methods at a disadvantage. Other search strategies than SFS and SBS might have handled 

the subset size limitation better.  

A noteworthy observation is that the means and medians of the predictive performances were so 

similar across all FSAs (Fig. 9). Despite the varied underlying mathematics of the FSAs and the 

different kinds of data sets involved, it is interesting that the performances were so similar. We 

believe that this is due to a combination of the following reasons: 

• There could be larger differences in predictive performance, however since the feature 

subset size was fixed at 50 % reduction, it minimised the likelihood for FSAs to choose 

largely different feature subsets. If this is the case, adding more data sets would increase the 

differences in performance.  

• The various strengths and weaknesses of the FSAs are evened out across the problems in the 

experiment. The starting assumption when comparing FSAs across many data sets was: if 

algorithm A has a slightly better performance than algorithm B, this difference will be 

accentuated in proportion to how many times A and B are compared. Paradoxically, 

considering the No Free Lunch Theorem (64), adding more data sets would not accentuate 

but minimise the difference. 

The first point might be solved by designing a more intricate experiment where every subset size is 

examined for every FSA. One approach is to add inner CV loops within each FSA that test which size 

is optimal, saving the results from all subset sizes for later comparison.  

Although beyond the scope of this study, a way to address the second point could be to assess FSA 

performance in relation to characteristics of the data sets. This could be general quantitative 

properties such as the number of instances, number of features or feature-to-instance-ratio. For a 

more advanced approach, Wang et al., (62) suggest a series of data set meta-features on which the 

basis of a FSA recommendation method could be developed. The raw data generated from our 

benchmark can be used to explore such an idea.  

 

 Method discussion 

The following sections presents related research and the rationale behind the choice of method. 

Practical limitations, including other viable approaches and suggestions for improvement are 

discussed. 

5.2.1 Related research: other FSA benchmark studies 

Several papers have been published where FSA benchmarks are performed using a similar strategy 

as in this thesis. Table 14 shows how many data sets, FSAs and predictors have been included as 

well as the chosen performance metrics. Even though the general structure is similar, the various 

problems and perspectives differ between the studies. Generally, there is a big difference in the 



 

33 
 

choice of data sets. Many of these studies examine FSAs for specific implementations and the data 

sets are chosen to reflect this.  

 

Table 14: Comparisons of various feature selection benchmarks. 

Number of data sets Number of FSAs Number of predictors Performance measures Source 

50 31 3 Accuracy, F-measure, Runtime This thesis 

30 25 3 Accuracy (10) 

7 8 1 AUC, Residual Sum of Squares (9) 

16 6 2 Accuracy (65) 

115 22 5 Accuracy (62) 

7 2 1 Accuracy (66) 

1 6 1 ROC, F-measure (67) 

11 11 4 Accuracy (5) 

 

An alternative strategy is to use synthetic data sets where all feature importances are known in 

advance (33). Instead of testing predictive performance these experiments examine how many 

relevant, irrelevant and redundant features have been selected. This has the advantage of testing 

FSAs without a layer of obfuscation added by predictors. Conversely, synthetic data sets do not 

reveal how well FSAs perform on real world data, since the structures and noise of these are difficult 

to mimic. 

5.2.2 The custom benchmark pipeline 

For an experiment with these amounts of data sets and algorithms, the combination of data set, FSA 

and predictor is large. It becomes prodigious when also considering combinations of 

hyperparameter settings. To manually initialise a separate run for each combination would be 

infeasible. There exists to our knowledge no platform that offers a complete pipeline to solve this 

problem and contains most of the algorithms listed in Table 9. Due to these reasons, it was 

necessary to develop the pipeline ourselves. 

One specific point in which the pipeline could have been improved regards the granularity of the 

experiments. In our pipeline, the results were averaged over CV folds before comparing the FSAs. In 

retrospect, we could have saved intermediate results for each fold, allowing for comparison on a 

lower level. This would have revealed potential variability between folds. To our knowledge, existing 

platforms which automate FS do not allow for fold-wise comparison, which we could have 

addressed during the building stage of our pipeline. Ultimately, we kept our setup but chose a 

conservative statistical test to address this decreased granularity, along with reasons discussed in 

the following section.  

5.2.3 The choice of nonparametric statistical tests 

Upon inspection of side-by-side Tukey box plots (Fig. 9) of the performance, nonnormality was 

noticable, such as modality and skewness. Runtimes displayed very unequal variances between 

FSAs (Fig. 11), which is a requirement for some parametric methods. In light of the inspection of 

distribution, the more conservative nonparametric test was used. A more powerful parametric 
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method would probably have revealed greater differences and discriminate more FSAs from each 

other.  

5.2.4 The choice of subset size and hyperparameters 

As mentioned in section 2.5 ‘Hyperparameter optimisation’, subset size can be considered a 

hyperparameter. The performance of each size can be tested in a grid search fashion and the one 

with the best performance can be picked. However, this strategy is computationally expensive since 

the predictors must be re-trained with each subset size, just as with other hyperparameters. We 

chose instead to have all FSAs return subsets of the same size, omitting 50 % of the features for each 

data set by default. This is computationally prudent since we are not interested in the best 

predicting performance that can be achieved on a given dataset, but rather how FSAs compare 

under the same circumstances. Keeping the subset size fixed thus eliminated a potential source of 

variability. Unfortunately, this setting was not possible for one of the algorithms: FCBF. It has an 

internal filter that omits features it deems redundant and tampering with this setting would alter 

the algorithm in unknown ways. 

Ideally, the choice of hyperparameters to include in HPO would be more tailored to the task at hand. 

In this work, the same range of was used on many different problems. It was therefore remarkable 

that no FSAs performed significantly worse than not performing feature selection at all (Fig. 10), 

even though the latter allows for all features to be used for prediction. Considering the crude HPO 

and the fixed subset size reduction, this demonstrates the utility of FS even under suboptimal 

conditions.  
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6 Conclusions 
 

This chapter presents the conclusions of this work, recommendations for designing a benchmark 

pipeline and what we hope to see in future research. 

A comparison of predictive performance and runtime of 31 prevalent feature selection algorithms on 

50 classification problems has been performed. The results revealed a leading group of FSAs that 

can be used as an initial starting point for practitioners. 

For predictive performance (Group 1): Random Forest RFE, Random Forest, Decision Tree RFE, 

Decision Tree, AdaBoost RFE, AdaBoost. 

For speed (Group 2): Low Variance Filter, Decision Tree, Anova, Chi Squared, Lasso, Perceptron, 

LassoLars. 

Within these two groups, viable choices for overall performance can include Decision Tree RFE and 

Lasso. Decision Tree RFE could not be distinguished from the majority of Group 2. Analogously, 

Lasso could not be distinguished from the majority of Group 1. Ultimately, Decision Tree is the 

motivated choice in terms of overall performance, since it was present in both groups. 

 

 Recommendations  

In the design of a benchmarking pipeline, we recommended to start very simple and build from the 

beginning to the end. Examples of this is to use fast, easily understood algorithms, a simple 

train/test split without CV and a fraction of the data set’s instances to speed up learning. Only after 

a functioning output is attained should each part of the system be improved until the output is 

optimal. It is recommended to store the various subsets produced by the FSAs and the models 

constructed by the predictors instead of just their performance scores. This can be done with 

functions such as the pickle module in Python and greatly helps in avoiding time-consuming reruns. 

It is also strongly recommended to use parallel or distributed processing, since it considerably 

improves several aspects, such as better HPO and more reruns when mistakes are found. 

 

 Future research 

When benchmarking FSAs it would be interesting add some performance metrics that were not 

included in this study, such as a stability index. Given a fixed subset size, the index measures how 

reliably a FSA pick the same features given that other factors are varied such as hyperparameters or 

data set splits. One such measure is the Kuncheva Index (68). Other metrics for predictive 

performance such as Matthews correlation coefficient or AUC (Area under the Receiver Operating 

Curve) might be better scores when with characteristics such as unbalanced datasets, but requires 

reducing multi-class problems to binary ones. 

Benchmarking experiments are greatly alleviated by having access to a high number of algorithms, 

performance metrics and data sets without having to write bridges between different programming 

languages. This is especially true for practitioners or scientists whose main field in not within the 

machine learning discipline. Hopefully, easy-to-use, open source machine learning libraries such as 

Scikit-learn and the ASU feature selection repository will continue to grow. It is our opinion that 

this will have the greatest effect on feature selection and machine learning research and by 

extension, research fields that require data processing and inference. 
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Appendix A FS definitions 
 

In order to infer a robust definition of the feature selection problem various papers that produced a 

definition were examined during the pre-study on the subject. Since these definitions were 

presented in varying ways (some as text, some as mathematical formulas), they have been rewritten 

with a common mathematical notation in order to simplify comparison.  
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Appendix B Search String and Terminology  
 

The following search string was used for retrieving results regarding feature selection (ssFS): 

”feature selection” OR ”feature reduction” OR ”feature ranking” OR ”attribute selection” OR ”attribute reduction” OR 
”attribute ranking” OR ”variable selection” OR ”variable reduction” OR ”variable ranking” OR ”feature subset selection” 

OR ”feature subset reduction” OR ”attribute subset selection” OR ”attribute subset reduction” OR ”variable subset 

selection” OR ”variable subset reduction” OR ”selection of feature” OR ”selection of features” OR ”reduction of feature” 

OR ”reduction of features” OR ”ranking of feature” OR ”ranking of features” OR ”selection of attribute” OR ”selection of 

attributes” OR ”reduction of attribute” OR ”reduction of attributes” OR ”ranking of attribute” OR ”ranking of attributes” 

OR ”selection of variable” OR ”selection of variables” OR ”reduction of variable” OR ”reduction of variables” OR ”ranking 

of variable” OR ”ranking of variables” OR ”selection of feature subset” OR ”selection of feature subsets” OR ”selection of 

attribute subset” OR ”selection of attribute subsets” OR ”selection of variable subset” OR ”selection of variable subsets” 

OR ”reduction of feature subset” OR ”reduction of feature subsets” OR ”reduction of attribute subset” OR ”reduction of 

attribute subsets” OR ”reduction of variable subset” OR ”reduction of variable subsets” OR ”ranking of feature subset” OR 

”ranking of feature subsets” OR ”ranking of attribute subset” OR ”ranking of attribute subsets” OR ”ranking of variable 

subset” OR ”ranking of variable subsets” OR ”dimensionality reduction” OR ”reduction of dimensionality” OR ”dimension 

reduction” OR ”feature subspace selection” OR ”feature subspace reduction” OR ”attribute subspace selection” OR 

”attribute subspace reduction” OR ”variable subspace selection” OR ”variable subspace reduction” OR ”selection of 

feature subspace” OR ”selection of feature subspaces” OR ”selection of attribute subspace” OR ”selection of attribute 

subspaces” OR ”selection of variable subspace” OR ”selection of variable subspaces” OR ”reduction of feature subspace” 

OR ”reduction of feature subspaces” OR ”reduction of attribute subspace” OR ”reduction of attribute subspaces” OR 

”reduction of variable subspace” OR ”reduction of variable subspaces” OR ”ranking of feature subspace” OR ”ranking of 

feature subspaces” OR ”ranking of attribute subspace” OR ”ranking of attribute subspaces” OR ”ranking of variable 

subspace” OR ”ranking of variable subspaces” OR ”sparse regularization” OR ”sparse regularisation” OR ”sparse 

regression” 

 

The diverse terminology in machine learning and related fields can make it difficult for novice 

researchers to find their way around the scientific landscape. The following points are groups of 

terms that are used interchangeably. 

• target variable, class, label, predictor, category, kind, dependent variable, criterion variable, 

response variable 

• sample, instance, data point, row, observation 

• feature, attribute, variable, parameter, predictor, characteristic, independent variable, 

descriptor, property 

• continuous FS, ranked FS, weighted FS, univariate 

• binary selection, subset selection, subspace selection, multivariate 

• learning algorithm, classifier, learner, predictor, estimator 

• train, learn, fit, model, model construction, model selection 
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B.1 Difficulties with accessing FSA prevalence 

There are several factors to consider when regarding the prevalence search: 

• There is a general difficulty in finding the optimal set of terms for FS since there is no 

standardised taxonomy and since it is applicable across fields. There is a trade-off between 

ensuring broad scope across disciplines while limiting the irrelevant results.  

• The search string was only applied to titles, abstracts and keywords. There are surely cases 

where the method names are only displayed in the full text. 

• Some FS methods have names that result in false positives such as “INTERACT” or “gain 

ratio”. 

• Using ssFS when searching does not guarantee that the algorithm in question is used for 

feature selection and not in other tasks. 

• Only searching in WoS and Scopus does not cover all papers published and the contents of 

scientific databases are constantly changed. 

Even with all the shortcomings of this approach we still believe that it is a better way to determine 

which FS methods are common than what we have found in various publications. Researchers seem 

to pick them semi-arbitrarily from their own experience and intuition since no research paper read 

during the literature study had any concrete explanation for choosing the algorithms they did. In 

some cases, the algorithms might have been cherry picked to suit the experiment and exalt the 

researchers new, proposed algorithm.  
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Appendix C Algorithm search results 
 

Table C2:Algorithms with the top 30 number of publications (hits) in WoS and Scopus 

FS method name 
Hits in 
Web of 
Science 

Hits in 
Scopus 

String used with ssFS (Appendix A) 

Support Vector Machines (SVM) 5888 6533 "Support Vector Machines" OR "SVM" 

Genetic algorithms (search method) 2487 3248 
"genetic algorithm" OR "genetic algorithms" OR 
"GA" 

Decision Tree (DT) 2213 2413 “decision tree” OR “decision trees” 

LASSO 1549 941 
"lasso" OR "least absolute shrinkage and selection 
operator" 

Random forest (RT) 471 857 "random forest" 

Perceptron (P) 401 718 "perceptron" 

Information Gain 366 642 "information gain" OR "IG" 

Multilayer Perceptron 353 585 "Multilayer Perceptron" OR "MLP" 

AdaBoost (AB) 310 463 "adaboost" OR "ada boost" 

Single Radial Basis Function 274 426 "Single Radial Basis Function" OR "RBF" 

ANOVA 159 380 "ANOVA" OR "analysis of variance" 

Euclidean distance 218 359 "Euclidean distance" 

mRMR (minimum Redundancy 
Maximum Relevance) 

248 315 

"mrmr" OR "minimum Redundancy Maximum 
Relevance" OR "Maximum Relevance minimum 
Redundancy" 

Correlation-based Feature Selection 
(CFS) 

276 301 

"correlation-based Feature Selection" OR "CFS" OR 
"correlation based feature selection" OR 
"correlation based fs" OR "correlation-based fs" 

t-test 204 290 "t-test" OR "t test" 

Simulated annealing (search method) 167 252 "Simulated annealing" 

ReliefF 154 239 "relieff" OR "relief-f" OR "relief f" 

Sequential forward selection 162 231 "Sequential forward selection" OR "SFS" 

Chi2 119 230 
"chi2" OR "chi (2)" OR "chi 2" OR "chi squared" OR 
"chi-2" OR "chi^2" 

Successive projections algorithm 214 184 "successive projections algorithm" OR "SPA" 

Recursive Feature Elimination for 
Support Vector Machines (SVM-RFE) 

142 162 
"SVM-RFE" OR "Recursive Feature Elimination for 
Support Vector Machines" 

Gain Ratio 73 116 "gain ratio" 

Tabu Search (search method) 79 107 "tabu search" 

Markov blanket 101 104 "markov blanket" 

Uninformative variable elimination 
(UVE) 

78 104 "uninformative variable elimination" OR "UVE" 

MARS 32 69 "mars" OR "multi angle regression and shrinkage" 

Fast correlation based feature selection 
(FCBF) 

39 57 
"Fast correlation based feature selection" OR 
"FCBF" OR "fast correlation based FS" 

f-test 27 47 "f-test" OR "ftest" 

Memetic Algorithms (search method) 40 44 "memetic algorithms" OR "memetic algorithm" 

Stepwise multiple linear regression 40 44 
"Stepwise multiple linear regression" OR "MLR-
step" 
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Appendix D Experimental data sets 
 

Table D1: Data sets used in the experiment.The ‘Source’ column shows references to the first published work where the 

data sets were introduced and links to where they can be downloaded. Some original sources could not be found; however, 

the data sets can be found in the UCI (https://archive.ics.uci.edu/ml/datasets.html) or KEEL repositories 

https://archive.ics.uci.edu/ml/datasets.html). 

Name Field Number of 

instances 
Number of 

features 
Number of 

classes 
Source 

Bank_aut Image recognition 1372 4 2  

Iris Biology 150 4 3 (69) 

Mammographic Medicine 830 5 2 (70) 

Monk2 Synthetic 432 6 2 (71)  

Appendicitis Medicine 106 7 2 (72)  

Ecoli Biology 336 7 8 (73) 

Leddigits Computer Science 500 7 10 (51) 

Pi_diabetes Medicine 768 8 2 (74) 

Yeast Biology 1484 8 10 (73)  

Abalone Biology 4174 8 28 (75)  

Fertility Medicine 100 9 2 (76) 

Breast cancer Wisconsin Medicine 683 9 2 (77) 

Contraceptive Sociology 1473 9 3 (78) 

Breast_tissue Medicine 106 9 6 (79) 

Glass Chemistry 214 9 7  

Liver Medicine 579 10 2 (80) 

Magic Physics 19 020 10 2 (81)  

Page_blocks Image recognition 5473 10 5  

Whitewine Chemistry 4898 11 11 (82) 

Redwine Chemistry 1599 11 11 (82) 

Wine Chemistry 178 13 3  

Cleveland Medicine 297 13 5 (83) 

Marketing Business 6876 13 9 (84) 

Vowel Speech recognition 990 13 11  

Leaf Biology 340 14 40 (85) 

Pendigits Image Recognition 3498 16 10 (86) 

Cms Physics 540 18 2 (87)  

Seismic Geology 2584 18 2 (88) 

Vehicle Image recognition 846 18 4 (89)  

Hepatitis Medicine 80 19 2 (90) 

Band Materials science 365 19 2  

Dia_retina Medicine 1151 19 2 (91) 
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Name Field Number of 

instances 
Number of 

features 
Number of 

classes 
Source 

Image_seg Image recognition 210 19 7 (92) 

Statlog Image recognition 2310 19 7 (92) 

Ring Synthetic 7400 20 2 (93) 

Twonorm Synthetic 7400 20 2 (93) 

Cardiotocography Medicine 2126 20 10 (94)  

Thyroid Medicine 7200 21 3  

Parkinsons Medicine 195 22 2 (95) 

Ionosphere Physics 351 34 2 (96) 

Derma Medicine 366 34 6 (97)  

Satimage Image recognition 6435 36 7 (98) 

Waveform Physics 5000 40 3 (51) 

Texture Image recognition 5500 40 11 (99) 

Heart Medicine 267 44 2 (100)  

Lung_cancer Medicine 27 56 3 (101) 

Spam Text analytics 4658 57 2 (102) 

Sonar Physics 208 60 2 (103)  

Digits Image recognition 1797 64 17 (104) 

Libras Image recognition 360 90 15 (105) 
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Appendix E Software tools and pseudocode 
 

E.1 Software tools and packages 

Anaconda  

Package manager and collection of hundreds of open source python packages. 

https://www.continuum.io/downloads 

Pandas 

Open source library for data analysis. 

http://pandas.pydata.org/ 

Scikit-learn  

Collection of tools for machine learning and data analysis. Build on NumPy, SciPy and matplotlib. 

http://scikit-learn.org/stable/ 

Scikit-feature 

Collection of tools for feature selection. Based on Scikit-learn. 

http://featureselection.asu.edu/ 

 

E.2 Pseudocode  

The following pseudocode (Fig. E2.1) displays a part of the program used to generate the results for 

one run. One run means getting result for a single predetermined dataset and FS method.   

https://www.continuum.io/downloads
http://pandas.pydata.org/
http://scikit-learn.org/stable/
http://featureselection.asu.edu/
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begin; 
//Using a function in python sklearn to get data indices for k stratified CV folds, i.e k 
different training/test splits (80/20) of S, each with the same class distribution as S. 
CALL stratifiedCV with Y =(y1,...yM) and k=5 RETURNING list of k trainTest_indx 
 
// setting train/test subsets of S as 5 different folds, using the indices 
SET folds = S[trainTest_indx] = ((Strain, Stest)1,..,(Strain, Stest)k) 
 

SET foldres = ∅  
FOR each (Strain, Stest) in folds: 
 CALL do_FS with (Strain, Stest) and FSname:  //using map in prerequisites 
  // function do_FS 

SET a grid for iteration over all possible FS hyperparameter settings 
SET all_red_subsets = ∅ 
CALL start_timer 
FOR each params of n combinations of FS hyperparameter settings: 

CALL sklearn_FS with params RETURNING red_subset = (S’train, S’test)1..n 
APPEND red_subset to all_red_subsets  

ENDFOR; 
CALL stop_timer RETURNING seconds 
CALCULATE fs_durationTime, by averaging seconds over n 

RETURNING all_red_subsets = S’(S’train, S’test)1..n and fs_durationTime 
   

SET pred_scores = ∅   
FOR each pred_name in predictor_names: //using map in prerequisites 
 CALL do_predict with all_red_subsets and pred_name: 
  //function do_predict 

SET a grid for iteration over possible predictor hyperparameter settings 
SET all_predictors = ∅ 
SET all_predY = ∅ 
FOR each params of m combinations of predictor hyperparameter settings: 

CALL sklearn_createPredictor with params RETURNING predictor 
APPEND predictor to all_predictors = ((predictor1),..,(predictor)m)  

ENDFOR; 
FOR each red_subset in all_red_subsets: 
 FOR each predictor in all_predictors: 

CALL sklearn_fitPredict with predictor and red_subset 
RETURNING predictions of y ∈ (S’test) as ( predY)1..m 
APPEND predY to all_predY = (predY1..m)1..n  

ENDFOR; 
ENDFOR;  

RETURNING all_predY 
 
SET all_metricscores = ∅ 
FOR each metricname in metric_names: //using map in prerequisites 

GET all y ∈ (Stest) as all_ytest 
CALL do_calcMetric with metricname, all_ytest and all_predY 

//function do_calcMetric 
SET scores = ∅ 
FOR each (predY1..m) in all_predY: 

FOR each predY in (predY)1..m: 
CALL sklearn_calcMetric with predY and all_ytest 
RETURNING score and APPEND to scores 

ENDFOR; 
ENDFOR;     

GET best_score from scores  
   RETURNING best_score  
    

APPEND best_score to all_metricscores 
  ENDFOR; 
  APPEND all_metricscores to pred_scores 
   APPEND pred_scores and fs_durationTime to foldres    
ENDFOR; 
COMPUTE CV_score as average over k folds, FOR every performance metric and predictor 
COMPUTE CV_fsRuntime as average across k folds 
RETURNCV_score, CV_fsRuntime and name of dataset, FS method, predictors and metrics as result 
end; 

---------------------------- 
Prerequisites:  
//A mapping of names of different types of FS methods, predictors and metrics to functions. 
Example: 
 
CASE methodname OF: 
“Adaboost”    : CALL do_adaboost    //does FS with adaboost 
“Decision Tree”: CALL do_decisionTree //trains, predicts with Decision Tree 
… 
ENDCASE;   
 
Input:  
//the full dataset(S), consisting of N features(x) and corresponding class(y) 
S = (x1, x2, …, xN, y)  
 
//names required for mapping to functions and describing final results 
datasetname, FSname, predictor_names, metric_names  
 
Output:   
CV_score and total_fsRuntime together with names of dataset, FS method, predictor and metric 
------------------------------- 

Figure E2.1: Pseudocode for a part of the program used to generate the results. 
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Appendix F Results from experiments 
 

The summary statistics of overall estimated performance across datasets for each FSA and 

performance metric are presented in Table 17, in which the best values are underlined. The number 

of failed experiments are discerned through the sample sizes below 50. 

Table F1. Summary statistics of overall performance of each FSA across datasets. Runtime lacks results for No FS, 

since no feature selection was performed prior prediction. Sample size depicts the amount of data sets included successfully 

(50 in total were included in the experiments, but some experiments failed). The best scores are underlined, i.e., the highest 

value for mean and median and the lowest for interquartile range (IQR) and average rank (AR). 

FSA 
Sample 

size 

Accuracy F-measure Runtime 

Mean Median IQR AR Mean Median IQR AR Mean Median IQR AR 

No FS 50 0.749 0.805 0.249 20.210 0.704 0.731 0.319 19.680 - - - - 

AB 47 0.788 0.847 0.234 7.000 0.747 0.794 0.274 7.426 0.950 0.975 0.075 16.140 

AB RFE 46 0.785 0.832 0.244 6.772 0.743 0.796 0.269 6.935 0.690 0.797 0.494 25.326 

AB SBS 48 0.753 0.810 0.236 17.698 0.705 0.765 0.301 18.490 0.483 0.567 0.674 27.938 

AB SFS 50 0.728 0.770 0.288 21.080 0.681 0.704 0.342 21.400 0.535 0.604 0.722 26.560 

Anova 50 0.743 0.797 0.291 19.570 0.695 0.718 0.337 19.930 0.996 1.000 0.001 4.660 

CBF 49 0.731 0.780 0.295 22.204 0.702 0.739 0.310 22.102 0.438 0.517 0.726 28.041 

Chi 

Squared 
35 0.697 0.717 0.290 22.514 0.679 0.677 0.289 22.586 0.997 0.999 0.002 5.186 

DT 50 0.785 0.834 0.232 6.250 0.747 0.780 0.277 6.400 0.999 1.000 0.001 4.340 

DT RFE 50 0.784 0.837 0.249 5.350 0.746 0.811 0.261 5.630 0.994 0.995 0.007 10.160 

DT SBS 50 0.754 0.810 0.244 17.980 0.709 0.727 0.312 18.270 0.980 0.984 0.019 14.600 

DT SFS 50 0.752 0.815 0.257 17.830 0.705 0.727 0.334 17.940 0.987 0.989 0.011 12.340 

FCBF 48 0.653 0.657 0.319 25.115 0.593 0.591 0.407 25.448 0.976 0.985 0.032 15.052 

LARS 50 0.731 0.784 0.264 22.770 0.691 0.714 0.314 21.720 0.984 0.999 0.004 9.030 

LASSO 50 0.763 0.810 0.244 13.260 0.724 0.767 0.275 12.530 0.997 0.999 0.001 5.320 

LASSOLA

RS 
47 0.754 0.806 0.262 15.404 0.714 0.752 0.313 14.638 0.998 0.999 0.004 6.790 

Linear 

Regression 

(LR) 

50 0.732 0.781 0.285 22.760 0.692 0.719 0.294 22.000 0.988 0.999 0.003 8.130 

Low 

Variance 

(LV) 

50 0.728 0.785 0.285 23.110 0.678 0.685 0.296 23.740 1.000 1.000 0.000 1.130 
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FSA 
Sample 

size 

Accuracy F-measure Runtime 

Mean Median IQR AR Mean Median IQR AR Mean Median IQR AR 

mRMR 50 0.739 0.789 0.282 20.630 0.692 0.731 0.314 21.170 0.936 0.939 0.070 20.220 

P 50 0.764 0.815 0.245 13.920 0.723 0.752 0.270 13.570 0.999 0.999 0.002 5.680 

P RFE 50 0.763 0.816 0.241 13.310 0.722 0.743 0.283 13.070 0.991 0.994 0.010 11.080 

P SBS 50 0.739 0.792 0.265 21.270 0.693 0.732 0.300 21.360 0.914 0.939 0.076 20.770 

P SFS 50 0.738 0.786 0.250 23.240 0.695 0.727 0.343 22.470 0.927 0.947 0.067 19.170 

RF 50 0.800 0.857 0.234 2.740 0.766 0.823 0.260 2.870 0.931 0.968 0.093 18.340 

RF RFE 50 0.798 0.847 0.225 2.460 0.763 0.828 0.258 2.670 0.572 0.719 0.665 27.060 

RF SBS 50 0.761 0.823 0.250 14.250 0.720 0.741 0.310 13.700 0.939 0.941 0.076 20.000 

RF SFS 50 0.761 0.816 0.250 13.670 0.715 0.740 0.308 14.050 0.946 0.953 0.071 18.560 

reliefF 50 0.742 0.796 0.244 18.770 0.694 0.735 0.296 19.200 0.541 0.679 0.941 24.360 

SVM with 

Linear 

Kernels 

50 0.763 0.820 0.243 13.250 0.722 0.733 0.276 13.390 0.972 0.986 0.044 14.220 

SVM RFE 50 0.763 0.816 0.246 12.330 0.726 0.755 0.283 11.710 0.824 0.915 0.209 22.800 

SVM SBS 45 0.723 0.779 0.265 20.733 0.673 0.711 0.308 21.189 0.795 0.924 0.194 21.733 

SVM SFS 44 0.727 0.772 0.248 20.295 0.677 0.689 0.320 20.602 0.844 0.938 0.193 20.386 
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