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Abstract— Sleep scoring is used as a diagnostic technique in 

the diagnosis and treatment of sleep disorders. Automated sleep 
scoring is crucial, since the large volume of data should be 
analyzed visually by the sleep specialists which is burdensome, 
time-consuming tedious, subjective, and error-prone. Therefore, 
automated sleep stage classification is crucial step in sleep 
research and sleep disorder diagnosis. In the present article, a 
robust system, consisting of three modules, is proposed for 
automated classification of sleep stages from single channel EEG. 
In the first module, signals taken from Pz-Oz electrode were 
denoised using multiscale principal component analysis. In the 
second module, the most informative features are extracted using 
discrete wavelet transform (DWT) and then, statistical values of 
DWT sub-bands are calculated. In the third module, extracted 
features were fed into an ensemble classifier, which can be called 
as rotational support vector machine (RotSVM). The proposed 
classifier combines advantages of the principal component 
analysis and SVM to improve classification performances of the 
traditional SVM. The sensitivity and accuracy values across all 
subjects were 84.46% and 91.1% respectively for five stage sleep 
classification with Cohen’s kappa coefficient of 0.88.  Obtained 
classification performance results indicate that, it is possible to 
have an efficient sleep monitoring system with a single channel 
EEG, and can be used effectively in medical and home-care 
application. 
 

Index Terms—Sleep stage classification, single-channel EEG, 
multiscale principal component analysis (MSPCA), discrete wavelet 
transform (DWT), rotational support vector machine (RotSVM). 

I. INTRODUCTION 
HIS study presents a novel automated system for sleep 
stage classification which utilizes a single EEG channel. It 

is known that human beings spend around one third of their 
lives, in average, in sleep. Even though body physical 
activities are covert to a great extent, internal brain activities 
during sleep have power which cannot be easily understood 
and explained. A set of highly complex patterns happen in 
human brain during sleep. Recently, great amount of effort has 
been invested in sleep analysis studies and its connection to 
other psychological states. Yet, very little is known about 
sleep. Unfortunately, number of subjects suffering from sleep 
disorders is significant and it hardens subjects’ everyday 
activities, besides it effects subject’s health conditions in 
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different ways to great extent. Recent studies hypothesized 
that sleep may have significant task in memory consolidation 
where certain memories are build up while other less 
significant memories are vanished [1, 2]. Therefore, it is of 
great importance to have an accurate system for sleep 
monitoring and analysis of sleep behavior. 

Objective sleep monitoring and analysis is commonly 
performed by expert(s) observing different sleep stages during 
whole night. As of the date, polysomnography (PSG) is 
“paragon of excellence” in sleep analysis. PSG can be 
understood as multivariate system which records different 
biological signals, like electroencephalogram (EEG), 
electrocardiogram (ECG), electromyogram (EMG), 
electrooculogram (EOG), concurrently. Once biological 
signals are collected, next step would be to agree on how 
collected signal should be scored. Rechtschaffen and Kales (R 
& K) [3] proposed a guide for classification of sleep which 
later became a golden standard and is employed as a tool for 
classification of sleep stages in numerous labs worldwide 
despite to its weaknesses [4]. R & K standard was further 
improved by American Academy of Sleep Medicine (AASM) 
[5]. Accordingly, sleep scoring distinguishes wakefulness (W) 
and one of two sleep stages: rapid eye movement (REM) and 
non-rapid eye movement (NREM). NREM can be further 
divided into 4 different stages enumerated as 1, 2, 3 and 4. 
Often NREM3 and NREM 4 are combined into one sleep 
stage called as slow-wave sleep (SWS). Yet, there could still 
be certain disagreement in manual scoring of sleep stages 
caused by experts’ biased decisions and training education. 
Therefore, there is a need to develop an objective, non-biased 
automated sleep scoring system. 

Many studies have been conducted with the aim to describe 
and detect different sleep stages [6, 7, 8, 9, 10]. In general, any 
objective, non-biased automated classification system consists 
of three different modules, namely pre-processing module, 
feature extraction module and classification module. In pre-
processing module, normally noise and undesired signal 
components are removed using different filtering techniques. 
This can be achieved by detrending i.e. removing linear trends 
from signals and filtering out undesired frequency 
components.  At this module, also different blind source 
separation algorithms, such as principal component analysis 
(PCA), independent component analysis (ICA), denoising 
source separation (DSS) etc., can be applied in order to clean 
the source signals from noise. Multiscale PCA (MSPCA) was 
proposed by Bakshi [11] to merge the capabilities of wavelet 
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transform (WT) and PCA. The PCA extracts the relationship 
between multiple variables, whereas the WT decorrelate the 
auto-correlation among the measurements [11]. MSPCA was 
already successfully applied for denoising different 
biomedical signals, e.g. EEG [12], EMG [13] and ECG [14] 
where significant improvement in classification accuracy was 
achieved. After removing undesired signal components, next 
step would be to extract the most informative features from 
signals. In literature, a wide variety of different approaches on 
how these features can be extracted are reported [12, 14, 13]. 
There is no rule which technique should be selected, but it 
depends on the nature and dynamics of signal.  

In literature, different techniques are proposed for 
extraction of informative features from EEG signals that can 
reliably catch sleep dynamics. These include time-domain 
statistics approaches [15], spectral analysis [16], time-
frequency analysis such as Wigner–Ville distribution [17] and 
wavelet analysis [7] and dynamic warping [18], graph domain 
analysis [9], coherence [19], etc. After it is decided on which 
features are to be extracted from the signals, next step would 
be to classify different states (such as wakeful vs sleep, or 
wakeful vs REM vs NREM, etc.). For this step, different 
machine learning (ML) techniques can be applied and there is 
a wide variety of different techniques reported in literature and 
how they can be applied for classification. They range from 
simple linear discriminant analysis (LDA) to non-linear and 
highly complex Gaussian mixture model-based classifiers [20, 
21]. For classification of different sleep states, several 
traditional methods, namely LDA [18, 22], neural networks 
[23, 24], support vector machines (SVM) [25, 9, 26, 27, 6], k-
nearest neighbor (k-NN) [16], hidden Markov model [28], 
fuzzy systems [29, 30], etc., are proposed for distinguishing 
between different sleep stages. The common to all traditional 
classifiers is that they have only one classifier. Recently, 
ensemble ML (EML) classifiers, where multiple traditional 
classifiers are combined, have been proposed to improve the 
performance of single classifier. One of the most applied EML 
methods, that found application in variety of research areas, is 
the random forest (RF) proposed by Breiman [31]. RF has also 
been proposed for identification of different sleep stages in 
[7]. 

The aforementioned techniques and proposed systems 
generally combine the features from different signal types 
(EEG, ECG, EMG and EOG) and perform classification with 
such features as inputs to the classifier. Perhaps more 
importantly, these systems can be further improved in terms of 
overall performances by proposing novel model for sleep 
stage classification that will use single-channel EEG signals 
while maintaining high classification performances. The 
contribution of this study is to use MSPCA for denoising and 
Rotational SVM for classification to create a reliable and 
efficient automated system for sleep stage identification and 
classification where the features will be extracted from a 
single-channel EEG signals. After segmenting Pz-Oz EEG 
channel signals, MSPCA is used to denoise the EEG signals in 
the pre-processing module. After denoising the EEG signals, 
in the second module, informative features from the denoised 

signals are extracted using discrete wavelet transform (DWT), 
since it can efficiently decompose EEG signal into different 
frequency bands relevant to this study: delta (0.5-3 Hz), theta 
(4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and low-gamma 
(30-50 Hz). Furthermore, in order to reduce the dimension of 
data, statistical values of DWT sub-bands are calculated to 
represent the distribution of wavelet coefficients in a better 
way. The extracted features are fed into the classifier in the 
third module. In this study, we propose a modified SVM 
which is called rotational SVM (RotSVM). The experimental 
results showed that it outperformed the results reported in 
similar studies done before. 

The remainder of the paper is organized as follows. The 
next section describes the experimental data used in this study. 
In section III, methodology used for construction of single-
channel sleep stage system together with theoretical 
background is explained. In section IV, experimental results 
obtained, when proposed system is applied on whole-night 
recorded sleep data, are reported. Afterwards, this section 
gives comparison of results obtained in this study with other 
results reported in literature. This section is concluded with 
discussion. Section V gives conclusion of this study.  

II. EXPERIMENTAL DATA 

A. Subjects and Data Collection 
Data used in this study to evaluate the performances of 

proposed system was obtained from the Sleep EDF 
[Expanded] database [32, 33] which is publicly available 
online from Physionet Bank [34, 35]. This database is 
collection of whole-night PSG sleep records that include EEG 
(2 channels, Fpz-Cz and Pz-Oz), one horizontal EOG and 
EMG signal records together with their hypnograms 
(annotation of different sleeps stages). Sampling frequency for 
EEG signals was Hz 100Fs = . Since the focus of this study is 
to construct the system that will utilized only one EEG 
channel, Pz-Oz channel was selected since several recent 
studies reported that this channel provides higher classification 
performances [36, 22, 9]. Data contained in this database 
comes from two different studies where one study was 
conducted to understand age effects on sleep in healthy 
subjects (SC group) and contains two PSGs, each with 
duration around 20 hours whereas the second study was 
conducted to understand temazepam effects on sleep in 
Caucasian subjects (ST group) and contains one PSG, with 
duration of approximately 9 hours. In this study, 20 different 
subjects were considered where 10 subjects were randomly 
selected from SC groups and the remaining 10 subjects from 
ST group and in total we had 30 PSG records

)30110210( PSGsPSGsubjectsPSGssubjects =⋅+⋅ .  

B. Manual Sleep Stage Scoring 
Each PSG file in this database is associate with its 

corresponding hypnograms which were manually labeled 
according to R & K rules [3] by two well-trained sleep experts 
who labeled sleeps states independently, but according to Fpz-
Cz/Pz-Oz EEGs instead of C4-A1/C3-A2 EEGs by proposed 
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C. Dimension Reduction 
When selecting the basis (“mother”) function which 

approximately matches the frequency characteristic of the 
EEG, i.e. delta, theta, alpha, beta, gamma, EEG signals were 
decomposed into six frequency bands in order to achieve 
required frequency resolution. Daubechies wavelet (db4) was 
selected as the basis function because of its recognized 
orthogonality property. In this study, six different statistical 
features were selected for EEG classification. The motivation 
to use signal statistics or to extract statistical features is to 
extract important information while reducing data dimensions. 
These statistical features are: a) Mean of coefficients’ absolute 
values in each sub-band, b) Average power of the coefficients 
in each sub-band, c) Standard deviation of the coefficients in 
each sub-band, d) Ratio of absolute mean values of adjacent 
sub-bands, e) Skewness of every sub-band and f) Kurtosis of 
every sub-band. 

Since we decomposed the EEG signal into six frequency 
bands we have cD1, cD2, cD3, cD4, cD5, cD6 and cA6 from 
DWT decomposition. Hence, seven different features are 
extracted from each statistics (a), (b), (c), (e) and (f); six 
different features are extracted from (d) for each sub-band. 
Thus, in total, we have extracted 41 features for each epoch. In 
the present contribution, we also consider the ranking of these 
features to assess their relevance, we used information gain 
ranker method and found that all the features are relevant and 
important. 

D. Module 3: Classification with RotSVM 
After informative features are extracted, next step would be 

to feed these features into the classifier. SVM with RBF kernel 
was already applied on the same database in [9], but more 
complex feature extraction method was used, and the accuracy 
was low 89%. Therefore, we propose a new approach, i.e. 
modified SVM, which we can be called as rotational SVM 
(RotSVM). Motivation for this classifier was found in 
ensemble machine learning (EML) approach, referred to as a 
rotation forest, which was successfully applied in [42], and 
one can consider rotational SVM as type of rotation forest 
proposed by Rodriguez et.al. in 2006 [43]. In the present 
contribution, we have attempted to further improve state-of-
the-art results reported in the literature. RotSVM can be 
understood as an EML method where SVM is trained on 
different feature subsets. Since SVM is one of the most 
celebrated and popular classification algorithm in the field of 
ML, we do not give details on the SVM classifier, but instead 
we forward the readers interested in knowing more about 
SVM to consult [44].  

Here we present RotSVM algorithm. Let miif ,,.1, K= be 

the i-th row of matrix F and let [ ]TmhhH ,,1 K= be vector 
with class labels for each row (epoch) where mihi ,,.1, K=
takes values from one of five class labels 

{ }SWSNREMNREMREMWSL ,2,1,,= . The classifier for 
each feature subset is the same, namely, SVM with 
polynomial kernel. Also, we denote the total number of SVM 
classifiers as X, which we train in parallel.  

Training phase: For the x-th classifier, where Xx ,,1 K= , 

first decouple the matrix F into J subsets (submatrices) where 
each subset contains Jn /35= features. Let  JjFj ,,1, K=  
be j-th feature subset to train on x-th SVM classifier. For each

jF , arbitrarily choose a non-empty subset of classes, with size 

of 4/)3( m to perform bagging and denote this subset as 'jF . In 
the next step, PCA should be applied on 'jF and let the new 
generated matrix be "jF . In the subsequent step, store "jF  in a 

sparse rotation matrix xΨ  as: 

{ }
[ ] [ ]

[ ] [ ]

[ ] [ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==Ψ

"00

0"
2

0

00"
1

",,"
1

J
F

F

F

J
FFdiag

x
K

MOMM

K

K

K
   (2) 

In the next step, columns of xΨ  matrix should be reordered to 
match the original features and let such matrix be 'xΨ . In the 
last step, x-th classifier is built by employing [ ]'xF Ψ⋅  and H 
as a training set.  Repeat previous procedure for all SVMs. 

Testing phase: In the classification phase, for a given epoch 
f, probability )'( xxp Ψ⋅  is given by the x-th SVM classifier to 
the hypothesis that f belongs to tθ , where t is one of the classes 
from SL , and the confidence for each class is computed by 
using the average combination method:  

)(),...,1(,)'(1)(
1

endSLSLtxp
X

f
X

x
xt =Ψ⋅= ∑

=

λ    (3) 

Epoch f is associated with the class having the highest tλ .  

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 
In this section, we demonstrate how the proposed system 

can be used to solve the practical problem of sleep stage 
classification. To verify the performance of the proposed 
system, three different approaches were adopted. In the first 
approach, we evaluate the performances of the proposed 
system on each subject separately, where the system was 
trained and tested on the subject’s own data and we refer to 
this approach as Subject-Specific approach (SSA). Records 
obtained from 20 subjects were employed and therefore 20 
different datasets were generated. Two PSGs per subject were 
recorded for SC group, from where we randomly selected 10 
subjects, and EEG data from these 2 PSGs were collected into 
one dataset per subject.  

One may argue that this approach is biased since the system 
is trained and tested on data obtained from the same subject. 
Therefore, in our second approach, we attempt to avoid any 
possible such bias and therefore we adopted Test-Group-
Specific classification approach (TGSA), where we generated 
two different datasets. The first dataset contained all epochs 
from the first study (SC) group and the second dataset 
contained all epochs from the second study (ST) group. In this 
approach, we aimed to see if the proposed system is robust to 
subjects with similar clinical history that is if the system is 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

5

robust when it is applied on any healthy subject or any subject 
with insomnia.   

However, one may argue that this is approach is also biased 
since it was applied separately on each study group (subject 
with similar health conditions). Therefore, we have adopted 
the third approach which we call Grand-Subjects-Specific 
classification approach (GSSA).   

A one-way analysis of variance (ANOVA) was carried out 
at 95% confidence level and p = 0.05 for ensuring statistical 
validation. Features are checked if p > 0.5 from the feature 
matrices and it is found p < 0.5 for 41 features. Moreover two-
way-ANOVA test indicates that there was no benefit in adding 
more number of features while deriving discriminate feature 
vectors. Minimal drop of accuracy, significant at p = 0.05 was 
observed while decreasing feature dimension below 41. 
Therefore, significant features from where DWT sub-band 
features were evaluated were taken as 41. 

In all three approaches, 10-fold CV was used, meaning that 
dataset was divided randomly into 10 different fold and 9 of 
these folds were used for training and remaining 10th fold was 
used for testing. This procedure was repeated 10 times, and at 
the end, average accuracy was computed.  

In this study RotSVM, explained in Section III, was used 
for classification. SVM was trained using sequential 
minimization algorithm (SMO) [45] using polynomial kernel. 
To evaluate plausibility and efficiency of the system proposed 
system, performances were evaluated in terms sensitivity [46], 
Cohen’s kappa coefficient κ  [47] and overall accuracy. 
Sensitivity refers to fraction of positives that are correctly 
classified by the system. Cohen’s kappa coefficient κ
evaluates performance agreement between the proposed 
system and experts and gives more intuitive measure or the 
system overall performances (0-0.2: slight, 0.21-0.4: fair, 
0.41-0.6: moderate, 0.61-0.8: substantial, 0.81-1: almost 
perfect agreement [48]). Accuracy is the number of epochs 
correctly classified by the system divided by the total number 
of epochs in dataset.  

B. Performance Evaluation of Proposed System 
Subject-Specific approach (SSA): Performance results for 

each subject are summarized in Figures 3, 4 and 5. Fig. 3 
shows classification accuracy values while Fig. 4 shows 
sensitivity values for each of five different classes and average 
accuracy and sensitivity respectively for every subject. Fig. 5 
shows Cohen’s kappa coefficient κ  values for each of 20 
subjects. It can be seen From Fig. 3 that accuracy for detection 
of NREM1 sleep stages for six subjects was below 70 %, and 
this was the case when number of NREM1 epochs was 
evidently smaller when compared to number of epochs of the 
other sleep stages. Accuracy in detection of NREM1 sleep 
stages was above 80 % when the number of NREM1 sleep 
stages was similar to the number of NREM2 and SWS sleep 
stages. Fig.4 also confirms previous explanation and from this 
figure, it can be seen that sensitivity values were low for 
subjects with low accuracy rates, which is consistent with 
accuracy results. From Fig. 5, it can bee see that Cohen’s 
kappa statistical values were above 0.8, from where it can be 

seen that the proposed system is in almost perfect agreement 
with experts labeling.  

Test-Group-Specific approach (TGSA): We were concerned 
that the aforementioned approach may be biased, since the 
proposed system was trained and tested on the data from the 
same subject. Therefore, we adopted the second approach to 
avoid such possible bias. Here, we generated two different 
datasets for two different studies explained in Section II. For 
that reason, we evaluated the system performance using data 
from all subjects from two different groups separately. 10-fold 
CV was adopted for training and testing. The obtained results 
for sensitivity and specificity are given in Table I. It is easy to 
see that the overall accuracy values are 95.89% for SC, and 
93.37% for ST, indicating the high performances of the 
system. Cohen’s coefficient value for the SC dataset is 0.92 
and for the ST dataset is 0.91 indicating that this system is in 
almost perfect agreement with the experts.  

Grand-Subjects-Specific approach (GSSA): Since one may 
also argue that the previous approach is also biased since it is 
evaluated in the subjects with similar health condition, we 
conducted the third experiment where the system was 
evaluated on all data collected from both groups. 10-fold CV 
was adopted for system training and testing. Obtained resulted 
are summarized in Table II. Sensitivity for this approach was 
84.46% and the overall accuracy was 91.1%. Cohen’s kappa 
coefficient was 0.88 showing also in this case almost perfect 
agreement with experts.  

 
Fig. 3 Accuracy values for SSA

 

Fig. 4 Sensitivity values for SSA 
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Fig. 5. Cohen’s kappa coefficient values for SSA 

TABLE I 
PERFORMANCE OF RotSVM FOR TGSA (%) 

 Metric W N1 N2 SWS REM Avg. 
S
C 

Sensitivity 99.92 49.62 95.62 86.13 93.3 84.92 
Accuracy 99.58 97.86 98.08 98.43 97.64 98.32 

S
T 

Sensitivity 96.54 79.55 96.97 89.14 94.7 91.32 
Accuracy 99.43 97.05 96.72 96.08 96.99 97.25 

 W = wakeful, N1 = NREM1, N2 = NREM2, Avg. = Average 
 

TABLE II 
PERFORMANCE OF RotSVM FOR GSSA (%) 

Metric W N1 N2 SWS REM Avg. 
Sensitivity 98.59 48.78 95.54 97.94 94.59 84.46 
Accuracy 99.24 95.23 95.81 95.91 95.11 96.26 

 
TABLE III 

CONFUSION MATRIX FOR TGSA (SC) 

W NREM1 NREM2 SWS REM 
W 30421 19 0 0 6 

NREM1 140 845 0 40 678 
NREM2 15 7 9425 251 159 

SWS 0 11 398 2738 32 
REM 17 136 90 17 3622 

 
TABLE IV 

CONFUSION MATRIX FOR TGSA (ST) 
W NREM1 NREM2 SWS REM 

W 920 20 0 2 11 
NREM1 15 599 1 6 132 
NREM2 0 0 3691 127 0 

SWS 2 7 168 1650 24 
REM 0 84 0 20 1860 

 
TABLE V 

CONFUSION MATRIX FOR GSSA 

W NREM1 NREM2 SWS REM 
W 7178 93 0 0 10 

NREM1 112 1198 1 87 1058 
NREM2 15 8 13065 428 159 

SWS 0 35 667 4265 63 
REM 9 169 87 51 5530 

 
TABLE VI 

COMPARISON OF PERFORMANCE OF PREVIOUS STUDIES 

Methods 
 

Accuracy 

Entropy metrics, J-means approach [8] 81% 
Hybrid features, Artificial neural networks [49] 81.55% 
Energy features, Recurrent neural classifier [50] 87.20% 
Graph features, SVM [9] 88.90% 
Spectral Features, Bootstrap aggregating [10] 86.53% 
Temporal features and hierarchical decision tree [51] 77.98% 
Fuzzy logic based iterative method [36] 74.50% 
Multiscale entropy, LDA [22] 83.60% 
Proposed Method 91.10% 

 

C. Comparison with the existing methods 
In this section, the classification performance of the 

proposed method is compared with some existing approaches. 
All these methods utilize the same database and are based on 
EEG signals. The overall classification accuracies of these 
methods are listed in Table VI. As it can be seen easily from 
the table, our method has better performance than the previous 
studies. Standard sleep stage classification methods proposed 
in literature generally need data from different biological 
signals (EEG, EMG, EOG, ECG, etc.) to extract informative 
features what usually lowers the sleep quality due to multiple 
electrodes which need to be attached to the body. Therefore, 
there is a need to single channel sleep monitoring. System 
proposed in this study requires only one EEG channel (Pz-
Oz). In literature, few different systems based on single EEG 
channel were proposed. The proposed method has the best 
overall performance with the overall accuracy of 95.89% for 
TGSA (SC), 93.37% for TGSA (SC) and 91.1% for GSSA.  

Flexer et.al. [52]  used Gaussian observation hidden 
Markov model and reported accuracy of around 80 % for 
three-class classification (wakefulness, deep and REM sleep). 
Berthomier, et. al. [36] considered in their study PSG from 15 
healthy subjects and proposed a system based on Automatic 
Sleep EEG Analysis (ASEEGA) and reported Cohen’s kappa 
coefficient of 0.72 for five-class classification (W, REM, 
NREM1, NREM2 and SWS).  Koley B. and Dey D. proposed 
a system based on SVM and recursive feature elimination for 
sleep stage classification and reported average kappa value of 
0.8572. Liang et.al [22] in their study also proposed a system 
based on only one EEG channel which uses multiscale entropy 
and autoregressive model. They considered all-night PSG 
recordings from 20 healthy subject and reported average 
sensitivity of 0.836 and Cohen’s kappa value of 0.81 for five-
state classification (W, REM, NREM1, NREM2 and SWS) 
which are considerably lower when compared to results 
obtained in this study. Zhu, et.al. [9] , considered in their study 
8 PSG records from Sleep-EDF database and proposed a 
system based on difference visibility graph and SVM to 
classify the sleep stages and reported the accuracy and 
Cohen’s kappa coefficient of 87.5 % and 0.81. Although these 
results yielded almost equally good results (accuracy of 87.5 
% vs. 90.18 %, Cohens’ kappa of 0.81 vs 0.86), the number of 
subjects considered in [9] varied considerably (8 vs. 20).  

From Tables I-V, it can be seen that sensitivity value for 
detection of NREM1 sleep stage are considerably lower when 
compared with detection of other sleep stages. This is mainly 
due to the fact that NREM1 and REM exhibit similar EEG 
patterns since NREM1 is transition stage between wakefulness 
and different sleep stages just like REM is transitional 
between sleeps stages and wakefulness state (backward 
direction) [4].  Therefore, low sensitivity and accuracy values 
were obtained for NREM1. Systems which require multiple 
channels also experience the same problem what can be seen 
from similar studies reported in literature [9, 27].  

D. Discussion 
This study proposes a robust system for automatic 

classification of five different sleeps stages, namely 
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wakefulness, NREM1, NREM2, SWS and REM, using single-
channel EEG signals. The obtained results, explained in 
Section III.C demonstrate that the correct classification of five 
sleep stages is possible using only Pz-Oz EEG channel. As a 
matter of fact, along with high accuracy values obtained in all 
three approaches, high sensitivity values were also obtained.  
Cohen’s kappa coefficients were higher than 0.8 indicating 
perfect agreement with experts sleep stage labeling. Besides, 
the proposed method contains two wavelet analyses, one in the 
MSPCA for denoising and one for feature extraction. The 
MSPCA combines the features of wavelet analysis and PCA 
through decomposing every variable on a sym4 mother 
wavelet. Also, DWT is used for feature extraction with db4 
mother wavelet. It should also be noted that only first four 
moments were extracted from EEG signal frequency sub-
bands and these features are sufficient to extract the most 
information from EEG data. Since MCPCA is used for 
denoising, the proposed system is robust for noise. 
Furthermore, SVM is a robust classifier and by using 
ensemble of SVM which is RotSVM, the classifier will be 
more robust. These can be seen from the performance of the 
proposed method. 

As a classifier, rotational SVM, which can be thought as an 
ensemble of SVM, is proposed in the present contribution. 
Although it is not mentioned here, standard SVM with the 
same features as input and same parameter setup was also 
evaluated in this study and considerable improvements in 
performances were noticed when rotational SVM was used as 
classifier comparted to traditional SVM approach. This 
finding may reflect the relevance and the success of the 
operation of a RotSVM scheme over traditional SVM in such 
a way that RotSVM keeps the information relevant for sleep-
stage classification, so that the correct decision on 
classification can be made. Thus, a picture that emerges is that 
RotSVM can be applicable for the sleep-stage classification 
tasks. 

One may argue that PCA is not relevant for classification 
tasks since discriminatory information is not involved in 
computation of the optimal axis rotation. Therefore, numerous 
linear transformation substitutes to PCA established on 
discrimination conditions were proposed in literature [53]. 
Also, PCA may impose additional problems in classification 
due to data dimensionality reduction, if used, since some of 
the components which are neglected due to small variance can 
play important role in classification task. However, in this 
study, we kept all principal components in classification 
module. Experimental results showed improvement in 
performances when this approach was adopted. Although, not 
reported in this study, we also tried to use several other 
methods in lieu of PCA (random projection, normalization, 
wavelets), but the highest performances were obtained when 
PCA was used.  

This study proposes an automated system for sleep stage 
classification. It proposes a new approach for standard SVM 
classifier, which can be called as rotational SVM. 
Classification results in Figures 3-5 and Tables I-V 
demonstrate system’s high performances. Even though, 

performances were lower when the system was trained and 
tested on data multiple subjects (Test-Group-Specific 
approach and Grand-Subjects-Specific approach), result were 
still satisfactory. Remarkably, results obtained in this study 
demonstrate that only one single EEG channel can be used for 
sleep stage classification. For that reason, proposed system 
can be considered as promising tool for sleep monitoring.  

E. Advantages and Disadvantages of the Proposed System 
The core advantage of the proposed system over other 
approaches found in the existing literature is in its ability to 
incorporate all the available information from only one EEG 
channel to make an accurate decision on the sleep stages.  It 
does this by extracting the features of the highest relevance 
from each time-frequency band and feeding them into the 
efficient classifier. The second advantage lies in its ability not 
to use only the subject’s own data, but the model can be 
trained on any subject; and still be efficiently applied only on 
the small portion of the new test data from new subject, what 
saves recording time, and thus, clinicians’ time. The third is 
the high classification accuracy rates and performance results. 
The disadvantage of the proposed system is that our proposed 
model is non-linear, what might introduce additional 
computational complexity. In our future work, we will focus 
on the design of the linear model for accurate sleep stage 
classification. 

V. CONCLUSION 
In the present study, automated system for sleep stage 

classification system using only one channel EEG is proposed. 
The proposed system consists of three modules, preprocessing 
(denoising), feature extraction (using DWT) and classification 
using rotational SVM (ensemble machine learning tool). 
Overall classification accuracy, average sensitivity and 
Cohen’s kappa coefficient obtained with this system were 
91.1%, 84.46 % and 0.88 respectively for classification of five 
different sleeps stages (wakefulness, NREM1, NREM2, SWS 
and REM). Furthermore, system proposed in this study 
requires single EEG channel signal which further simplifies 
sleep stage monitoring. Since manual sleep stage classification 
is often time-consuming and subjective, and therefore prone to 
errors, system proposed in this study can be considered as tool 
in clinical and clinical and home-care application to 
discriminate specific patterns such as fatigue, drowsiness 
and/or various sleep disorders (e.g., sleep apnea) in near real-
time. As a conclusion, the system proposed in this study has 
the potential to substantially enhance sleep monitoring 
systems.  
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