Riskreducerande åtgärder för dödsbränder i bostäder

Petra Andersson, Silvia Aras, Magnus Arvidson, Håkan Frantzich, Ida Larsson, Frida Vermina Lundström, Daniel Nilsson, Marcus Runefors

RISE Rapport 2018:37
Riskreducerande åtgärder för dödsbränder i bostäder

Petra Andersson, Silvia Aras, Magnus Arvidson, Håkan Frantzich, Ida Larsson, Frida Vermina Lundström, Daniel Nilsson, Marcus Runefors
Abstract

Measures against residential fatal fires

This report summarizes the work conducted within the project "Analysis of physical determinants and technical measures in support of the zero vision" financed by the Civil Contingency Authority (MSB) in Sweden. The work aims to find measures to prevent and reduce the number of fatalities in fires in residential buildings in Sweden, a list of such measures is provided in the end of the report. The list is based on work conducted in several small sub-projects, a short summary of these is also provided in the report.

Key words: Fires, Residential fires, Fire fatalities, Fire prevention, Fire measures

RISE Research Institutes of Sweden AB
RISE Rapport 2018:37
ISBN: 978-91-88695-75-8
Borås 2018
Innehåll

Abstract .. 1
Innehåll .. 2
Förord ... 4
Sammanfattning ... 4
1 Inledning .. 6
2 Delstudier och publikationer ... 7
 2.1 Analys av svensk statistik ... 8
 2.2 Dödsbränder i andra länder ... 9
 2.3 Kartläggning av förlåtande system och produkter ..10
 2.4 Effektivitet av förlåtande system ..11
 2.4.1 Effektivitet för hela befolkningen ...11
 2.4.2 Effektivitet för olika befolkningsgrupper ..13
 2.5 Räddningstjänsten som förlåtande system ..14
 2.6 Boendesprinkler och vattendimma ...14
 2.6.1 Aktiveringstiden för olika sprinklerglasbulber ...14
 2.6.2 Försök med boendesprinkler och vattendimma ...15
 2.7 Byggnadens inverkan ...16
 2.8 Lös inredning ..16
 2.9 Virtual Reality – ett möjligt verktyg för att studera människors beteende vid bostadsbrand ...17
 2.10 Spisvakt och portabelt sprinklersystem – kostnad-nytta-analys ...19
 2.11 Trender ..20
3 Riskreducerande åtgärder ...21
 3.1 Brandvarnare ...21
 3.1.1 Placering ..21
 3.1.2 Detektionsförmåga ..22
 3.1.3 Funktion ..22
 3.1.4 Brandvarnarens akustiska signal ...22
 3.1.5 Förmåga att ta sig ut ..23
 3.2 Cigaretter ...23
 3.2.1 Sluta röka och ta droger/alkohol ..23
 3.2.2 Bättre självlocknande cigaretter ...23
 3.3 Lös inredning ..23
 3.4 Konsumentprodukter ...24
 3.4.1 Glödlampor ..24
 3.4.2 Levande ljus ..25
3.4.3 Kökspis... 25
3.5 Byggnaden och dess konstruktion... 25
 3.5.1 Öppen planlösning .. 25
 3.5.2 Sprinkler och brandlarm för nybyggda hus ... 25
3.6 Informationsåtgärder .. 26
3.7 Särskilda boenden ... 26
3.8 Mobila sprinklersystem .. 26
3.9 Materialval i kläder .. 27
3.10 Utredningar .. 27
4 Åtgärder för MSB att fokusera på .. 28
Referenser .. 31
Förord

Denna rapport utgör slutrapport i projektet ”Analys av brandsäkerhetens fysiska bestämningsfaktorer och tekniska åtgärder som stöd till nollvisionen” som har finansierats av MSB. Rapporten sammanfattar projektet i form av förslag på åtgärder som kan införas för att minska antalet omkomna och skadade i bostadsbränder.

Flera personer har arbetat i projektet, förutom författarna har följande personer arbetat i projektet:

Anna Bergstrand, RISE
Joakim Franzon, RISE
Patrick Van Hees, LTH
Nils Johansson, LTH
Lars Strandén, RISE
Michael Strömgren, RISE
Sammanfattning

Denna rapport utgör slutrapport i projektet ”Analys av brandsäkerhetens fysiska bestämningsfaktorer och tekniska åtgärder som stöd till nollvisionen” som har finansierats av MSB. Rapporten sammanfattar projektet i form av förslag på åtgärder som kan införas för att minska antalet omkomna och skadade i bostadsbränder. De rekommenderade åtgärderna baseras på de resultat som framkommit i de underprojekt som genomförts under projektets gång. En kort sammanfattning av de projekten ges, för fullständig information hänvisas läsaren till de olika delprojektsrapporterna.

För att minska antalet döda och skadade i bränder i bostäder behövs många olika åtgärder, det finns ingen universallösning som kan förhindra alla dödsfall i bostadsbränder. Åtgärderna som rekommenderas inkluderar:

- Fortsatt satsning på brandvarnare i hemmet, både i form av fler brandvarnare och bättre brandvarnare
- Informationsspridning genom t.ex. bättre spridning av sidan ”Din säkerhet”
- Bättre brandskydd för personer som vårdas i hemmet
- Brandkrav på lös inredning
- Fortsatt och förbättrad uppföljning av dödsbränder
- Mer vikt vid nyttan av brandskyddsåtgärder i regelverk även om det inte går att räkna hem nyttan rent samhällsekonomiskt
- Fortsatt forskning inom området gällande t.ex. bättre brandvarnare, utvärderingsverktyg olika insatser samt bränder med okänd orsak.
1 Inledning

Antalet omkomna i bränder har sedan 1990-talet legat på ca 120 döda per år, där bostadsbränder står för 90% av dödsfallen. Efter ett tragiskt år 2009 då 121 personer omkom i bränder varav 15 personer omkom i tre bostadsbränder fick myndigheten för samhällsskydd och beredskap (MSB) ett regeringsuppdrag att ta fram en nationell strategi för att stärka brandskyddet genom stöd till enskilda. Det arbetet resulterade i en nollvision för brandskyddet – Ingen ska omkomma eller skadas allvarligt till följd av brand.

Fem angreppssätt identifierades för att närma sig visionen [1]:

- En nationell samverkansgrupp
- Kontinuerlig kommunikation till de enskilda
- Utbildning av aktörer
- Utbildning i skola, gymnasieskola, SFI mm
- Forskning inom området

2 Delstudier och publikationer

Tabell 1 Publikationer från projektet.

<table>
<thead>
<tr>
<th>Författare</th>
<th>Titel</th>
<th>Publikation</th>
<th>Se avsnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Winberg</td>
<td>International Fire Death Rate Trends</td>
<td>SP Rapport 2016:32 [3]</td>
<td>2.2</td>
</tr>
<tr>
<td>Lars Strandén</td>
<td>Felträdsanalys för spisvakter</td>
<td>SP Rapport 2016:88</td>
<td>2.3</td>
</tr>
<tr>
<td>Marcus Runefors, Nils Johansson, Patrick Van Hees</td>
<td>The effectiveness of specific fire prevention measures for different population groups</td>
<td>Fire Safety Journal 91 (2017) sid. 1044-1050 [7]</td>
<td>2.4</td>
</tr>
<tr>
<td>Magnus Arvidson</td>
<td>An evaluation of residential sprinklers and water mist nozzles in a residential area fire scenario</td>
<td>RISE Rapport 2017:40 [8]</td>
<td>2.6.2</td>
</tr>
<tr>
<td>Marcus Runefors, Håkan Frantzich</td>
<td>Nyttoanalys av spisvakt och portabelt sprinklersystem vid bostadsbränder</td>
<td>Report 3210 Brandteknik LTH [9]</td>
<td>2.10</td>
</tr>
<tr>
<td>Magnus Arvidson</td>
<td>The response time of different sprinkler glass bulbs in a residential room fire scenario</td>
<td>Accepterad för Fire Technology</td>
<td>2.6.2</td>
</tr>
</tbody>
</table>
Tabell 2. Examensarbeten inom projektet.

<table>
<thead>
<tr>
<th>Författare</th>
<th>Titel</th>
<th>Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erik Lundborg, Annie Martinsson</td>
<td>Brandskydd i flerbostadshus – en utvärdering av tekniska brandskyddsanordningar</td>
<td>Rapport 5471 Brandteknik Lund 2014</td>
</tr>
<tr>
<td>Linus Östman</td>
<td>Varför omkommer det fler personer i bostadsbränder i Finland än i Sverige</td>
<td>Rapport 5499 Brandteknik Lund 2015</td>
</tr>
<tr>
<td>Elna Lindahl, Jonatan Hedberg</td>
<td>Poisson-modellering av dödsbränder i Sverige</td>
<td>Kandidatuppsats i statistik HT 2016, Lund 2016</td>
</tr>
<tr>
<td>Max Coxner, Mathias Dalgren Wiklan</td>
<td>Egendomsskydd vid brand i flerbostadshus</td>
<td>Rapport 5475 Brandteknik Lund 2014</td>
</tr>
<tr>
<td>Axel Philip, Andreas Stagnebo</td>
<td>Planlösning i bostäder som en del av det passiva brandskyddet</td>
<td>Rapport 5529, Brandteknik Lund 2017</td>
</tr>
<tr>
<td>Hilco Hiemstra</td>
<td>Influence of Building Structure and Building Content on Residential Fires</td>
<td>Rapport 5520, Brandteknik Lund 2016</td>
</tr>
<tr>
<td>Alexander Karlsson</td>
<td>Experimentell rangordning av antändligheten hos kläder som används av riskgrupper</td>
<td>Rapport 5559, Brandteknik Lund 2018</td>
</tr>
<tr>
<td>Emelie Eklöf</td>
<td>Torrkokningar – En statistisk och experimentell studie om antändning av mat i fast form som glömts kvar på spis</td>
<td>Rapport 5551, Brandteknik Lund 2017</td>
</tr>
</tbody>
</table>

2.1 Analys av svensk statistik

Rapporten utgör det första steget i projektet. I rapporten används statistik för att finna karaktäristiska egenskaper för bostadsbränder som har en dödlig utgång. Statistik som används är MSBs allmänt tillgängliga statistik om bostadsbränder och dödsbrandsdatabasen på ida.msb.se tillsammans med allmänt tillgänglig statistik från SCB och, i några fall, ytterligare data som MSB har genom insatsrapporteringen som inte är allmänt tillgänglig.

I rapporten görs jämförelser mellan bostadsbränder med och utan dödlig utgång. Då antalet dödsfall är förhållandevis få gjordes analysen över hela det då tillgängliga dataintervallret 1999-2013. I de flesta fall görs jämförelsen genom enkla studier av stapeldiagram, i några fall kompletteras detta med en statistisk analys genom vilken man kan bestämma om skillnaden mellan bostadsbränder generellt och bostadsbränder med dödlig utgång är statistiskt signifikant.

trolig orsak eller startföremål. Från år 2006 och framåt har andelen gått upp. Andelen dödsbränder med okänd orsak är nästan 50% medan siffran för bostadsbränder generellt är runt 20%. Startföremålet är okänt i ca 40% av dödsbränderna medan det endast är okänt för 10% av bostadsbränder generellt.

2.2 Dödsbränder i andra länder

En genomgång gjordes av internationell statistik om dödsbränder. En direkt jämförelse av statistik i olika länder är svårt att göra eftersom olika länder har olika förutsättningar vad gäller omfattning av statistiken etc. Därför fokuserade man på att titta på trender i statistiken i de enskilda länderna. Sex länder befanns ha haft ett minskat antal dödsbränder under senare år: Estland, Lettland, Ryssland, Tyskland, Storbritannien och USA.

Under de studerade åren har stora politiska förändringar skett i Estland, Lettland och Ryssland och dessa länder studerades inte djupare eftersom det inte kunde uteslutas att de stora variationerna berodde bland annat på den politiska förändringen och eventuella skillnader i statistisk rapportering som en följd av det. Tyskland, Storbritannien och USA har haft ett stabilare politiskt läge under perioden och valdes därför för fortsatta studier. Tyskland saknar dock nationell statistik och det var därför svårt att göra fortsatta studier där, istället blev fokus på USA och Storbritannien.

Antalet döda per 100 000 invånare i USA har minskat från ca 2 st år 1992 (1,3 år 2002) till ca 0,9 år 2012. I Storbritannien har antalet döda per 100 000 invånare minskat från nästan 1,6 år 1992 till 0,6 år 2012. Analysen av statistik från USA visar på en allt större användning av brandvarnare men det är inte alltid de fungerar, batterier saknas etc. Även användningen av boendesprinkler har ökat under perioden.

USA införde the Federal Fire Prevention Act 1974 och som en följd av det startades Center for Fire Research och National Bureau of Standards (dagens NIST) och forskning om antändning, flammspridning, släckning etc. startades för att minska antalet döda i bränder. NIST listar följande faktorer som har bidragit till att minska antalet döda:

- Brandvarnare: utveckling av standarder för placering och känslighet för brandvarnare vilket resulterade i billigare detektorer och en ökad användning
- Sprinkler och boendesprinklerstandarder och regler som gett en ökad användning av boendesprinkler
• Antändningskrav för stoppade möbler och madrasser
• Brandspridningskrav för mattor
• Standard för nattkläder för barn
• Installationskrav på öppna spisar, kaminer och skorstenar

2.3 Kartläggning av förlåtande system och produkter

En entydig definition av förlåtande system eller produkter saknas men inom ramen för projektet föreslogs följande definition: ”System eller produkt som medger en individ att göra fel utan att skadas eller omkomma av brand.” Denna definition inkluderar ett flertal system eller produkter; självslocknande cigaretter, självsläckande ljus och ljussläckare, svårantändliga madrasser, svårantändliga båddprodukter, jordfelsbrytare, spisvakter, brandvarnare, boendesprinkler och mobila sprinklersystem. De förlåtande system eller produkter som finns på den svenska marknaden identifierades, vilka produkt- eller installationskrav som finns och hur effektiva de är i verkligheten eller vid försök.

Resultaten visar att de inte har haft någon signifikant effekt på antalet bostadsbränder eller antalet dödsbränder där rökning var den kända brandorsaken [13].

På senare år används mobila sprinklersystem allt mer för att förbättra brandskyddet i befintliga boendemiljöer där det finns ett ökat behov av brandskydd, till exempel för äldre, storräknande, dementia eller personer med funktionsnedsättningar i vårdboenden eller hemmiljö. En fördel med systemen är att de är flytbara och till skillnad från fast installerade boendesprinklersystem aktiverar de i ett tidigare skede av brandförloppet. Det finns ett stort antal dokumenterade fall där mobila sprinklersystem troligen förhindrat dödsbränder, däremot finns inga studier som visar hur den nationella dödsbrandstatistiken påverkats.

Sammantaget går det att påstå att det finns tekniska system och produkter som förhindrar eller försvårar uppkomst av brand (självslocknande cigaretter, självsäkerande ljus, jordfelsbrytare, spisvakter, m.fl.), varnar vid uppkomst av brand (brandvarnare) eller reducerar konsekvensen av en brand (sprinklersystem). Om de system eller produkter som finns på marknaden i större utsträckning användes i boendemiljöer och underhölls så att de var funktionsdugliga finns det grund för att påstå att antal dödsbränder i Sverige skulle kunna närma sig nollvisionen.

2.4 Effektivitet av förlåtande system

Det är viktigt att beakta att eftersom analysen är baserad på data från dödsbränder så visar den bara på effektiviteten av en ökad förekomst av det förlåtande systemet. Den säger inget om hur antalet omkomna hade förändrats om förekomsten av det förlåtande systemet hade minskat i samhället.

2.4.1 Effektivitet för hela befolkningen

Analysen av fallstudierna baserades på en kartläggning av vilka möjliga förlåtande system och produkter (eller barriärer som de beskrevs som i artikeln) som hade kunnat förhindra var och ett av de analyserade dödsfallen. Barriärerna identifierades allt eftersom fallen analyserades. Tillförlitligheten i resultatet säkerställdes genom att en delmängd kodades även av en oberoende forskare. Resultateten framgår av nedanstående figur där procentsatserna är teoretisk effektivitet, d.v.s. andelen av dödsfallen som hade kunnat undvikas om alla de omkomna hade haft systemet och
tillförlitligheten var 100%. Det ger alltså en övre gräns på hur stor andel som hade kunnat undvikas med systemet eller produkten.

![Diagram](image)

Figur 1 Andel av de omkomna som hade kunnat räddas av respektive förlåtande system eller produkter givet en 100% tillförlitlighet.

Några åtgärder som sticker ut som särskilt effektiva är boendenSprinkler (68%), brandvarnare (37%) och säkra cigaretter (40%). Med begreppet säkra cigaretter avses sådana som inte orsakar antändning av annat material. I detta begrepp ingår inte självslocknande cigaretter med dagens utformning då dessa inte kunnat konstateras kunna hindra antändning av annat material [14, 15]. Detta var förväntat och ligger i linje med motsvarande siffror i litteraturen. Ett förvånande resultat var dock att ca 20% av de omkomna hade kunnat utrymma, men valde att inte göra det. Detta handlar nästan uteslutande om individer som har försökt släcka branden. Det har ytterst sällan funnits liv att rädda genom den släckande insatsen utan syftet har varit att rädda egendom. Det är viktigt att förstå bakgrunden till detta beteendet och det är anledningen till VR-studien som redovisas i kapitel 2.9. Framtida studier bör analysera hur detta beteende kan påverkas.

En annan slutsats av fallstudierna var att det inte är särskilt användbart att prata om effektiviteten för hela befolkningen eftersom det var tydligt att den skiljde sig mycket mellan olika grupper av individer. För att kunna dela upp datamaterialet i olika grupper behövdes dock fler fall och därför analyserades motsvarande frågeställningar i ett statistiskt perspektiv i den efterföljande artikeln.
2.4.2 Effektivitet för olika befolkningsgrupper

Tabell 3 Jämförelse av åtgärders effektivitet från fallstudier och statistisk analys.

<table>
<thead>
<tr>
<th>Åtgärd</th>
<th>Effektivitet enligt fallstudiera</th>
<th>Effektivitet enligt statistisk analys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Väl fungerande elsystem</td>
<td>15%</td>
<td>14%</td>
</tr>
<tr>
<td>Antändningsskyddad sång</td>
<td>19%</td>
<td>20%</td>
</tr>
<tr>
<td>... soffa</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>... kläder</td>
<td>10%</td>
<td>11%</td>
</tr>
<tr>
<td>Spisvakt</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Säkra cigaretter</td>
<td>30%</td>
<td>39%</td>
</tr>
<tr>
<td>Boendesprinkler</td>
<td>75%</td>
<td>76%</td>
</tr>
<tr>
<td>Detektoraktiverad sprinkler i sovrum och vardagsrum</td>
<td>53%</td>
<td>60%</td>
</tr>
<tr>
<td>Brandvarnare (enligt krav)</td>
<td>42%</td>
<td>43%</td>
</tr>
</tbody>
</table>

a För att möjliggöra jämförelse har resultatet från fallstudierna räknats om från andel dödsbränder som hade kunnat undvikas till andel dödsfall.

Som framgår så överensstämmer resultaten generellt mycket väl vilket tyder på att de är trovärdiga. Sämst överensstämme ses för säkra cigaretter. Detta var förväntat eftersom det ofta handlar om små bränder där bara personen och dess kläder eller sång/soffa har varit inblandade. Det har indikerats från vissa räddningstjänster att dessa bränder ibland inte känts meningsfulla att utreda eftersom brandorsaken varit uppenbar.

För att dela upp befolkningen i olika grupper så användes en statistisk metod, klusteranalys, för att hitta åldersgrupper som hade mest lika effektivitet inom gruppen samtidigt som denna var som mest skild från andra grupper. Detta gör att man genom att placera en person i en viss åldersgrupp får den mest precisa uppsättningen effektiva åtgärder. De identifierade åldersgrupperna var: 0-34 år, 35-49 år, 50-84 år och 85+ år. Förutom dessa analyserades även effektiviteten för ensamboende personer över 50 år samt för personer boende i villa respektive lägenhet. Syftet var att lättare kunna fastställa vilka åtgärder som är effektiva för den aktuella individu vid t.ex. hembesök genom variabler som lätt kan identifieras av den som genomför hembesöket.

I artikeln är effektiviteten för åtgärderna i tabellen uppdelade i ovanstående grupper samt för rökare och icke-rökare. Som förmodades så skiljer effektiviteten markant mellan olika grupper. Som exempel kan nämnas att sprinklersystem har en effektivitet på 95% för personer upp till 50 år, men för rökare över 85 år är effektiviteten nere på ca 25%. Det bör dock noteras att eftersom risken för denna grupp är så markant mycket större så är ändå nytta nästan 20 ggr högre för den senare gruppen. Liknande mönster kan även ses för brandvarnare och hänger samman med att den senare gruppen ofta är
vakna och nära branden när den inträffar och har därför ingen nytta av brandvarnaren (förutom om möjlichen en granne hör signalen).

2.5 Räddningstjänsten som förlåtande system

Det finns en utbredd bild av att operativ räddningstjänst inte kan rädda liv i den branddrabbade lägenheten eller villan, men förvånande nog så finns det ingen forskning huruvida detta stämmer. Det finns en studie från IFV i Nederländerna [16] men den har en bred definition av räddningar så att konsekvenserna hade i många fall inte blivit högre även om det inte hade genomförts någon räddningsinsats.

Den definition av räddning som användes i studien är att "personen hade omkommit eller skadats allvarligt om räddningstjänsten hade varit 30 minuter senare på plats". Detta undersöktes genom att MSB löpande tillhandahöll händelserapporter där räddningstjänsten angav att de hade räddat någon. Om det inte tydligt kunde avfärdas från fritexten i händelserapporten så genomfördes en telefonintervju med första befäl eller FIP (Första-Insats-Person) på plats. Datainsamlingen omfattade år 2017 och totalt inkom 148 fall som analyserades. Av resterande fall har en eller flera telefonintervjuer utförts i drygt 80 fall, av dessa var 43 fall verkliga räddningar. Totalt räddades 51 personer under året. Det har verifierats att inga av dessa senare har avlidit genom samkörning med dödsbrandsdatabasen.

Datainsamlingen är precis slutförd och analysen påbörjad så därför kan inga detaljerade resultat presenteras. Under analysen så kommer fallen med räddningar bland annat att jämföras med dödsbränder för att undersöka likheter och skillnader. Räddningstjänstens förmåga i form av metodförmåga (t.ex. rökdykning, räddning med maskinsteg) och insatstid kommer att analyseras avseende dess betydelse för livräddning vid brand i byggnad.

Av de 43 fallen har räddningen i ca 70% av fallen skett genom rökdykning och ca 10% av vardera Första-person-insats, bärbar stege eller genom maskinsteg/hävare. I flera av fallen hade andra metodförmågor kunnat användas, men detta presenteras först i samband med den slutliga analysen.

2.6 Boendesprinkler och vattendimma

Två försöksserier genomfördes i projektet; en försöksserie där aktiveringstiden för olika sprinklerglasbulber mättes och en försöksserie med ”släckförsök” med boendesprinkler, vattendimma och ett mobilt sprinklersystem.

2.6.1 Aktiveringstiden för olika sprinklerglasbulber

Tiden till dess en sprinkler aktiverar är betydelsefull, särskilt för boendesprinkler där målsättningen är att förhindra dödsbränder. Normalt har boendesprinkler en 3 mm glasbulb med en nominell aktiveringstemperatur om 68°C. Men det finns glasbulber med mindre diameter och lägre aktiveringstemperatur men de används sällan eller aldrig för boendesprinkler. Målsättningen med studien var att bestämma aktiveringstiden och brandeffekten när en sprinkler aktiverar vid ett brandförlopp som

2.6.2 Försök med boendesprinkler och vattendimma

Den primära målsättningen var att undersöka om effektiven för traditionella boendesprinkler kan förbättras genom att de aktiverar tidigare i ett brandförlopp. Tidigare aktivering åstadkoms vid försöken med en sprinklerglasbulb som har lägre termisk tröghet (lägre RTI) och/eller lägre aktiveringstemperatur än de glasbulber som normalt används. Den sekundära målsättningen var att undersöka effektiven med vattendimma. Även dessa munstycken aktiverades av en glasbulb av värmén från branden. Det mobila sprinklersystemet som provades aktiverades av en branddetektor (rök och värme) vilket bidrog till en något tidigare aktivering av systemet.

Försöken genomfördes i ett mindre bostadsrum och som brandkälla användes antingen en simulerad och starkt förenklad stoppad fåtölj, eller en autentisk och kommersiell fåtölj inköpt från ett möbelföretag.

Resultaten visar att en tidigare aktivering av boendesprinkler bidrar till en viss förbättrad effektivitet när vattenflödet från sprinklern var 30.3 liter/min (motsvarande 2.05 mm/min). Denna vattentäthet används för boendesprinklersystem i enbostadshus, radhus och liknande byggnader där de boende förväntas kunna utrymma på egen hand och på ett enkelt sätt. När vattenflödet från boendesprinklern fördubblades till 60.6 liter/min förbättrades dock effektiven avsevärt. Detta vattenflöde motsvarar den dimensionerande vattentätheten 4.1 mm/min som används i högre bostadsbyggnader eller i verksamheter där de boende behöver hjälp för att utrymma. Det speglar också delvis att vattenflödet är högre när den första sprinklern i ett system aktiverar.

Vattenflödet från de olika munstyckena av typen vattendimma varierade mellan 17.2 liter/min och 36.7 liter/min och vattenflödet för det mobila sprinklersystemet var 8.2 liter/min. En betydligt ökad effektivitet i termer av mer dampad brand, lägre gastemperatur i taket ovanför branden och i lägre gastemperaturer erhölls med vattendimmunstyckena och det mobila sprinklersystemet jämfört med boendesprinkler. Samma eller bättre prestanda uppnåddes med ungefär halva vattenflödet jämfört med boendesprinklern. Men även för dessa system är brandskadorna i både den simulerade och den autentiska fältötten så omfattande att det är tveksamt om en person i direkt närhet av branden överlever.

2.7 Byggnadens inverkan

I ett examensarbete har parametrar relaterade till en bostads planlösning studerats med simuleringar av representativa bränder i en fallstudie. Studien visar att ökad takhöjd, rumsindelning och rumsplacering har en positiv inverkan på konsekvenserna av en brand som utgör fara för människors hälsa och liv. Öppen planlösning, ökad dörrhöjd och ökad dörrbredd tycks dock ha en negativ inverkan på konsekvenserna av en brand.

2.8 Lös inredning

Lös inredning som säljs på den svenska marknaden ska uppfylla produktsäkerhetslagen, vilken baseras på EUs produktsäkerhetsdirektiv 2001/95/EG. Direktivet och produktsäkerhetslagen ställer krav på att alla varor och tjänster som företag erbjuder konsumenter ska vara säkra men har inga exakta krav på hur det ska uppfyllas. I Sverige hanteras produktsäkerhetslagen med tillhörande förordning av
Konsumentverket och på deras hemsida hänvisas till provning enligt SS-EN 1021-1 för stoppade möbler och till SS-EN 5971 för madrasser. Båda provningsmetoderna bygger på att en produkt ska klara av att ha en glödande cigarett liggande på sig under en bestämd tid utan att börja brinna.

Med tanke på de många dödsbränderna höjs röster i Europa om att brandkraven bör skärpas/höjas, och nyligen gav FEU ut en rapport där de ger rekommendationer hur de bör skärpas [17]. Inom sjukvården ställs det redan idag högre brandkrav på produkter som ska användas i en miljö där förhöjd risk för antändning föreligger (exempelvis på psykvårdsavdelningar).

2.9 Virtual Reality – ett möjligt verktyg för att studera människors beteende vid bostadsbrand

Ett möjligt sätt att undersöka människors beteende vid bostadsbrand är att intervjua överlevande från bränder. Dock är denna metod förknippad med svagheter på grund av begränsningar kopplade till människors minne. Om en person intervjus efter en traumatisk händelse ges ofta olika beskrivning av händelseförloppet beroende på när intervjun äger rum. Även personers beskrivning av andras agerande blir missvisande eftersom de inte känner till personernas intentioner och därmed ofta drar förhastade slutsatser om motivet till observerade handlingar. Data från intervjuer är därför förknippade med begränsningar.

Ett alternativ till intervjuer efter inträffade bostadsbränder är att istället genomföra utrymningsförsök i hemmiljö. Dock är detta svårt att genomföra eftersom det innebär ett intrång i personers privatliv, dvs en etisk risk.

På senare år har Virtual Reality (VR) börjat användas i allt större utsträckning i syfte att studera människors beteende vid brand. Metoden bygger på att försökspersoner utsätts för en datogenererad miljö som de även kan interagera med. VR-försök kan liknas vid att spela ett mycket realistiskt datorspel och är ett möjligt sätt att samla in
data för situationer som tidigare inte kunde studeras, t.ex. byggnader som ännu inte byggts eller hemmiljöer som inte är lätt tillgängliga för försök av etiska skäl.

I försöken genomgick varje försöksperson först ett träningsscenario för att lära sig hur VR fungerar. Därefter placerades de i hemmiljön och ombads utforska denna. När de nått ett rum på ovanvåningen och plockat upp en telefon som ringde startades utrymningen. I ett fall fanns det brandröken i den datorgenererade miljön (scenario 1) och i ett annat fall fanns rök och ljud från en hemmabrandvarnare (scenario 2). Under utrymning observerades försökspersonernas beteende, dvs om de uppvisade någon av följande beteenden:

1. Ringa 112
2. Försöka släcka branden (brandsläckare eller på annat sätt)
3. Väcka person som låg på soffan på nedanvåningen
4. Försökte stänga dörrar
5. Försökte öppna fönster

Totalt deltog 66 personer i försöken. Av dessa genomförde 26 personer scenario 1 i försök på LTH. Ingen av dessa personer bodde i den aktuella husmodellen. Totalt 40 personer från Stångby deltog i försöken och genomförde försöken på plats i Stångby. Samtliga dessa personer bodde i den aktuella husmodellen. Av de 40 personerna genomförde 20 stycken scenario 1 och 20 stycken scenario 2.

Utifrån resultaten från försöken går det inte att se några signifikanta skillnader mellan försökspersonerna från försöken på LTH och i Stångby. Det går heller inte att se några signifikanta skillnader mellan scenario 1 och 2. En intressant observation var att många, i huvudsak kvinnor, mådde illa i försöken, vilket tyder på att VR-tekniken kan förbättras ytterligare. Dock erhölls positiv feedback avseende realism och interaktion från de försökspersoner som genomförde försöken i Stångby. VR-försök för bostadsbränder bedöms därför ha potential, men är en metod som måste vidareutvecklas innan den kan användas i större skala för datainsamling kopplat till bostadsbränder.
2.10 Spisvakt och mobila sprinklersystem – kostnad-nytta-analys

Spisvakt och mobila sprinklersystem utgör exempel på tekniska system som avser att skydda mot spisrelaterade bränder respektive har avsikten att primärt skydda personer med nedsatt egen handlingsförmåga, dvs mot en specifik brand eller för en specifik personkategori. Båda dessa system har kommit att bli vanligare vilket gör att det finns anledning att, utifrån ett samhällesekonomiskt perspektiv, undersöka om kostnader relaterade till produkterna står i proportion till den förväntade nytta.

Nyttoanalyserna utgår från att primära nytta är att rädda liv och att personer inte drabbas av svåra eller lindriga skador. Analysen av spisvakter inkluderar även nytta av minskade egendomsskador och att en viss reducering av antalet räddningsinsatser kan ske. I detta sista fall inkluderar endast räddningsinsatser som medför en direkt kostnad då de utförs dvs. insatser av deltidskårer.

Resultatet av den genomförda analysen visar att det mobila sprinklersystemet, när det installeras för särskilt sårbara grupper, har en nytta som överstiger kostnaden för installationen. Det gäller särskilt för äldre personer som är rökare. För dem är åtgärden starkt samhällesekonomiskt lönsam med en nyttkvot på 1,57-4,92 beroende på åldersgrupp och huruvida systemet återanvänds i andra bostäder. Med äldre avses
personer över 65 år. För äldre personer som är rökare är systemet lönsamt oavsett om det återanvänds eller inte men nytta är större om systemet kan användas på nytt.

Att installera mobila sprinklersystem i bostäder för äldre personer generellt är inte samhällsekonomiskt lönsamt dvs det kan inte noteras någon ekonomisk samhällsnytta som överstiger kostnaden. Dock konstateras att sprinklersystemet som sådant kan hantera flera brandscenarier som är orsak till dödsbränder i bostäder.

Att installera mobila sprinklersystem i bostäder för äldre personer generellt är inte samhällsekonomiskt lönsamt dvs det kan inte noteras någon ekonomisk samhällsnytta som överstiger kostnaden. Dock konstateras att sprinklersystemet som sådant kan hantera flera brandscenarier som är orsak till dödsbränder i bostäder.

Sett ur ett samhällsperspektiv kan det konstateras att spisvakt inte är en kostnadseffektiv installation med nuvarande kostnadsbild för produkten. Den besparing som kan göras är inte så stor att den kompenserar för kostnaden att installera spisvakter i alla bostäder, dvs. nyttokvoten understiger 1,0. Däremot finns det indikationer som tyder på att det kan vara samhällsekonomiskt lönsamt att installera spisvakter i bostäder för äldre personer, särskilt om kostnaden för produkten sjunker i pris. Dock är osäkerheten i nyttooupptäckning av undvikten persontalskada ganska stor vilket gör att en mer nyanserad analys behöver utföras.

2.11 Trender

Risken för att omkomma i brand utgår ifrån individens förutsättningar och levnadsförhållanden. Dessa förutsättningar påverkas till viss del av trendskiftningar i samhället; både vad gäller förändringar i byggnads- och boendemiljö, men också hur vi lever. En del i projektet syftade till att identifiera trender som har haft en påverkan på individens risk för att dö till följd av brand.

En hel del forskning existerar vad gäller prediktion av brand i olika typer av byggnadsmaterial. Samtidigt införs nya och ”nygamlä” material på bostadsmarknaden och bostäderna blir ”mer lufttät” pga. högre ställda energihushållningskrav, vilket t.ex. kan leda till att flerglasfönster och mer eller tättare isoleringsmaterial används. Nya bostäder tenderar också att byggas med öppnare planlösning än för 30 år sedan, även om bostadsytan i snitt per person inte har ändrats de senaste åren. Detta medför en ökad risk för snabb brand- och rökspridning inom brandcellen.

3 Riskreducerande åtgärder

För att minska antalet döda och skadade i bränder i bostäder behövs många olika åtgärder, det finns ingen universallösning som passar för alla. Nedan ges förslag på åtgärder. Åtgärderna är av olika typ, är inte rangordnade och ligger under olika ansvarsområden.

3.1 Brandvarnare

Effekten av brandvarnare har studerats i flera studier och de flesta kommer fram till att de är mycket effektiva [10]. Om man studerar statistiken i IDA ser man dock att brandvarnare fanns i 32% av bostadsbränderna med dödlig utgång och saknades i 46% av dem. Detta är liknande siffror som för bostadsbränder generellt där det fanns en brandvarnare i 36% av fallen men att de saknades i 42% av fallen [2]. ungefär 43% av de som omkommer idag hade kunnat räddas om de hade haft en fungerande brandvarnare enligt Runefors, Johansson och Van Hees [7], siffran varierar dock i olika åldersgrupper.

För att en brandvarnare ska göra nytta krävs det att brandvarnaren:

- Är placerad så att den detekterar branden
- Har bra ”detektionsförmåga”
- Fungerar (batteri etc.)
- Är placerad så att den uppmärksammar/väcker människor
- Ger en akustisk signal som uppmärksammar/väcker människor

Slutligen ska människan ha förmåga att komma undan branden genom utrymning eller klara att släcka/avgränsa branden

3.1.1 Placering

MSB rekommenderar att man ska placera brandvarnaren i eller intill sovrummet så att man hör om det larmar när man sover, samt ha minst en brandvarnare per våningsplan [18]. Vidare att brandvarnaren ska sitta i taket minst 50 cm från väggen och inte nära ventilationsöppningar eller i kök och badrum där den kan ge onödiga larm. Samtidigt ger man rådet att den bör sitta nära köket eftersom det ofta är där bränder startar.

För att säkerställa att sovande personer väcks är det viktig att brandvarnaren sitter så nära personen, dvs den bör sitta i de rum man sover i samt i vardagsrummet för att även täcka fall där man har somnat i soffan. Med en placering i sovrummet finns det dock en risk att brandvarnaren ger signal senare för en brand som inte startar i sovrummet utan t.ex. i köket eller i vardagsrummet. En majoritet av dödsbränderna börjar dock i det rum som den drabbade befinner sig i. Med flera brandvarnare som kommunicerar med varandra där alla ger larm om en av dem upptäcker en brand kan man dock även få larm om bränder som börjar i andra rum.
3.1.2 Detektionsförmåga

Brandvarnare som ska säljas i Sverige och EU ska testas enligt EN14604 där de testas mot fyra olika testbränder; glödande trä, glödande bomull, flammande plast och flammande vätska. En marknadskontroll av 60 CE märkta brandvarnare i Europa som genomfördes 2012-2013 visade att 33% av brandvarnarna nådde inte upp till alla de kriterier som undersöcktes, 19% upptäckte inte branden i tid [19]. Liknande resultat fick Boverket i sin studie 2014 där endast 10 av 23 provade brandvarnare uppfylde alla kraven [20].

3.1.3 Funktion

Många studier visar att batteriet är en svag faktor i brandvarnaren då det inte byts, alternativt att de plockas ner när de börjar signalera att batteriet behöver bytas. Ett sätt att komma ifrån detta problem är att använda nätanslutna brandvarnare, forskning från USA har t.ex. visat på att andelen larm vid en brand ökade från 79% med batteridriven brandvarnare till 93% vid nätanslutning [21].

Dock finns det berättelser om att en del som inte kan ta sig ut själva inte vill ha någon brandvarnare eftersom de inte vill väckas av brandvarnaren för att sedan skadas/dö i branden utan tycker då att det är bättre att dö i sömnen.

3.1.4 Brandvarnarens akustiska signal

Det finns mycket forskning om vilka ljudfrekvenser och ljudnivåer som behövs för att väcka en person [22, 23]. Denna forskning har dock inte implementerats i produktstandarderna, möjlichen för att dessa ljud inte gåer att skapa enkelt och billigt i en brandvarnare.

Det kan konstateras att utvecklingen inom standardområdet dock går åt fel håll då den senaste standarden tillåter både ett lägre ljudtryck och högre frekvens vilket är helt motsatt det som forskningen har visat är effektivt.
3.1.5 Förmåga att ta sig ut

Brandvarnaren gör det möjligt för personer som kan rädda sig själva att bli varse en brand och lämna sin bostad. För personer som inte kan ta sig ut själva behövs ytterligare åtgärder. Vidarekoppling av signalen till hemtjänst i de fall man har hemtjänst eller anhöriga kan möjliga vara ett steg att öka möjligheten att ta sig ut för den som behöver hjälp, dock om det börjar brinna i den möbel man sitter/ligger i så är tidsmarginalerna mycket små. En aktiv åtgärd av annan person blir då nödvändig om den boende inte själv har handlingsförmåga. Dessutom, med dagens teknik med övervakning på distans, skulle man möjlichen kunna kontrollera om brandvarnaren har aktiverats av en brand eller exempelvis av vattenänga från duschen.

3.2 Cigaretter

3.2.1 Sluta röka och ta droger/alkohol

Om ingen rökte så skulle 39% av de som omkommer i bränder idag inte omkomma. Med mindre användande av droger och alkohol skulle man kunna få ner antalet ytterligare då man antagligen skulle komma bort ifrån många fall med personer som somnat ifrån spisen etc. Dock har rökning, droger och alkohol många andra nackdelar och risken att omkomma i brand får anses ha en lägre betydelse än övriga risker.

3.2.2 Bättre självslocknande cigaretter/säkra cigaretter

3.3 Lös inredning

Lös inredning är startföremål i 35 % av de bostadsbränder som har en dödlig utgång och ca 85 % av dessa bränder har stoppade möbler inklusive sängar som startföremål. USA och Storbritannien har framgångsrikt reducerat antalet dödsbränder genom att införa tuffare antändningskrav på stoppade möbler och madrasser. I USA ställs dessutom krav på brandutvecklingen för alla madrasser, dvs. de får inte brinna med för stor brandeffekt om de trots allt skulle antända. Sverige har mycket låga
antändningskrav för stoppade möbler och madrasser då de endast behöver klara av att motstå en glödande cigarett. Större tändkällor såsom liten låga (motsvarande tändsticka) och eventuellt en mindre träribbstapel (”crib 5” som används i Storbritannien) skulle sannolikt minska risken för antändning och reducera antalet bränder. Ett första steg vore att införa liten låga som antändningskrav, dvs. EN 1021-2 för stoppade möbler och EN 597-2 för madrasser, även för hemmiljö. Detta är också en rekommendation som stöds av räddningstjänst i Europa [17].

Inom sjukvården kan ägaren eller föreståndaren, som en del av det systematiska brandskyddet, ställa högre brandkrav på lösgenredning, framförallt sängar, som används i hög riskmiljö. Vid provning för dessa krav används en 30 kW gasbrännare och man utvärderar hur stor brändeffekten blir när sängen antänds. Madrasser som har testats enligt dessa krav bör användas även vid vård i hemmet om det finns förhöjd risk för antändning då de ger en större möjlighet att rädda personer och släcka innan det är för sent.

Det är dock viktigt att man ser till hela uppställningen eftersom täcken och kuddar normalt innehåller tillräckligt med bränsle för att leda till dödsfall för personen som vistas i sängen. Ett sådant fall identifierades i samband med fallstudier på dödsbränder inom projektet.

3.4 Konsumentprodukter

Olika elektriska konsumentprodukter såsom vitvaror, TV, dator etc. är startöremlad i 9% av bostadsbränder med dödlig utgång. Av dessa står spis för ca 80% av fallen och där är det ju i regel inget fel på spisen utan man har glömt något på spisen så andelen som beror på faktiska fel eller brister i utrustningen är mycket lägre.

Antalet bränder som startar i TV-apparater har minskat kraftigt sedan 1999 då ca 135 bränder startade i TV-apparater per år och 7 bränder är det idag. Antalet två utgångar per år är något dödsfall orsakade. Minskningen i bränder kan bero på att apparaterna byts ut oftare, man kan inte ställa levande ljus etc. på dem och effektuttaget är lägre i dem.

Dock har t.ex. Hooverboards startat många bränder på senare tid och det är viktigt att säkerhetskrav följer med utvecklingen av nya produkter, samtidigt är det inte säkert att direktimporterade produkter är CE-märkta. CE-märkningen innebär att tillverkaren går i god för att produkten uppfyller de säkerhets- och hälsokrav som gäller i Europa.

3.4.1 Glödlampor

3.4.2 Levande ljus

Levande ljus är angivet som brandorsak för 4% av dödsbränderna i bostad. Med den ökande användningen av batteridrivna ljus finns det potential att dessa bränder minskar ytterligare.

Förutom batteridrivna ljus finns det självlocknande ljus samt ljussläckare som man kan sätta på ljuset. Ljussläckare har vissa estetiska nackdelar medan självlocknande ljus innebär att vekan inte räcker ända ner i botten och således inte påverkar utsendet på ljuset och borde vara en enkel åtgärd att införa. De flesta dödsfallen i fallstudierna inträffade dock inte beroende på att ljuset hade brunnit ner i botten utan att det hade antänt annat material i ljusets närhet, t.ex. kläderna.

3.4.3 Köksspis

3.5 Byggnaden och dess konstruktion

Det går inte att utröna om någon särskild byggnadskonstruktion är mer frekvent i dödsbränder än andra. Framförallt är det tydligt att de personer som omkommit vid en brand, omkom i den brandcell i vilken branden startade och byggreglerna anses därmed fylla sin funktion.

3.5.1 Öppen planlösning

En öppen planlösning ger en ökad rökspridning och en stor tillgång på syre så att branden kan växa till sig. Samtidigt ger en hög takhöjd mindre återstrålning till branden och brandförloppet minskar.

3.5.2 Sprinkler och brandlarm för nybyggda hus

Med boendesprinkler i alla bostadshus skulle ungefär 70% av de som omkommer i bostadsbränder idag kunna räddas. Det skulle dock ta tid innan ett införande av krav på boendesprinkler i nybyggda hus idag ger utslag i dödsbrandsstatistikens eftersom det
i regel inte är de som bor i nybyggda hus som omkommer i bränder. Dessutom är det en samhällsekonomiskt dyr insats om det skulle införas ett generellt krav. Bostäder idag säljs inte med säkerhet som argument, kanske skulle det kunna bli ett försäljningsargument.

3.6 Informationsåtgärder

Någon analys av olika informationsåtgärder har inte gjorts inom ramen för projektet men informationsåtgärder kan vara kostnadseffektiva åtgärder förutsatt att man når ut och att människor ändrar sitt beteende i önskad riktning baserat på informationen. Med dagens informationsflöde blir det dock allt svårare att nå fram till människor, det räcker inte längre att ha en snutt på ’Anslagstavlan’ på TV för att nå majoriteten av befolkningen.

Det finns idag många olika kanaler för informationsspridning såsom sociala medier, spel etc. och ”gammel-media” tidningar, radio och TV. Vad som bör väljas för att nå ut är svårt att veta, ett exjobb som utvärderade spel gav t.ex. att det inte gick att se någon skillnad mellan undervisning med infoblad och VR spel för det studerade fallet [27].

MSB har just nu en kampanj om vår beredskap och att man ska kunna klara sig själv i 72 timmar. Kampanjen verkar ha fått genomslag och synts i nyhetsinslag mm och ”prepper” är något man ska vara enligt t.ex. Damernas Värld [28]. En analys av hur stort genomslaget har varit i realiteten vore intressant, kanske finns det delar som en brandsäkerhetskampanj kunde ta efter.

3.7 Särskilda boenden

Äldre personer löper större risk att omkomma vid en bostadsbrand än populationen i stort. Nästan 60 % av de som omkommer i bränder är över 65 år [30]. I Sverige ökar både populationens medellivslängd och andelen äldre, samtidigt med det minskande antalet platser på särskilt boende [31]. I Lundström m fl [10] studeras om boendesituationen påverkar dödsbrandsriskerna för äldre och finner att det kan finnas indikationer på att fler äldre kan avilda till följd av brand då färre är bosatta på äldreboende [32]. Förutom den eventuellt ökande risken att omkomma i brand finns det många andra trygghetsfaktorer som gör att långt fler önskar att få plats på ett särskilt boende än som får plats idag.

3.8 Mobila sprinklersystem

En fördel med mobila sprinklersystem är att de är flyttbara. Det ger möjlighet att tillämpa ett individanpassat brandskydd till exempel för äldre, storrökare, dementa eller handicappade i vårdboenden eller hemmiljö. Till skillnad från fast installerade
boendesprinklersystem aktiverar de i ett tidigare skede av brandförförröpet men de brandförsök som genomfördes i projektet visar att en person som är i direkt närhet till branden troligen ändå inte överlever. Det finns ett stort antal dokumenterade fall där mobila sprinklersystem troligen förhindrat dödsbränder, däremot finns inga studier som visar hur den nationella dödsbrandstatistiken påverkats.

3.9 Materialval i kläder

Ett förhållandevis vanligt scenario för dödsbränder är äldre personer som sitter i rullstol eller liknande och tappar en cigaret i knät, men saknar den fysiska förmågan att avlägsna cigaretten vilket gör att den ibland antändes på kläderna på personen.

Slutsatserna stämmer väl överens med tidigare forskning avseende de olika fibertyperna, men en ny observation som inte har identifierats i tidigare forskning är att en inblandning på minst 5% Elastan hindrar bomullstygerna från att antändas. Detta är en intressant observation eftersom det indikerar möjligheten för en enkel åtgärd som inte påverkar ekonomi, kostnad för klädesplagget eller komforten (i alla fall inte negativt).

3.10 Utredningar

Åtgärderna som diskuteras här diskuteras baserat på den statistik som finns om bostadsbränder och döda i bostadsbränder. Dock är det en stor andel dödsfall där det mesta är okänt om branden, 25 % av branderna är sådana. För att kunna hitta effektiva åtgärder för dessa samt att kunna identifiera nya mönster vad gäller dödsbränder är det viktigt att alla dödsbränder utreds. Det är också viktigt att även fall där brandorsak är uppenbar utreds så att alla fall täcks in av statistik.
4 Åtgärder för MSB att fokusera på

Här sammanfattas några förslag till åtgärder som MSB kan fokusera på:

- **Bättre spridning av sidan Din säkerhet**
 Sidan Din säkerhet innehåller mycket användbar information, dock är den svår att hitta till. Räddningstjänst, kommuner och MSB bör ha länkar till denna sida placerade så att man lätt ser den när man är inne på deras hemsida.

- **Rekommendera fler brandvarnare – en i varje sovrum och vardagsrum**
 Idag rekommenderas en brandvarnare per våning. Man bör istället rekommendera en brandvarnare per sovrum och vardagsrum som helst bör vara sammankopplade (trådbundet eller trådlöst). Vardagsrum bör ingå för att även täcka soffsovare.

- **Arbeta inom standardiseringen för brandvarnare**
 Kraven på ljudsignalen bör ändras så att människor lättare vaknar av signalen. Den senaste utvecklingen inom standardiseringen har tyvärr gått i motsatt riktning, så att vi framöver kan förvänta oss att färre vaknar av brandvarnaren. Vidare kan det kanske finnas möjligheter för utvecklade känslighetskrav, detta kan undersökas i ett forskningsprojekt.

- **Marknadskontroll av brandvarnare**
 Två olika undersökningar har funnit brister i de brandvarnare som finns på marknaden. Fortsatta marknadskontroller behövs, dessutom kan frivilliga kvalitetsmärkningar av brandvarnare också höja kvalitén på dem.

- **Marknadskontroll av elektriska konsumentprodukter**
 Hooverboards, laddare, telefoner mm har startat många bränder på senare tid och det är viktigt att säkerhetskrafter följer med utvecklingen av nya produkter. Samtidigt är det inte säkert att direktimporterade produkter är CE-märkta. Marknadskontroller av elektriska konsumentprodukter behövs fortsatt tillsammans med information om de risker som direktimporterade produkter kan utgöra.

- **Utredningar och uppföljning av dödsbränder**
 Idag utreds inte alla bränder där någon har omkommit. För att kunna ha ett bra fortsatt arbete med att förhindra dödsbränder är det viktigt att varje dödsbrand utreds och att man ger en eller flera troliga orsaker och startföremål även om man inte är 100% säker. Vidare är det viktigt med fortsatt statistik över bostadsbränder generellt för att kunna identifiera eventuella förändringar i brandmönster.

- **Förbättrade provningsmetoder för självslocknande cigaretter/säkra cigaretter**
 Införande av krav på självslocknande cigaretter har haft liten eller ingen påverkan på antalet bostadsbränder eller dödsbränder, inte bara i Sverige utan i flera länder. Den underliggande förklaringen är sannolikt att provningsmetoden...
Säkerhet måste få kost

När Boverket inför nya regler ska dessa konsekvensutredas. I utredningen ingår bland annat att bedöma nyttan i förhållande till de kostnader som regelförändringen innebär. Det innebär att åtgärder som de facto inte är samhällsekonomiskt kostnadseffektiva ändå kan komma ifråga då regeländringar ska vara väl avvägda och kan beakta andra aspekter än sådana som är rent kostnadsrelaterade. Däremot kan det vara svåra att dra igenom den typen av förändringar ur ett regelperspektiv. Men om ambitionen är att minska antalet omkomna i bostadsbränder så kan det vara befogat att införa åtgärder som leder till kostnadsökningar. Exempel på åtgärder som kan falla inom ramen för Boverkets åtagande är

- nätnätslutna brandvarnare
- spisvakter
- boendesprinkler

Brandkrav på löst inredning

Förbättra brandskyddet för människor som vårdas i hemmet

Människor som vårdas i hemmet utgör en allt större grupp. Dessa behöver åtnjuta det brandskydd som de skulle ha haft om de istället bott på särskilt boende samt även, i fallet med sängliggande rökare, säng som har provats enligt de krav som finns för brandutsatta vårdmiljöer.

Fortsatt forskning

Arbetet har gett flera uppslag till fortsatt forskning för att stödja en fortsatt minskning av antalet döda i bränder och speciellt bostadsbränder

- Klusteranalys map trender

- **Bättre brandvarnare**
 Kraven på brandvarnare har varit desamma i många år samtidigt som den tekniska utvecklingen gått framåt både vad gäller sensorer men eventuellt även vilken typ av bränder man kan förvänta sig. Det vore intressant att undersöka vilka möjligheter det finns att utveckla känsligheten på brandvarnare samt vilka fördelar man kan få med kommunerande brandvarnare. Även vilka möjligheter det finns att ta fram signaler som väcker människor i större utsträckning behöver studeras.

- **Utvärderingsverktyg av olika insatser**
 Att utvärdera effekten av olika åtgärder är svårt och man kan i många fall få olika svar beroende på var man gör gränsdragningar och vilken data man har att tillgå. Vedertagna metoder för utvärdering av insatser och även dataset som kan användas för utvärdering, t.ex. kostnader för skador på människor skulle göra det enklare att jämföra och skulle kunna användas t.ex. av kommuner för att planera sina insatser.

- **De okända**
 Åtgärderna i denna rapport rekommenderas mot bakgrund av de dödsbränder där man känner till brandorsaken och andra detaljer. Dock finns det i IDA och dödsbrandsdatabasen en mycket stor andel där det mesta om branden är okänt. En studie av dessa bränder skulle vara värdefull för att identifiera eventuella andra åtgärder som kan förehindra eller minska dessa bränder. Det är idag inte känt om dessa bränder följer liknande mönster som de där orsak etc. är känd.

- **Innanför dörren**
 I Finland har man observerat att många döda hittas precis innanför dörren i lägenheten. Liknande har setts i Sverige och detta har tolkats som att man inte har kunnat låsa upp dörren. I Finland har man dock funnit att det antagligen beror på lufttrycket i lägenheten under vissa skeden av branden. Det vore värdefullt med liknande undersökningar här. Öppnades dörren inåt eller utåt i de här fallen? Kan lufttrycket pga branden orsakat att man inte fått upp dörren?
Referenser

18. Dinsakerhet.se

20 “Tre brandvarnare förbjuds i Sverige”, www.boverket.se nyhet publicerad 2014-08-29

21 Marty Ahrens, “Smoke Alarms in U.S. Home Fires”, NFPA September 2015, USA

22 Bruck D, Ball M., Sleep and fire: who is at risk and can the risk be reduced? Proceedings of the 8th international fire safety science, Beijing, Kina, 18-23 september 2005

26 Lundborg, E. Martinsson, A., "Brandskydd i flerbostadshus – en utvärdering av tekniska brandskyddssystem" Rapport 5471, Brandteknik, Lunds Tekniska Högskola (LTH) 2014

28 "Prepping – Att vara förberedd på det värsta”, Damernas Värld Nr 4 2018 sid. 96-97

33 Karlsson, A. (2018) "Experimentell rangordning av antändligheten hos kläder som används av riskgrupper”, Rapport 5559, Avdelningen för Brandteknik, Lunds Tekniska Högskola (LTH)

34 Statens offentliga utredningar (SOU) 1978:30, "Brand inomhus – Betänkande av brandriskutredningen", Stockholm 1978
Through our international collaboration programmes with academia, industry, and the public sector, we ensure the competitiveness of the Swedish business community on an international level and contribute to a sustainable society. Our 2,200 employees support and promote all manner of innovative processes, and our roughly 100 testbeds and demonstration facilities are instrumental in developing the future-proofing of products, technologies, and services. RISE Research Institutes of Sweden is fully owned by the Swedish state.

I internationell samverkan med akademi, näringsliv och offentlig sektor bidrar vi till ett konkurrenskraftigt näringsliv och ett hållbart samhälle. RISE 2 200 medarbetare driver och stöder alla typer av innovationsprocesser. Vi erbjuder ett 100-tal test- och demonstrationsmiljöer för framtidssäkra produkter, tekniker och tjänster. RISE Research Institutes of Sweden ägs av svenska staten.