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Abstract 
The	Baltic	Sea	is	one	of	the	world’s	largest	brackish	water	bodies	and	is	
characterised	by	pronounced	physicochemical	gradients	where	microbes	
are	the	main	biogeochemical	catalysts.	Meta-omic	methods	provide	rich	
information	on	the	composition	of,	and	activities	within	microbial	
ecosystems,	but	are	computationally	heavy	to	perform.	We	here	present	the	
BAltic	Sea	Reference	Metagenome	(BARM),	complete	with	annotated	genes	
to	facilitate	further	studies	with	much	less	computational	effort.	The	
assembly	is	constructed	using	2.6	billion	metagenomic	reads	from	81	water	
samples,	spanning	both	spatial	and	temporal	dimensions,	and	contains	6.8	
million	genes	that	have	been	annotated	for	function	and	taxonomy.	The	
assembly	is	useful	as	a	reference,	facilitating	taxonomic	and	functional	
annotation	of	additional	samples	by	simply	mapping	their	reads	against	the	
assembly.	This	capability	is	demonstrated	by	the	successful	mapping	and	
annotation	of	24	external	samples.	In	addition,	we	present	a	public	web	
interface,	BalticMicrobeDB,	for	interactive	exploratory	analysis	of	the	
dataset.		

Background & Summary 
The	Baltic	Sea	is	a	semi-enclosed	inland	sea	characterized	by	strong	
physicochemical	gradients,	in	particular	horizontal	and	vertical	salinity	and	
oxygen	gradients,	and	pronounced	seasonal	dynamics1.	This	ecosystem	is	
also	heavily	impacted	by	anthropogenic	eutrophication,	manifested	in	e.g.	
harmful	phytoplankton	blooms	and	large	areas	with	anoxic	bottom	waters2.	
Due	to	their	key	roles	in	biogeochemical	cycles,	microbial	communities	are	
particularly	interesting	to	study	in	this	ecosystem3–11.	One	of	the	most	
comprehensive	methods	to	characterize	the	taxonomic	and	functional	
composition	of	microbial	communities	is	through	metagenomics,	and	
specifically	by	metagenomic	assembly,	which	enables	high	precision	and	
sensitivity	for	both	taxonomic	and	functional	annotation12.	These	
annotations	can	be	quantified	in	individual	samples	by	mapping	short	reads	
from	samples	that	either	were	included	in	the	assembly	or	constitute	
external	samples.	For	some	microbiomes,	particularly	those	associated	with	
the	human	body,	extensive	sequencing	efforts	have	been	undertaken	to	
construct	reference	gene	catalogues	that	are	publicly	available	and	can	be	
utilized	by	others13–15.	Large-scale	metagenomic	datasets	also	exist	for	the	
global	ocean,	such	as	the	Tara	Oceans	dataset15.	However,	although	the	
brackish	Baltic	Sea	is	composed	of	a	mixture	of	marine-	and	freshwater	like	
lineages5,7,10,	these	are	genetically	distinct	from	their	relatives8,	which	
hinders	efficient	read	mapping	to	fresh-	and	marine	water	metagenomes.	



3	

We	here	present	a	Baltic	Sea	metagenome	co-assembly	(BARM;	BAltic	sea	
Reference	Metagenome)	with	annotated	genes	constructed	from	three	sets	
of	samples,	selected	to	cover	variation	over	geography,	depth	and	season	
(Table	1,	Fig.	1;	Data	Citation	1).	
	
After	preprocessing	of	the	reads,	the	81	samples	combined	contained	586	
billion	bases	in	2.6	billion	read	pairs.	To	allow	the	assembly	of	genes	also	
from	genomes	having	low	abundance	in	individual	samples,	data	from	all	
samples	were	co-assembled.	The	resulting	co-assembly	consisted	of	14	
billion	bases	distributed	over	22	million	contigs.	Out	of	these	contigs,	2.4	
million	contigs	were	longer	or	equal	to	1	kilobase.	Functional	and	taxonomic	
annotation	of	genes	is	computationally	demanding.	For	this	reason,	and	
since	longer	contigs	were	deemed	to	be	more	trustworthy,	only	genes	found	
on	the	contigs	>	1	kilobase	were	subjected	to	functional	and	taxonomic	
annotations;	6.8	million	genes	were	found	on	these.		
	
For	functional	analysis,	several	database	sources	were	chosen;	Pfam16,	
TIGRFAM	(http://www.jcvi.org/cgi-bin/tigrfams/index.cgi),	EggNOG17	and	
dbCAN18.	Additionally,	enzyme	commission	(EC)	numbers19	were	extracted	
based	on	the	EggNOG	assignments.	Through	mapping,	the	short	reads	were	
then	used	to	quantify	the	individual	genes	over	all	the	different	samples,	
which	were	summarized	per	annotation	identifier	(ID)	for	each	respective	
annotation	source.	The	mapping	rates	for	the	different	sample	groups	and	
annotation	sources	are	summarized	in	Fig.	2,	where	also	24	samples	from	a	
published	metagenomic	study20	(Data	Citation	2)	of	the	Baltic	Sea	are	
included	to	illustrate	the	capabilities	for	BARM	to	work	as	a	reference	gene	
catalogue	for	the	Baltic	Sea.	
	
Along	with	the	dataset,	a	public	web	interface	(BalticMicrobeDB)	was	
constructed	to	facilitate	exploratory	analysis	of	the	data	
(https://barm.scilifelab.se).	Through	which	it	is	possible	to	view	counts	of	
functional	and	taxonomic	annotations	over	the	different	sample	groups.	
Moreover,	it	is	possible	to	search	for	functional	annotations	based	on	their	
descriptive	texts	and	choose	to	view	or	download	the	counts	for	only	those	
matching	the	search	query.	
	
The	annotated	assembly	presented	here	is	a	rich	resource	for	further	
exploitation	of	the	published	datasets,	facilitated	through	the	web	interface,	
but	could	also	function	as	a	reference	metagenome	assembly	for	the	Baltic	
Sea,	decreasing	the	computational	demands	for	the	analysis	of	new	
metagenome	and	metatranscriptome	samples,	and	serve	as	reference	for	
metaproteome	analyses.	
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Methods 

Sampling, DNA Extraction and Sequencing 

37	surface-water	(2	m	depth)	samples	from	the	2012	time	series	(March	to	
December)	from	the	Linneaus	Microbial	Observatory	(LMO)	station	located	
10	km	off	the	east	coast	of	Öland	and	where	the	maximum	depth	is	47	m	
have	been	described	in	Hugerth	et	al.	(2015)8	(Data	Citation	3)	Briefly,	after	
prefiltration	through	3.0	μm,	DNA	was	extracted	from	0.2	μm	Sterivex™	
cartridge	filters	(Millipore)	using	the	protocol	described	in	Riemann	et	al.	
(2000)21		and	sequenced	on	one	HiSeq	high-output	flowcell	with	an	average	
of	31.9	million	pair-end	reads	per	sample.		
	
The	30	transect	samples	were	taken	during	a	cruise	initiated	by	Leibniz	
Institute	for	Baltic	Sea	Research,	Warnemünde	on	the	R/V	Alkor,	carried	out	
for	the	EU-BONUS	BLUEPRINT	project	from	June	4	to	June	17	2014.	Samples	
for	DNA	analyses	were	collected	using	a	compact	CTD	(profiling	instrument	
that	records	conductivity,	oxygen,	temperature	and	depth)	SBE	911	Plus	
with	a	SBE-rosette	SBE32	(Sea	Bird	Electronics	Inc.,	USA)	equipped	with	18	
x	10	L	FreeFlow-PWS-samplers	(HYDRO-BIOS,	Kiel,	Germany).	Water	was	
sampled	from	oxic	zones,	in	the	range	from	2	to	242	m	depth,	within	the	
salinity	gradient	of	the	Baltic	Sea.	For	DNA	analysis,	1	L	of	seawater	was	
directly	filtered	onto	a	47	mm	Durapore	membrane	filter	with	0.2	µm	pore	
size	(GVWP04700,	Merck	Millipore,	Darmstadt,	Germany)	by	a	vacuum	of	<	
300	mbar.	Subsequently,	the	filters	were	folded,	flash	frozen	using	liquid	
nitrogen	and	stored	at	-80°C	until	further	processing.	DNA	was	extracted	
using	a	modified	protocol	of	the	QIAamp	DNA	Mini	Kit	(51304,	Qiagen,	
Hilden,	Germany)	with	an	initial	bead-beating	step	and	a	cleanup	and	
concentration	process	using	the	Zymo	gDNA	Clean	and	Concentrator	Kit	
(D4010,	Zymo	Research	Europe,	Freiburg,	Germany).	The	concentration	and	
quality	of	the	eluted	DNA	was	assured	by	gel	electrophoresis	and	
Bioanalyzer	DNA	12000	kit	(5067-1508,	Agilent	Technologies,	Santa	Clara,	
USA).	The	samples	were	sequenced	at	the	National	Genomics	Infrastructure	
at	Science	for	Life	Laboratory,	Stockholm,	Sweden,	using	a	full	HiSeq	2500	
high-output	flowcell	producing	an	average	of	69.5	million	pair-end	reads	
per	sample.	
	
The	redoxcline	samples	consist	of	samples	from	station	Boknis	Eck22,	
located	at	the	entrance	of	the	Eckernforde	Bay	in	the	southwestern	Baltic	
Sea,	and	from	station	TF0271	at	the	Gotland	Deep	in	the	eastern	Gotland	
Basin.	The	Boknis	Eck	station	was	sampled	on	September	23,	2014	on	the	
R/V	Littorina	during	routine	monitoring	activities	performed	monthly	by	
the	GEOMAR	Helmholtz	Centre	for	Ocean	Research	Kiel.	Due	to	windy	
conditions	before	the	sampling	day,	the	water	at	the	Boknis	Eck	station	was	
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mixed	over	most	of	the	water	column	and	only	the	bottom	water	was	
sulfidic.	Water	was	sampled	from	the	mixed	oxygenated	layer	and	from	the	
sulfidic	bottom	water,	which	was	captured	on	a	3	μm	pore	size	membrane	
filters	(Whatman,	Maidstone,	UK)	followed	by	0.2	μm	pore	size	Sterivex-GV	
filters	(Millipore	Billerica,	Massachusetts,	USA).	The	Gotland	Basin	was	
sampled	during	the	cruise	EMB087	on	the	R/V	Elisabeth	Mann	Borgese	on	
October	18	and	October	26,	2014.	The	samples	from	October	18	were	taken	
in	the	context	of	an	experiment	close	to	the	oxic-anoxic	interface	from	
suboxic	and	anoxic	water	layers	and	were	captured	directly	on	0.2	μm	pore	
size	Durapore	membrane	filters	(Whatman,	Maidstone,	UK).	The	samples	
from	October	26	were	taken	to	cover	different	zones	in	the	redox	gradient	
(suboxic,	oxic-anoxic	interface,	upper	sulfidic,	lower	sulfidic)	and	were	
captured	first	on	a	3	μm	pore	size	membrane	filters	(Whatman,	Maidstone,	
UK)	followed	by	0.2	μm	pore	size	Sterivex-GV	filters.	DNA	from	water	
captured	on	3	μm	pore	size	membrane	filters	and	0.2	μm	Sterivex-GV	filters	
was	extracted	using	the	QIAmp	DNA	Mini	Kit	(Qiagen,	Hilden,	Germany):	
ATL	buffer	was	added	to	filter	pieces	together	with	200	μm	low-binding	
Zirconium	beads	(OPS	Diagnostics,	Lebanon,	NY,	USA)	and	the	suspension	
was	vortexed	for	5	minutes	at	maximum	speed.	Subsequently	proteinase	K	
was	added	and	the	suspension	was	incubated	for	approximately	1h	at	56°C	
before	continuing	DNA	extraction	by	following	the	manufacturer’s	
instructions.	Nucleic	acids	from	Gotland	Basin	water	sampled	on	October	18	
on	0.2	μm	pore	size	membrane	filters	were	extracted	using	the	AllPrep	
DNA/RNA	Mini	Kit	(Qiagen,	Hilden,	Germany).	Similar	as	before,	filters	were	
vortexed	together	with	Zirconium	beads	in	RTL	buffer	before	continuing	
nucleic	acid	extraction	by	following	the	manufacturer’s	protocol.	The	
concentration	and	quality	of	the	eluted	DNA	was	assured	by	gel	
electrophoresis.	The	samples	were	sequenced	on	a	single	HiSeq	2500	lane	
producing	an	average	of	20.7	million	pair-end	reads	per	sample.	
	
All	sequencing	libraries	(including	LMO)	were	prepared	with	the	Rubicon	
ThruPlex	kit	(Rubicon	Genomics,	Ann	Arbor,	Michigan,	USA)	according	to	
the	instructions	of	the	manufacturer.	

Preprocessing and Assembly 
The	quality	of	the	reads	were	checked	and	visualized	with	FastQC23	through	
MultiQC24	and	trimmed	from	low	quality	bases	with	cutadapt25	using	Phred	
score	15	as	a	cutoff.	Adapter	sequences	were	also	removed	using	cutadapt,	
keeping	only	read	pairs	where	both	reads	in	the	pair	were	longer	than	31	
bases.	Preprocessed	reads	were	then	assembled	using	Megahit26	version	
1.0.2	with	default	parameters	including	kmers	21,41,61,81	and	99.		
	
Exclusively	to	the	30	samples	from	the	transect	cruise,	genomic	material	(20	
ng	per	L	of	seawater)	from	a	known	genome	of	Thermus	thermophilus	



6	

(strain	HB8),	which	is	not	expected	to	be	present	in	the	Baltic	Sea	naturally,	
was	added	after	filtration	but	prior	to	the	DNA	extraction,	serving	as	
internal	standard	to	enable	absolute	quantifications.	Aligning	all	contigs	
from	the	metagenome	assembly	against	this	reference	genome	showed	that	
84.1%	of	the	genome	was	recovered	within	contigs	aligning	with	average	
99.82%	identity.	These	additional	genome	contigs	were	kept	in	the	
reference	assembly	but	reads	aligning	to	the	reference	genome	were	filtered	
out	before	the	quantification	steps,	and	before	uploading	the	processed	
reads	to	the	European	Nucleotide	Archive	(ENA)	(Data	Citation	4).	

Functional Annotation 
Genes	were	predicted	on	all	contigs	using	Prodigal27	version	2.6.3	with	the	‘-
-meta’	tag	which	potentially	uses	different	coding	tables	for	different	
contigs.	Genes	located	on	contigs	longer	or	equal	to	1	kilobase,	identified	
with	the	script	toolbox/scripts/fasta_lengths.py,	were	used	for	functional	
and	taxonomic	annotation.	For	functional	annotation,	the	databases	
EggNOG17,	Pfam16,	TIGRFAM	(http://www.jcvi.org/cgi-
bin/tigrfams/index.cgi)	and	dbCAN18	were	chosen.	Furthermore,	EC-
numbers19	were	extracted	from	the	EggNOG	annotations.	
	
To	annotate	genes	with	EggNOG17	ids,	the	EggNOG	hmm	file	for	all	
organisms,		NOG.hmm.tar.gz,	version	4.5	was	downloaded	from	
http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/.	For	
performance	reasons,	hmmsearch	was	used	instead	of	hmmscan28,	initially	
removing	all	hits	with	an	E-value		>	0.0001.	To	select	a	maximum	of	one	
annotation	per	gene,	the	hit	with	highest	score	was	chosen	using	the	script	
toolbox/scripts/hmmer_filtering/keep_top_score.py.	Information	about	
each	annotation	was	downloaded	from	
http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/NOG.annotatio
ns.tsv.gz.	
	
An	Enzyme	Commision	(EC)	number19	was	assigned	to	each	EggNOG	
through	the	Uniprot29	proteins	included	in	the	EggNOG	model,	if	a	majority	
of	its	EC-assigned	members	were	assigned	to	that	EC.	Note	that	proteins	
could	have	multiple	EC	numbers	assigned	and	therefore	some	EggNOGs	
were	assigned	multiple	EC	numbers.	The	files	needed	for	the	conversion	
were	eggnog4.protein_id_conversion.tsv.gz	(downloaded	from	
http://eggnogdb.embl.de/download/eggnog_4.5/	on	January	9th	2017)	and	
NOG.members.tsv.gz	(downloaded	from	
http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/	on	January	9th	
2017).	The	protein	id	conversion	file	gives	EC	numbers	per	reference	
protein	and	the	members	file	gives	the	reference	proteins	that	build	each	
model.	The	protein	with	taxaid	400682	and	protein	id	“PAC”	was	removed	
from	the	protein	id	conversion	file	since	it	had	695	EC	entries.	Likewise	for	
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taxaid	7070	and	protein	id	“TCOGS2”,	with	686	EC	entries.	The	protein	id	
with	the	third	most	entries	had	6	entries	and	therefore	the	two	others	were	
deemed	as	outliers.	The	suspected	reason	is	that	these	entries	belong	to	
different	genes	for	these	genomes	but	there	were	no	way	to	resolve	this	and	
the	EC-number	assignment	for	each	EggNOG	was	deemed	to	not	be	affected	
by	this.	Given	the	assignment	of	EC-numbers	per	EggNOG,	the	assignment	
per	gene	was	done	with	toolbox/scripts/assign_ec_from_nog.py.	
	
Annotation	against	the	dbCAN18	(DataBase	for	automated	Carbohydrate-
active	enzyme	ANnotation)	database	was	performed	using	version	5	
(downloaded	from	http://csbl.bmb.uga.edu/dbCAN/download.php).	
Following	the	instructions	from	dbCAN	(downloaded	from	
http://csbl.bmb.uga.edu/dbCAN/download/readme.txt),	hmmscan28	was	
used	with	the	option	--domtblout	and	the	result	was	further	treated	with	
the	recommended	script	hmmscan-parser.sh	(reference	of	used	script	
available	within	toolbox/third_party_scripts/dbcan/hmmscan-parser.sh)	
from	dbCAN	requiring	a	covered	fraction	of	the	HMM	larger	than	0.3	and	
keeping	long	alignments	(>	80	amino	acids)	if	the	E-value	was	less	than	1e-5	
and	short	alignments	if	the	E-value	was	less	than	1e-3.	An	additional	script	
toolbox/hmmer_filtering/dbcan_strict_filtering.py	was	applied,	choosing	to	
follow	recommendations	for	bacteria	from	dbCAN,	keeping	annotations	
with	e-value	less	than	1e-18	and	alignment	coverage	greater	than	0.35.	To	
allow	for	more	than	a	single	domain	within	a	gene,	any	annotation	which	
fulfilled	these	criteria	was	kept.	Information	about	each	annotation	was	
collected	(downloaded	from	
http://csbl.bmb.uga.edu/dbCAN/download/FamInfo.txt).		
	
Annotation	against	Pfam16	version	30.0	was	conducted	with	the	script	
pfam_scan.pl	supplied	from	the	
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools	for	version	28.0,	using	
hmmer	version	3.1b128.	To	allow	for	more	than	a	single	domain	within	a	
gene,	any	annotation	which	fulfilled	these	criteria	was	kept.	Information	
about	each	annotation	was	collected	as	columns	1,2	and	4	from	the	file	
pfamA.txt.gz	downloaded	from	
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam30.0/database_files
/	on	January	11th	2017.	
	
Annotation	against	TIGRFAM	version	15,	was	performed	using	hmmsearch	
(v.	3.1b2)28	with	--cut_tc	argument	to	filter	models	by	trusted	cutoff.	For	
each	protein	sequence,	the	best	scoring	HMM	was	selected	using	
hmmparse.py	available	at	
https://github.com/johnne/biotools/blob/master/scripts/hmmparse.py	
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Taxonomic annotation 
The	method	used	to	assign	taxonomy	was	chosen	in	order	to	assign	as	many	
contigs	as	possible	to	a	taxonomy	while	still	keeping	false	positives	to	a	low	
level.	As	the	number	of	sequences	in	reference	databases	closely	related	to	
the	genomes	in	our	samples	was	expected	to	be	low8,	amino	acid	sequences	
from	the	assembly	were	used	to	compare	against	other	amino	acid	
sequences	in	the	reference	database,	enabling	higher	sensitivity	(due	to	the	
more	conserved	nature	of	amino	acid	sequences).	This	comparison	was	
done	using	Diamond	version	0.8.2630	with	the	parameters	“--seg	yes”,”--
sensitive”	and	“--top	10”	against	the	NCBI	nr	database	downloaded	
December	2nd	2016.		
	
The	code	used	to	assign	taxonomy	from	the	Diamond	search	was	based	on	
an	original	available	in	the	DESMAN	package31	and	the	modified	version	of	
the	code	is	available	as	the	script	
toolbox/scripts/taxonomy_from_genes_to_contigs/lca_per_contig.py.	The	
assignment	was	done	as	follows:	all	reported	hits	from	the	Diamond	search	
were	given	a	weight	based	on	the	aligned	fraction	of	the	query	and	the	
percentage	identity	of	the	alignment.	At	each	taxonomic	level,	if	the	sum	of	
the	weights	for	one	taxon	was	greater	than	half	the	sum	of	all	weights,	the	
gene	was	assigned	to	that	taxon	as	long	as	the	percentage	identity	was	high	
enough.	The	levels	for	the	percentage	identity	were		set	to	40%	at	
superkingdom	level,	50%	at	phylum	level,	60%	at	class	level,	70%	at	order	
level,	80%	at	family	level,	90%	at	genus	level	and	95%	at	species	level.	
	
Taxonomic	assignments	were	set	per	contig	to	the	most	detailed	level	where	
consensus	for	at	least	50%	of	the	weights	of	the	preliminary	gene	
assignments	could	be	achieved.		Genes	without	taxonomic	annotation	were	
ignored.	The	shared	assignment	was	propagated	to	all	genes	present	on	that	
contig.	In	this	way,	all	genes	present	on	one	contig	will	always	share	the	
taxonomic	assignment.	If	no	single	superkingdom	accounted	for	a	majority	
of	the	gene	assignment	weights	for	a	contig,	the	contig	was	left	unassigned.	

Quantification and Normalization 
To	use	the	metagenome	assembly	as	a	reference	assembly,	individual	
samples	are	functionally	and	taxonomically	annotated	by	quantifying	the	
different	annotations	present	in	the	assembly.	This	is	done	by	mapping	all	
short	reads	against	the	assembly	and	quantifying	genes,	and	thereby	any	
associated	annotation,	with	the	number	of	reads	mapping	to	them.	More	
specifically	bowtie232	version	2.2.6	was	used	with	the	parameter	“--local”	
for	mapping,	duplicated	reads	were	removed	with	picard	version	1.118,	
bam-file	sorting	was	done	with	Samtools33	version	1.3,	and	the	htseq-count	
script	from	htseq34	version	0.6.1	was	used	to	get	raw	counts	per	gene.	
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Counts	per	annotation	was	achieved	by	summing	all	counts	for	genes	
annotated	with	each	respective	annotation.		
	
When	quantifying	annotation	types	where	multiple	annotations	were	
allowed	for	a	single	gene	(dbCAN	and	Pfam),	some	genes	contributed	
several	times	to	the	quantities.	This	was	kept	in	order	to	facilitate	analysis	
of	differential	abundance	for	the	individual	annotations.	
	
Along	with	raw	counts	of	reads	for	each	annotation	type	and	taxonomy,	a	
count	normalized	by	gene	length	and	number	of	reads	was	also	calculated.	
Borrowing	the	formula	and	the	term	from	transcriptomics,	we	calculate	
TPM	(Transcripts	Per	Million)	values35:	
TPM	

𝑇𝑃𝑀 =
𝑟!  ⋅  𝑟𝑙 ⋅  10!

𝑓𝑙! ⋅ 𝑇
	

𝑇 =
!∈!

𝑟! ⋅ 𝑟𝑙
𝑓𝑙!

	

Where	𝑟!	is	the	number	of	reads	mapped	to	gene	𝑔	from	the	sample,	𝑟𝑙	is	the	
average	read	length	for	the	sample,		𝑓𝑙!is	the	length	of	the	gene	and	𝐺	is	the	
set	of	all	genes.	T	is	a	convenience	variable	for	the	indicated	sum	over	all	
genes.	

Code availability 
Code	used	to	preprocess	reads,	assemble	contigs	and	annotate	genes	is	
publicly	available	at	https://github.com/EnvGen/BLUEPRINT_pipeline,	
containing	the	pipeline	definition	of	the	workflows	used,	
https://github.com/EnvGen/snakemake-workflows,	where	the	snakemake	
rules	are	specified	in	order	to	build	the	command	used	for	each	step,	and	
the	branch	BARM_publication	of	https://github.com/EnvGen/toolbox,	for	
custom	scripts.	Scripts	within	the	latter	repository	that	have	been	used	have	
been	indicated	throughout	the	text.	

Data Records 
The	preprocessed	sequencing	reads	from	the	Transect	and	Redoxcline	
samples	were	submitted	to	ENA	hosted	by	EMBL-EBI	under	the	study	
accession	number	PRJEB22997	(Data	Citation	4).	The	raw	reads	from	LMO	
were	published	elsewhere8	and	are	accessible	at	NCBI	(Data	Citation	3).	
Contig,	gene	and	protein	sequences	from	the	co-assembly	of	the	Transect,	
Redoxcline	and	LMO	samples,	as	well	as	quantification	tables,		contextual	
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data	for	the	samples,	and	the	annotations	for	each	gene	are	accessible	on	
Figshare	(Data	Citation	1).	The	raw	sequencing	reads	from	the	external	
samples	used	for	evaluation	were	also	published	elsewhere36	and	are	
accessible	at	NCBI	(Data	Citation	2).	

Technical Validation 
The	mapping	rates	for	all	samples	included	in	the	reference	assembly	are	
shown	in	Fig.	2,		where	the	majority	of	samples	included	in	the	assembly	
reaches	a	level	above	80%.	This	serves	as	a	validation	of	the	completeness	
of	the	metagenome	assembly.	The	fraction	of	reads	that	did	not	map	to	the	
coassembly,	and	were	hence	not	assembled	past	the	200	bases	length	cutoff	
most	likely	originate	from	low	abundance	species,	or	species	with	high	
intraspecies	diversity	generating	fragmented	assemblies.	The	mapping	rate	
of	the	external	samples	shows	the	capability	for	this	assembly	to	serve	as	a	
reference	metagenome	assembly	for	the	Baltic	Sea.	These	external	
samples36	were	collected	in	a	different	year	(2011)	and	a	station	(58.82	N	
17.63	E)	separate	from	where	the	samples	included	in	the	assembly	were	
taken.	This	represents	a	realistic	scenario	where	BARM	is	used	as	a	
reference	metagenome	for	the	Baltic	Sea.	The	mapping	rates	vary	with	the	
filter	fractions,	where	reads	originating	from	the	largest	(3.0	-	200	μm)	and	
smallest	(<	0.1	μm)	fractions	displayed	lower	rates	than	the	two	
intermediate	fractions	(0.1	-	0.8	μm	and	0.8	-	3.0	μm),	indicating	that	
picoplankton	are	better	represented	in	BARM	than	larger	eukaryotic	
plankton	and	viruses.		
	
Assignment	rates	for	different	annotation	types,	as	shown	in	Fig.	3,	are	in	
the	majority	of	cases	below	10%	of	the	total	number	of	reads,	which	is	
expected	since	only	genes	on	long	contigs	(representing	40%	of	the	bases	of	
the	total	assembly)	were	predicted	and	subjected	to	annotation.	The	
fraction	of	reads	annotated	among	reads	mapping	to	genes	included	in	the	
annotation	procedure	reaches	well	over	30%	for	Pfam	and	shows	the	
generality	of	that	database	as	compared	to	i.e.	dbCAN,	a	much	more	niched	
resource,	which	reaches	only	around	2%	of	reads	mapping	to	genes	
included	in	the	annotation.	
	
The	functional	annotation	was	further	validated	through	an	NMDS	plot	(Fig.	
4)	based	on	the	EggNOG	annotations	of	the	transect	data.	Depth	was	found	
to	be	negatively	correlated	with	the	first	dimension	(Spearman’s	rank	
correlation	ρ	=	-0.73,	P	=	5.4-06)	and	salinity	was	negatively	correlated	with	
the	second	dimension	(Spearman’s	rank	correlation	ρ	=	-0.77,	P	=	2.4-06).	
These	two	environmental	parameters	have	previously	been	found	to	
correlate	strongly	with	the	microbial	community	in	the	Baltic	Sea5	which	
strengthens	our	trust	in	the	EggNOG	annotations.	Furthermore,	analyzing	a	
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single	annotation	with	a	known	function,	namely	the	photosynthetic	
reaction	centre	protein	(PF00124)	we	could	see	a	strong	negative	
correlation	with	sampling	depth	over	the	thirty	transect	samples	(Spearman	
correlation	coefficient	ρ	=	-0.87,	P	=	3.1-10).	
	
The	taxonomic	annotation	was	validated	by	inspecting	the	taxonomic	profile	
of	the	transect	samples.	The	same	dominant	prokaryotic	taxonomic	groups	
were	observed	as	in	previous	pan-Baltic	amplicon	sequencing	and	
metagenomic	studies5,7,10,11,	and	the	overall	trends	were	conserved	with	an	
increase	in	Alpha-	and	Gammaproteobacteria	and	a	decrease	in	
Actinobacteria	and	Betaproteobacteria	with	increasing	salinity	levels	(Fig.	
5).		
	
Among	the	predicted	proteins	in	BARM,	98%	lacked	hits	with	amino	acid	
identities	above	95%,	hence	potentially	representing	species	for	which	
sequenced	genomes	are	lacking37.	31%	of	the	sequences	lacked	significant	
hits	(E-value	>	1)	and	potentially	correspond	to	novel	protein	families.	

Usage Notes 
A	publicly	available	repository	at	https://github.com/EnvGen/BARM_tools	
hosts	instructions	and	a	pipeline	on	how	to	quantify	genes	and	their	
annotations	within	BARM	for	any	kind	of	Baltic	Sea	metagenomic	and	
metatranscriptomic	samples.	
	
The	web	interface	BalticMicrobeDB,	available	to	the	public	at	
http://barm.scilifelab.se,	can	be	used	to	explore	and	access	data	for	the	
three	sample	sets	that	the	assembly	is	based	upon.	At	the	index	page,	the	
user	can	choose	whether	to	access	functional	annotations	or	taxonomic	
annotations.	For	the	functional	annotations,	the	user	can	select	specific	
annotation	sources	and	identifiers	and	select	the	sample	groups	for	which	
the	counts	will	be	displayed.	Furthermore,	a	text	search	over	the	identifiers	
and	the	descriptions	of	the	annotations	can	be	used	to	create	a	custom	table	
of	counts	over	the	selected	samples.	For	taxonomic	annotations,	counts	for	
the	top	level	superkingdom	are	first	presented	but	the	user	can	unfold	a	
taxonomic	tree	to	select	any	taxon	to	view	counts	for.	
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Figures 

Figure	1:	A	map	showing	the	locations	for	all	stations	where	samples	
were	taken.	

	
Figure	1.	The	three	sample	groups	included	in	the	assembly	(Transect,	LMO	
and	Redoxcline)	are	displayed	together	with	the	external	sample	set20	
(External),	all	groups	indicated	with	different	markers.	The	colour	of	the	
marker	indicates	the	salinity	of	the	water	sample	while	the	size	indicates	the	
depth	at	which	it	was	taken.	The	background	color	indicates	depth	(from	
white	to	dark	blue),	with	contour	lines	drawn	with	50	m	intervals.	The	map	
was	generated	using	the	Marmap	package38	in	R39	with	bathymetric	data	
from	the	ETOPO1	dataset	hosted	on	the	NOAA	server40.	
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Figure	2:	Mapping	rates	divided	on	different	sample	groups.		

	
Figure	2.	Mapping	rates	are	calculated	by	Bowtie232	as	the	“overall	
alignment	rate”.	The	three	first	sample	groups;	LMO	2012	(N=37,	0.2	-	3.0	
μm),	Baltic	Transect	2014	(N=30,	>	0.2	μm)	and	Baltic	Redoxcline	2014	
(N=6,	0.2	-	3.0	μm;	N=6,	>	3.0	μm;	N=2,	>	0.2	μm)	were	included	in	the	
assembly,	while	the	four	last	sample	groups;	External	Samples	<	0.1	μm	
(N=6),	External	Samples	0.1	-	0.8	μm	(N=6),	External	Samples	0.8	-	3.0	μm	
(N=6)	and	External	Samples	3.0	-	200	μm	(N=6)	were	not.	The	size	intervals	
of	the	external	samples	indicate	filter	pore	sizes	used	to	tentatively	separate	
viruses,	free-living	prokaryotes,	and	small	and	larger	particles	as	well	as	
Eukaryotic	cells,	respectively36.	Created	using	Matplotlib41	and	Seaborn42	
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Figure	3:	Fraction	of	reads	mapping	to	genes	annotated	with	
respective	database.		

	
Figure	3.	Only	genes	identified	on	contigs	longer	than	1	kilobase	were	
subjected	to	annotation,	defining	the	‘included	genes’	category.	N=81	for	all	
categories.	Created	using	Matplotlib41	and	Seaborn42	
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Figure	4:	NMDS	of	EggNOG	annotstions.		

	
Figure	4.	Non-metric	dimensional	scaling	(NMDS)	of	the	30	samples	
included	in	the	Transect	sample	group	based	on	EggNOG	annotation.	
Samples	are	colored	and	sized	according	to	salinity	and	depth,	respectively.	
Created	using	Matplotlib41	and	Seaborn42	
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Figure	5:	Taxonomic	profiles	of	the	10	transect	samples	obtained	
from	surface	waters.	

	
Figure	5:	Numbers	on	x-axis	indicate	salinity,	given	in	practical	salinity	
units	(PSU),	and	are	sorted	with	increasing	salinity	to	the	right.	Created	
using	Matplotlib41	and	Seaborn42	
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