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Abstract 
Microbial organisms are a vital part of our global ecosystem. Yet, our 
knowledge of them is still lacking. Direct sequencing of microbial 
communities, i.e. metagenomics, have enabled detailed studies of these 
microscopic organisms by inspection of their DNA sequences without the 
need to culture them. Furthermore, the development of modern high-
throughput sequencing technologies have made this approach more 
powerful and cost-effective. Taken together, this has shifted the field of 
microbiology from previously being centered around microscopy and 
culturing studies, to largely consist of computational analyses of DNA 
sequences. One such computational analysis which is the main focus of 
this thesis, aims at reconstruction of the complete DNA sequence of an 
organism, i.e. its genome, directly from short metagenomic sequences.  
 
This thesis consists of an introduction to the subject followed by five 
papers. Paper I describes a large metagenomic data resource spanning 
the Baltic Sea microbial communities. This dataset is complemented with 
a web-interface allowing researchers to easily extract and visualize 
detailed information. Paper II introduces a bioinformatic method which 
is able to reconstruct genomes from metagenomic data. This method, 
which is termed CONCOCT, is applied on Baltic Sea metagenomics data 
in Paper III and Paper V. This enabled the reconstruction of a large 
number of genomes. Analysis of these genomes in Paper III led to the 
proposal of, and evidence for, a global brackish microbiome. Paper IV 
presents a comparison between genomes reconstructed from 
metagenomes with single-cell sequenced genomes. This further validated 
the technique presented in Paper II as it was found to produce larger and 
more complete genomes than single-cell sequencing. 
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Sammanfattning 
Mikrobiella organismer är en vital del av vårt globala ekosystem. Trots 
detta är vår kunskap om dessa fortfarande begränsad. Sekvensering 
direkt applicerad på mikrobiella samhällen, så kallad metagenomik, har 
möjliggjort detaljerade studier av dessa mikroskopiska organismer 
genom deras DNA-sekvenser. Utvecklingen av modern 
sekvenseringsteknik har vidare gjort denna strategi både mer kraftfull 
och mer kostnadseffektiv. Sammantaget har detta förändrat 
mikrobiologi-fältet, från att ha varit centrerat kring mikroskopi, till att till 
stor del bero på dataintensiva analyser av DNA-sekvenser. En sådan 
analys, som är det huvudsakliga fokuset för den här avhandlingen, syftar 
till att återskapa den kompletta DNA-sekvensen för en organism, dvs. 
dess genom, direkt från korta metagenom-sekvenser. 
 
Den här avhandlingen består av en introduktion till ämnet, följt av fem 
artiklar. Artikel I beskriver en omfattande databas för metagenomik över 
Östersjöns mikrobiella samhällen. Till denna databas hör också en 
webbsida som ger forskare möjlighet att lätt extrahera och visualisera 
detaljerad information. Artikel II introducerar en bioinformatisk metod 
som kan återskapa genom från metagenom. Denna metod, som kallas 
CONCOCT, används för data från Östersjön i artikel III och Artikel V. 
Detta möjliggjorde återskapandet av ett stort antal genom. Analys av 
dessa genom presenterad i Artikel III ledde till hypotesen om, och belägg 
för, ett globalt brackvattenmikrobiom. Artikel IV innehåller en jämförelse 
mellan genom återskapade från metagenom och individuellt 
sekvenserade genom. Detta validerade metoden som presenterades i 
Artikel II ytterligare då denna metod visade sig producera större och mer 
kompletta genom än sekvensering av individuella celler. 
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Introduction 
On our planet, cellular life is present almost everywhere. Microbes thrive 
in environments as hostile as the acidic runoff water from a mine to the 
nutritious and protected environment of inside your gut. Furthermore, 
since all currently known cellular life forms are DNA based, 
environmental DNA is therefore present wherever you look for it. 
 
While some parts of the DNA sequence in a cell have been reasonably 
conserved for several hundred million years, other parts of the same 
sequence might be unique to that individual cell due to novel mutations. 
This enables us to use DNA to characterize the microbes present in a 
certain environment: to find out who is there and what proportion of the 
community that they constitute. But DNA is far from only useful for this 
kind of fingerprinting, it also encodes the full capability inherent to the 
cell. 
 
This thesis focuses on computational methods to process environmental 
DNA sequences. A special focus is on approaches to reconstruct the 
complete DNA sequence for species present in the community. 
Furthermore, most data studied will be from the Baltic Sea. Besides a 
short introduction, the main content of this thesis consists of a number of 
articles and manuscripts that I will refer to in this introduction as papers 
I, II, III, IV and V respectively. Paper I presents a processed dataset for 
the Baltic Sea together with a web based interface. Paper II presents a 
general method to reconstruct complete microbial DNA sequences using 
multiple environmental samples. Paper III uses this very method to 
investigate a Baltic Sea dataset. Paper IV compares two commonly used 
methods for DNA sequence reconstruction. Finally, paper V extends 
paper III with a new substantially larger dataset. 

Primer 
To a molecular biologist, it is perhaps truly offensive to say that DNA 
consists of the letters A, C, G, and T: ignoring the molecular structure and 
not spelling out the names of the nucleotides that these abbreviations 
represent (the names are Adenine, Thymine, Cytosine and Guanine. I 
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don’t want to offend anyone). But within bioinformatics, the field to 
where this thesis belongs, this is a very useful abstraction in order to 
transcribe molecular information into a plain text file or into more 
complex data structures which can be easily accessible by a computer. 
Therefore, this will be the starting point of this thesis. While DNA is the 
main carrier of hereditary information for all cellular life, I will not try to 
elaborate on how this is accomplished. Furthermore, I will not attempt to 
explain the dynamics between DNA, RNA, proteins or any other of the 
important molecules of the cell. Instead, our starting point will be the 
following definitions which are chosen in order to reflect the common use 
within the field and not necessarily the most scientifically precise: 
 
● DNA sequence: A sequence of any of the letters A, C, G and T. 
● Gene: A DNA segment which is predicted to encode for a certain 

RNA or Protein. When encoding for a protein, the gene uses a 
messenger  RNA (mRNA) as an intermediate stage. 

● Genome: The complete DNA sequence of a cell. 
 
Furthermore, even the most molecularly ignorant bioinformatician needs 
to know that each DNA sequence has exactly one complementary 
sequence where all occurrences of A:s are paired with T:s and all C:s are 
paired with G:s and vice versa. This complementary sequence is always 
given in the reverse order and is termed the reverse complement. 
 
Since this thesis is dedicated to the post-processing of sequences 
produced by sequencing machines, some specific knowledge about these 
sequences are necessary. The output from an Illumina sequencing 
machine, which have been used for all papers included in this thesis, are 
millions of relatively short sequences called reads. The reads are normally 
paired, where the two member reads of the pair originate from different 
ends of the same molecule. This is called paired-end sequencing. 
Furthermore, the reads which have been used in papers included in this 
thesis were of length 100 base pairs  (bp)  for papers II & III while papers 
I,IV & V also includes some runs with 125 bp reads. Furthermore, paper 
IV contained reads of length 300 bp for a special application. All but the 
300 bp reads were produced by the Illumina HiSeq machine. 
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Environmental microbiology 
Most people outside of science likely associate the word bacteria or 
microbes with diseases. These disease causing microbes are so called 
pathogens. However, for the last 30 years or so, an ever increasing 
scientific attention have been directed towards commensal and symbiotic 
microbes (Marchesi 2011). These are the names of microbes which 
instead coexist in peace or collaborate with its host. The increase in 
attention can to a large extent be attributed to metabarcoding and 
metagenomics, two methods that will be presented later in this thesis. 
 
With the exception of paper II, where human associated data will be used 
to showcase the method presented, this thesis will neither focus on 
pathogenic nor human associated microbes. Instead, the focus will be on 
microbes in the environment, the world’s most diverse group of 
organisms, and more specifically microbes living in the Baltic Sea. By 
definition, most microbes are invisible to the naked eye. I will therefore 
start this section with an example about phytoplankton, the 
photosynthesizing microbes of oceans and lakes, to illustrate the major 
ecological contribution by microbes.  
 
While it is easy to understand the importance of plants as major primary 
producers on land, the importance of the major primary producers of the 
oceans was underestimated for a long time. Given the size of individual 
microbes, it is rather contradictory that scientists had to use space 
satellites in order to reliably estimate their global importance (Falkowski 
2012). The results were nevertheless stunning: microbial organisms of the 
ocean account for almost the same amount of carbon uptake and oxygen 
gas generation, as do plants (Falkowski 2012). 
 
While phytoplanktons, that can be either single-cell eukaryotes or 
prokaryotes (i.e. cyanobacteria), are among the most important microbes 
in the ocean, they are far from the only ones. On the contrary, 
extrapolated measurements of cell counts for ocean water samples 
showed that prokaryotic phytoplankton only accounted for a few percent 
of the total number of prokaryotic cells in the oceans (Whitman, 
Coleman, and Wiebe 1998). From those estimates, it was also found that 
all prokaryotes together carried around 10 times the amount of nitrogen 
and phosphor than do plants.  
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Most of these non-photosynthesizing prokaryotes are specialized to 
consume organic matter, which is important in ecosystems like the Baltic 
Sea. Organic matter is released upon cell death of for example 
phytoplankton, but can also be flushed into the sea from land. These 
heterotrophic prokaryotes repackages the organic matter so that it can be 
propagated to higher trophic levels through grazing by larger plankton, 
like protozoa (Fenchel 2008). Furthermore, a final argument to convince 
someone about the importance of microbes, if one is ever needed, is that 
they produced oxygen for almost 2 billion years before land plants even 
came to exist (Falkowski 2012). 
 
The Baltic Sea is scientifically interesting for several reasons. First of all, 
with gradients of salinity, oxygen, nutrients and temperature, it contains 
several vastly different but yet connected local environments to study. 
Furthermore, it is also the world’s second largest basin of brackish water 
and thus also host for a brackish microbiome which is explored in paper 
III. Finally, it is subjected to a large deposit of nutrients from its 
surrounding land areas, causing eutrophication. The effects of the 
nutrient load are also worsened by the long retention time of the Baltic 
Sea water.  
 
The following sections will introduce methods used to study 
environmental microbes but saving computational details for the next 
chapter.  

Culturing 
The gold standard for microbiological studies are based on isolation and 
culturing of cells, producing a clonal population. This enables 
experiments to be performed where the functional capabilities of the 
cells, as well as individual gene functions, can be investigated. 
Furthermore, the clonal population is also ideal for sequencing 
experiments. However, culturing is complicated for most microbial 
organisms due to  differences in optimal growing conditions. Some 
organisms are also dependent on other members within their normal 
community in a complex pattern, further complicating a culturing 
approach. 
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Culturing of microbes is therefore often a very time consuming task, and 
for most environments, at least tens to hundreds of different species 
would have to be cultured in order to reach a reasonable coverage of the 
community in question. Even with a sufficient proportion of the present 
community available in culture, the proportion of different organisms 
present in different samples would still not be directly available, which 
leads us to the subject of metabarcoding. 

Metabarcoding 
A common method to identify and quantify organisms within a microbial 
community involves the study of the gene coding for the small subunit 
ribosomal RNA (rRNA). For bacteria and archaea, the gene used is the 
16S rRNA gene while for eukaryotes it is the 18S rRNA gene. This gene is 
present in most cellular organisms and the structure of its sequence is 
particularly useful for this task. The method of acquiring the DNA 
sequence of this gene, or simply sequencing this gene, for members of the 
community, will here go under the name metabarcoding. 
 
The first characterizations of the 16S and 18S genes actually used the 
resulting RNA product which is abundant in the cell. This kind of 
sequencing was used as early as 1977 to establish archaea as a group of 
organisms on the same level of independence as bacteria and eukaryotes 
(Woese and Fox 1977). The first characterization by sequencing of a 
microbial community focused on a section of the large subunit of 
ribosomal RNA (Stahl et al. 1985) but researchers shortly turned to the 
small subunit for the higher resolution it offered. Since then, the methods 
of metabarcoding have evolved and grown immensely popular. Most 
environment types have now at least partially been studied, including the 
Baltic Sea (Herlemann et al. 2011; Hu et al. 2016). 
 
Metabarcoding can be said to answer the question ‘who’s there?’ and to 
give a good estimate of the relative abundance of the members in the 
community. However, from only metabarcoding studies, many of the 
organisms studied are not known to much further extent than by their 
16S or 18S sequence. While the ecological role of a species might be 
hypothesized from the specifics of the samples where it was quantified, it 
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cannot be verified or fully understood without further investigations. One 
of the absolutely best sources of information for the functional potential 
of a species is its genome, which contain many more genes than the single 
one studied by metabarcoding. 
 
To acquire the DNA sequence for a single microbial species’ genome, 
often called to sequence the genome, usually requires the isolation and 
cultivation of that species. However, due to the previously mentioned 
difficulties with culturing of most microbes, a regular genomics approach 
is not a feasible way to study a community of microbes. Furthermore, to 
sequence individual cells without culturing, so called single cell 
sequencing, is complicated and was not technically feasible until 
relatively recently (Zhang et al. 2006). 

Metagenomics 
Instead, to extend on the information available from metabarcoding: the 
answer to the question ‘who’s there?’, without needing to culture the 
organisms studied, researchers attempted to sequence any DNA fragment 
available in an environmental sample. This approach, which is called 
metagenomics, attempts to answer the question, ‘what can they do?’, i.e. 
to determine the function of the community. To determine the function of 
a sequence is to functionally annotate the  retrieved sequence. This is 
done by comparison to sequences available from cultured species and 
sequences which are sufficiently similar are assumed to have a similar 
function. 
 
While metagenomics was possible using traditional low-throughput 
sequencing techniques, it blossomed with the advent of massive parallel 
sequencing. The increased throughput from the new machines and a 
decrease in cost of sequencing enabled a great number of large-scale 
metagenomics sequencing projects. Among the massive parallel 
sequencing technologies, the Illumina HiSeq machine deserves a special 
mention. It has, in different versions, been used for several large scale 
metagenomic projects and also for all papers included in this thesis. 
 
The term ‘metagenome’ for the collective genome of a microflora was 
presented already in 1998 (Handelsman et al. 1998). However, using the 
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current meaning of the word, the first metagenomic study of prokaryotes 
was published some years later (Tyson et al. 2004). This was 
coincidentally also the first successful application of metagenomic 
binning, which will be covered in the next section. This study sequenced a 
relatively simple community inhabiting a biofilm in acid mine drainage 
water. Despite the low-throughput sequencing technique used, this study 
not only managed to recover the genomes of the dominant species of the 
community, but also presented evidence for extensive homologous 
recombination between strains for one of these species. This evolutionary 
process was previously thought to be rare among prokaryotes. Another 
very early metagenomic study, which turned out to be ground-breaking 
for marine metagenomics, studied the Sargasso Sea (Venter et al. 2004). 
This study only used a low-throughput sequencing technique (Sanger 
sequencing). However, machines that were out of job after the human 
genome had been finished allowed for a massive scale, generating close to 
2 million sequence reads. The vast diversity that this study displayed 
inspired several initiatives with cruises of the global oceans, collecting 
water samples for sequencing. All papers included in this thesis, except 
Paper II, can be said to be part of the field of marine metagenomics. 
 
However, metagenomics applied to environmental samples have not 
attracted as much attention as studies of human associated microbiomes. 
At least two ambitious projects have tried to map the human microbiome 
in detail. The mainly European initiative MetaHit focused on the gut 
microbiome only (Qin et al. 2010), while the mainly North-American 
Human Microbiome Project studied a wide range of body sites (Human 
Microbiome Project Consortium 2012). Both of these projects aimed to 
build reference catalogues of sequences found within respective microbial 
community and were successful in doing so. A similar approach to 
construct a somewhat complete gene catalogue was applied in Paper I to 
create a reference assembly of Baltic Sea microbial communities. 

Metagenomic binning 
While metagenomics might be able to estimate the function, or at least 
the functional potential of the entire community, it is not clear what 
function is linked to which species.  This leads us to the main focus of this 
thesis, metagenomic binning. Through metagenomic binning, 
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metagenomic sequences which are believed to originate from the same 
species are placed together in a bin, without necessarily having any prior 
knowledge of the species. This enables the functional annotations of the 
sequences to be connected in a meaningful way. For example complete 
metabolic pathways can be reconstructed based on coexisting genes. If 
any of the sequences within a bin carry taxonomic information, 
taxonomic information can be connected to the functions.  
 
The ability to extract genomes from environmental samples have greatly 
expanded our knowledge about the tree of life and led to important 
scientific discoveries. One of the most important of these is the discovery 
of a novel archaeal phylum with clear similarities to the eukaryotic 
domain, hypothesized to contain the ancestor to all eukaryotic organisms 
(Spang et al. 2015). As was previously described, the first metagenomic 
study also discovered the first clear evidence for homologous 
recombination within prokaryotes. Other large-scale studies have 
expanded the tree of life with hundreds (Brown et al. 2015) or thousands 
(Donovan H. Parks et al. 2017) of new species, respectively. 
 
Furthermore, studies focusing on specific environments have recovered a 
substantial proportion of those environments’ microbial communities. 
For example, several hundred genomes were recovered from a single 
large-scale study of human gut samples (Nielsen et al. 2014). 
Metagenomic binning can also be used to investigate specific 
biotechnological applications. A study of the somewhat exotic moose gut 
can serve as an example of this (Svartström et al. 2017). In this study, 99 
genomes were reconstructed and a large proportion of these are believed 
to play a crucial role in the degradation of cellulose, an important 
biochemical process for a potential biofuel production. 
 
Genomes have also been reconstructed for the ocean microbiomes of the 
world. From the global sailing cruise Tara Oceans, 92 metagenomic 
samples was processed, achieving 957 non-redundant genomes (Delmont 
et al. 2017). A more local study, focusing on the Baltic Sea, is presented in 
paper III, where 30 non-redundant genomes were recovered, followed up 
a tenfold expansion in paper IV Methods for binning metagenomic 
sequences will be presented with technological details later.  
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While the reconstruction of prokaryotic genomes is the main objective of 
metagenomic binning, some recent studies have also successfully 
reconstructed eukaryotic genomes (Delmont et al. 2017; West et al. 2018). 
Eukaryotic organisms are generally more complex than prokaryotic ones, 
and so are eukaryotic genomes. For at least three reasons, metagenomic 
binning of eukaryotic cells is more complicated. First of all, eukaryotic 
genomes are normally larger than prokaryotic ones. Secondly, many 
eukaryotic organisms have two copies (diploid) or more (polyploid) of 
every DNA-molecule with some variation between them. Lastly, and 
perhaps contradictory at first glance, is that eukaryotic genomes also 
contain regions of low complexity. These regions can contain short 
repetitive sequences which are difficult to distinguish from each other. All 
together, the reconstruction of eukaryotic genomes are not straight-
forward even for data from a cultured species, let alone so from 
metagenomic data. 
 
While metagenomic binning can place sequences from the same species 
together in a bin, the genomes of cells within the same species might be 
different. These cells are said to represent different strains. The presence 
of multiple strains from the same species pose a problem to not only 
binning but to all metagenomic analysis. The problem, and the solution, 
is furthermore dual, where some methods focus on identifying gene sets 
corresponding to each strain (Scholz et al. 2016) while others aim to 
identify the exact sequence for a strain (Luo et al. 2015; Truong et al. 
2017; Nicholls et al. 2018). Another approach is called strain resolved 
binning which strives to refine binning results in order to find both the 
gene set and the exact sequence of the strain at once (Quince et al. 2017).  
 
From medicine, it is known that one strain might be pathogenic even 
though other strains from the same species are not (Segata 2018). It is 
therefore reasonable to assume that environmental strains also differ 
widely in ecological function. Environmental studies using strain resolved 
binning are so far very sparse. It has, however, been applied to ocean 
water samples (Quince et al. 2017) where a connection between genome 
sizes and strain divergence was shown. It is my belief that methods with 
resolution down to the strain level will gain popularity in a close future. 
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Single cell sequencing 
Alongside the development of metagenomic techniques, methods for 
directly sequencing individual cells, so called single cell sequencing, have 
evolved and matured. The main issue with single cell sequencing lies 
within the field of biochemistry. In order to conduct genome sequencing, 
a sufficient input quantity of DNA is required. Within a single cell, there 
is not enough DNA to fulfill this requirement which necessitates DNA 
amplification prior to sequencing. However, amplification is complicated 
when starting with only a single copy of each DNA molecule, as opposed 
to in metagenomics where multiple cells with close to identical molecules 
are assumed to be present. This often leads to uneven amplification 
where some regions are underrepresented or missing in the resulting 
sequencing output. 
 
Furthermore, many ecological hypotheses require data for abundances 
for organisms over multiple samples in order to be tested. To acquire this 
through only single cell sequencing would require sequencing a very large 
number of cells. On the other hand, if a single cell sequencing approach 
would be combined with metagenomics, this number could probably be 
reduced drastically. 
 
Without any pre-selection of cells, the vast majority of cells sequenced 
would originate from the most abundant species. This is the case also for 
metagenomics, but the marginal cost for adding individual cells is higher 
for single cell sequencing. Therefore, in order to sequence sufficient 
amounts of any less abundant species, pre-selection of which cells to 
sequence is often necessary. This includes screening of cell types using 
rRNA amplification and sequencing. All together, this makes single cell 
sequencing rather elaborate. 

Phasing and long read sequencing 
Related to strain resolution and single cell sequencing is the question of 
phasing. Phasing is a process of connecting sequence variants that are 
further apart than the sequencing machine normally can cover. This 
distance is dependent of the machine’s read length. With phasing, the 
sequence which correspond to a specific strain can be obtained. A 
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distinction can be made between phasing based on bioinformatic 
methods, such as strain resolved binning previously discussed, and 
phasing performed by molecular methods. This section will focus on such 
molecular methods. Successful phasing should also simplify or perhaps 
even eliminate the need for metagenomic binning since much longer 
sequences can be constructed directly from the metagenomic sequencing 
data. 
 
The most promising phasing methods need specific laboratory 
preparation of the DNA molecules which have not been performed for 
any of the samples included in the papers included here. The application 
of molecular phasing methods to metagenomics have shown some 
promising results (Bishara et al. 2018) and if combined with recent 
developments to decrease the cost (Redin et al. 2017) of phasing, the 
future looks bright for these methods. 
 
The development of sequencing machines for so called long-read 
sequencing is continuously on going. These machines can produce several 
order of magnitudes longer reads than the commonly used Illumina 
HiSeq. While longer reads would be beneficial for most applications of 
metagenomics, these methods can currently not match either the 
accuracy or the price per base offered by Illumina sequencing machines. 
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Bioinformatic methods 
There is no clearly established definition on what it means to be a 
bioinformatician.  What someone intends with the word ranges from: a 
computer scientist who mainly develops new algorithms; a data scientist, 
statistician, or biologist that uses scripting for analysing data and 
evaluating hypotheses; or a system administrator who maintains 
computer software and sometimes hardware. To me, a bioinformatician is 
someone who does a little bit of all of these things, and irrespective of job 
title, intends to apply it within biology. In this chapter I will present 
bioinformatic methods, by which I mean software developed to solve a 
specific task within biology; in this case to be used within metagenomics.  
 
Instead of trying to cover all aspects of metagenomic 
bioinformatics, a special focus will be on methods suitable for 
environments which are not well represented by reference 
databases. Therefore, methods heavily relying on these databases 
will not be covered. Furthermore, to allow a more in-depth 
coverage of metagenomic binning methods, several important 
methods are out of the scope for this thesis and will not be covered 
at all. These include methods for building phylogenetic trees, 
performing taxonomic assignment, constructing global alignments, 
and methods specifically designed for read-based metagenomic 
analysis. Methods that will be mentioned but not described in 
detail are those related to gene prediction and functional 
annotation. On the other hand, outside of the above mentioned 
definition of bioinformatic software lies several utilities which have 
been very important to me during my time as a phd student and 
which therefore yet deserves to be mentioned. 
 
To some biologists the use of the bash command line is synonymous with 
bioinformatics. While intriguing at first, it offers an efficient and unifying 
interface to any unix computer. Especially when working with remote 
servers where graphical user interfaces are often not present, knowledge 
of the command line is key. When using remote servers, a terminal 
demultiplexer such as tmux will increase productivity. It will allow 
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multiple command line sessions to remain active, even if for example 
your internet disconnects or when restarting your laptop. 
 
Since bioinformaticians often work with plain text files, general tools 
developed for a broad use are ideal. Tools like paste, cut and grep follow 
one of the principles of unix systems: they can perform a single task, but 
really well. Another unix tool, sed - stream editor, does exactly what its 
name says: it modifies streams of characters. While these edits are 
extremely versatile, sed is especially used for search and replace actions 
on text files. Finally, other tools help out with installing software, e.g. 
conda, or manages custom computational workflows, e.g. snakemake. 
 
Two methods which are not specific to bioinformatics but that are 
commonly used within the field are Principal Components Analysis (PCA) 
and Expectation Maximization (the EM-algorithm). These methods are 
both used by metagenomic binning methods and are therefore briefly 
described here. PCA is mathematically a linear transformation, 
commonly used to visualize a high-dimensional dataset. The 
transformation is constructed to map the highest variation in the original 
data along the first axis, the second most along the second and so on. 
Visualizations in two dimensions simply use the first two of these axes (or 
components) as x and y. However, it is also possible to decide on a given 
fraction of variance that is to be kept, and keep just enough of the first 
components to do so. This approach is common for the methods that I 
will describe later. In practice, this reduces the input data, which speeds 
up computations, without losing too much information.   
 
A common method for statistical inference, when an exact solution is not 
easily obtainable, is the EM-algorithm. Despite its name, this is rather a 
collection of algorithms which is most often applied to clustering. More 
specifically, it is used for clustering where an explicit statistical 
distribution can be assumed for each cluster. The algorithm uses an 
iterative approach which is guaranteed to find at least a local maximum of 
the global likelihood of the model. It is applied by first reformulating the 
model so that cluster memberships are explicit numerical variables. Out 
of two repeated steps, the first is called the expectation step. In this step, 
the expected values of cluster memberships are calculated. These 
expectation values can be seen as fuzzy cluster memberships which are 
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used in the second step, the maximization step. In this step, all other 
model parameters, such as the cluster characteristics are estimated using 
maximum likelihood, keeping the cluster memberships fixed. These two 
steps are repeated until convergence is achieved (Hastie, Tibshirani, and 
Friedman 2001). 

Classic bioinformatic tools 
While many of the methods that will be presented here have been 
developed fairly recently, some have been proven by time and  form a 
foundation for much bioinformatic research. One of these algorithms is 
the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990) 
which is used to find similar sequences within a large database of 
sequences for some given query sequence(s). The objective of BLAST is to 
find the subsequences with the best match to each given query sequence. 
Since the matching regions can be a small fraction of the query sequence 
(and the subject sequence), this is termed local alignment. To determine 
the best match a scoring scheme is used where, for DNA sequences, there 
are only the case of match and mismatch. For proteins, a more 
biologically informed scoring scheme is used. Since it was developed the 
amount of sequences available in databases have grown immensely and 
several more efficient solutions have been proposed over the years, yet 
BLAST remains the de facto standard for sequence database queries. 
 
The basic BLAST algorithm does not take into account that some parts of 
a sequence are highly conserved while others are less so. However, it 
makes sense that mismatches within conserved regions are much less 
probable and should affect the scoring of the alignment more than 
mismatches in other regions. This fact is utilised in Hidden Markov 
Model (HMM) profiles, which are tightly connected with the software 
HMMER, perhaps the most used implementation of HMM profiles (Eddy 
1998). An HMM profile is created from a multiple sequence alignment of 
for example, members of a protein family. From this alignment, a 
probabilistic model is created governing how a protein sequence could be 
generated from that profile. This generation is only conceptual. The 
model is used for scoring purposes: the probability that a given sequence 
would be generated from the model is interpreted as a score for how likely 
the sequence is to belong to that, for example, protein family. 
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Profile searches are especially useful to achieve high sensitivity when 
searching against databases of groups of related sequences, so called 
orthologous groups. One such database, launched already in 1997, is the 
database for Clusters of Orthologous Groups (COGs). The COG database 
was constructed using pairwise alignments and reciprocal best hits of all 
genes available from five distant lineages represented by seven species. 
Furthermore, the COG database offers manually curated names and 
information for individual COGs as far as possible. To match any given 
gene against the COG database, a commonly used software is RPSBLAST, 
which is included in the BLAST suite of softwares. RPSBLAST is 
constructed to use protein profiles, however, these profiles are different 
to HMM profiles as they are not based on hidden Markov models. 
RPSBLAST was used in paper II and paper III to match genes against the 
COG database. 
 
While the manual curation of COG annotations has clear advantages, it 
requires a major effort from the scientists maintaining the database. This 
could explain why no major update of the COG database has been 
released since 2003. Another database initiative using automated 
creation of orthologous groups is the eggNOG database (evolutionary 
genealogy of genes: Non-supervised Orthologous Groups). It consists of 
1.9 million HMM profiles  hierarchically structured according to 
taxonomy  (Huerta-Cepas et al. 2016). The eggNOG database includes all 
COGs as a subset, placed on the top taxonomic level together with just 
under 200,000 other groups. Furthermore, all groups within eggNOG are 
automatically annotated based on all annotation information available for 
the underlying individual protein sequences. The eggNOG database was 
used in paper I and paper V to find gene homologs for the obtained 
sequences. 
 
Here, I have described two methods to perform local alignment or profile 
searches with high sensitivity. Another subset of tools for alignment are 
those which are optimized for precision rather than sensitivity. An 
application where this is a good choice is when short sequencing reads are 
to be aligned against a closely related reference genome, i.e. from the 
same species. This process is often called to map the reads, and hence the 
final piece of classic bioinformatic softwares are read mappers. I will not 
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point out a single best tool for mapping reads since there are several 
comparable implementations. However, with modern sequencing 
technologies that produces a large number of overlapping reads, the 
computational efficiency of a read mapper is key. All of the most 
commonly used implementations are based on the clever Burrows-
Wheeler transform (BWT) which enables fast lookup of exact matches 
with a small memory footprint. Due to sequencing errors and/or 
biological variants, finding only exact matches is typically not sufficient. 
One approach to find inexact matches, implemented in the Bowtie2 
software, uses short substrings of the reads (Langmead and Salzberg 
2012). Exact matches for these substrings are identified using the BWT 
and are extended to find a good match for the whole read. Bowtie2 is used 
for read mapping in Paper I-IV. 

K-mer based methods 
In this section additional bioinformatic tools which are useful for 
metagenomic binning will be presented. A unifying feature of these 
methods is that they are all based on k-mers.  BLAST and BWT 
algorithms (in some implementations) also uses k-mers, although 
inexplicitly. A k-mer is a substring of length k from a given sequence, 
generated as shown in Figure 1. The length k varies from application to 
application. 

 
Figure 1: Construction of k-mers from two short DNA sequences. K-mers are 

constructed using a “sliding window” of size k.  
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Perhaps the most complex application of k-mers that will be covered here 
is that within assembly. Assembly is the process of constructing longer 
sequences using the reads from a sequencing machine. These longer 
sequences are called contigs, after the word contiguous. This thesis is 
dedicated to metagenomic analysis based on contigs, as opposed to read-
based analysis. The latter tends to be more dependent on comparisons 
against databases of reference sequences and therefore less suitable for 
studies of environments not yet well covered by these databases. 
However, these databases can be extended using contigs constructed 
from metagenomic sequencing and hence enable future read-based 
analysis. Assembly is a fundamental step for the reconstruction of 
genomes from metagenomes, the main focus of this thesis. 
 
Successful assembly depends on properly prepared DNA molecules and 
sufficient sequencing depth. This ensures that the sequencing reads 
overlap in such a way that it is possible to form longer consensus 
sequences. Simply comparing all reads against each other to find overlaps 
between them quickly becomes too computationally heavy. This is where 
k-mers come into play through the creation of a de Bruijn graph. 
 
A de Bruijn graph is a data structure built by connected k-mers. Two k-
mers are connected in the graph if they appear consecutively in any read. 
This data structure only store the reads represented as k-mers and does 
not store information on from which read each k-mer originated. 
Representing the reads in this way can save memory since the same k-
mer is often found in many reads. However, the main advantage is that 
constructing consensus sequences from reads translates to finding paths 
within the de Bruijn graph. The assembly program used for paper II and 
paper III is called Ray and is used due to its highly parallel 
implementation, enabling the use of multiple server computers 
simultaneously. For papers I and IV, an assembly program called Megahit 
was instead used (Li et al. 2015), taking advantage of  a different strategy, 
presented below. 
 
Most assembly programs allows the user to choose the value of k to use. 
Short k-mers allow for smaller overlaps between reads to result in 
contigs. On the other hand, short k-mers are more likely to exist in 
multiple locations on a single genome, or even on multiple genomes, and 
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therefore be present in different reads which are not supposed to be 
assembled together. In general, the higher sequencing depth and longer 
reads obtained, the longer k-mer is possible to use. However, for most 
metagenomic samples, some species will be present in low abundance 
and hence obtain a lower sequencing depth. These species will therefore 
not be assembled well when using a larger value for k. In paper III this 
problem was solved by running the Ray assembler several times with 
different values for k. The resulting contigs were then merged by 
explicitly searching for overlaps between them. In this way the benefits of 
both short and long k-mers were obtained. 
 
The assembly program used for paper I and paper V, Megahit, have 
instead directly implemented a multiple k-mer approach (Li et al. 2015). 
In its implementation, Megahit builds the new de Bruijn graph by k-mers 
from the reads and from the contigs created from the previous step, if 
any. Megahit uses iteratively larger values for k for each step. The default 
range starts with k=21 and eight steps up to the maximum k=141. Of 
course k=141 does not generate any graph if built only on reads that are 
shorter than 141, for example when using 125 bp reads. However, since 
Megahit also includes the contigs from the previous step when building 
the graph, this will work. It should be noted though that running Megahit 
with a maximum k larger than the maximum read length does not 
improve the assembly. Furthermore, Megahit uses a very memory 
efficient implementation of the de Bruijn graph. This makes it possible to 
assemble most metagenomic samples on a single, fairly standard, server. 
 
In assembly based studies, the choice is often between assembling all 
available samples together or creating individual assemblies per sample. 
In Paper III and V individual-sample assemblies were used to avoid 
mixing sequences between related strains more than necessary. With this 
strategy dominant strains are expected to assemble consistently since the 
complexity of the individual sample is lower than when all samples are 
combined. Less abundant strains in one sample might be more highly 
abundant in a different sample and thus, focusing on only dominant 
strains for each sample might not be as wasteful of data as one might 
think. However, some strains can be low in abundance in all of the 
available samples. If these are to be assembled properly a co-assembly 
approach might be more appropriate, which combines all or at least 
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several samples prior to assembly. A co-assembly approach was used in 
Papers I-II. The specific implications to metagenomic binning of these 
approaches will be discussed further in the next chapter. 
 
The next k-mer based tool to be covered is related to the Burrows-
Wheeler Transform short read aligners. One of the most common use-
case for short read aligners within metagenomics is to quantify the 
abundance of the contigs constructed by the assembler. However, it is not 
strictly necessary to align all reads against the contigs in order to quantify 
them. This is the idea behind the tool Kallisto which thereby is able to 
achieve faster execution time compared to regular short read aligners 
(Bray et al. 2016). 
 
Much like the assemblers previously covered, Kallisto is also based on a 
de Bruijn graph, but built using the reference sequences directly and not 
from the reads. Furthermore, instead of a regular de Bruijn graph the 
data structure used by Kallisto also keeps track of which reference 
sequence each k-mer originated from. Kallisto then introduces the 
concept of pseudoalignment where a read is only identified with a 
reference sequence without identifying the exact position within that 
sequence. Kallisto identifies reference sequences that matches all  k-mers 
within the read. The quantification of the reference sequence is however 
determined by the EM-algorithm, iterating over the assignments and 
adjusting counts per reference sequence to find an estimate of the most 
likely counts. For example, if the k-mers of a read matches several 
different reference sequences the likelihood is maximized if the read is 
placed on the reference sequence that already have the most reads 
assigned to it. It should be noted that Kallisto was not developed for 
metagenomics but for quantification of transcripts for RNA-sequencing. 
Therefore, the validity of using Kallisto within metagenomics was 
evaluated and the result is shown in Figure 3. As can be seen, the 
coverage values are highly correlated between the two methods: Kallisto 
and the traditionally used Bowtie2. Out of these two the benefit of 
Kallisto is its very quick run time. However, Bowtie2 offers additional 
information since the exact placing of the reads allows inspection for e.g. 
patterns of mismatched bases reflecting genetic variation. Bowtie2 was 
used in Papers I-III and Kallisto was used for quantification of 
metagenomic contigs in paper V. 
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Figure 2: Quantification comparison between Kallisto and Bowtie2. The sample 

containing the reads was not the same as the sample that generated 
the contigs. It should be noted that the vast majority of dots 
(N=101122) are located within the square where both values are 
smaller than 0.5. The largest values (N=457) are not shown. 

 
The next application of k-mers within bioinformatics to be discussed is 
that within MinHash-based algorithms. These bioinformatic algorithms 
are all fairly recent. They are used to give extremely fast but approximate 
average nucleotide identity values between two sequences. To achieve this 
approximate value for the nucleotide identity, two sequences are 
compared by only comparing a subset of their k-mers. However, if the 
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selection of the subsets would be random the variance of the estimate 
would be very high for small subsets. MinHash is a clever way of 
producing these subsets so that the variance of the estimate remains low.  
 
The foundation of the MinHash algorithm is hash functions which in turn 
are fundamental computational methods to map arbitrary ‘objects’ to 
integers. In our case these objects will be k-mers. Correctly constructed 
the integers produced by the hash functions enforces an arbitrary but 
reproducible ordering of k-mers. Then based on this ordering the l first of 
these are selected for each sequence, where l is the chosen size of the 
subsets. This allows very small subsets to be used with an acceptable 
precision of the estimate. One implementation of MinHash for 
bioinformatics is Mash (Ondov et al. 2016), which was used in paper IV to 
compare genomes obtained with two different methods. Mash was also 
used through a wrapper called FastANI in paper V to cluster a large set of 
genomes into groups corresponding to the species level. 
 
The rest of this k-mer focused section will connect to the following 
chapter where we will discuss metagenomic binning. In this application a 
different aspect of k-mers is used. Namely that small values for k can give 
k-mers unspecific enough to match several positions on a sequence. This 
was previously discussed as a negative thing, e.g. in the context of 
assembly. Here it will instead be a positive thing where individual k-mers 
are assumed to be found in many positions within the same genome. 
 
The first example of this usage of k-mers that will be presented is found 
within the gene prediction software Prodigal (Hyatt et al. 2010). Prodigal 
is an extremely fast gene predictor capable of finding genes on both 
genomes and metagenomic sequences without any additional 
information. It uses a mixture of knowledge acquired from manual 
curation of genomes together with a large set of parameters which are 
trained on each genome or individual sequence. Among several other 
metrics it uses k-mers with k=6 to score different gene models. For 
example, if two suggested sets of genes are weighted against each other, 
Prodigal would (among other things) compare the 6-mer usage within 
suggested genes compared to the entire sequence. The gene set with a 
more specific 6-mer profile is then believed to be the most likely out of 
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the two. In this sense the 6-mers are only supposed to be specific enough 
to, on average, distinguish gene content from intergenic regions.  
 
Sufficiently short k-mers have similarly been shown to carry a 
phylogenetic signal. This signal is furthermore somewhat consistent over 
different regions of the genome (Dick et al. 2009). For example, a method 
called EukRep was recently shown to be able to distinguish between 
eukaryotic sequences and sequences of prokaryotic origin within a 
metagenome, only based on patterns of k-mers (using k=5) (West et al. 
2018). This method was applied in paper V.  
 
For k=4, which is the most established choice within metagenomic 
binning, only 256 possible k-mers exists. This is often reduced further by 
considering two k-mers identical if they are the reverse complement of 
each other. This allows 4-mers to be general enough that each individual 
k-mer is to be found within most sequences. A k-mer profile of a 
sequence, commonly called the nucleotide composition of the sequence, is 
constructed by counting all k-mers present in the sequence. These counts 
are then normalized by the total number of k-mers in the sequence. Two 
different sequences can then easily be compared by the similarity of their 
nucleotide composition. The idea behind this is slightly counterintuitive: 
Why would two sequences have similar nucleotide composition just 
because they originate from the same genome, even if they originate from 
different parts of that genome? No single explanation for this has been 
widely accepted. It could be due to mutational bias, allowing different 
species to differentiate in a somewhat regular manner. However, to some 
extent this has been observed to be true. Therefore, the use of k=4 have a 
long tradition within metagenomic binning, the subject for the next 
chapter.  
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Metagenomic binning 
As was mentioned previously metagenomic binning is the main 
focus of this thesis and it will be the only focus of this chapter. The 
chapter will start with some background before continuing with a 
detailed description of published binning methods and a small 
performance comparison of these methods. Finally, useful tools 
surrounding the actual task of metagenomic binning will be 
presented. In paper II a method for metagenomic binning named 
CONCOCT is presented. For completeness CONCOCT will also be 
be briefly presented in this chapter. 
 
In order to recover genomes from metagenomes, binning of contigs is 
necessary. This is because the length of the contigs which are output from 
the assembly process are typically short. Contigs are very rarely longer 
than 100 kilobases, and often much shorter, while the genomes of most 
free-living organisms are at least one order of magnitude larger. While 
methods exist to improve the assembly further, the most effective ones 
require specific laboratory treatment prior to sequencing, not commonly 
applied. When describing available methods to perform binning I will 
only focus on automatic methods since manually curated approaches to a 
large extent depend on the user. However, to give a historical 
background, genomes manually reconstructed from metagenomes will 
also be considered. Furthermore, there is a distinction between 
supervised and unsupervised methods. Supervised binning methods, to 
some extent, use available data from public databases. Some methods can 
be said to be semi-supervised, meaning it only partially depends on 
reference data. 
 
The first genomes to be reconstructed from metagenomic data originated 
from samples from acid mine drainage water. The low microbial diversity 
of this hostile environment allowed genomes to be manually recovered 
using a combination of G+C content and sequencing depth, coverage 
(Tyson et al. 2004). Shortly after this, a method based on so called Self-
Organizing Maps (SOM) was published. This method transforms 
tetranucleotide frequencies into a two dimensional space (the map) 
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where clusters could be identified (Abe et al. 2005). This method is not 
automatic since the clusters are located manually on the map by the user. 
The program CompostBin introduced a semi-supervised algorithm. It 
does not need training based on reference genomes, but uses 
phylogenetic marker genes found on input sequences (Chatterji, 
Yamazaki, and Bai 2008). The first automatic and completely 
unsupervised method was LikelyBin (Kislyuk et al. 2009), that clusters 
contigs by nucleotide composition using a probabilistic model. 
 
Further developments to metagenomic binning methods were however 
necessary since nucleotide composition has a limited resolution. The next 
major step in the development of these methods was to reintroduce 
sequencing coverage as a source of information. The argument for using 
sequencing coverage is as follows: fragments that originate from the same 
genome should be present in equal amounts in the sample and 
sequencing coverage is an approximate measurement of fragment 
abundance. Hence, sequences originating from the same genome should 
have similar sequencing coverage values. However, by chance, two 
different genomes can have equal abundances in a sample and therefore 
be impossible to separate using only coverage for this sample. If several 
samples is used the chance of identical abundance in all of the samples is 
however very small. 
 
The effectiveness of binning using multiple samples was first shown by 
simply plotting the coverage values for the two samples in a scatter plot 
and colour the dots according to G+C content (Albertsen et al. 2013). The 
clusters were further refined using PCA built on tetranucleotide 
frequencies. This manual approach was shown to improve the results 
achieved by previous methods. However, manual methods rely heavily on 
a skilled user, not always available, which is why automatic methods are 
often preferable. 
 
A large number of methods for automatic binning have since been 
published. Some of these will be described in the following parts of this 
chapter. The differences between them can often be technical and non-
trivial. Therefore, following this description, a simple performance 
comparison between the described tools will be presented. However, 
before continuing this chapter with descriptions of individual tools, the 
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question whether to use individual-sample assemblies or a co-assembly 
will be addressed.   
 
As was described in the previous chapter a co-assembly is beneficial for 
species which would otherwise not reach a sufficient sequencing depth. 
Furthermore, co-assembly is perhaps also more theoretically pleasant for 
the type of read alignment performed in modern metagenomic binning. 
The reason for this is most easily explained by looking at the opposite 
alternative. When binning is performed on individual-sample assemblies, 
all read files are aligned against each assembly. If the species from which 
a read truly originates from is not present within that specific assembly, 
the read might be aligned against a contig belonging to a different species. 
This should affect the binning results negatively. On the other hand, if a 
co-assembly strategy is used, all reads have been used to construct the 
assembly and this should be less of a problem. In practice, however, 
binning results from individual assemblies have been shown more 
successful than the corresponding results from a co-assembly. This was 
found in a comparison conducted by us leading up to Paper III, and has 
also been studied in detail later (Olm et al. 2017). In this detailed study, 
individual-sample assembly approaches not only produced more high-
quality genomes but these had also longer contigs and were estimated to 
be more complete than those produced form a co-assembly. In Paper II, a 
co-assembly based strategy was used to perform metagenomic binning. In 
Paper III and V, this approach was modified to perform binning on 
individual assemblies from the Baltic Sea.  

Canopy 
One of the first and arguably simplest methods that use coverage over 
multiple samples is Canopy (Nielsen et al. 2014). This method actually 
clusters genes extracted from contigs and not the actual contigs. Genes 
are clustered using Pearson correlation for the coverage patterns and only 
includes tetranucleotide frequencies as an optional quality screening step. 
The genes found correlating form putative clusters which are then filtered 
in two consecutive steps. A cluster resulting from each of these steps are 
respectively named a canopy, a co-abundance gene group (CAG) and a 
metagenomic species (MGS). 
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In detail, Canopy clustering starts by choosing a seed gene randomly and 
then screen all other genes, recruiting all those with a correlation 
coefficient of at least 0.9 to form a canopy. This search is repeated 
iteratively using the median coverage pattern to compare against all other 
genes. The iteration continues for this single canopy until the median 
stabilizes. New canopies are formed in the same way until all genes have 
been assigned. These clusters are then filtered so that the approved ones, 
CAGs, contain at least three genes and have a non-zero coverage in at 
least four samples. These rejection criterias are, however, all possible to 
adjust. To approve a CAG as an MGS and thereby assigning it as a 
putative genome, the CAG is required to contain at least 700 genes. 
 
The fact that Canopy uses genes instead of contigs could be seen as both a 
strength and a weakness. It allows the detection of strain specific gene 
sets since genes are seen as individual entities. This often leads to non-
core gene sets to be placed in separate clusters. On the other hand, 
connecting those clusters with the MGS corresponding to the core gene 
set usually has to be done in an ad-hoc fashion. As an example, in the 
original Canopy paper, most of the identified antibiotic resistance genes 
were not located within a CAG. It was argued that this is consistent with 
what is expected, since most such genes were known to “act alone”. 
However, the fact that two genes are located on the same contig is a very 
strong indication that these two genes originate from the same genome. 
Simply ignoring this information should reduce the efficiency of 
metagenomic binning. 

MetaBAT 
A method for performing binning with claims of both speed and accuracy 
is MetaBAT (Kang et al. 2015), which uses both tetranucleotide 
information and coverage over multiple samples. When designing the 
program, a distance metric based on tetranucleotide information was 
derived from comparisons of a large amount of contig pairs of intra- or 
inter-species origins. In this empirical comparison the size of the contigs 
were also varied. It was found that distances between contigs shorter than 
2000 bases are much noisier, why contigs shorter than this was not 
recommended to use for clustering. However, the minimum length of 
contigs that is possible to use for MetaBAT is 1500 bases. The distribution 
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of coverage values for contigs known to originate from the same genome 
was also empirically investigated. This was done by downloading data 
from sequenced isolates and it was found that the distribution of coverage 
values could be best described using a normal distribution. 
 
Using the distance metrics derived from tetranucleotide information and 
from coverage values, the algorithm constructs a matrix of pairwise 
distances between all contigs in the input data. For one contig at a time, 
starting with the contig with the highest coverage, the algorithm then 
assigns all other contigs within a fixed distance of the current contig to 
the same cluster. A medoid is defined as the contig within the cluster with 
the smallest average distance to the other contigs within the cluster. The 
algorithm then repeats the clustering steps, collecting all contigs within a 
fixed distance to the medoid and updating the medoid. If there are no 
updates to the medoid, the algorithm continues with a contig which have 
not been assigned to any cluster, again choosing the one with the highest 
coverage among the remaining contigs. By default, only sufficiently large 
clusters (>200kb) are reported, but as an optional step, unassigned 
contigs can be recruited to clusters based on the coverage information. 
 
It is not entirely clear how storing the pairwise distance between all pairs 
of contigs can be so memory efficient. Despite this, MetaBAT is one of the 
most computationally efficient metagenomic binning algorithm available. 
This efficiency is perhaps a major reason why MetaBAT remains a 
popular choice when dealing with large datasets. 

GroopM 
One of the earliest algorithms to use coverage values over multiple 
samples was GroopM (Imelfort et al. 2014). This rather easy-to-use 
program has very complicated internals. The description of the algorithm 
presented here will therefore merely scratch the surface of the complete 
picture. Its first step is to load the coverage information from the read 
alignment files into a high dimensional space. It then continues by 
performing a carefully designed transformation of the coverage data to a 
three dimensional space. The information deduced from coverage is 
complemented with the tetranucleotide frequencies which are 
transformed using PCA, keeping at least 80% of the variance. The first 
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clustering step uses a subset of contigs, forming so called preliminary 
bins. Starting with contigs located within the most contig-dense region in 
the transformed coverage space, clusters are formed according to 
similarity of both coverage, tetranucleotide patterns and contig lengths. 
This first step of binning is designed to be strict to avoid grouping of 
contigs from different genomes. Single genomes divided on multiple 
preliminary clusters is instead dealt in a subsequent step where 
sufficiently similar bins are merged. Bins are also checked for high 
within-cluster GC variation which is considered an indication of a 
chimeric bin. By default, GroopM only bins contigs longer than 1500 bp, 
but this is an adjustable parameter. 
 
This was obviously a very brief description of GroopM. A somewhat 
complete description of the GroopM algorithm would fill several more 
pages of this thesis. It uses a wide range of machine learning techniques 
such as PCA, SOM, Gaussian Blur, K-nearest neighbour, and Hough 
transformation, all coupled together with heuristics and novel algorithms. 
One assumption used by GroopM which deserves a special mention is 
that it assumes contigs within a bin should have similar contig lengths. 
This assumption is not mentioned in the main text of the paper, but is 
clearly stated in the supplementary description of the algorithm. This 
assumption is not uncontroversial since the contig length depends on 
several factors. The average coverage of the contig is definitely one such 
factor which is already assumed to be similar within a bin. However, 
another factor which highly affects the length of contigs is the level of 
conservation for different regions of the genome. It is a very strong and 
most likely false statement to say that the level of conservation is more or 
less constant over different regions of a genome.  

MaxBin 
A relative straightforward probabilistic model is defined by the program 
MaxBin (Wu et al. 2014). Here, the tetranucleotide distances are assumed 
to originate from either of two normal distributions, inter- or intra-
species. The parameters for these distributions were estimated 
empirically using a million pairs of contigs, simulated by extracting 
random subsequences from a large database of sequenced genomes. Even 
though the distributions did not appear normally distributed, this 
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assumption was still made, motivated by the shape of the histograms and 
the fact that they were sufficiently separated. The coverage information 
for contigs is included by assuming a Poisson distribution. Version 2 of 
the program integrated coverage information over multiple samples into 
the algorithm which was previously intended to cluster a single 
metagenomic sample (Wu, Simmons, and Singer 2016). 
 
The program starts by estimating the number of clusters by using a set of 
107 so-called single-copy genes which are estimated to be present in each 
genome exactly once. With the estimated number of genomes, MaxBin 
applies a version of the EM-algorithm but with the added feature that 
after convergence the bins are checked again for single copy gene 
presence within the contigs. If a bin is found to have a median number of 
these genes above 2, it will be split by running it through the EM-
algorithm again. MaxBin does not necessarily cluster all input contigs. If 
the probability, as defined by the model, that a contig belongs to the 
cluster it is assigned to is too low the contig will be discarded. Using 
prokaryotic single-copy genes to decide the number of bins is a clever 
trick to keep the clustering algorithm simple. However, this introduces a 
phylogenetic dependency making the algorithm less fit to cluster 
sequences originating from eukaryotes or viruses. Even prokaryotic 
plasmids which are likely to have a different coverage pattern than its 
hosts are unlikely to be clustered properly. 

COCACOLA 
The program COCACOLA (binning metagenomic contigs using sequence 
COmposition, read CoverAge, CO-alignment and paired-end read 
LinkAge) offers a mathematical non-probabilistic formulation of the 
clustering problem where an objective function is to be minimized (Lu et 
al. 2017). The authors conclude, however, that the exact formulation of 
the problem is NP-hard and make a reformulation corresponding to the 
soft clustering of the EM-algorithm, where contigs are not restricted to 
belong to exactly one cluster.  
 
The model also contain a general way of including additional information 
to the model in the form of a network, where any other type of evidence 
that contigs belong to the same cluster can be entered. The suggested 
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usage for this is to use paired-end read linkage and alignment against 
reference genomes. However, in their comparison the former only 
showed a marginally positive effect on the clustering performance and the 
latter introduces a dependency on what is present in reference databases. 
 
The number of clusters is determined automatically but an initial guess is 
needed. The paper suggests a method which is to run k-means clustering 
until at least half of the clusters end up empty. The program also has a 
built in option to estimate the number of clusters from the presence of 
single copy genes in the input contigs. In their comparisons they show 
computational performance even better than MetaBAT.  

ABAWACA 
The software ABAWACA is not yet presented in a dedicated publication 
but is described in a paragraph in the first study where it was used 
(Brown et al. 2015). From this paragraph it is described to use a 
combination of nucleotide composition for three different values of k 
(k=1,k=2 and k=3) and coverage over multiple samples. Before clustering 
all contigs are split into 5 kb fragments. Whether or not two fragments 
originating from the same contig are clustered together or apart is used 
throughout the clustering as a quality estimate. The actual clustering 
starts with all contigs present in one single bin which is iteratively split 
into smaller parts in a hierarchical fashion. Each individual split is done 
based on a single dimension of the input data. This dimension is chosen 
as the one where the best split is obtained, as evaluated by the 
distribution of 5 kb fragments in relation to their original contig. 
However, when performing the actual split fragments from the same 
contig are kept within the same bin according to the majority vote. Both 
bins are required to have at least 50 fragments in order to be approved. 
 
Using a strict cutoff for the minimum number of fragments to be 
contained within a bin is likely to be less successful for binning mobile 
elements or viruses. Furthermore, using a single dimension to separate 
contigs into two different bins might be computationally efficient but 
should also negatively affect precision in some cases. 
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MyCC 
The program MyCC uses a combination of marker genes, nucleotide 
composition and coverage over multiple samples (Lin and Liao 2016). 
The used marker genes are 40 genes which are estimated to be universal 
within prokaryotes. Screening the input contigs for these genes can help 
assign phylogenetic information to the contigs. MyCC uses this 
information to refine the clustering results by either split or join 
preliminary clusters. MyCC uses a data transformation called t-SNE, 
commonly used within RNA-seq analysis.  
 
Much like PCA, t-SNE can transform high-dimensional data to a space of, 
for example, two dimensions. While t-SNE give rise to visualizations in 
two dimensions which often resembles clusters, the validity of these can 
be questioned since the t-SNE transformation does not conserve distance 
between data points. Furthermore, t-SNE is somewhat parameter-
dependent where in extreme cases, clusters can be observed in the 
transformed space where there are none in the original space 
(Wattenberg, Viégas, and Johnson 2016).  
 
MyCC performs t-SNE transformation using all dimensions from 
nucleotide composition and coverage. However, in order to save memory 
and computational time, it only uses a subset of all contigs. The contigs 
not included in the first round of clustering is then assigned to pre-
defined clusters from the first round. The clustering is performed using a 
method called affinity propagation which is finally corrected with the help 
of marker genes.  

CONCOCT 
The program presented in Paper III, which is also presented here 
for completeness, is called CONCOCT. It was early in its adoption 
of coverage over multiple samples to form an automatic clustering 
algorithm. Besides the coverage information, CONCOCT also uses 
tetranucleotide frequencies. Both of these types of information are 
normalized and merged into a shared matrix. The number of 
dimensions are reduced before applying the clustering algorithm 
using PCA, keeping at least 90% of the variance. 
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The clustering algorithm models each bin with a multivariate 
Gaussian distribution. These distributions are combined into a 
united model forming a so-called mixture model. A standard 
mixture model uses a fixed number of clusters. However, a method 
for clustering metagenomic contigs should ideally be flexible in 
this regard. CONCOCT uses a complex statistical method called a 
variational Bayesian approach to decrease the number of clusters 
from an initially large number. This initial number of clusters is 
recommended to be at least 2 to 3 times higher than number of 
clusters expected. It is a parameter that can be set by the user but 
the default value of 400 is in general a good choice. In an optional 
step clusters are evaluated on completeness and contamination 
using a custom script evaluating the presence of 36 single-copy 
COGs. 
 
The performance of CONCOCT was evaluated on two simulated 
datasets and two real datasets. It was found to successfully 
separate clusters down to species level but to be less successful in 
separating strains from the same species. In the publication the 
running times of CONCOCT for the smaller simulated datasets 
were quick (around 4 minutes and 37 minutes respectively). In 
contrast, clustering of the largest of the real datasets took almost 
36 hours to complete. This non-optimal scaling is still present in a 
recently available update of CONCOCT, but using a much higher 
degree of parallelization the absolute running times can often be 
reduced significantly. Furthermore, instead of running the actual 
clustering exactly 10 times and output the best of these the new 
version only run the clustering once, resulting in a 10 times speed-
up, only marginally reducing the binning performance. 

Evaluation of binning tools 
A recent evaluation of common bioinformatic methods within 
metagenomics also included evaluation of metagenomic binning (Sczyrba 
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et al. 2017). This evaluation could have pointed potential users in the 
right direction, but by design only included 1, 2 and 5 samples in the three 
different data sets respectively. The number of samples that are  included 
within a single metagenomic binning study is of great importance. This is 
because, the more samples that are included, the higher the chance of 
including a sample where two genomes have clearly different abundance. 
Furthermore, real data sets, by design, often include many more samples 
than 5. Hence, the performance of methods in this comparison might not 
be representative to a real world data set. 
 
This section will present a different comparison of the previously 
mentioned tools. The tool Canopy is not included since it is designed to 
bin genes and not contigs. Two different approaches are common when 
evaluating performance of binning tools. The first one uses a simulated 
dataset where the ground truth is know for all or at least most of the 
contigs. This enables computation of clustering metrics such as precision 
or recall which can be used to compare the tools’ performances. However, 
constructing realistic simulated datasets is very hard. Real datasets often 
have high diversity and can also include fragments from genomes of low 
abundance. Furthermore, real datasets can include eukaryotic, 
prokaryotic and viral sequences, while simulated datasets rarely include 
more than prokaryotic sequences. For this reason, this comparison was 
performed on a real dataset obtained from Baltic Sea surface water.  
 
Since the ground truth for the clustering problem is not known for a real 
dataset, the evaluation is instead based on the number of bins which are 
approved according to certain criteria. Two commonly used criteria are 
based on completeness and contamination. These parameters are 
efficiently estimated for each bin individually by CheckM, a tool which 
will be presented in more detail in the next section. In this comparison, 
the minimum required completeness was 70% and the maximum allowed 
contamination was 5%. The levels were chosen to match the controlled 
vocabulary of draft genome quality and correspond to substantially (70-
90%) or nearly (>90%) complete with low (<5%) contamination. In this 
comparison, only one sample was binned and as with any comparison of 
this limited size, the results should not be interpreted as representative 
for any of these tools. It is however interesting to see how variable the 
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performance is between these tools which in some sense can be described 
as relatively similar. 

 
Figure 3: Evaluation of published programs for metagenomic binning. A single 

sample from the Baltic Sea served as input, but was quantified using in 
total 86 metagenomic samples from the Baltic Sea. Bins were 
approved using CheckM, requiring at least 70% completeness and 
maximum 5% estimated contamination. All programs were run using 
default parameters except COCACOLA* where the number of initial 
clusters were manually set to 200. All programs except COCACOLA* 
and MyCC was run by Sebastian Allard, Maja Andreasson, Saad 
Saeed and Cecilia Valdna Juhlin as part of their Bachelor thesis “The 
Bacterial Genome Puzzle”, KTH 2017. 

 
The results of the comparison is shown in Figure 3. In summary, 
CONCOCT, MetaBAT and MaxBin performs well, as well as the second 
run of COCACOLA where the number of clusters were set manually. This 
was done since most clusters were highly contaminated in the first run of 
COCACOLA where the number of initial clusters were estimated by 
presence of single copy genes. To be fair, similar efforts would likely have 
improved the results of other tools which rely on single-copy genes to 
estimate number of clusters, in this case MyCC and MaxBin. 
Furthermore, the poor performance of some tools in this evaluation could 
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be due to the use of pre-cut contigs. Contigs were cut into 10 Kb pieces as 
a part of the recommended workflow for CONCOCT, and since this is 
done prior to the time consuming quantification of contigs, it was kept as 
such for all tools. Especially the performance of ABAWACA likely suffers 
from this since it uses co-clustering of fragments from longer contigs as a 
fundamental metric. Shorter contigs reduces the number of fragments 
usable for such strategy. The program CONCOCT is described in detail in 
Paper II.  

Other tools useful for binning 
Several tasks are related to the actual task of clustering contigs into bins. 
This section will be dedicated to such tasks which include evaluating the 
completeness and contamination of bins and taxonomic classification of 
bins. These tasks were usually performed using custom scripts as they 
were in Paper II. However, there now exists several well maintained tools 
which greatly simplifies any metagenomic binning project. 
 
The tool CheckM (Donovan H. Parks et al., n.d.) have rightfully been very 
successful. It was designed to evaluate bins in terms of completeness and 
contamination. As had been done before, this is achieved with CheckM by 
using single-copy genes. The principle is that the completeness is 
estimated by occurence of these genes and contamination is estimated by 
any observation of multiple copies of any such gene. Since different 
species can be evolutionary very distant, there only exists a few such 
genes valid to use for all prokaryotes. However, the precision in this type 
of estimates would benefit from having a larger number of such genes. 
This is achieved in CheckM by applying lineage-specific sets of single-
copy genes. Therefore, a bin is evaluated by CheckM by first automatically 
determining its most likely lineage and then assessing its completeness 
and contamination using the set of single-copy genes associated with this 
lineage. The bins produced by a clustering method can be filtered using 
CheckM, only keeping sufficiently complete and uncontaminated ones. 
The results given by CheckM can in this way also be used to evaluate the 
performance of different binning methods, as was done in the previous 
section, without the use of reference genomes. 
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A similar method to CheckM which was originally developed for de novo 
sequencing of genomes is BUSCO. As opposed to CheckM, BUSCO is not 
explicitly designed for metagenomic binning and cannot automatically 
estimate the most suitable set of single-copy genes. However,  BUSCO has 
one advantage to CheckM in that it can be used for eukaryotic genomes as 
well. CheckM, on the other hand, is limited to prokaryotes. Another tool 
which is useful for binning of eukaryotes is EukRep which was mentioned 
in the previous chapter. Both BUSCO and EukRep were used to obtain 
eukaryotic genomes in Paper V. 
 
Although taxonomic annotation is outside of the scope for this thesis, I 
cannot resist mentioning a recently released tool which greatly aided the 
post-processing of produced bins in Paper V. This tool, which produces 
detailed taxonomic annotation of produced bins is the Genome 
Taxonomy DataBase ToolKit (gtdbtk). This tool is tightly connected to a 
recent preprint where a new taxonomy based on phylogenetic distance 
was suggested (D. H. Parks et al. 2018). The gtdbtk tool can place any 
genome or bin on this phylogenetic tree and assign a taxonomy based on 
its position. Other tools offer the same functionality. For example, 
Phylophlan was used in Paper III to assign taxonomy for individual bins 
(Segata et al. 2013). However, in order to include uncultured genomes, 
these had to be manually added to the database. With gtdbtk, the 
included database is supposed to be updated regularly and was built 
using all available genomes, even approved metagenomic bins. 
Furthermore, since the taxonomy is updated according to the phylogeny, 
even genomes within clades where no cultured genome exists can get 
detailed taxonomy. Taken together, gtdbtk is easy to use and enables 
detailed taxonomic annotation of bins, even where no closely related 
cultured genomes exists. 
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Present investigation 
The papers included in this thesis all present, compare, or apply 
bioinformatic methods in metagenomics. Furthermore, the only paper 
not focusing on metagenomic binning is Paper I, where a reference 
assembly and a database for the Baltic Sea is presented. Paper II presents 
the software CONCOCT for metagenomic binning which is applied to a 
Baltic Sea time series dataset in Paper III. In Paper IV genomes 
reconstructed from metagenomes are compared against single-cell 
sequenced genomes from the same environment. Finally, in Paper V a 
new larger dataset from the Baltic Sea is used to reconstruct an order of 
magnitude more genomes compared to Paper III. 

Paper I - BARM and BalticMicrobeDB, a reference 
metagenome and interface to meta-omic data for the 
Baltic Sea 
The paper placed as the first paper in this thesis is not first in a 
chronological sense. Instead, it is placed first since it is not using 
metagenomic binning as opposed to the other papers. On the other hand, 
this project is the individual project I have spent most time on, as it was a 
core part of the BONUS BLUEPRINT project. This project was aimed at 
developing a framework for determining environmental conditions in 
marine water samples using metagenomics. One of the key deliverables of 
the project was a comprehensive reference metagenome for the Baltic 
Sea, inspired by the large-scale studies of the human microbiome. A large 
co-assembly accompanied by a web-based interface was constructed as a 
resource for other researchers, within and outside of the BONUS 
BLUEPRINT project. The reference assembly has been extensively used 
within the BONUS BLUEPRINT project to analyse additional samples, 
not included in the assembly construction. This is accomplished by 
mapping of metagenome or metatranscriptome reads to the annotated 
genes of the reference assembly, and thereby quickly acquire a functional 
or taxonomic profile of the sample. 
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The paper is designed to solely present data which is relevant and re-
usable to the research community. Therefore, it does not contain any 
analysis except technical validation of the data. The main content is the 
reference assembly and the web-interface together with the dataset it is 
based on. The size of the input dataset enabled a co-assembly resulting in 
more than 6 million unique gene sequences. These were extensively 
annotated for function and taxonomy and their relative abundance in 
each sample was quantified. Furthermore, the publicly available web-
interface which enables easy access to all this information while 
additionally providing search tools and some visualizations, is described.  
 
My contributions to this paper was: I was involved in the planning and 
design of the project, I performed the bioinformatic analysis and 
implemented the database along with the web-interface. I also wrote most 
of the paper. 

Paper II - Binning metagenomic contigs by coverage 
and composition 
This paper presents the program CONCOCT, a method for automatic 
metagenomic binning, using nucleotide composition and coverage over 
multiple sample. The project that led up to CONCOCT originated as a 
master thesis project which Brynjar Smári Bjarnason and I set out to 
finish. This was my first acquaintance with Anders Andersson, at that 
time my master thesis supervisor and later the supervisor of my PhD 
studies. Co-supervisor of the CONCOCT project was Christopher Quince, 
who eventually designed the clustering algorithm and implemented most 
of the software. The algorithm uses a Gaussian mixture model, 
representing each genome with a gaussian distribution in multiple 
dimensions. 
 
The performance of CONCOCT is displayed on two simulated datasets 
and two real datasets. Overall, CONCOCT was shown to cluster all 
datasets well, while a large number of genomes (N=101) were more easily 
handled than a smaller dataset (N=20) where closely related strains were 
present. When evaluating the importance of multiple samples, a general 
improvement in clustering performance per added sample could be 
observed up to around 50 samples.  
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Regarding my contributions to this paper, Brynjar Smári Bjarnason and I 
implemented the python wrapper, which includes construction of 
nucleotide composition vectors. Furthermore, I participated for the full 
duration of the project, executed parts of the comparisons and was 
involved in writing the manuscript.  

Paper III - Metagenome-assembled genomes 
uncover a global brackish microbiome 
Immediately when I started my PhD studies, I became involved in a 
project aiming at applying the CONCOCT method to a Baltic Sea time 
series dataset. The paper resulting from this project introduced the term 
Metagenome Assembled Genomes (MAGs), which has become a standard 
phrase in metagenomics for quality approved bins. The metagenomic 
binning also turned out successful, using individual-sample assemblies, 
83 MAGs were reconstructed, and were de-replicated to 30 
approximately species level clusters. 
 
While the main focus of my PhD studies has been on bioinformatic 
methods, these are irrelevant if not applied to a biological context. Out of 
the five papers presented in this thesis, Paper III contains the most 
extensive biological interpretations. The reconstructed MAGs were shown 
to be most closely related to genomes found within other brackish waters 
even though these were geographically very distant. Furthermore, 
evidence showed that the adaptation to the brackish environment were in 
fact older than the formation of the Baltic Sea. This led to the conclusion 
of the existence of a global brackish microbiome. 
 
For this paper, I am listed as the third author. My contributions were 
mainly within methodological aspects, such as performing and evaluating 
the metagenomic binning. However, I also took active part in designing 
the analysis and writing the manuscript. 
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Paper IV - Genomes from uncultivated prokaryotes: 
a comparison of metagenome-assembled and 
single-amplified genomes 
In this manuscript, we set out to compare two approaches for obtaining 
genomes from uncultivated prokaryotes. The first method was to recover 
genomes from metagenomes and the second one was the more 
established technique of single-cell sequencing. The genomes from the 
first technique were the ones presented in Paper III while the single-cell 
sequenced genomes were obtained from the same station in the Baltic 
Sea, sampled approximately one year later. Genomes that were obtained 
from both methods turned out to be almost identical between the 
methods. In terms of quality, the single-cell sequenced genomes were 
found to be consistently less complete than the corresponding MAGs. 
Furthermore, the errors caused by metagenomic binning were estimated 
to be less than those caused by metagenomic assembly. 
 
For this paper, where I am co-first author together with Christofer M.G. 
Karlsson, I was the main responsible for the bioinformatic analysis. 
Furthermore, I generated most figures and wrote most of the original 
manuscript together with Christofer. 

Paper V - Recovering 2,032 Baltic Sea microbial 
genomes by optimized metagenomic binning 
Given that the data obtained and presented in Paper I was readily 
available, I was hoping to find time to perform metagenomic binning 
using this dataset, before the end of my PhD. Luckily this was possible. It 
might be worth adding some more biological analysis to this manuscript. 
However, I think it still adds a valuable contribution to Baltic Sea 
microbial research with, compared to Paper III, an order of magnitude 
larger number of genomes and species clusters recovered. 
 
This paper also displays how much simpler recent developments has 
made it to conduct a metagenomic binning study. Compared to Paper III, 
steps that have been simplified or improved include assembly, 
quantification of contigs, the actual binning program, evaluation of bins, 
taxonomic annotation of bins and comparison to genomes previously 
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obtained from uncultivated prokaryotes. Furthermore, new possibilities 
to obtain eukaryotic microbial genomes have opened up. 
 
For this paper, where I am listed as the first author, I have been fully 
responsible for processing of the raw data, performing metagenomic 
binning, assigning MAGs from bins, and performing taxonomic and 
functional annotation. Furthermore, I drafted the first version of the 
manuscript and have written a large part of the current version of the 
manuscript.  
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Future perspective 
This thesis have presented bioinformatic methods for metagenomics, 
with a special focus on metagenomic binning. Metagenomic binning have 
had a large scientific impact. Besides drastically extending the 
prokaryotic tree of life it has also led to other important biological 
findings such as the discovery of an Archaea, seemingly related to the first 
eukaryote. I believe metagenomic binning still has a great potential for 
further discoveries, both by applying it to novel environments and by 
further analysis of available datasets. Possibly also, by applying methods 
to achieve strain-resolved binning. However, the future might also carry 
completely different challenges. 
 
Current tools developed for metagenomic binning are specifically 
designed to fit with current sequencing technologies. The relatively short 
read lengths produced by current massively parallel sequencing machines 
limits the success of assembly and necessitates metagenomic binning to 
construct genomes from metagenomes. Furthermore, the massive 
number of reads produced by these machines is also what enables 
accurate quantifications of each assembled fragment. This is the 
foundation for current metagenomic binning methods. New sequencing 
techniques could therefore potentially drastically change metagenomic 
binning or even make it obsolete. One such promising technique is read 
phasing, which have been used to reconstruct genomes from 
metagenomes (Bishara et al. 2018). However, it remains to be seen 
whether phasing methods also can produce accurate estimations of 
relative abundance, a very important feature of metagenomic binning in 
order to draw ecological conclusions. 
 
Room for possible improvements can also be seen within the 
bioinformatics area. One such improvement could be quantification for 
metagenomic binning. While Kallisto was successfully used for 
metagenomic quantification in Paper V, it was constructed for an entirely 
different task. A fast quantification method specifically constructed for 
metagenomics could probably be implemented in such a way that results 
would be more reliable. Improvements of metagenomic binning tools are 
probably also possible, although I believe only minor improvements in 
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clustering performance will be achieved within the current school-of-
thought. I do however, see room for improvements when it comes to the 
user interface offered by these tools, CONCOCT included.  
 
A second version of the mentioned comparison of metagenomic binning 
tools have been announced and it promises to include more samples, 
which was the major issue with the original study. This could establish a 
new reference dataset and spark optimizations of the different tools. 
However, as the tools become optimized for this specific dataset, the 
comparative value and relevance of that dataset will likely decrease. 
 
A more ground-breaking idea would be to include the multiple-sample 
abundance information directly into an assembly program. This could 
theoretically improve assembly drastically. In practice, however, this is 
very hard since assembly is already a very memory intensive task. 
Including more information for the program to use would need, if 
possible, highly competent engineering. 
 
We are still far from a complete understanding of the microbial world. 
The incredible diversity of prokaryotes promises future discoveries that 
will potentially change the foundations of our scientific understanding. 
Furthermore, these discoveries could perhaps also help us deal with 
current challenges, such as creating a sustainable society. Whether these 
discoveries of the future will be mediated by metagenomic binning or 
entirely different techniques is, when considering this bigger picture, less 
important. 
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